Properties

Label 275.3.d.b.274.5
Level $275$
Weight $3$
Character 275.274
Analytic conductor $7.493$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,3,Mod(274,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.274"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 275.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.49320726991\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 50x^{14} + 939x^{12} + 8450x^{10} + 39245x^{8} + 93316x^{6} + 104420x^{4} + 45264x^{2} + 6400 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4}\cdot 5^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 274.5
Root \(2.54705i\) of defining polynomial
Character \(\chi\) \(=\) 275.274
Dual form 275.3.d.b.274.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.54705 q^{2} -4.06604i q^{3} -1.60665 q^{4} +6.29036i q^{6} +8.53587 q^{7} +8.67374 q^{8} -7.53270 q^{9} +(7.63571 - 7.91807i) q^{11} +6.53270i q^{12} +16.6490 q^{13} -13.2054 q^{14} -6.99209 q^{16} -5.33961 q^{17} +11.6534 q^{18} -0.884280i q^{19} -34.7072i q^{21} +(-11.8128 + 12.2496i) q^{22} -20.2635i q^{23} -35.2678i q^{24} -25.7568 q^{26} -5.96611i q^{27} -13.7141 q^{28} +40.3082i q^{29} -51.5865 q^{31} -23.8779 q^{32} +(-32.1952 - 31.0471i) q^{33} +8.26062 q^{34} +12.1024 q^{36} +10.7964i q^{37} +1.36802i q^{38} -67.6956i q^{39} -36.1941i q^{41} +53.6937i q^{42} +74.3649 q^{43} +(-12.2679 + 12.7216i) q^{44} +31.3486i q^{46} -72.2589i q^{47} +28.4301i q^{48} +23.8611 q^{49} +21.7111i q^{51} -26.7491 q^{52} +13.8913i q^{53} +9.22985i q^{54} +74.0380 q^{56} -3.59552 q^{57} -62.3587i q^{58} +26.9285 q^{59} +45.5691i q^{61} +79.8067 q^{62} -64.2981 q^{63} +64.9086 q^{64} +(49.8075 + 48.0314i) q^{66} -78.3584i q^{67} +8.57887 q^{68} -82.3923 q^{69} +66.9670 q^{71} -65.3367 q^{72} -27.9462 q^{73} -16.7026i q^{74} +1.42073i q^{76} +(65.1775 - 67.5876i) q^{77} +104.728i q^{78} +10.4721i q^{79} -92.0527 q^{81} +55.9939i q^{82} -121.282 q^{83} +55.7623i q^{84} -115.046 q^{86} +163.895 q^{87} +(66.2302 - 68.6793i) q^{88} -19.7361 q^{89} +142.114 q^{91} +32.5563i q^{92} +209.753i q^{93} +111.788i q^{94} +97.0885i q^{96} +148.321i q^{97} -36.9142 q^{98} +(-57.5175 + 59.6444i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 20 q^{4} - 64 q^{9} - 2 q^{11} - 36 q^{14} - 28 q^{16} + 136 q^{26} - 84 q^{31} + 284 q^{34} - 168 q^{36} - 138 q^{44} + 100 q^{49} + 332 q^{56} + 320 q^{59} - 576 q^{64} - 630 q^{66} + 32 q^{69}+ \cdots - 736 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.54705 −0.773523 −0.386762 0.922180i \(-0.626406\pi\)
−0.386762 + 0.922180i \(0.626406\pi\)
\(3\) 4.06604i 1.35535i −0.735363 0.677674i \(-0.762988\pi\)
0.735363 0.677674i \(-0.237012\pi\)
\(4\) −1.60665 −0.401662
\(5\) 0 0
\(6\) 6.29036i 1.04839i
\(7\) 8.53587 1.21941 0.609705 0.792628i \(-0.291288\pi\)
0.609705 + 0.792628i \(0.291288\pi\)
\(8\) 8.67374 1.08422
\(9\) −7.53270 −0.836966
\(10\) 0 0
\(11\) 7.63571 7.91807i 0.694156 0.719825i
\(12\) 6.53270i 0.544391i
\(13\) 16.6490 1.28069 0.640347 0.768086i \(-0.278791\pi\)
0.640347 + 0.768086i \(0.278791\pi\)
\(14\) −13.2054 −0.943242
\(15\) 0 0
\(16\) −6.99209 −0.437006
\(17\) −5.33961 −0.314095 −0.157047 0.987591i \(-0.550198\pi\)
−0.157047 + 0.987591i \(0.550198\pi\)
\(18\) 11.6534 0.647413
\(19\) 0.884280i 0.0465410i −0.999729 0.0232705i \(-0.992592\pi\)
0.999729 0.0232705i \(-0.00740790\pi\)
\(20\) 0 0
\(21\) 34.7072i 1.65272i
\(22\) −11.8128 + 12.2496i −0.536946 + 0.556801i
\(23\) 20.2635i 0.881023i −0.897747 0.440511i \(-0.854797\pi\)
0.897747 0.440511i \(-0.145203\pi\)
\(24\) 35.2678i 1.46949i
\(25\) 0 0
\(26\) −25.7568 −0.990646
\(27\) 5.96611i 0.220967i
\(28\) −13.7141 −0.489791
\(29\) 40.3082i 1.38994i 0.719040 + 0.694969i \(0.244582\pi\)
−0.719040 + 0.694969i \(0.755418\pi\)
\(30\) 0 0
\(31\) −51.5865 −1.66408 −0.832040 0.554716i \(-0.812827\pi\)
−0.832040 + 0.554716i \(0.812827\pi\)
\(32\) −23.8779 −0.746184
\(33\) −32.1952 31.0471i −0.975613 0.940822i
\(34\) 8.26062 0.242959
\(35\) 0 0
\(36\) 12.1024 0.336178
\(37\) 10.7964i 0.291795i 0.989300 + 0.145898i \(0.0466070\pi\)
−0.989300 + 0.145898i \(0.953393\pi\)
\(38\) 1.36802i 0.0360006i
\(39\) 67.6956i 1.73578i
\(40\) 0 0
\(41\) 36.1941i 0.882783i −0.897315 0.441391i \(-0.854485\pi\)
0.897315 0.441391i \(-0.145515\pi\)
\(42\) 53.6937i 1.27842i
\(43\) 74.3649 1.72942 0.864708 0.502275i \(-0.167504\pi\)
0.864708 + 0.502275i \(0.167504\pi\)
\(44\) −12.2679 + 12.7216i −0.278816 + 0.289126i
\(45\) 0 0
\(46\) 31.3486i 0.681491i
\(47\) 72.2589i 1.53742i −0.639595 0.768712i \(-0.720898\pi\)
0.639595 0.768712i \(-0.279102\pi\)
\(48\) 28.4301i 0.592295i
\(49\) 23.8611 0.486961
\(50\) 0 0
\(51\) 21.7111i 0.425707i
\(52\) −26.7491 −0.514406
\(53\) 13.8913i 0.262101i 0.991376 + 0.131050i \(0.0418350\pi\)
−0.991376 + 0.131050i \(0.958165\pi\)
\(54\) 9.22985i 0.170923i
\(55\) 0 0
\(56\) 74.0380 1.32211
\(57\) −3.59552 −0.0630793
\(58\) 62.3587i 1.07515i
\(59\) 26.9285 0.456415 0.228208 0.973612i \(-0.426713\pi\)
0.228208 + 0.973612i \(0.426713\pi\)
\(60\) 0 0
\(61\) 45.5691i 0.747035i 0.927623 + 0.373517i \(0.121848\pi\)
−0.927623 + 0.373517i \(0.878152\pi\)
\(62\) 79.8067 1.28720
\(63\) −64.2981 −1.02061
\(64\) 64.9086 1.01420
\(65\) 0 0
\(66\) 49.8075 + 48.0314i 0.754659 + 0.727748i
\(67\) 78.3584i 1.16953i −0.811203 0.584764i \(-0.801187\pi\)
0.811203 0.584764i \(-0.198813\pi\)
\(68\) 8.57887 0.126160
\(69\) −82.3923 −1.19409
\(70\) 0 0
\(71\) 66.9670 0.943197 0.471598 0.881813i \(-0.343677\pi\)
0.471598 + 0.881813i \(0.343677\pi\)
\(72\) −65.3367 −0.907454
\(73\) −27.9462 −0.382825 −0.191412 0.981510i \(-0.561307\pi\)
−0.191412 + 0.981510i \(0.561307\pi\)
\(74\) 16.7026i 0.225710i
\(75\) 0 0
\(76\) 1.42073i 0.0186938i
\(77\) 65.1775 67.5876i 0.846461 0.877762i
\(78\) 104.728i 1.34267i
\(79\) 10.4721i 0.132558i 0.997801 + 0.0662789i \(0.0211127\pi\)
−0.997801 + 0.0662789i \(0.978887\pi\)
\(80\) 0 0
\(81\) −92.0527 −1.13645
\(82\) 55.9939i 0.682853i
\(83\) −121.282 −1.46123 −0.730614 0.682791i \(-0.760766\pi\)
−0.730614 + 0.682791i \(0.760766\pi\)
\(84\) 55.7623i 0.663836i
\(85\) 0 0
\(86\) −115.046 −1.33774
\(87\) 163.895 1.88385
\(88\) 66.2302 68.6793i 0.752616 0.780447i
\(89\) −19.7361 −0.221754 −0.110877 0.993834i \(-0.535366\pi\)
−0.110877 + 0.993834i \(0.535366\pi\)
\(90\) 0 0
\(91\) 142.114 1.56169
\(92\) 32.5563i 0.353873i
\(93\) 209.753i 2.25541i
\(94\) 111.788i 1.18923i
\(95\) 0 0
\(96\) 97.0885i 1.01134i
\(97\) 148.321i 1.52909i 0.644573 + 0.764543i \(0.277035\pi\)
−0.644573 + 0.764543i \(0.722965\pi\)
\(98\) −36.9142 −0.376676
\(99\) −57.5175 + 59.6444i −0.580985 + 0.602469i
\(100\) 0 0
\(101\) 119.352i 1.18171i −0.806779 0.590853i \(-0.798791\pi\)
0.806779 0.590853i \(-0.201209\pi\)
\(102\) 33.5880i 0.329294i
\(103\) 163.050i 1.58300i 0.611166 + 0.791502i \(0.290701\pi\)
−0.611166 + 0.791502i \(0.709299\pi\)
\(104\) 144.409 1.38855
\(105\) 0 0
\(106\) 21.4906i 0.202741i
\(107\) −96.1684 −0.898770 −0.449385 0.893338i \(-0.648357\pi\)
−0.449385 + 0.893338i \(0.648357\pi\)
\(108\) 9.58544i 0.0887541i
\(109\) 156.781i 1.43836i 0.694823 + 0.719181i \(0.255483\pi\)
−0.694823 + 0.719181i \(0.744517\pi\)
\(110\) 0 0
\(111\) 43.8987 0.395484
\(112\) −59.6836 −0.532889
\(113\) 72.2303i 0.639206i −0.947552 0.319603i \(-0.896450\pi\)
0.947552 0.319603i \(-0.103550\pi\)
\(114\) 5.56243 0.0487933
\(115\) 0 0
\(116\) 64.7611i 0.558285i
\(117\) −125.412 −1.07190
\(118\) −41.6597 −0.353048
\(119\) −45.5782 −0.383010
\(120\) 0 0
\(121\) −4.39172 120.920i −0.0362952 0.999341i
\(122\) 70.4975i 0.577849i
\(123\) −147.167 −1.19648
\(124\) 82.8813 0.668397
\(125\) 0 0
\(126\) 99.4722 0.789462
\(127\) 113.469 0.893454 0.446727 0.894670i \(-0.352590\pi\)
0.446727 + 0.894670i \(0.352590\pi\)
\(128\) −4.90501 −0.0383204
\(129\) 302.371i 2.34396i
\(130\) 0 0
\(131\) 125.812i 0.960398i 0.877160 + 0.480199i \(0.159435\pi\)
−0.877160 + 0.480199i \(0.840565\pi\)
\(132\) 51.7264 + 49.8818i 0.391866 + 0.377893i
\(133\) 7.54810i 0.0567526i
\(134\) 121.224i 0.904658i
\(135\) 0 0
\(136\) −46.3144 −0.340547
\(137\) 79.0330i 0.576883i −0.957497 0.288442i \(-0.906863\pi\)
0.957497 0.288442i \(-0.0931371\pi\)
\(138\) 127.465 0.923658
\(139\) 105.709i 0.760496i −0.924885 0.380248i \(-0.875839\pi\)
0.924885 0.380248i \(-0.124161\pi\)
\(140\) 0 0
\(141\) −293.808 −2.08374
\(142\) −103.601 −0.729585
\(143\) 127.127 131.828i 0.889001 0.921875i
\(144\) 52.6693 0.365759
\(145\) 0 0
\(146\) 43.2341 0.296124
\(147\) 97.0202i 0.660001i
\(148\) 17.3461i 0.117203i
\(149\) 238.710i 1.60208i −0.598609 0.801041i \(-0.704280\pi\)
0.598609 0.801041i \(-0.295720\pi\)
\(150\) 0 0
\(151\) 284.704i 1.88545i 0.333565 + 0.942727i \(0.391748\pi\)
−0.333565 + 0.942727i \(0.608252\pi\)
\(152\) 7.67002i 0.0504606i
\(153\) 40.2217 0.262887
\(154\) −100.833 + 104.561i −0.654757 + 0.678969i
\(155\) 0 0
\(156\) 108.763i 0.697199i
\(157\) 152.650i 0.972293i 0.873877 + 0.486146i \(0.161598\pi\)
−0.873877 + 0.486146i \(0.838402\pi\)
\(158\) 16.2008i 0.102537i
\(159\) 56.4828 0.355238
\(160\) 0 0
\(161\) 172.967i 1.07433i
\(162\) 142.410 0.879073
\(163\) 246.798i 1.51410i −0.653359 0.757048i \(-0.726641\pi\)
0.653359 0.757048i \(-0.273359\pi\)
\(164\) 58.1511i 0.354580i
\(165\) 0 0
\(166\) 187.629 1.13029
\(167\) 124.912 0.747978 0.373989 0.927433i \(-0.377990\pi\)
0.373989 + 0.927433i \(0.377990\pi\)
\(168\) 301.041i 1.79191i
\(169\) 108.190 0.640176
\(170\) 0 0
\(171\) 6.66101i 0.0389533i
\(172\) −119.478 −0.694641
\(173\) −79.2272 −0.457961 −0.228980 0.973431i \(-0.573539\pi\)
−0.228980 + 0.973431i \(0.573539\pi\)
\(174\) −253.553 −1.45720
\(175\) 0 0
\(176\) −53.3896 + 55.3639i −0.303350 + 0.314568i
\(177\) 109.492i 0.618602i
\(178\) 30.5327 0.171532
\(179\) −320.405 −1.78997 −0.894985 0.446097i \(-0.852814\pi\)
−0.894985 + 0.446097i \(0.852814\pi\)
\(180\) 0 0
\(181\) 62.4120 0.344818 0.172409 0.985025i \(-0.444845\pi\)
0.172409 + 0.985025i \(0.444845\pi\)
\(182\) −219.857 −1.20800
\(183\) 185.286 1.01249
\(184\) 175.761i 0.955221i
\(185\) 0 0
\(186\) 324.497i 1.74461i
\(187\) −40.7717 + 42.2794i −0.218031 + 0.226093i
\(188\) 116.095i 0.617525i
\(189\) 50.9260i 0.269450i
\(190\) 0 0
\(191\) 45.7787 0.239679 0.119840 0.992793i \(-0.461762\pi\)
0.119840 + 0.992793i \(0.461762\pi\)
\(192\) 263.921i 1.37459i
\(193\) 273.871 1.41902 0.709511 0.704694i \(-0.248916\pi\)
0.709511 + 0.704694i \(0.248916\pi\)
\(194\) 229.460i 1.18278i
\(195\) 0 0
\(196\) −38.3364 −0.195594
\(197\) 168.083 0.853214 0.426607 0.904437i \(-0.359709\pi\)
0.426607 + 0.904437i \(0.359709\pi\)
\(198\) 88.9823 92.2727i 0.449405 0.466024i
\(199\) 304.174 1.52851 0.764256 0.644913i \(-0.223106\pi\)
0.764256 + 0.644913i \(0.223106\pi\)
\(200\) 0 0
\(201\) −318.609 −1.58512
\(202\) 184.644i 0.914078i
\(203\) 344.066i 1.69490i
\(204\) 34.8820i 0.170990i
\(205\) 0 0
\(206\) 252.245i 1.22449i
\(207\) 152.639i 0.737386i
\(208\) −116.411 −0.559670
\(209\) −7.00179 6.75211i −0.0335014 0.0323067i
\(210\) 0 0
\(211\) 31.8928i 0.151151i 0.997140 + 0.0755754i \(0.0240793\pi\)
−0.997140 + 0.0755754i \(0.975921\pi\)
\(212\) 22.3185i 0.105276i
\(213\) 272.291i 1.27836i
\(214\) 148.777 0.695219
\(215\) 0 0
\(216\) 51.7485i 0.239577i
\(217\) −440.335 −2.02920
\(218\) 242.548i 1.11261i
\(219\) 113.630i 0.518860i
\(220\) 0 0
\(221\) −88.8992 −0.402259
\(222\) −67.9134 −0.305916
\(223\) 140.029i 0.627931i 0.949434 + 0.313965i \(0.101658\pi\)
−0.949434 + 0.313965i \(0.898342\pi\)
\(224\) −203.819 −0.909904
\(225\) 0 0
\(226\) 111.744i 0.494441i
\(227\) 153.141 0.674629 0.337314 0.941392i \(-0.390481\pi\)
0.337314 + 0.941392i \(0.390481\pi\)
\(228\) 5.77673 0.0253365
\(229\) −199.559 −0.871435 −0.435717 0.900084i \(-0.643505\pi\)
−0.435717 + 0.900084i \(0.643505\pi\)
\(230\) 0 0
\(231\) −274.814 265.014i −1.18967 1.14725i
\(232\) 349.623i 1.50700i
\(233\) 102.599 0.440338 0.220169 0.975462i \(-0.429339\pi\)
0.220169 + 0.975462i \(0.429339\pi\)
\(234\) 194.018 0.829138
\(235\) 0 0
\(236\) −43.2646 −0.183325
\(237\) 42.5799 0.179662
\(238\) 70.5116 0.296267
\(239\) 366.949i 1.53535i 0.640838 + 0.767676i \(0.278587\pi\)
−0.640838 + 0.767676i \(0.721413\pi\)
\(240\) 0 0
\(241\) 199.190i 0.826513i 0.910615 + 0.413256i \(0.135609\pi\)
−0.910615 + 0.413256i \(0.864391\pi\)
\(242\) 6.79420 + 187.069i 0.0280752 + 0.773013i
\(243\) 320.595i 1.31932i
\(244\) 73.2135i 0.300055i
\(245\) 0 0
\(246\) 227.674 0.925503
\(247\) 14.7224i 0.0596048i
\(248\) −447.448 −1.80423
\(249\) 493.137i 1.98047i
\(250\) 0 0
\(251\) 267.673 1.06643 0.533213 0.845981i \(-0.320984\pi\)
0.533213 + 0.845981i \(0.320984\pi\)
\(252\) 103.304 0.409938
\(253\) −160.448 154.726i −0.634182 0.611567i
\(254\) −175.541 −0.691107
\(255\) 0 0
\(256\) −252.046 −0.984555
\(257\) 170.577i 0.663725i 0.943328 + 0.331862i \(0.107677\pi\)
−0.943328 + 0.331862i \(0.892323\pi\)
\(258\) 467.781i 1.81311i
\(259\) 92.1569i 0.355818i
\(260\) 0 0
\(261\) 303.629i 1.16333i
\(262\) 194.637i 0.742890i
\(263\) 252.398 0.959688 0.479844 0.877354i \(-0.340693\pi\)
0.479844 + 0.877354i \(0.340693\pi\)
\(264\) −279.253 269.295i −1.05778 1.02006i
\(265\) 0 0
\(266\) 11.6773i 0.0438995i
\(267\) 80.2480i 0.300554i
\(268\) 125.894i 0.469755i
\(269\) −10.5405 −0.0391840 −0.0195920 0.999808i \(-0.506237\pi\)
−0.0195920 + 0.999808i \(0.506237\pi\)
\(270\) 0 0
\(271\) 310.989i 1.14756i 0.819009 + 0.573781i \(0.194524\pi\)
−0.819009 + 0.573781i \(0.805476\pi\)
\(272\) 37.3350 0.137261
\(273\) 577.841i 2.11663i
\(274\) 122.268i 0.446233i
\(275\) 0 0
\(276\) 132.375 0.479621
\(277\) 1.23402 0.00445494 0.00222747 0.999998i \(-0.499291\pi\)
0.00222747 + 0.999998i \(0.499291\pi\)
\(278\) 163.537i 0.588261i
\(279\) 388.585 1.39278
\(280\) 0 0
\(281\) 138.442i 0.492675i −0.969184 0.246337i \(-0.920773\pi\)
0.969184 0.246337i \(-0.0792271\pi\)
\(282\) 454.534 1.61182
\(283\) −15.0453 −0.0531637 −0.0265819 0.999647i \(-0.508462\pi\)
−0.0265819 + 0.999647i \(0.508462\pi\)
\(284\) −107.592 −0.378846
\(285\) 0 0
\(286\) −196.672 + 203.944i −0.687663 + 0.713092i
\(287\) 308.948i 1.07647i
\(288\) 179.865 0.624531
\(289\) −260.489 −0.901345
\(290\) 0 0
\(291\) 603.081 2.07244
\(292\) 44.8997 0.153766
\(293\) 95.4236 0.325678 0.162839 0.986653i \(-0.447935\pi\)
0.162839 + 0.986653i \(0.447935\pi\)
\(294\) 150.095i 0.510526i
\(295\) 0 0
\(296\) 93.6455i 0.316370i
\(297\) −47.2401 45.5555i −0.159058 0.153386i
\(298\) 369.296i 1.23925i
\(299\) 337.368i 1.12832i
\(300\) 0 0
\(301\) 634.769 2.10887
\(302\) 440.450i 1.45844i
\(303\) −485.292 −1.60162
\(304\) 6.18296i 0.0203387i
\(305\) 0 0
\(306\) −62.2248 −0.203349
\(307\) −273.765 −0.891742 −0.445871 0.895097i \(-0.647106\pi\)
−0.445871 + 0.895097i \(0.647106\pi\)
\(308\) −104.717 + 108.590i −0.339991 + 0.352563i
\(309\) 662.966 2.14552
\(310\) 0 0
\(311\) −277.610 −0.892635 −0.446318 0.894875i \(-0.647265\pi\)
−0.446318 + 0.894875i \(0.647265\pi\)
\(312\) 587.174i 1.88197i
\(313\) 171.212i 0.547004i 0.961871 + 0.273502i \(0.0881820\pi\)
−0.961871 + 0.273502i \(0.911818\pi\)
\(314\) 236.157i 0.752091i
\(315\) 0 0
\(316\) 16.8249i 0.0532434i
\(317\) 107.731i 0.339847i −0.985457 0.169923i \(-0.945648\pi\)
0.985457 0.169923i \(-0.0543520\pi\)
\(318\) −87.3815 −0.274785
\(319\) 319.163 + 307.782i 1.00051 + 0.964834i
\(320\) 0 0
\(321\) 391.025i 1.21815i
\(322\) 267.588i 0.831018i
\(323\) 4.72171i 0.0146183i
\(324\) 147.896 0.456470
\(325\) 0 0
\(326\) 381.808i 1.17119i
\(327\) 637.480 1.94948
\(328\) 313.938i 0.957129i
\(329\) 616.793i 1.87475i
\(330\) 0 0
\(331\) 226.936 0.685606 0.342803 0.939407i \(-0.388624\pi\)
0.342803 + 0.939407i \(0.388624\pi\)
\(332\) 194.857 0.586920
\(333\) 81.3262i 0.244223i
\(334\) −193.245 −0.578578
\(335\) 0 0
\(336\) 242.676i 0.722250i
\(337\) −164.018 −0.486701 −0.243350 0.969938i \(-0.578247\pi\)
−0.243350 + 0.969938i \(0.578247\pi\)
\(338\) −167.375 −0.495191
\(339\) −293.691 −0.866346
\(340\) 0 0
\(341\) −393.900 + 408.465i −1.15513 + 1.19785i
\(342\) 10.3049i 0.0301313i
\(343\) −214.582 −0.625605
\(344\) 645.022 1.87506
\(345\) 0 0
\(346\) 122.568 0.354243
\(347\) −283.936 −0.818260 −0.409130 0.912476i \(-0.634168\pi\)
−0.409130 + 0.912476i \(0.634168\pi\)
\(348\) −263.321 −0.756670
\(349\) 107.964i 0.309352i 0.987965 + 0.154676i \(0.0494333\pi\)
−0.987965 + 0.154676i \(0.950567\pi\)
\(350\) 0 0
\(351\) 99.3299i 0.282991i
\(352\) −182.325 + 189.067i −0.517968 + 0.537122i
\(353\) 299.299i 0.847871i 0.905692 + 0.423936i \(0.139352\pi\)
−0.905692 + 0.423936i \(0.860648\pi\)
\(354\) 169.390i 0.478503i
\(355\) 0 0
\(356\) 31.7090 0.0890703
\(357\) 185.323i 0.519112i
\(358\) 495.681 1.38458
\(359\) 315.451i 0.878694i 0.898318 + 0.439347i \(0.144790\pi\)
−0.898318 + 0.439347i \(0.855210\pi\)
\(360\) 0 0
\(361\) 360.218 0.997834
\(362\) −96.5542 −0.266724
\(363\) −491.667 + 17.8569i −1.35445 + 0.0491927i
\(364\) −228.327 −0.627272
\(365\) 0 0
\(366\) −286.646 −0.783185
\(367\) 170.851i 0.465535i −0.972532 0.232768i \(-0.925222\pi\)
0.972532 0.232768i \(-0.0747782\pi\)
\(368\) 141.684i 0.385012i
\(369\) 272.639i 0.738859i
\(370\) 0 0
\(371\) 118.575i 0.319609i
\(372\) 336.999i 0.905911i
\(373\) 63.4196 0.170026 0.0850129 0.996380i \(-0.472907\pi\)
0.0850129 + 0.996380i \(0.472907\pi\)
\(374\) 63.0757 65.4082i 0.168652 0.174888i
\(375\) 0 0
\(376\) 626.756i 1.66690i
\(377\) 671.092i 1.78008i
\(378\) 78.7848i 0.208426i
\(379\) 395.811 1.04436 0.522178 0.852837i \(-0.325120\pi\)
0.522178 + 0.852837i \(0.325120\pi\)
\(380\) 0 0
\(381\) 461.368i 1.21094i
\(382\) −70.8218 −0.185397
\(383\) 239.493i 0.625308i −0.949867 0.312654i \(-0.898782\pi\)
0.949867 0.312654i \(-0.101218\pi\)
\(384\) 19.9440i 0.0519374i
\(385\) 0 0
\(386\) −423.691 −1.09765
\(387\) −560.168 −1.44746
\(388\) 238.300i 0.614175i
\(389\) −225.687 −0.580172 −0.290086 0.957001i \(-0.593684\pi\)
−0.290086 + 0.957001i \(0.593684\pi\)
\(390\) 0 0
\(391\) 108.199i 0.276724i
\(392\) 206.965 0.527972
\(393\) 511.557 1.30167
\(394\) −260.032 −0.659981
\(395\) 0 0
\(396\) 92.4104 95.8276i 0.233360 0.241989i
\(397\) 46.1196i 0.116170i −0.998312 0.0580851i \(-0.981501\pi\)
0.998312 0.0580851i \(-0.0184995\pi\)
\(398\) −470.571 −1.18234
\(399\) −30.6909 −0.0769195
\(400\) 0 0
\(401\) 273.371 0.681722 0.340861 0.940114i \(-0.389281\pi\)
0.340861 + 0.940114i \(0.389281\pi\)
\(402\) 492.902 1.22613
\(403\) −858.864 −2.13118
\(404\) 191.757i 0.474647i
\(405\) 0 0
\(406\) 532.285i 1.31105i
\(407\) 85.4869 + 82.4385i 0.210042 + 0.202551i
\(408\) 188.316i 0.461559i
\(409\) 355.118i 0.868259i 0.900850 + 0.434130i \(0.142944\pi\)
−0.900850 + 0.434130i \(0.857056\pi\)
\(410\) 0 0
\(411\) −321.352 −0.781877
\(412\) 261.963i 0.635833i
\(413\) 229.858 0.556558
\(414\) 236.140i 0.570385i
\(415\) 0 0
\(416\) −397.543 −0.955633
\(417\) −429.817 −1.03074
\(418\) 10.8321 + 10.4458i 0.0259141 + 0.0249900i
\(419\) 137.679 0.328590 0.164295 0.986411i \(-0.447465\pi\)
0.164295 + 0.986411i \(0.447465\pi\)
\(420\) 0 0
\(421\) 42.5093 0.100972 0.0504861 0.998725i \(-0.483923\pi\)
0.0504861 + 0.998725i \(0.483923\pi\)
\(422\) 49.3396i 0.116919i
\(423\) 544.305i 1.28677i
\(424\) 120.490i 0.284175i
\(425\) 0 0
\(426\) 421.246i 0.988841i
\(427\) 388.972i 0.910941i
\(428\) 154.509 0.361002
\(429\) −536.019 516.904i −1.24946 1.20491i
\(430\) 0 0
\(431\) 18.0213i 0.0418128i 0.999781 + 0.0209064i \(0.00665520\pi\)
−0.999781 + 0.0209064i \(0.993345\pi\)
\(432\) 41.7156i 0.0965639i
\(433\) 443.870i 1.02510i −0.858656 0.512552i \(-0.828700\pi\)
0.858656 0.512552i \(-0.171300\pi\)
\(434\) 681.219 1.56963
\(435\) 0 0
\(436\) 251.892i 0.577735i
\(437\) −17.9186 −0.0410037
\(438\) 175.791i 0.401350i
\(439\) 420.410i 0.957654i −0.877909 0.478827i \(-0.841062\pi\)
0.877909 0.478827i \(-0.158938\pi\)
\(440\) 0 0
\(441\) −179.738 −0.407570
\(442\) 137.531 0.311157
\(443\) 526.465i 1.18841i 0.804314 + 0.594204i \(0.202533\pi\)
−0.804314 + 0.594204i \(0.797467\pi\)
\(444\) −70.5298 −0.158851
\(445\) 0 0
\(446\) 216.631i 0.485719i
\(447\) −970.606 −2.17138
\(448\) 554.051 1.23672
\(449\) −115.197 −0.256564 −0.128282 0.991738i \(-0.540946\pi\)
−0.128282 + 0.991738i \(0.540946\pi\)
\(450\) 0 0
\(451\) −286.587 276.368i −0.635449 0.612789i
\(452\) 116.049i 0.256745i
\(453\) 1157.62 2.55544
\(454\) −236.916 −0.521841
\(455\) 0 0
\(456\) −31.1866 −0.0683917
\(457\) 331.393 0.725148 0.362574 0.931955i \(-0.381898\pi\)
0.362574 + 0.931955i \(0.381898\pi\)
\(458\) 308.726 0.674075
\(459\) 31.8567i 0.0694046i
\(460\) 0 0
\(461\) 440.253i 0.954997i 0.878633 + 0.477498i \(0.158456\pi\)
−0.878633 + 0.477498i \(0.841544\pi\)
\(462\) 425.150 + 409.989i 0.920239 + 0.887423i
\(463\) 119.267i 0.257595i −0.991671 0.128798i \(-0.958888\pi\)
0.991671 0.128798i \(-0.0411118\pi\)
\(464\) 281.839i 0.607411i
\(465\) 0 0
\(466\) −158.725 −0.340612
\(467\) 411.442i 0.881031i 0.897745 + 0.440516i \(0.145204\pi\)
−0.897745 + 0.440516i \(0.854796\pi\)
\(468\) 201.493 0.430540
\(469\) 668.858i 1.42614i
\(470\) 0 0
\(471\) 620.681 1.31779
\(472\) 233.571 0.494854
\(473\) 567.829 588.826i 1.20048 1.24488i
\(474\) −65.8730 −0.138973
\(475\) 0 0
\(476\) 73.2281 0.153841
\(477\) 104.639i 0.219370i
\(478\) 567.687i 1.18763i
\(479\) 923.838i 1.92868i 0.264666 + 0.964340i \(0.414738\pi\)
−0.264666 + 0.964340i \(0.585262\pi\)
\(480\) 0 0
\(481\) 179.750i 0.373701i
\(482\) 308.155i 0.639327i
\(483\) −703.290 −1.45609
\(484\) 7.05596 + 194.276i 0.0145784 + 0.401397i
\(485\) 0 0
\(486\) 495.976i 1.02053i
\(487\) 277.052i 0.568895i −0.958692 0.284447i \(-0.908190\pi\)
0.958692 0.284447i \(-0.0918101\pi\)
\(488\) 395.255i 0.809948i
\(489\) −1003.49 −2.05213
\(490\) 0 0
\(491\) 98.0225i 0.199639i −0.995006 0.0998193i \(-0.968174\pi\)
0.995006 0.0998193i \(-0.0318265\pi\)
\(492\) 236.445 0.480579
\(493\) 215.230i 0.436572i
\(494\) 22.7762i 0.0461057i
\(495\) 0 0
\(496\) 360.697 0.727212
\(497\) 571.622 1.15014
\(498\) 762.907i 1.53194i
\(499\) −252.147 −0.505305 −0.252653 0.967557i \(-0.581303\pi\)
−0.252653 + 0.967557i \(0.581303\pi\)
\(500\) 0 0
\(501\) 507.899i 1.01377i
\(502\) −414.103 −0.824906
\(503\) 438.637 0.872041 0.436021 0.899937i \(-0.356387\pi\)
0.436021 + 0.899937i \(0.356387\pi\)
\(504\) −557.706 −1.10656
\(505\) 0 0
\(506\) 248.221 + 239.369i 0.490554 + 0.473061i
\(507\) 439.904i 0.867661i
\(508\) −182.304 −0.358866
\(509\) −869.942 −1.70912 −0.854560 0.519352i \(-0.826173\pi\)
−0.854560 + 0.519352i \(0.826173\pi\)
\(510\) 0 0
\(511\) −238.545 −0.466820
\(512\) 409.547 0.799896
\(513\) −5.27571 −0.0102840
\(514\) 263.891i 0.513407i
\(515\) 0 0
\(516\) 485.803i 0.941479i
\(517\) −572.152 551.749i −1.10668 1.06721i
\(518\) 142.571i 0.275234i
\(519\) 322.141i 0.620696i
\(520\) 0 0
\(521\) 387.883 0.744498 0.372249 0.928133i \(-0.378587\pi\)
0.372249 + 0.928133i \(0.378587\pi\)
\(522\) 469.729i 0.899864i
\(523\) 284.445 0.543872 0.271936 0.962315i \(-0.412336\pi\)
0.271936 + 0.962315i \(0.412336\pi\)
\(524\) 202.136i 0.385755i
\(525\) 0 0
\(526\) −390.471 −0.742341
\(527\) 275.452 0.522678
\(528\) 225.112 + 217.084i 0.426348 + 0.411145i
\(529\) 118.390 0.223799
\(530\) 0 0
\(531\) −202.844 −0.382004
\(532\) 12.1271i 0.0227954i
\(533\) 602.596i 1.13057i
\(534\) 124.147i 0.232486i
\(535\) 0 0
\(536\) 679.661i 1.26802i
\(537\) 1302.78i 2.42603i
\(538\) 16.3066 0.0303097
\(539\) 182.196 188.934i 0.338027 0.350527i
\(540\) 0 0
\(541\) 181.011i 0.334585i −0.985907 0.167293i \(-0.946498\pi\)
0.985907 0.167293i \(-0.0535025\pi\)
\(542\) 481.114i 0.887665i
\(543\) 253.770i 0.467347i
\(544\) 127.499 0.234372
\(545\) 0 0
\(546\) 893.947i 1.63726i
\(547\) 602.153 1.10083 0.550414 0.834892i \(-0.314470\pi\)
0.550414 + 0.834892i \(0.314470\pi\)
\(548\) 126.978i 0.231712i
\(549\) 343.258i 0.625243i
\(550\) 0 0
\(551\) 35.6437 0.0646891
\(552\) −714.650 −1.29466
\(553\) 89.3882i 0.161642i
\(554\) −1.90908 −0.00344600
\(555\) 0 0
\(556\) 169.837i 0.305462i
\(557\) 264.253 0.474422 0.237211 0.971458i \(-0.423767\pi\)
0.237211 + 0.971458i \(0.423767\pi\)
\(558\) −601.159 −1.07735
\(559\) 1238.10 2.21485
\(560\) 0 0
\(561\) 171.910 + 165.780i 0.306435 + 0.295507i
\(562\) 214.176i 0.381095i
\(563\) −210.532 −0.373946 −0.186973 0.982365i \(-0.559868\pi\)
−0.186973 + 0.982365i \(0.559868\pi\)
\(564\) 472.046 0.836961
\(565\) 0 0
\(566\) 23.2758 0.0411234
\(567\) −785.750 −1.38580
\(568\) 580.854 1.02263
\(569\) 93.1571i 0.163721i 0.996644 + 0.0818604i \(0.0260862\pi\)
−0.996644 + 0.0818604i \(0.973914\pi\)
\(570\) 0 0
\(571\) 823.255i 1.44178i 0.693051 + 0.720889i \(0.256266\pi\)
−0.693051 + 0.720889i \(0.743734\pi\)
\(572\) −204.249 + 211.801i −0.357078 + 0.370282i
\(573\) 186.138i 0.324848i
\(574\) 477.957i 0.832678i
\(575\) 0 0
\(576\) −488.937 −0.848848
\(577\) 750.486i 1.30067i −0.759648 0.650335i \(-0.774629\pi\)
0.759648 0.650335i \(-0.225371\pi\)
\(578\) 402.988 0.697211
\(579\) 1113.57i 1.92327i
\(580\) 0 0
\(581\) −1035.25 −1.78184
\(582\) −932.993 −1.60308
\(583\) 109.993 + 106.070i 0.188667 + 0.181939i
\(584\) −242.398 −0.415065
\(585\) 0 0
\(586\) −147.625 −0.251919
\(587\) 1050.85i 1.79021i 0.445854 + 0.895106i \(0.352900\pi\)
−0.445854 + 0.895106i \(0.647100\pi\)
\(588\) 155.877i 0.265097i
\(589\) 45.6169i 0.0774480i
\(590\) 0 0
\(591\) 683.433i 1.15640i
\(592\) 75.4896i 0.127516i
\(593\) −172.160 −0.290321 −0.145161 0.989408i \(-0.546370\pi\)
−0.145161 + 0.989408i \(0.546370\pi\)
\(594\) 73.0826 + 70.4765i 0.123035 + 0.118647i
\(595\) 0 0
\(596\) 383.523i 0.643496i
\(597\) 1236.78i 2.07167i
\(598\) 521.923i 0.872782i
\(599\) 674.329 1.12576 0.562879 0.826539i \(-0.309694\pi\)
0.562879 + 0.826539i \(0.309694\pi\)
\(600\) 0 0
\(601\) 521.125i 0.867096i −0.901131 0.433548i \(-0.857261\pi\)
0.901131 0.433548i \(-0.142739\pi\)
\(602\) −982.017 −1.63126
\(603\) 590.250i 0.978856i
\(604\) 457.418i 0.757315i
\(605\) 0 0
\(606\) 750.769 1.23889
\(607\) 719.195 1.18484 0.592418 0.805631i \(-0.298174\pi\)
0.592418 + 0.805631i \(0.298174\pi\)
\(608\) 21.1147i 0.0347282i
\(609\) 1398.99 2.29718
\(610\) 0 0
\(611\) 1203.04i 1.96897i
\(612\) −64.6220 −0.105592
\(613\) −802.668 −1.30941 −0.654705 0.755884i \(-0.727207\pi\)
−0.654705 + 0.755884i \(0.727207\pi\)
\(614\) 423.527 0.689783
\(615\) 0 0
\(616\) 565.333 586.238i 0.917748 0.951685i
\(617\) 15.2837i 0.0247710i −0.999923 0.0123855i \(-0.996057\pi\)
0.999923 0.0123855i \(-0.00394253\pi\)
\(618\) −1025.64 −1.65961
\(619\) −511.627 −0.826537 −0.413269 0.910609i \(-0.635613\pi\)
−0.413269 + 0.910609i \(0.635613\pi\)
\(620\) 0 0
\(621\) −120.894 −0.194677
\(622\) 429.475 0.690474
\(623\) −168.465 −0.270410
\(624\) 473.334i 0.758548i
\(625\) 0 0
\(626\) 264.873i 0.423120i
\(627\) −27.4544 + 28.4696i −0.0437868 + 0.0454060i
\(628\) 245.255i 0.390533i
\(629\) 57.6487i 0.0916514i
\(630\) 0 0
\(631\) −1120.05 −1.77503 −0.887517 0.460775i \(-0.847571\pi\)
−0.887517 + 0.460775i \(0.847571\pi\)
\(632\) 90.8320i 0.143722i
\(633\) 129.677 0.204862
\(634\) 166.665i 0.262879i
\(635\) 0 0
\(636\) −90.7480 −0.142686
\(637\) 397.264 0.623648
\(638\) −493.760 476.153i −0.773919 0.746321i
\(639\) −504.442 −0.789424
\(640\) 0 0
\(641\) 782.877 1.22134 0.610668 0.791886i \(-0.290901\pi\)
0.610668 + 0.791886i \(0.290901\pi\)
\(642\) 604.933i 0.942264i
\(643\) 865.718i 1.34637i 0.739473 + 0.673186i \(0.235075\pi\)
−0.739473 + 0.673186i \(0.764925\pi\)
\(644\) 277.897i 0.431517i
\(645\) 0 0
\(646\) 7.30470i 0.0113076i
\(647\) 464.538i 0.717987i −0.933340 0.358994i \(-0.883120\pi\)
0.933340 0.358994i \(-0.116880\pi\)
\(648\) −798.442 −1.23216
\(649\) 205.618 213.222i 0.316823 0.328539i
\(650\) 0 0
\(651\) 1790.42i 2.75026i
\(652\) 396.517i 0.608155i
\(653\) 48.3757i 0.0740823i 0.999314 + 0.0370412i \(0.0117933\pi\)
−0.999314 + 0.0370412i \(0.988207\pi\)
\(654\) −986.211 −1.50797
\(655\) 0 0
\(656\) 253.072i 0.385781i
\(657\) 210.510 0.320411
\(658\) 954.207i 1.45016i
\(659\) 1071.21i 1.62551i 0.582603 + 0.812757i \(0.302034\pi\)
−0.582603 + 0.812757i \(0.697966\pi\)
\(660\) 0 0
\(661\) −809.703 −1.22497 −0.612483 0.790484i \(-0.709829\pi\)
−0.612483 + 0.790484i \(0.709829\pi\)
\(662\) −351.080 −0.530332
\(663\) 361.468i 0.545201i
\(664\) −1051.97 −1.58429
\(665\) 0 0
\(666\) 125.815i 0.188912i
\(667\) 816.786 1.22457
\(668\) −200.690 −0.300434
\(669\) 569.362 0.851064
\(670\) 0 0
\(671\) 360.819 + 347.953i 0.537734 + 0.518558i
\(672\) 828.735i 1.23324i
\(673\) −230.577 −0.342611 −0.171305 0.985218i \(-0.554799\pi\)
−0.171305 + 0.985218i \(0.554799\pi\)
\(674\) 253.744 0.376474
\(675\) 0 0
\(676\) −173.823 −0.257134
\(677\) −229.733 −0.339339 −0.169670 0.985501i \(-0.554270\pi\)
−0.169670 + 0.985501i \(0.554270\pi\)
\(678\) 454.354 0.670139
\(679\) 1266.05i 1.86458i
\(680\) 0 0
\(681\) 622.677i 0.914356i
\(682\) 609.381 631.915i 0.893520 0.926561i
\(683\) 830.100i 1.21537i −0.794177 0.607687i \(-0.792098\pi\)
0.794177 0.607687i \(-0.207902\pi\)
\(684\) 10.7019i 0.0156461i
\(685\) 0 0
\(686\) 331.969 0.483920
\(687\) 811.413i 1.18110i
\(688\) −519.966 −0.755765
\(689\) 231.277i 0.335671i
\(690\) 0 0
\(691\) −35.7315 −0.0517098 −0.0258549 0.999666i \(-0.508231\pi\)
−0.0258549 + 0.999666i \(0.508231\pi\)
\(692\) 127.290 0.183945
\(693\) −490.962 + 509.117i −0.708459 + 0.734657i
\(694\) 439.263 0.632943
\(695\) 0 0
\(696\) 1421.58 2.04250
\(697\) 193.262i 0.277277i
\(698\) 167.025i 0.239291i
\(699\) 417.171i 0.596811i
\(700\) 0 0
\(701\) 663.222i 0.946109i 0.881033 + 0.473054i \(0.156849\pi\)
−0.881033 + 0.473054i \(0.843151\pi\)
\(702\) 153.668i 0.218900i
\(703\) 9.54706 0.0135805
\(704\) 495.623 513.951i 0.704010 0.730044i
\(705\) 0 0
\(706\) 463.029i 0.655848i
\(707\) 1018.78i 1.44099i
\(708\) 175.916i 0.248469i
\(709\) −44.6451 −0.0629691 −0.0314845 0.999504i \(-0.510023\pi\)
−0.0314845 + 0.999504i \(0.510023\pi\)
\(710\) 0 0
\(711\) 78.8829i 0.110946i
\(712\) −171.186 −0.240430
\(713\) 1045.32i 1.46609i
\(714\) 286.703i 0.401545i
\(715\) 0 0
\(716\) 514.777 0.718963
\(717\) 1492.03 2.08094
\(718\) 488.017i 0.679690i
\(719\) 166.507 0.231582 0.115791 0.993274i \(-0.463060\pi\)
0.115791 + 0.993274i \(0.463060\pi\)
\(720\) 0 0
\(721\) 1391.77i 1.93033i
\(722\) −557.274 −0.771848
\(723\) 809.913 1.12021
\(724\) −100.274 −0.138500
\(725\) 0 0
\(726\) 760.631 27.6255i 1.04770 0.0380517i
\(727\) 844.769i 1.16199i −0.813906 0.580996i \(-0.802663\pi\)
0.813906 0.580996i \(-0.197337\pi\)
\(728\) 1232.66 1.69321
\(729\) 475.079 0.651686
\(730\) 0 0
\(731\) −397.079 −0.543200
\(732\) −297.689 −0.406679
\(733\) 136.236 0.185861 0.0929303 0.995673i \(-0.470377\pi\)
0.0929303 + 0.995673i \(0.470377\pi\)
\(734\) 264.315i 0.360102i
\(735\) 0 0
\(736\) 483.850i 0.657405i
\(737\) −620.448 598.323i −0.841856 0.811835i
\(738\) 421.785i 0.571525i
\(739\) 867.760i 1.17424i −0.809502 0.587118i \(-0.800263\pi\)
0.809502 0.587118i \(-0.199737\pi\)
\(740\) 0 0
\(741\) −59.8618 −0.0807852
\(742\) 183.441i 0.247225i
\(743\) −366.969 −0.493902 −0.246951 0.969028i \(-0.579429\pi\)
−0.246951 + 0.969028i \(0.579429\pi\)
\(744\) 1819.34i 2.44535i
\(745\) 0 0
\(746\) −98.1131 −0.131519
\(747\) 913.580 1.22300
\(748\) 65.5058 67.9281i 0.0875746 0.0908130i
\(749\) −820.881 −1.09597
\(750\) 0 0
\(751\) 674.177 0.897705 0.448853 0.893606i \(-0.351833\pi\)
0.448853 + 0.893606i \(0.351833\pi\)
\(752\) 505.241i 0.671863i
\(753\) 1088.37i 1.44538i
\(754\) 1038.21i 1.37694i
\(755\) 0 0
\(756\) 81.8201i 0.108228i
\(757\) 65.4072i 0.0864032i −0.999066 0.0432016i \(-0.986244\pi\)
0.999066 0.0432016i \(-0.0137558\pi\)
\(758\) −612.337 −0.807833
\(759\) −629.124 + 652.388i −0.828886 + 0.859537i
\(760\) 0 0
\(761\) 21.0476i 0.0276578i 0.999904 + 0.0138289i \(0.00440201\pi\)
−0.999904 + 0.0138289i \(0.995598\pi\)
\(762\) 713.758i 0.936690i
\(763\) 1338.27i 1.75395i
\(764\) −73.5503 −0.0962700
\(765\) 0 0
\(766\) 370.507i 0.483690i
\(767\) 448.333 0.584528
\(768\) 1024.83i 1.33441i
\(769\) 66.0422i 0.0858806i 0.999078 + 0.0429403i \(0.0136725\pi\)
−0.999078 + 0.0429403i \(0.986327\pi\)
\(770\) 0 0
\(771\) 693.575 0.899578
\(772\) −440.015 −0.569967
\(773\) 16.5144i 0.0213640i −0.999943 0.0106820i \(-0.996600\pi\)
0.999943 0.0106820i \(-0.00340026\pi\)
\(774\) 866.606 1.11965
\(775\) 0 0
\(776\) 1286.50i 1.65786i
\(777\) 374.714 0.482257
\(778\) 349.148 0.448777
\(779\) −32.0057 −0.0410856
\(780\) 0 0
\(781\) 511.341 530.249i 0.654726 0.678937i
\(782\) 167.389i 0.214053i
\(783\) 240.483 0.307131
\(784\) −166.839 −0.212805
\(785\) 0 0
\(786\) −791.403 −1.00687
\(787\) 778.394 0.989065 0.494533 0.869159i \(-0.335339\pi\)
0.494533 + 0.869159i \(0.335339\pi\)
\(788\) −270.051 −0.342704
\(789\) 1026.26i 1.30071i
\(790\) 0 0
\(791\) 616.548i 0.779454i
\(792\) −498.892 + 517.341i −0.629915 + 0.653208i
\(793\) 758.681i 0.956722i
\(794\) 71.3491i 0.0898604i
\(795\) 0 0
\(796\) −488.700 −0.613945
\(797\) 318.852i 0.400066i 0.979789 + 0.200033i \(0.0641049\pi\)
−0.979789 + 0.200033i \(0.935895\pi\)
\(798\) 47.4802 0.0594990
\(799\) 385.834i 0.482897i
\(800\) 0 0
\(801\) 148.666 0.185601
\(802\) −422.917 −0.527328
\(803\) −213.389 + 221.280i −0.265740 + 0.275567i
\(804\) 511.892 0.636682
\(805\) 0 0
\(806\) 1328.70 1.64851
\(807\) 42.8581i 0.0531079i
\(808\) 1035.23i 1.28123i
\(809\) 253.404i 0.313231i 0.987660 + 0.156616i \(0.0500584\pi\)
−0.987660 + 0.156616i \(0.949942\pi\)
\(810\) 0 0
\(811\) 1021.32i 1.25934i −0.776864 0.629668i \(-0.783191\pi\)
0.776864 0.629668i \(-0.216809\pi\)
\(812\) 552.792i 0.680779i
\(813\) 1264.49 1.55534
\(814\) −132.252 127.536i −0.162472 0.156678i
\(815\) 0 0
\(816\) 151.806i 0.186037i
\(817\) 65.7593i 0.0804888i
\(818\) 549.384i 0.671619i
\(819\) −1070.50 −1.30708
\(820\) 0 0
\(821\) 889.675i 1.08365i −0.840492 0.541824i \(-0.817734\pi\)
0.840492 0.541824i \(-0.182266\pi\)
\(822\) 497.146 0.604800
\(823\) 92.7923i 0.112749i 0.998410 + 0.0563744i \(0.0179541\pi\)
−0.998410 + 0.0563744i \(0.982046\pi\)
\(824\) 1414.25i 1.71632i
\(825\) 0 0
\(826\) −355.601 −0.430510
\(827\) −1582.62 −1.91369 −0.956845 0.290597i \(-0.906146\pi\)
−0.956845 + 0.290597i \(0.906146\pi\)
\(828\) 245.237i 0.296180i
\(829\) −925.797 −1.11676 −0.558382 0.829584i \(-0.688578\pi\)
−0.558382 + 0.829584i \(0.688578\pi\)
\(830\) 0 0
\(831\) 5.01757i 0.00603799i
\(832\) 1080.66 1.29887
\(833\) −127.409 −0.152952
\(834\) 664.947 0.797298
\(835\) 0 0
\(836\) 11.2494 + 10.8483i 0.0134562 + 0.0129764i
\(837\) 307.771i 0.367707i
\(838\) −212.996 −0.254172
\(839\) −169.321 −0.201813 −0.100907 0.994896i \(-0.532174\pi\)
−0.100907 + 0.994896i \(0.532174\pi\)
\(840\) 0 0
\(841\) −783.751 −0.931927
\(842\) −65.7639 −0.0781044
\(843\) −562.909 −0.667746
\(844\) 51.2405i 0.0607115i
\(845\) 0 0
\(846\) 842.065i 0.995348i
\(847\) −37.4872 1032.16i −0.0442588 1.21861i
\(848\) 97.1296i 0.114540i
\(849\) 61.1750i 0.0720553i
\(850\) 0 0
\(851\) 218.774 0.257078
\(852\) 437.475i 0.513468i
\(853\) −1296.08 −1.51943 −0.759717 0.650254i \(-0.774662\pi\)
−0.759717 + 0.650254i \(0.774662\pi\)
\(854\) 601.758i 0.704634i
\(855\) 0 0
\(856\) −834.140 −0.974462
\(857\) −1439.08 −1.67921 −0.839605 0.543197i \(-0.817214\pi\)
−0.839605 + 0.543197i \(0.817214\pi\)
\(858\) 829.246 + 799.675i 0.966487 + 0.932022i
\(859\) −1287.02 −1.49827 −0.749137 0.662415i \(-0.769532\pi\)
−0.749137 + 0.662415i \(0.769532\pi\)
\(860\) 0 0
\(861\) −1256.20 −1.45900
\(862\) 27.8798i 0.0323432i
\(863\) 1467.32i 1.70026i −0.526573 0.850130i \(-0.676523\pi\)
0.526573 0.850130i \(-0.323477\pi\)
\(864\) 142.458i 0.164882i
\(865\) 0 0
\(866\) 686.687i 0.792941i
\(867\) 1059.16i 1.22163i
\(868\) 707.464 0.815051
\(869\) 82.9186 + 79.9617i 0.0954184 + 0.0920158i
\(870\) 0 0
\(871\) 1304.59i 1.49781i
\(872\) 1359.88i 1.55950i
\(873\) 1117.26i 1.27979i
\(874\) 27.7209 0.0317173
\(875\) 0 0
\(876\) 182.564i 0.208406i
\(877\) 267.438 0.304947 0.152473 0.988308i \(-0.451276\pi\)
0.152473 + 0.988308i \(0.451276\pi\)
\(878\) 650.394i 0.740768i
\(879\) 387.996i 0.441407i
\(880\) 0 0
\(881\) −1753.38 −1.99022 −0.995109 0.0987811i \(-0.968506\pi\)
−0.995109 + 0.0987811i \(0.968506\pi\)
\(882\) 278.064 0.315265
\(883\) 525.703i 0.595360i 0.954666 + 0.297680i \(0.0962128\pi\)
−0.954666 + 0.297680i \(0.903787\pi\)
\(884\) 142.830 0.161572
\(885\) 0 0
\(886\) 814.465i 0.919261i
\(887\) −21.4678 −0.0242027 −0.0121014 0.999927i \(-0.503852\pi\)
−0.0121014 + 0.999927i \(0.503852\pi\)
\(888\) 380.766 0.428791
\(889\) 968.553 1.08949
\(890\) 0 0
\(891\) −702.888 + 728.880i −0.788876 + 0.818047i
\(892\) 224.977i 0.252216i
\(893\) −63.8971 −0.0715533
\(894\) 1501.57 1.67961
\(895\) 0 0
\(896\) −41.8685 −0.0467282
\(897\) −1371.75 −1.52927
\(898\) 178.216 0.198458
\(899\) 2079.36i 2.31297i
\(900\) 0 0
\(901\) 74.1744i 0.0823245i
\(902\) 443.364 + 427.554i 0.491534 + 0.474006i
\(903\) 2581.00i 2.85825i
\(904\) 626.507i 0.693039i
\(905\) 0 0
\(906\) −1790.89 −1.97670
\(907\) 16.7154i 0.0184294i 0.999958 + 0.00921469i \(0.00293317\pi\)
−0.999958 + 0.00921469i \(0.997067\pi\)
\(908\) −246.043 −0.270973
\(909\) 899.046i 0.989049i
\(910\) 0 0
\(911\) 1401.06 1.53793 0.768967 0.639289i \(-0.220771\pi\)
0.768967 + 0.639289i \(0.220771\pi\)
\(912\) 25.1402 0.0275660
\(913\) −926.074 + 960.319i −1.01432 + 1.05183i
\(914\) −512.680 −0.560919
\(915\) 0 0
\(916\) 320.620 0.350022
\(917\) 1073.92i 1.17112i
\(918\) 49.2838i 0.0536861i
\(919\) 1598.11i 1.73896i −0.493965 0.869482i \(-0.664453\pi\)
0.493965 0.869482i \(-0.335547\pi\)
\(920\) 0 0
\(921\) 1113.14i 1.20862i
\(922\) 681.092i 0.738712i
\(923\) 1114.93 1.20795
\(924\) 441.530 + 425.785i 0.477846 + 0.460806i
\(925\) 0 0
\(926\) 184.511i 0.199256i
\(927\) 1228.20i 1.32492i
\(928\) 962.475i 1.03715i
\(929\) 149.678 0.161117 0.0805585 0.996750i \(-0.474330\pi\)
0.0805585 + 0.996750i \(0.474330\pi\)
\(930\) 0 0
\(931\) 21.0999i 0.0226637i
\(932\) −164.840 −0.176867
\(933\) 1128.77i 1.20983i
\(934\) 636.519i 0.681498i
\(935\) 0 0
\(936\) −1087.79 −1.16217
\(937\) −1699.25 −1.81351 −0.906753 0.421663i \(-0.861447\pi\)
−0.906753 + 0.421663i \(0.861447\pi\)
\(938\) 1034.75i 1.10315i
\(939\) 696.156 0.741380
\(940\) 0 0
\(941\) 1130.78i 1.20168i −0.799368 0.600841i \(-0.794832\pi\)
0.799368 0.600841i \(-0.205168\pi\)
\(942\) −960.223 −1.01934
\(943\) −733.420 −0.777751
\(944\) −188.287 −0.199456
\(945\) 0 0
\(946\) −878.458 + 910.942i −0.928602 + 0.962941i
\(947\) 346.852i 0.366264i −0.983088 0.183132i \(-0.941376\pi\)
0.983088 0.183132i \(-0.0586236\pi\)
\(948\) −68.4108 −0.0721633
\(949\) −465.277 −0.490281
\(950\) 0 0
\(951\) −438.040 −0.460610
\(952\) −395.334 −0.415266
\(953\) −116.543 −0.122291 −0.0611453 0.998129i \(-0.519475\pi\)
−0.0611453 + 0.998129i \(0.519475\pi\)
\(954\) 161.882i 0.169688i
\(955\) 0 0
\(956\) 589.558i 0.616693i
\(957\) 1251.45 1297.73i 1.30768 1.35604i
\(958\) 1429.22i 1.49188i
\(959\) 674.616i 0.703457i
\(960\) 0 0
\(961\) 1700.16 1.76916
\(962\) 278.081i 0.289066i
\(963\) 724.407 0.752240
\(964\) 320.027i 0.331979i
\(965\) 0 0
\(966\) 1088.02 1.12632
\(967\) 1721.69 1.78044 0.890222 0.455527i \(-0.150549\pi\)
0.890222 + 0.455527i \(0.150549\pi\)
\(968\) −38.0927 1048.83i −0.0393520 1.08350i
\(969\) 19.1987 0.0198129
\(970\) 0 0
\(971\) −333.995 −0.343970 −0.171985 0.985100i \(-0.555018\pi\)
−0.171985 + 0.985100i \(0.555018\pi\)
\(972\) 515.084i 0.529922i
\(973\) 902.318i 0.927356i
\(974\) 428.612i 0.440053i
\(975\) 0 0
\(976\) 318.623i 0.326458i
\(977\) 685.606i 0.701746i 0.936423 + 0.350873i \(0.114115\pi\)
−0.936423 + 0.350873i \(0.885885\pi\)
\(978\) 1552.45 1.58737
\(979\) −150.700 + 156.272i −0.153932 + 0.159624i
\(980\) 0 0
\(981\) 1180.99i 1.20386i
\(982\) 151.645i 0.154425i
\(983\) 443.589i 0.451260i −0.974213 0.225630i \(-0.927556\pi\)
0.974213 0.225630i \(-0.0724440\pi\)
\(984\) −1276.49 −1.29724
\(985\) 0 0
\(986\) 332.971i 0.337699i
\(987\) −2507.91 −2.54094
\(988\) 23.6537i 0.0239410i
\(989\) 1506.89i 1.52365i
\(990\) 0 0
\(991\) 458.627 0.462792 0.231396 0.972860i \(-0.425671\pi\)
0.231396 + 0.972860i \(0.425671\pi\)
\(992\) 1231.78 1.24171
\(993\) 922.730i 0.929234i
\(994\) −884.325 −0.889663
\(995\) 0 0
\(996\) 792.298i 0.795480i
\(997\) 166.538 0.167040 0.0835198 0.996506i \(-0.473384\pi\)
0.0835198 + 0.996506i \(0.473384\pi\)
\(998\) 390.084 0.390865
\(999\) 64.4127 0.0644772
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.3.d.b.274.5 16
5.2 odd 4 275.3.c.h.76.3 yes 8
5.3 odd 4 275.3.c.g.76.6 yes 8
5.4 even 2 inner 275.3.d.b.274.12 16
11.10 odd 2 inner 275.3.d.b.274.11 16
55.32 even 4 275.3.c.h.76.6 yes 8
55.43 even 4 275.3.c.g.76.3 8
55.54 odd 2 inner 275.3.d.b.274.6 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
275.3.c.g.76.3 8 55.43 even 4
275.3.c.g.76.6 yes 8 5.3 odd 4
275.3.c.h.76.3 yes 8 5.2 odd 4
275.3.c.h.76.6 yes 8 55.32 even 4
275.3.d.b.274.5 16 1.1 even 1 trivial
275.3.d.b.274.6 16 55.54 odd 2 inner
275.3.d.b.274.11 16 11.10 odd 2 inner
275.3.d.b.274.12 16 5.4 even 2 inner