Properties

Label 275.3.c.h.76.6
Level $275$
Weight $3$
Character 275.76
Analytic conductor $7.493$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,3,Mod(76,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.76"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 275.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,4,-10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.49320726991\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 21x^{6} + 130x^{4} + 215x^{2} + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 76.6
Root \(1.54705i\) of defining polynomial
Character \(\chi\) \(=\) 275.76
Dual form 275.3.c.h.76.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.54705i q^{2} -4.06604 q^{3} +1.60665 q^{4} -6.29036i q^{6} -8.53587i q^{7} +8.67374i q^{8} +7.53270 q^{9} +(7.63571 + 7.91807i) q^{11} -6.53270 q^{12} +16.6490i q^{13} +13.2054 q^{14} -6.99209 q^{16} +5.33961i q^{17} +11.6534i q^{18} -0.884280i q^{19} +34.7072i q^{21} +(-12.2496 + 11.8128i) q^{22} -20.2635 q^{23} -35.2678i q^{24} -25.7568 q^{26} +5.96611 q^{27} -13.7141i q^{28} +40.3082i q^{29} -51.5865 q^{31} +23.8779i q^{32} +(-31.0471 - 32.1952i) q^{33} -8.26062 q^{34} +12.1024 q^{36} -10.7964 q^{37} +1.36802 q^{38} -67.6956i q^{39} +36.1941i q^{41} -53.6937 q^{42} +74.3649i q^{43} +(12.2679 + 12.7216i) q^{44} -31.3486i q^{46} +72.2589 q^{47} +28.4301 q^{48} -23.8611 q^{49} -21.7111i q^{51} +26.7491i q^{52} +13.8913 q^{53} +9.22985i q^{54} +74.0380 q^{56} +3.59552i q^{57} -62.3587 q^{58} -26.9285 q^{59} -45.5691i q^{61} -79.8067i q^{62} -64.2981i q^{63} -64.9086 q^{64} +(49.8075 - 48.0314i) q^{66} +78.3584 q^{67} +8.57887i q^{68} +82.3923 q^{69} +66.9670 q^{71} +65.3367i q^{72} -27.9462i q^{73} -16.7026i q^{74} -1.42073i q^{76} +(67.5876 - 65.1775i) q^{77} +104.728 q^{78} +10.4721i q^{79} -92.0527 q^{81} -55.9939 q^{82} -121.282i q^{83} +55.7623i q^{84} -115.046 q^{86} -163.895i q^{87} +(-68.6793 + 66.2302i) q^{88} +19.7361 q^{89} +142.114 q^{91} -32.5563 q^{92} +209.753 q^{93} +111.788i q^{94} -97.0885i q^{96} -148.321 q^{97} -36.9142i q^{98} +(57.5175 + 59.6444i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{3} - 10 q^{4} + 32 q^{9} - q^{11} - 24 q^{12} + 18 q^{14} - 14 q^{16} - 35 q^{22} + 4 q^{23} + 68 q^{26} + 142 q^{27} - 42 q^{31} - 31 q^{33} - 142 q^{34} - 84 q^{36} - 104 q^{37} + 190 q^{38}+ \cdots + 368 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.54705i 0.773523i 0.922180 + 0.386762i \(0.126406\pi\)
−0.922180 + 0.386762i \(0.873594\pi\)
\(3\) −4.06604 −1.35535 −0.677674 0.735363i \(-0.737012\pi\)
−0.677674 + 0.735363i \(0.737012\pi\)
\(4\) 1.60665 0.401662
\(5\) 0 0
\(6\) 6.29036i 1.04839i
\(7\) 8.53587i 1.21941i −0.792628 0.609705i \(-0.791288\pi\)
0.792628 0.609705i \(-0.208712\pi\)
\(8\) 8.67374i 1.08422i
\(9\) 7.53270 0.836966
\(10\) 0 0
\(11\) 7.63571 + 7.91807i 0.694156 + 0.719825i
\(12\) −6.53270 −0.544391
\(13\) 16.6490i 1.28069i 0.768086 + 0.640347i \(0.221209\pi\)
−0.768086 + 0.640347i \(0.778791\pi\)
\(14\) 13.2054 0.943242
\(15\) 0 0
\(16\) −6.99209 −0.437006
\(17\) 5.33961i 0.314095i 0.987591 + 0.157047i \(0.0501975\pi\)
−0.987591 + 0.157047i \(0.949802\pi\)
\(18\) 11.6534i 0.647413i
\(19\) 0.884280i 0.0465410i −0.999729 0.0232705i \(-0.992592\pi\)
0.999729 0.0232705i \(-0.00740790\pi\)
\(20\) 0 0
\(21\) 34.7072i 1.65272i
\(22\) −12.2496 + 11.8128i −0.556801 + 0.536946i
\(23\) −20.2635 −0.881023 −0.440511 0.897747i \(-0.645203\pi\)
−0.440511 + 0.897747i \(0.645203\pi\)
\(24\) 35.2678i 1.46949i
\(25\) 0 0
\(26\) −25.7568 −0.990646
\(27\) 5.96611 0.220967
\(28\) 13.7141i 0.489791i
\(29\) 40.3082i 1.38994i 0.719040 + 0.694969i \(0.244582\pi\)
−0.719040 + 0.694969i \(0.755418\pi\)
\(30\) 0 0
\(31\) −51.5865 −1.66408 −0.832040 0.554716i \(-0.812827\pi\)
−0.832040 + 0.554716i \(0.812827\pi\)
\(32\) 23.8779i 0.746184i
\(33\) −31.0471 32.1952i −0.940822 0.975613i
\(34\) −8.26062 −0.242959
\(35\) 0 0
\(36\) 12.1024 0.336178
\(37\) −10.7964 −0.291795 −0.145898 0.989300i \(-0.546607\pi\)
−0.145898 + 0.989300i \(0.546607\pi\)
\(38\) 1.36802 0.0360006
\(39\) 67.6956i 1.73578i
\(40\) 0 0
\(41\) 36.1941i 0.882783i 0.897315 + 0.441391i \(0.145515\pi\)
−0.897315 + 0.441391i \(0.854485\pi\)
\(42\) −53.6937 −1.27842
\(43\) 74.3649i 1.72942i 0.502275 + 0.864708i \(0.332496\pi\)
−0.502275 + 0.864708i \(0.667504\pi\)
\(44\) 12.2679 + 12.7216i 0.278816 + 0.289126i
\(45\) 0 0
\(46\) 31.3486i 0.681491i
\(47\) 72.2589 1.53742 0.768712 0.639595i \(-0.220898\pi\)
0.768712 + 0.639595i \(0.220898\pi\)
\(48\) 28.4301 0.592295
\(49\) −23.8611 −0.486961
\(50\) 0 0
\(51\) 21.7111i 0.425707i
\(52\) 26.7491i 0.514406i
\(53\) 13.8913 0.262101 0.131050 0.991376i \(-0.458165\pi\)
0.131050 + 0.991376i \(0.458165\pi\)
\(54\) 9.22985i 0.170923i
\(55\) 0 0
\(56\) 74.0380 1.32211
\(57\) 3.59552i 0.0630793i
\(58\) −62.3587 −1.07515
\(59\) −26.9285 −0.456415 −0.228208 0.973612i \(-0.573287\pi\)
−0.228208 + 0.973612i \(0.573287\pi\)
\(60\) 0 0
\(61\) 45.5691i 0.747035i −0.927623 0.373517i \(-0.878152\pi\)
0.927623 0.373517i \(-0.121848\pi\)
\(62\) 79.8067i 1.28720i
\(63\) 64.2981i 1.02061i
\(64\) −64.9086 −1.01420
\(65\) 0 0
\(66\) 49.8075 48.0314i 0.754659 0.727748i
\(67\) 78.3584 1.16953 0.584764 0.811203i \(-0.301187\pi\)
0.584764 + 0.811203i \(0.301187\pi\)
\(68\) 8.57887i 0.126160i
\(69\) 82.3923 1.19409
\(70\) 0 0
\(71\) 66.9670 0.943197 0.471598 0.881813i \(-0.343677\pi\)
0.471598 + 0.881813i \(0.343677\pi\)
\(72\) 65.3367i 0.907454i
\(73\) 27.9462i 0.382825i −0.981510 0.191412i \(-0.938693\pi\)
0.981510 0.191412i \(-0.0613067\pi\)
\(74\) 16.7026i 0.225710i
\(75\) 0 0
\(76\) 1.42073i 0.0186938i
\(77\) 67.5876 65.1775i 0.877762 0.846461i
\(78\) 104.728 1.34267
\(79\) 10.4721i 0.132558i 0.997801 + 0.0662789i \(0.0211127\pi\)
−0.997801 + 0.0662789i \(0.978887\pi\)
\(80\) 0 0
\(81\) −92.0527 −1.13645
\(82\) −55.9939 −0.682853
\(83\) 121.282i 1.46123i −0.682791 0.730614i \(-0.739234\pi\)
0.682791 0.730614i \(-0.260766\pi\)
\(84\) 55.7623i 0.663836i
\(85\) 0 0
\(86\) −115.046 −1.33774
\(87\) 163.895i 1.88385i
\(88\) −68.6793 + 66.2302i −0.780447 + 0.752616i
\(89\) 19.7361 0.221754 0.110877 0.993834i \(-0.464634\pi\)
0.110877 + 0.993834i \(0.464634\pi\)
\(90\) 0 0
\(91\) 142.114 1.56169
\(92\) −32.5563 −0.353873
\(93\) 209.753 2.25541
\(94\) 111.788i 1.18923i
\(95\) 0 0
\(96\) 97.0885i 1.01134i
\(97\) −148.321 −1.52909 −0.764543 0.644573i \(-0.777035\pi\)
−0.764543 + 0.644573i \(0.777035\pi\)
\(98\) 36.9142i 0.376676i
\(99\) 57.5175 + 59.6444i 0.580985 + 0.602469i
\(100\) 0 0
\(101\) 119.352i 1.18171i 0.806779 + 0.590853i \(0.201209\pi\)
−0.806779 + 0.590853i \(0.798791\pi\)
\(102\) 33.5880 0.329294
\(103\) 163.050 1.58300 0.791502 0.611166i \(-0.209299\pi\)
0.791502 + 0.611166i \(0.209299\pi\)
\(104\) −144.409 −1.38855
\(105\) 0 0
\(106\) 21.4906i 0.202741i
\(107\) 96.1684i 0.898770i 0.893338 + 0.449385i \(0.148357\pi\)
−0.893338 + 0.449385i \(0.851643\pi\)
\(108\) 9.58544 0.0887541
\(109\) 156.781i 1.43836i 0.694823 + 0.719181i \(0.255483\pi\)
−0.694823 + 0.719181i \(0.744517\pi\)
\(110\) 0 0
\(111\) 43.8987 0.395484
\(112\) 59.6836i 0.532889i
\(113\) −72.2303 −0.639206 −0.319603 0.947552i \(-0.603550\pi\)
−0.319603 + 0.947552i \(0.603550\pi\)
\(114\) −5.56243 −0.0487933
\(115\) 0 0
\(116\) 64.7611i 0.558285i
\(117\) 125.412i 1.07190i
\(118\) 41.6597i 0.353048i
\(119\) 45.5782 0.383010
\(120\) 0 0
\(121\) −4.39172 + 120.920i −0.0362952 + 0.999341i
\(122\) 70.4975 0.577849
\(123\) 147.167i 1.19648i
\(124\) −82.8813 −0.668397
\(125\) 0 0
\(126\) 99.4722 0.789462
\(127\) 113.469i 0.893454i −0.894670 0.446727i \(-0.852590\pi\)
0.894670 0.446727i \(-0.147410\pi\)
\(128\) 4.90501i 0.0383204i
\(129\) 302.371i 2.34396i
\(130\) 0 0
\(131\) 125.812i 0.960398i −0.877160 0.480199i \(-0.840565\pi\)
0.877160 0.480199i \(-0.159435\pi\)
\(132\) −49.8818 51.7264i −0.377893 0.391866i
\(133\) −7.54810 −0.0567526
\(134\) 121.224i 0.904658i
\(135\) 0 0
\(136\) −46.3144 −0.340547
\(137\) 79.0330 0.576883 0.288442 0.957497i \(-0.406863\pi\)
0.288442 + 0.957497i \(0.406863\pi\)
\(138\) 127.465i 0.923658i
\(139\) 105.709i 0.760496i −0.924885 0.380248i \(-0.875839\pi\)
0.924885 0.380248i \(-0.124161\pi\)
\(140\) 0 0
\(141\) −293.808 −2.08374
\(142\) 103.601i 0.729585i
\(143\) −131.828 + 127.127i −0.921875 + 0.889001i
\(144\) −52.6693 −0.365759
\(145\) 0 0
\(146\) 43.2341 0.296124
\(147\) 97.0202 0.660001
\(148\) −17.3461 −0.117203
\(149\) 238.710i 1.60208i −0.598609 0.801041i \(-0.704280\pi\)
0.598609 0.801041i \(-0.295720\pi\)
\(150\) 0 0
\(151\) 284.704i 1.88545i −0.333565 0.942727i \(-0.608252\pi\)
0.333565 0.942727i \(-0.391748\pi\)
\(152\) 7.67002 0.0504606
\(153\) 40.2217i 0.262887i
\(154\) 100.833 + 104.561i 0.654757 + 0.678969i
\(155\) 0 0
\(156\) 108.763i 0.697199i
\(157\) −152.650 −0.972293 −0.486146 0.873877i \(-0.661598\pi\)
−0.486146 + 0.873877i \(0.661598\pi\)
\(158\) −16.2008 −0.102537
\(159\) −56.4828 −0.355238
\(160\) 0 0
\(161\) 172.967i 1.07433i
\(162\) 142.410i 0.879073i
\(163\) −246.798 −1.51410 −0.757048 0.653359i \(-0.773359\pi\)
−0.757048 + 0.653359i \(0.773359\pi\)
\(164\) 58.1511i 0.354580i
\(165\) 0 0
\(166\) 187.629 1.13029
\(167\) 124.912i 0.747978i −0.927433 0.373989i \(-0.877990\pi\)
0.927433 0.373989i \(-0.122010\pi\)
\(168\) −301.041 −1.79191
\(169\) −108.190 −0.640176
\(170\) 0 0
\(171\) 6.66101i 0.0389533i
\(172\) 119.478i 0.694641i
\(173\) 79.2272i 0.457961i −0.973431 0.228980i \(-0.926461\pi\)
0.973431 0.228980i \(-0.0735392\pi\)
\(174\) 253.553 1.45720
\(175\) 0 0
\(176\) −53.3896 55.3639i −0.303350 0.314568i
\(177\) 109.492 0.618602
\(178\) 30.5327i 0.171532i
\(179\) 320.405 1.78997 0.894985 0.446097i \(-0.147186\pi\)
0.894985 + 0.446097i \(0.147186\pi\)
\(180\) 0 0
\(181\) 62.4120 0.344818 0.172409 0.985025i \(-0.444845\pi\)
0.172409 + 0.985025i \(0.444845\pi\)
\(182\) 219.857i 1.20800i
\(183\) 185.286i 1.01249i
\(184\) 175.761i 0.955221i
\(185\) 0 0
\(186\) 324.497i 1.74461i
\(187\) −42.2794 + 40.7717i −0.226093 + 0.218031i
\(188\) 116.095 0.617525
\(189\) 50.9260i 0.269450i
\(190\) 0 0
\(191\) 45.7787 0.239679 0.119840 0.992793i \(-0.461762\pi\)
0.119840 + 0.992793i \(0.461762\pi\)
\(192\) 263.921 1.37459
\(193\) 273.871i 1.41902i 0.704694 + 0.709511i \(0.251084\pi\)
−0.704694 + 0.709511i \(0.748916\pi\)
\(194\) 229.460i 1.18278i
\(195\) 0 0
\(196\) −38.3364 −0.195594
\(197\) 168.083i 0.853214i −0.904437 0.426607i \(-0.859709\pi\)
0.904437 0.426607i \(-0.140291\pi\)
\(198\) −92.2727 + 88.9823i −0.466024 + 0.449405i
\(199\) −304.174 −1.52851 −0.764256 0.644913i \(-0.776894\pi\)
−0.764256 + 0.644913i \(0.776894\pi\)
\(200\) 0 0
\(201\) −318.609 −1.58512
\(202\) −184.644 −0.914078
\(203\) 344.066 1.69490
\(204\) 34.8820i 0.170990i
\(205\) 0 0
\(206\) 252.245i 1.22449i
\(207\) −152.639 −0.737386
\(208\) 116.411i 0.559670i
\(209\) 7.00179 6.75211i 0.0335014 0.0323067i
\(210\) 0 0
\(211\) 31.8928i 0.151151i −0.997140 0.0755754i \(-0.975921\pi\)
0.997140 0.0755754i \(-0.0240793\pi\)
\(212\) 22.3185 0.105276
\(213\) −272.291 −1.27836
\(214\) −148.777 −0.695219
\(215\) 0 0
\(216\) 51.7485i 0.239577i
\(217\) 440.335i 2.02920i
\(218\) −242.548 −1.11261
\(219\) 113.630i 0.518860i
\(220\) 0 0
\(221\) −88.8992 −0.402259
\(222\) 67.9134i 0.305916i
\(223\) 140.029 0.627931 0.313965 0.949434i \(-0.398342\pi\)
0.313965 + 0.949434i \(0.398342\pi\)
\(224\) 203.819 0.909904
\(225\) 0 0
\(226\) 111.744i 0.494441i
\(227\) 153.141i 0.674629i −0.941392 0.337314i \(-0.890481\pi\)
0.941392 0.337314i \(-0.109519\pi\)
\(228\) 5.77673i 0.0253365i
\(229\) 199.559 0.871435 0.435717 0.900084i \(-0.356495\pi\)
0.435717 + 0.900084i \(0.356495\pi\)
\(230\) 0 0
\(231\) −274.814 + 265.014i −1.18967 + 1.14725i
\(232\) −349.623 −1.50700
\(233\) 102.599i 0.440338i 0.975462 + 0.220169i \(0.0706609\pi\)
−0.975462 + 0.220169i \(0.929339\pi\)
\(234\) −194.018 −0.829138
\(235\) 0 0
\(236\) −43.2646 −0.183325
\(237\) 42.5799i 0.179662i
\(238\) 70.5116i 0.296267i
\(239\) 366.949i 1.53535i 0.640838 + 0.767676i \(0.278587\pi\)
−0.640838 + 0.767676i \(0.721413\pi\)
\(240\) 0 0
\(241\) 199.190i 0.826513i −0.910615 0.413256i \(-0.864391\pi\)
0.910615 0.413256i \(-0.135609\pi\)
\(242\) −187.069 6.79420i −0.773013 0.0280752i
\(243\) 320.595 1.31932
\(244\) 73.2135i 0.300055i
\(245\) 0 0
\(246\) 227.674 0.925503
\(247\) 14.7224 0.0596048
\(248\) 447.448i 1.80423i
\(249\) 493.137i 1.98047i
\(250\) 0 0
\(251\) 267.673 1.06643 0.533213 0.845981i \(-0.320984\pi\)
0.533213 + 0.845981i \(0.320984\pi\)
\(252\) 103.304i 0.409938i
\(253\) −154.726 160.448i −0.611567 0.634182i
\(254\) 175.541 0.691107
\(255\) 0 0
\(256\) −252.046 −0.984555
\(257\) −170.577 −0.663725 −0.331862 0.943328i \(-0.607677\pi\)
−0.331862 + 0.943328i \(0.607677\pi\)
\(258\) 467.781 1.81311
\(259\) 92.1569i 0.355818i
\(260\) 0 0
\(261\) 303.629i 1.16333i
\(262\) 194.637 0.742890
\(263\) 252.398i 0.959688i 0.877354 + 0.479844i \(0.159307\pi\)
−0.877354 + 0.479844i \(0.840693\pi\)
\(264\) 279.253 269.295i 1.05778 1.02006i
\(265\) 0 0
\(266\) 11.6773i 0.0438995i
\(267\) −80.2480 −0.300554
\(268\) 125.894 0.469755
\(269\) 10.5405 0.0391840 0.0195920 0.999808i \(-0.493763\pi\)
0.0195920 + 0.999808i \(0.493763\pi\)
\(270\) 0 0
\(271\) 310.989i 1.14756i −0.819009 0.573781i \(-0.805476\pi\)
0.819009 0.573781i \(-0.194524\pi\)
\(272\) 37.3350i 0.137261i
\(273\) −577.841 −2.11663
\(274\) 122.268i 0.446233i
\(275\) 0 0
\(276\) 132.375 0.479621
\(277\) 1.23402i 0.00445494i −0.999998 0.00222747i \(-0.999291\pi\)
0.999998 0.00222747i \(-0.000709026\pi\)
\(278\) 163.537 0.588261
\(279\) −388.585 −1.39278
\(280\) 0 0
\(281\) 138.442i 0.492675i 0.969184 + 0.246337i \(0.0792271\pi\)
−0.969184 + 0.246337i \(0.920773\pi\)
\(282\) 454.534i 1.61182i
\(283\) 15.0453i 0.0531637i −0.999647 0.0265819i \(-0.991538\pi\)
0.999647 0.0265819i \(-0.00846227\pi\)
\(284\) 107.592 0.378846
\(285\) 0 0
\(286\) −196.672 203.944i −0.687663 0.713092i
\(287\) 308.948 1.07647
\(288\) 179.865i 0.624531i
\(289\) 260.489 0.901345
\(290\) 0 0
\(291\) 603.081 2.07244
\(292\) 44.8997i 0.153766i
\(293\) 95.4236i 0.325678i 0.986653 + 0.162839i \(0.0520651\pi\)
−0.986653 + 0.162839i \(0.947935\pi\)
\(294\) 150.095i 0.510526i
\(295\) 0 0
\(296\) 93.6455i 0.316370i
\(297\) 45.5555 + 47.2401i 0.153386 + 0.159058i
\(298\) 369.296 1.23925
\(299\) 337.368i 1.12832i
\(300\) 0 0
\(301\) 634.769 2.10887
\(302\) 440.450 1.45844
\(303\) 485.292i 1.60162i
\(304\) 6.18296i 0.0203387i
\(305\) 0 0
\(306\) −62.2248 −0.203349
\(307\) 273.765i 0.891742i 0.895097 + 0.445871i \(0.147106\pi\)
−0.895097 + 0.445871i \(0.852894\pi\)
\(308\) 108.590 104.717i 0.352563 0.339991i
\(309\) −662.966 −2.14552
\(310\) 0 0
\(311\) −277.610 −0.892635 −0.446318 0.894875i \(-0.647265\pi\)
−0.446318 + 0.894875i \(0.647265\pi\)
\(312\) 587.174 1.88197
\(313\) 171.212 0.547004 0.273502 0.961871i \(-0.411818\pi\)
0.273502 + 0.961871i \(0.411818\pi\)
\(314\) 236.157i 0.752091i
\(315\) 0 0
\(316\) 16.8249i 0.0532434i
\(317\) 107.731 0.339847 0.169923 0.985457i \(-0.445648\pi\)
0.169923 + 0.985457i \(0.445648\pi\)
\(318\) 87.3815i 0.274785i
\(319\) −319.163 + 307.782i −1.00051 + 0.964834i
\(320\) 0 0
\(321\) 391.025i 1.21815i
\(322\) −267.588 −0.831018
\(323\) 4.72171 0.0146183
\(324\) −147.896 −0.456470
\(325\) 0 0
\(326\) 381.808i 1.17119i
\(327\) 637.480i 1.94948i
\(328\) −313.938 −0.957129
\(329\) 616.793i 1.87475i
\(330\) 0 0
\(331\) 226.936 0.685606 0.342803 0.939407i \(-0.388624\pi\)
0.342803 + 0.939407i \(0.388624\pi\)
\(332\) 194.857i 0.586920i
\(333\) −81.3262 −0.244223
\(334\) 193.245 0.578578
\(335\) 0 0
\(336\) 242.676i 0.722250i
\(337\) 164.018i 0.486701i 0.969938 + 0.243350i \(0.0782465\pi\)
−0.969938 + 0.243350i \(0.921753\pi\)
\(338\) 167.375i 0.495191i
\(339\) 293.691 0.866346
\(340\) 0 0
\(341\) −393.900 408.465i −1.15513 1.19785i
\(342\) 10.3049 0.0301313
\(343\) 214.582i 0.625605i
\(344\) −645.022 −1.87506
\(345\) 0 0
\(346\) 122.568 0.354243
\(347\) 283.936i 0.818260i 0.912476 + 0.409130i \(0.134168\pi\)
−0.912476 + 0.409130i \(0.865832\pi\)
\(348\) 263.321i 0.756670i
\(349\) 107.964i 0.309352i 0.987965 + 0.154676i \(0.0494333\pi\)
−0.987965 + 0.154676i \(0.950567\pi\)
\(350\) 0 0
\(351\) 99.3299i 0.282991i
\(352\) −189.067 + 182.325i −0.537122 + 0.517968i
\(353\) 299.299 0.847871 0.423936 0.905692i \(-0.360648\pi\)
0.423936 + 0.905692i \(0.360648\pi\)
\(354\) 169.390i 0.478503i
\(355\) 0 0
\(356\) 31.7090 0.0890703
\(357\) −185.323 −0.519112
\(358\) 495.681i 1.38458i
\(359\) 315.451i 0.878694i 0.898318 + 0.439347i \(0.144790\pi\)
−0.898318 + 0.439347i \(0.855210\pi\)
\(360\) 0 0
\(361\) 360.218 0.997834
\(362\) 96.5542i 0.266724i
\(363\) 17.8569 491.667i 0.0491927 1.35445i
\(364\) 228.327 0.627272
\(365\) 0 0
\(366\) −286.646 −0.783185
\(367\) 170.851 0.465535 0.232768 0.972532i \(-0.425222\pi\)
0.232768 + 0.972532i \(0.425222\pi\)
\(368\) 141.684 0.385012
\(369\) 272.639i 0.738859i
\(370\) 0 0
\(371\) 118.575i 0.319609i
\(372\) 336.999 0.905911
\(373\) 63.4196i 0.170026i 0.996380 + 0.0850129i \(0.0270932\pi\)
−0.996380 + 0.0850129i \(0.972907\pi\)
\(374\) −63.0757 65.4082i −0.168652 0.174888i
\(375\) 0 0
\(376\) 626.756i 1.66690i
\(377\) −671.092 −1.78008
\(378\) 78.7848 0.208426
\(379\) −395.811 −1.04436 −0.522178 0.852837i \(-0.674880\pi\)
−0.522178 + 0.852837i \(0.674880\pi\)
\(380\) 0 0
\(381\) 461.368i 1.21094i
\(382\) 70.8218i 0.185397i
\(383\) −239.493 −0.625308 −0.312654 0.949867i \(-0.601218\pi\)
−0.312654 + 0.949867i \(0.601218\pi\)
\(384\) 19.9440i 0.0519374i
\(385\) 0 0
\(386\) −423.691 −1.09765
\(387\) 560.168i 1.44746i
\(388\) −238.300 −0.614175
\(389\) 225.687 0.580172 0.290086 0.957001i \(-0.406316\pi\)
0.290086 + 0.957001i \(0.406316\pi\)
\(390\) 0 0
\(391\) 108.199i 0.276724i
\(392\) 206.965i 0.527972i
\(393\) 511.557i 1.30167i
\(394\) 260.032 0.659981
\(395\) 0 0
\(396\) 92.4104 + 95.8276i 0.233360 + 0.241989i
\(397\) 46.1196 0.116170 0.0580851 0.998312i \(-0.481501\pi\)
0.0580851 + 0.998312i \(0.481501\pi\)
\(398\) 470.571i 1.18234i
\(399\) 30.6909 0.0769195
\(400\) 0 0
\(401\) 273.371 0.681722 0.340861 0.940114i \(-0.389281\pi\)
0.340861 + 0.940114i \(0.389281\pi\)
\(402\) 492.902i 1.22613i
\(403\) 858.864i 2.13118i
\(404\) 191.757i 0.474647i
\(405\) 0 0
\(406\) 532.285i 1.31105i
\(407\) −82.4385 85.4869i −0.202551 0.210042i
\(408\) 188.316 0.461559
\(409\) 355.118i 0.868259i 0.900850 + 0.434130i \(0.142944\pi\)
−0.900850 + 0.434130i \(0.857056\pi\)
\(410\) 0 0
\(411\) −321.352 −0.781877
\(412\) 261.963 0.635833
\(413\) 229.858i 0.556558i
\(414\) 236.140i 0.570385i
\(415\) 0 0
\(416\) −397.543 −0.955633
\(417\) 429.817i 1.03074i
\(418\) 10.4458 + 10.8321i 0.0249900 + 0.0259141i
\(419\) −137.679 −0.328590 −0.164295 0.986411i \(-0.552535\pi\)
−0.164295 + 0.986411i \(0.552535\pi\)
\(420\) 0 0
\(421\) 42.5093 0.100972 0.0504861 0.998725i \(-0.483923\pi\)
0.0504861 + 0.998725i \(0.483923\pi\)
\(422\) 49.3396 0.116919
\(423\) 544.305 1.28677
\(424\) 120.490i 0.284175i
\(425\) 0 0
\(426\) 421.246i 0.988841i
\(427\) −388.972 −0.910941
\(428\) 154.509i 0.361002i
\(429\) 536.019 516.904i 1.24946 1.20491i
\(430\) 0 0
\(431\) 18.0213i 0.0418128i −0.999781 0.0209064i \(-0.993345\pi\)
0.999781 0.0209064i \(-0.00665520\pi\)
\(432\) −41.7156 −0.0965639
\(433\) −443.870 −1.02510 −0.512552 0.858656i \(-0.671300\pi\)
−0.512552 + 0.858656i \(0.671300\pi\)
\(434\) −681.219 −1.56963
\(435\) 0 0
\(436\) 251.892i 0.577735i
\(437\) 17.9186i 0.0410037i
\(438\) −175.791 −0.401350
\(439\) 420.410i 0.957654i −0.877909 0.478827i \(-0.841062\pi\)
0.877909 0.478827i \(-0.158938\pi\)
\(440\) 0 0
\(441\) −179.738 −0.407570
\(442\) 137.531i 0.311157i
\(443\) 526.465 1.18841 0.594204 0.804314i \(-0.297467\pi\)
0.594204 + 0.804314i \(0.297467\pi\)
\(444\) 70.5298 0.158851
\(445\) 0 0
\(446\) 216.631i 0.485719i
\(447\) 970.606i 2.17138i
\(448\) 554.051i 1.23672i
\(449\) 115.197 0.256564 0.128282 0.991738i \(-0.459054\pi\)
0.128282 + 0.991738i \(0.459054\pi\)
\(450\) 0 0
\(451\) −286.587 + 276.368i −0.635449 + 0.612789i
\(452\) −116.049 −0.256745
\(453\) 1157.62i 2.55544i
\(454\) 236.916 0.521841
\(455\) 0 0
\(456\) −31.1866 −0.0683917
\(457\) 331.393i 0.725148i −0.931955 0.362574i \(-0.881898\pi\)
0.931955 0.362574i \(-0.118102\pi\)
\(458\) 308.726i 0.674075i
\(459\) 31.8567i 0.0694046i
\(460\) 0 0
\(461\) 440.253i 0.954997i −0.878633 0.477498i \(-0.841544\pi\)
0.878633 0.477498i \(-0.158456\pi\)
\(462\) −409.989 425.150i −0.887423 0.920239i
\(463\) −119.267 −0.257595 −0.128798 0.991671i \(-0.541112\pi\)
−0.128798 + 0.991671i \(0.541112\pi\)
\(464\) 281.839i 0.607411i
\(465\) 0 0
\(466\) −158.725 −0.340612
\(467\) −411.442 −0.881031 −0.440516 0.897745i \(-0.645204\pi\)
−0.440516 + 0.897745i \(0.645204\pi\)
\(468\) 201.493i 0.430540i
\(469\) 668.858i 1.42614i
\(470\) 0 0
\(471\) 620.681 1.31779
\(472\) 233.571i 0.494854i
\(473\) −588.826 + 567.829i −1.24488 + 1.20048i
\(474\) 65.8730 0.138973
\(475\) 0 0
\(476\) 73.2281 0.153841
\(477\) 104.639 0.219370
\(478\) −567.687 −1.18763
\(479\) 923.838i 1.92868i 0.264666 + 0.964340i \(0.414738\pi\)
−0.264666 + 0.964340i \(0.585262\pi\)
\(480\) 0 0
\(481\) 179.750i 0.373701i
\(482\) 308.155 0.639327
\(483\) 703.290i 1.45609i
\(484\) −7.05596 + 194.276i −0.0145784 + 0.401397i
\(485\) 0 0
\(486\) 495.976i 1.02053i
\(487\) 277.052 0.568895 0.284447 0.958692i \(-0.408190\pi\)
0.284447 + 0.958692i \(0.408190\pi\)
\(488\) 395.255 0.809948
\(489\) 1003.49 2.05213
\(490\) 0 0
\(491\) 98.0225i 0.199639i 0.995006 + 0.0998193i \(0.0318265\pi\)
−0.995006 + 0.0998193i \(0.968174\pi\)
\(492\) 236.445i 0.480579i
\(493\) −215.230 −0.436572
\(494\) 22.7762i 0.0461057i
\(495\) 0 0
\(496\) 360.697 0.727212
\(497\) 571.622i 1.15014i
\(498\) −762.907 −1.53194
\(499\) 252.147 0.505305 0.252653 0.967557i \(-0.418697\pi\)
0.252653 + 0.967557i \(0.418697\pi\)
\(500\) 0 0
\(501\) 507.899i 1.01377i
\(502\) 414.103i 0.824906i
\(503\) 438.637i 0.872041i 0.899937 + 0.436021i \(0.143613\pi\)
−0.899937 + 0.436021i \(0.856387\pi\)
\(504\) 557.706 1.10656
\(505\) 0 0
\(506\) 248.221 239.369i 0.490554 0.473061i
\(507\) 439.904 0.867661
\(508\) 182.304i 0.358866i
\(509\) 869.942 1.70912 0.854560 0.519352i \(-0.173827\pi\)
0.854560 + 0.519352i \(0.173827\pi\)
\(510\) 0 0
\(511\) −238.545 −0.466820
\(512\) 409.547i 0.799896i
\(513\) 5.27571i 0.0102840i
\(514\) 263.891i 0.513407i
\(515\) 0 0
\(516\) 485.803i 0.941479i
\(517\) 551.749 + 572.152i 1.06721 + 1.10668i
\(518\) −142.571 −0.275234
\(519\) 322.141i 0.620696i
\(520\) 0 0
\(521\) 387.883 0.744498 0.372249 0.928133i \(-0.378587\pi\)
0.372249 + 0.928133i \(0.378587\pi\)
\(522\) −469.729 −0.899864
\(523\) 284.445i 0.543872i 0.962315 + 0.271936i \(0.0876639\pi\)
−0.962315 + 0.271936i \(0.912336\pi\)
\(524\) 202.136i 0.385755i
\(525\) 0 0
\(526\) −390.471 −0.742341
\(527\) 275.452i 0.522678i
\(528\) 217.084 + 225.112i 0.411145 + 0.426348i
\(529\) −118.390 −0.223799
\(530\) 0 0
\(531\) −202.844 −0.382004
\(532\) −12.1271 −0.0227954
\(533\) −602.596 −1.13057
\(534\) 124.147i 0.232486i
\(535\) 0 0
\(536\) 679.661i 1.26802i
\(537\) −1302.78 −2.42603
\(538\) 16.3066i 0.0303097i
\(539\) −182.196 188.934i −0.338027 0.350527i
\(540\) 0 0
\(541\) 181.011i 0.334585i 0.985907 + 0.167293i \(0.0535025\pi\)
−0.985907 + 0.167293i \(0.946498\pi\)
\(542\) 481.114 0.887665
\(543\) −253.770 −0.467347
\(544\) −127.499 −0.234372
\(545\) 0 0
\(546\) 893.947i 1.63726i
\(547\) 602.153i 1.10083i −0.834892 0.550414i \(-0.814470\pi\)
0.834892 0.550414i \(-0.185530\pi\)
\(548\) 126.978 0.231712
\(549\) 343.258i 0.625243i
\(550\) 0 0
\(551\) 35.6437 0.0646891
\(552\) 714.650i 1.29466i
\(553\) 89.3882 0.161642
\(554\) 1.90908 0.00344600
\(555\) 0 0
\(556\) 169.837i 0.305462i
\(557\) 264.253i 0.474422i −0.971458 0.237211i \(-0.923767\pi\)
0.971458 0.237211i \(-0.0762333\pi\)
\(558\) 601.159i 1.07735i
\(559\) −1238.10 −2.21485
\(560\) 0 0
\(561\) 171.910 165.780i 0.306435 0.295507i
\(562\) −214.176 −0.381095
\(563\) 210.532i 0.373946i −0.982365 0.186973i \(-0.940132\pi\)
0.982365 0.186973i \(-0.0598678\pi\)
\(564\) −472.046 −0.836961
\(565\) 0 0
\(566\) 23.2758 0.0411234
\(567\) 785.750i 1.38580i
\(568\) 580.854i 1.02263i
\(569\) 93.1571i 0.163721i 0.996644 + 0.0818604i \(0.0260862\pi\)
−0.996644 + 0.0818604i \(0.973914\pi\)
\(570\) 0 0
\(571\) 823.255i 1.44178i −0.693051 0.720889i \(-0.743734\pi\)
0.693051 0.720889i \(-0.256266\pi\)
\(572\) −211.801 + 204.249i −0.370282 + 0.357078i
\(573\) −186.138 −0.324848
\(574\) 477.957i 0.832678i
\(575\) 0 0
\(576\) −488.937 −0.848848
\(577\) 750.486 1.30067 0.650335 0.759648i \(-0.274629\pi\)
0.650335 + 0.759648i \(0.274629\pi\)
\(578\) 402.988i 0.697211i
\(579\) 1113.57i 1.92327i
\(580\) 0 0
\(581\) −1035.25 −1.78184
\(582\) 932.993i 1.60308i
\(583\) 106.070 + 109.993i 0.181939 + 0.188667i
\(584\) 242.398 0.415065
\(585\) 0 0
\(586\) −147.625 −0.251919
\(587\) −1050.85 −1.79021 −0.895106 0.445854i \(-0.852900\pi\)
−0.895106 + 0.445854i \(0.852900\pi\)
\(588\) 155.877 0.265097
\(589\) 45.6169i 0.0774480i
\(590\) 0 0
\(591\) 683.433i 1.15640i
\(592\) 75.4896 0.127516
\(593\) 172.160i 0.290321i −0.989408 0.145161i \(-0.953630\pi\)
0.989408 0.145161i \(-0.0463699\pi\)
\(594\) −73.0826 + 70.4765i −0.123035 + 0.118647i
\(595\) 0 0
\(596\) 383.523i 0.643496i
\(597\) 1236.78 2.07167
\(598\) 521.923 0.872782
\(599\) −674.329 −1.12576 −0.562879 0.826539i \(-0.690306\pi\)
−0.562879 + 0.826539i \(0.690306\pi\)
\(600\) 0 0
\(601\) 521.125i 0.867096i 0.901131 + 0.433548i \(0.142739\pi\)
−0.901131 + 0.433548i \(0.857261\pi\)
\(602\) 982.017i 1.63126i
\(603\) 590.250 0.978856
\(604\) 457.418i 0.757315i
\(605\) 0 0
\(606\) 750.769 1.23889
\(607\) 719.195i 1.18484i −0.805631 0.592418i \(-0.798174\pi\)
0.805631 0.592418i \(-0.201826\pi\)
\(608\) 21.1147 0.0347282
\(609\) −1398.99 −2.29718
\(610\) 0 0
\(611\) 1203.04i 1.96897i
\(612\) 64.6220i 0.105592i
\(613\) 802.668i 1.30941i −0.755884 0.654705i \(-0.772793\pi\)
0.755884 0.654705i \(-0.227207\pi\)
\(614\) −423.527 −0.689783
\(615\) 0 0
\(616\) 565.333 + 586.238i 0.917748 + 0.951685i
\(617\) 15.2837 0.0247710 0.0123855 0.999923i \(-0.496057\pi\)
0.0123855 + 0.999923i \(0.496057\pi\)
\(618\) 1025.64i 1.65961i
\(619\) 511.627 0.826537 0.413269 0.910609i \(-0.364387\pi\)
0.413269 + 0.910609i \(0.364387\pi\)
\(620\) 0 0
\(621\) −120.894 −0.194677
\(622\) 429.475i 0.690474i
\(623\) 168.465i 0.270410i
\(624\) 473.334i 0.758548i
\(625\) 0 0
\(626\) 264.873i 0.423120i
\(627\) −28.4696 + 27.4544i −0.0454060 + 0.0437868i
\(628\) −245.255 −0.390533
\(629\) 57.6487i 0.0916514i
\(630\) 0 0
\(631\) −1120.05 −1.77503 −0.887517 0.460775i \(-0.847571\pi\)
−0.887517 + 0.460775i \(0.847571\pi\)
\(632\) −90.8320 −0.143722
\(633\) 129.677i 0.204862i
\(634\) 166.665i 0.262879i
\(635\) 0 0
\(636\) −90.7480 −0.142686
\(637\) 397.264i 0.623648i
\(638\) −476.153 493.760i −0.746321 0.773919i
\(639\) 504.442 0.789424
\(640\) 0 0
\(641\) 782.877 1.22134 0.610668 0.791886i \(-0.290901\pi\)
0.610668 + 0.791886i \(0.290901\pi\)
\(642\) 604.933 0.942264
\(643\) 865.718 1.34637 0.673186 0.739473i \(-0.264925\pi\)
0.673186 + 0.739473i \(0.264925\pi\)
\(644\) 277.897i 0.431517i
\(645\) 0 0
\(646\) 7.30470i 0.0113076i
\(647\) 464.538 0.717987 0.358994 0.933340i \(-0.383120\pi\)
0.358994 + 0.933340i \(0.383120\pi\)
\(648\) 798.442i 1.23216i
\(649\) −205.618 213.222i −0.316823 0.328539i
\(650\) 0 0
\(651\) 1790.42i 2.75026i
\(652\) −396.517 −0.608155
\(653\) 48.3757 0.0740823 0.0370412 0.999314i \(-0.488207\pi\)
0.0370412 + 0.999314i \(0.488207\pi\)
\(654\) 986.211 1.50797
\(655\) 0 0
\(656\) 253.072i 0.385781i
\(657\) 210.510i 0.320411i
\(658\) 954.207 1.45016
\(659\) 1071.21i 1.62551i 0.582603 + 0.812757i \(0.302034\pi\)
−0.582603 + 0.812757i \(0.697966\pi\)
\(660\) 0 0
\(661\) −809.703 −1.22497 −0.612483 0.790484i \(-0.709829\pi\)
−0.612483 + 0.790484i \(0.709829\pi\)
\(662\) 351.080i 0.530332i
\(663\) 361.468 0.545201
\(664\) 1051.97 1.58429
\(665\) 0 0
\(666\) 125.815i 0.188912i
\(667\) 816.786i 1.22457i
\(668\) 200.690i 0.300434i
\(669\) −569.362 −0.851064
\(670\) 0 0
\(671\) 360.819 347.953i 0.537734 0.518558i
\(672\) −828.735 −1.23324
\(673\) 230.577i 0.342611i −0.985218 0.171305i \(-0.945201\pi\)
0.985218 0.171305i \(-0.0547985\pi\)
\(674\) −253.744 −0.376474
\(675\) 0 0
\(676\) −173.823 −0.257134
\(677\) 229.733i 0.339339i 0.985501 + 0.169670i \(0.0542701\pi\)
−0.985501 + 0.169670i \(0.945730\pi\)
\(678\) 454.354i 0.670139i
\(679\) 1266.05i 1.86458i
\(680\) 0 0
\(681\) 622.677i 0.914356i
\(682\) 631.915 609.381i 0.926561 0.893520i
\(683\) −830.100 −1.21537 −0.607687 0.794177i \(-0.707902\pi\)
−0.607687 + 0.794177i \(0.707902\pi\)
\(684\) 10.7019i 0.0156461i
\(685\) 0 0
\(686\) 331.969 0.483920
\(687\) −811.413 −1.18110
\(688\) 519.966i 0.755765i
\(689\) 231.277i 0.335671i
\(690\) 0 0
\(691\) −35.7315 −0.0517098 −0.0258549 0.999666i \(-0.508231\pi\)
−0.0258549 + 0.999666i \(0.508231\pi\)
\(692\) 127.290i 0.183945i
\(693\) 509.117 490.962i 0.734657 0.708459i
\(694\) −439.263 −0.632943
\(695\) 0 0
\(696\) 1421.58 2.04250
\(697\) −193.262 −0.277277
\(698\) −167.025 −0.239291
\(699\) 417.171i 0.596811i
\(700\) 0 0
\(701\) 663.222i 0.946109i −0.881033 0.473054i \(-0.843151\pi\)
0.881033 0.473054i \(-0.156849\pi\)
\(702\) −153.668 −0.218900
\(703\) 9.54706i 0.0135805i
\(704\) −495.623 513.951i −0.704010 0.730044i
\(705\) 0 0
\(706\) 463.029i 0.655848i
\(707\) 1018.78 1.44099
\(708\) 175.916 0.248469
\(709\) 44.6451 0.0629691 0.0314845 0.999504i \(-0.489977\pi\)
0.0314845 + 0.999504i \(0.489977\pi\)
\(710\) 0 0
\(711\) 78.8829i 0.110946i
\(712\) 171.186i 0.240430i
\(713\) 1045.32 1.46609
\(714\) 286.703i 0.401545i
\(715\) 0 0
\(716\) 514.777 0.718963
\(717\) 1492.03i 2.08094i
\(718\) −488.017 −0.679690
\(719\) −166.507 −0.231582 −0.115791 0.993274i \(-0.536940\pi\)
−0.115791 + 0.993274i \(0.536940\pi\)
\(720\) 0 0
\(721\) 1391.77i 1.93033i
\(722\) 557.274i 0.771848i
\(723\) 809.913i 1.12021i
\(724\) 100.274 0.138500
\(725\) 0 0
\(726\) 760.631 + 27.6255i 1.04770 + 0.0380517i
\(727\) 844.769 1.16199 0.580996 0.813906i \(-0.302663\pi\)
0.580996 + 0.813906i \(0.302663\pi\)
\(728\) 1232.66i 1.69321i
\(729\) −475.079 −0.651686
\(730\) 0 0
\(731\) −397.079 −0.543200
\(732\) 297.689i 0.406679i
\(733\) 136.236i 0.185861i 0.995673 + 0.0929303i \(0.0296234\pi\)
−0.995673 + 0.0929303i \(0.970377\pi\)
\(734\) 264.315i 0.360102i
\(735\) 0 0
\(736\) 483.850i 0.657405i
\(737\) 598.323 + 620.448i 0.811835 + 0.841856i
\(738\) −421.785 −0.571525
\(739\) 867.760i 1.17424i −0.809502 0.587118i \(-0.800263\pi\)
0.809502 0.587118i \(-0.199737\pi\)
\(740\) 0 0
\(741\) −59.8618 −0.0807852
\(742\) 183.441 0.247225
\(743\) 366.969i 0.493902i −0.969028 0.246951i \(-0.920571\pi\)
0.969028 0.246951i \(-0.0794286\pi\)
\(744\) 1819.34i 2.44535i
\(745\) 0 0
\(746\) −98.1131 −0.131519
\(747\) 913.580i 1.22300i
\(748\) −67.9281 + 65.5058i −0.0908130 + 0.0875746i
\(749\) 820.881 1.09597
\(750\) 0 0
\(751\) 674.177 0.897705 0.448853 0.893606i \(-0.351833\pi\)
0.448853 + 0.893606i \(0.351833\pi\)
\(752\) −505.241 −0.671863
\(753\) −1088.37 −1.44538
\(754\) 1038.21i 1.37694i
\(755\) 0 0
\(756\) 81.8201i 0.108228i
\(757\) 65.4072 0.0864032 0.0432016 0.999066i \(-0.486244\pi\)
0.0432016 + 0.999066i \(0.486244\pi\)
\(758\) 612.337i 0.807833i
\(759\) 629.124 + 652.388i 0.828886 + 0.859537i
\(760\) 0 0
\(761\) 21.0476i 0.0276578i −0.999904 0.0138289i \(-0.995598\pi\)
0.999904 0.0138289i \(-0.00440201\pi\)
\(762\) −713.758 −0.936690
\(763\) 1338.27 1.75395
\(764\) 73.5503 0.0962700
\(765\) 0 0
\(766\) 370.507i 0.483690i
\(767\) 448.333i 0.584528i
\(768\) 1024.83 1.33441
\(769\) 66.0422i 0.0858806i 0.999078 + 0.0429403i \(0.0136725\pi\)
−0.999078 + 0.0429403i \(0.986327\pi\)
\(770\) 0 0
\(771\) 693.575 0.899578
\(772\) 440.015i 0.569967i
\(773\) −16.5144 −0.0213640 −0.0106820 0.999943i \(-0.503400\pi\)
−0.0106820 + 0.999943i \(0.503400\pi\)
\(774\) −866.606 −1.11965
\(775\) 0 0
\(776\) 1286.50i 1.65786i
\(777\) 374.714i 0.482257i
\(778\) 349.148i 0.448777i
\(779\) 32.0057 0.0410856
\(780\) 0 0
\(781\) 511.341 + 530.249i 0.654726 + 0.678937i
\(782\) 167.389 0.214053
\(783\) 240.483i 0.307131i
\(784\) 166.839 0.212805
\(785\) 0 0
\(786\) −791.403 −1.00687
\(787\) 778.394i 0.989065i −0.869159 0.494533i \(-0.835339\pi\)
0.869159 0.494533i \(-0.164661\pi\)
\(788\) 270.051i 0.342704i
\(789\) 1026.26i 1.30071i
\(790\) 0 0
\(791\) 616.548i 0.779454i
\(792\) −517.341 + 498.892i −0.653208 + 0.629915i
\(793\) 758.681 0.956722
\(794\) 71.3491i 0.0898604i
\(795\) 0 0
\(796\) −488.700 −0.613945
\(797\) −318.852 −0.400066 −0.200033 0.979789i \(-0.564105\pi\)
−0.200033 + 0.979789i \(0.564105\pi\)
\(798\) 47.4802i 0.0594990i
\(799\) 385.834i 0.482897i
\(800\) 0 0
\(801\) 148.666 0.185601
\(802\) 422.917i 0.527328i
\(803\) 221.280 213.389i 0.275567 0.265740i
\(804\) −511.892 −0.636682
\(805\) 0 0
\(806\) 1328.70 1.64851
\(807\) −42.8581 −0.0531079
\(808\) −1035.23 −1.28123
\(809\) 253.404i 0.313231i 0.987660 + 0.156616i \(0.0500584\pi\)
−0.987660 + 0.156616i \(0.949942\pi\)
\(810\) 0 0
\(811\) 1021.32i 1.25934i 0.776864 + 0.629668i \(0.216809\pi\)
−0.776864 + 0.629668i \(0.783191\pi\)
\(812\) 552.792 0.680779
\(813\) 1264.49i 1.55534i
\(814\) 132.252 127.536i 0.162472 0.156678i
\(815\) 0 0
\(816\) 151.806i 0.186037i
\(817\) 65.7593 0.0804888
\(818\) −549.384 −0.671619
\(819\) 1070.50 1.30708
\(820\) 0 0
\(821\) 889.675i 1.08365i 0.840492 + 0.541824i \(0.182266\pi\)
−0.840492 + 0.541824i \(0.817734\pi\)
\(822\) 497.146i 0.604800i
\(823\) 92.7923 0.112749 0.0563744 0.998410i \(-0.482046\pi\)
0.0563744 + 0.998410i \(0.482046\pi\)
\(824\) 1414.25i 1.71632i
\(825\) 0 0
\(826\) −355.601 −0.430510
\(827\) 1582.62i 1.91369i 0.290597 + 0.956845i \(0.406146\pi\)
−0.290597 + 0.956845i \(0.593854\pi\)
\(828\) −245.237 −0.296180
\(829\) 925.797 1.11676 0.558382 0.829584i \(-0.311422\pi\)
0.558382 + 0.829584i \(0.311422\pi\)
\(830\) 0 0
\(831\) 5.01757i 0.00603799i
\(832\) 1080.66i 1.29887i
\(833\) 127.409i 0.152952i
\(834\) −664.947 −0.797298
\(835\) 0 0
\(836\) 11.2494 10.8483i 0.0134562 0.0129764i
\(837\) −307.771 −0.367707
\(838\) 212.996i 0.254172i
\(839\) 169.321 0.201813 0.100907 0.994896i \(-0.467826\pi\)
0.100907 + 0.994896i \(0.467826\pi\)
\(840\) 0 0
\(841\) −783.751 −0.931927
\(842\) 65.7639i 0.0781044i
\(843\) 562.909i 0.667746i
\(844\) 51.2405i 0.0607115i
\(845\) 0 0
\(846\) 842.065i 0.995348i
\(847\) 1032.16 + 37.4872i 1.21861 + 0.0442588i
\(848\) −97.1296 −0.114540
\(849\) 61.1750i 0.0720553i
\(850\) 0 0
\(851\) 218.774 0.257078
\(852\) −437.475 −0.513468
\(853\) 1296.08i 1.51943i −0.650254 0.759717i \(-0.725338\pi\)
0.650254 0.759717i \(-0.274662\pi\)
\(854\) 601.758i 0.704634i
\(855\) 0 0
\(856\) −834.140 −0.974462
\(857\) 1439.08i 1.67921i 0.543197 + 0.839605i \(0.317214\pi\)
−0.543197 + 0.839605i \(0.682786\pi\)
\(858\) 799.675 + 829.246i 0.932022 + 0.966487i
\(859\) 1287.02 1.49827 0.749137 0.662415i \(-0.230468\pi\)
0.749137 + 0.662415i \(0.230468\pi\)
\(860\) 0 0
\(861\) −1256.20 −1.45900
\(862\) 27.8798 0.0323432
\(863\) −1467.32 −1.70026 −0.850130 0.526573i \(-0.823477\pi\)
−0.850130 + 0.526573i \(0.823477\pi\)
\(864\) 142.458i 0.164882i
\(865\) 0 0
\(866\) 686.687i 0.792941i
\(867\) −1059.16 −1.22163
\(868\) 707.464i 0.815051i
\(869\) −82.9186 + 79.9617i −0.0954184 + 0.0920158i
\(870\) 0 0
\(871\) 1304.59i 1.49781i
\(872\) −1359.88 −1.55950
\(873\) −1117.26 −1.27979
\(874\) −27.7209 −0.0317173
\(875\) 0 0
\(876\) 182.564i 0.208406i
\(877\) 267.438i 0.304947i −0.988308 0.152473i \(-0.951276\pi\)
0.988308 0.152473i \(-0.0487238\pi\)
\(878\) 650.394 0.740768
\(879\) 387.996i 0.441407i
\(880\) 0 0
\(881\) −1753.38 −1.99022 −0.995109 0.0987811i \(-0.968506\pi\)
−0.995109 + 0.0987811i \(0.968506\pi\)
\(882\) 278.064i 0.315265i
\(883\) 525.703 0.595360 0.297680 0.954666i \(-0.403787\pi\)
0.297680 + 0.954666i \(0.403787\pi\)
\(884\) −142.830 −0.161572
\(885\) 0 0
\(886\) 814.465i 0.919261i
\(887\) 21.4678i 0.0242027i 0.999927 + 0.0121014i \(0.00385207\pi\)
−0.999927 + 0.0121014i \(0.996148\pi\)
\(888\) 380.766i 0.428791i
\(889\) −968.553 −1.08949
\(890\) 0 0
\(891\) −702.888 728.880i −0.788876 0.818047i
\(892\) 224.977 0.252216
\(893\) 63.8971i 0.0715533i
\(894\) −1501.57 −1.67961
\(895\) 0 0
\(896\) −41.8685 −0.0467282
\(897\) 1371.75i 1.52927i
\(898\) 178.216i 0.198458i
\(899\) 2079.36i 2.31297i
\(900\) 0 0
\(901\) 74.1744i 0.0823245i
\(902\) −427.554 443.364i −0.474006 0.491534i
\(903\) −2581.00 −2.85825
\(904\) 626.507i 0.693039i
\(905\) 0 0
\(906\) −1790.89 −1.97670
\(907\) −16.7154 −0.0184294 −0.00921469 0.999958i \(-0.502933\pi\)
−0.00921469 + 0.999958i \(0.502933\pi\)
\(908\) 246.043i 0.270973i
\(909\) 899.046i 0.989049i
\(910\) 0 0
\(911\) 1401.06 1.53793 0.768967 0.639289i \(-0.220771\pi\)
0.768967 + 0.639289i \(0.220771\pi\)
\(912\) 25.1402i 0.0275660i
\(913\) 960.319 926.074i 1.05183 1.01432i
\(914\) 512.680 0.560919
\(915\) 0 0
\(916\) 320.620 0.350022
\(917\) −1073.92 −1.17112
\(918\) −49.2838 −0.0536861
\(919\) 1598.11i 1.73896i −0.493965 0.869482i \(-0.664453\pi\)
0.493965 0.869482i \(-0.335547\pi\)
\(920\) 0 0
\(921\) 1113.14i 1.20862i
\(922\) 681.092 0.738712
\(923\) 1114.93i 1.20795i
\(924\) −441.530 + 425.785i −0.477846 + 0.460806i
\(925\) 0 0
\(926\) 184.511i 0.199256i
\(927\) 1228.20 1.32492
\(928\) −962.475 −1.03715
\(929\) −149.678 −0.161117 −0.0805585 0.996750i \(-0.525670\pi\)
−0.0805585 + 0.996750i \(0.525670\pi\)
\(930\) 0 0
\(931\) 21.0999i 0.0226637i
\(932\) 164.840i 0.176867i
\(933\) 1128.77 1.20983
\(934\) 636.519i 0.681498i
\(935\) 0 0
\(936\) −1087.79 −1.16217
\(937\) 1699.25i 1.81351i 0.421663 + 0.906753i \(0.361447\pi\)
−0.421663 + 0.906753i \(0.638553\pi\)
\(938\) 1034.75 1.10315
\(939\) −696.156 −0.741380
\(940\) 0 0
\(941\) 1130.78i 1.20168i 0.799368 + 0.600841i \(0.205168\pi\)
−0.799368 + 0.600841i \(0.794832\pi\)
\(942\) 960.223i 1.01934i
\(943\) 733.420i 0.777751i
\(944\) 188.287 0.199456
\(945\) 0 0
\(946\) −878.458 910.942i −0.928602 0.962941i
\(947\) 346.852 0.366264 0.183132 0.983088i \(-0.441376\pi\)
0.183132 + 0.983088i \(0.441376\pi\)
\(948\) 68.4108i 0.0721633i
\(949\) 465.277 0.490281
\(950\) 0 0
\(951\) −438.040 −0.460610
\(952\) 395.334i 0.415266i
\(953\) 116.543i 0.122291i −0.998129 0.0611453i \(-0.980525\pi\)
0.998129 0.0611453i \(-0.0194753\pi\)
\(954\) 161.882i 0.169688i
\(955\) 0 0
\(956\) 589.558i 0.616693i
\(957\) 1297.73 1251.45i 1.35604 1.30768i
\(958\) −1429.22 −1.49188
\(959\) 674.616i 0.703457i
\(960\) 0 0
\(961\) 1700.16 1.76916
\(962\) 278.081 0.289066
\(963\) 724.407i 0.752240i
\(964\) 320.027i 0.331979i
\(965\) 0 0
\(966\) 1088.02 1.12632
\(967\) 1721.69i 1.78044i −0.455527 0.890222i \(-0.650549\pi\)
0.455527 0.890222i \(-0.349451\pi\)
\(968\) −1048.83 38.0927i −1.08350 0.0393520i
\(969\) −19.1987 −0.0198129
\(970\) 0 0
\(971\) −333.995 −0.343970 −0.171985 0.985100i \(-0.555018\pi\)
−0.171985 + 0.985100i \(0.555018\pi\)
\(972\) 515.084 0.529922
\(973\) −902.318 −0.927356
\(974\) 428.612i 0.440053i
\(975\) 0 0
\(976\) 318.623i 0.326458i
\(977\) −685.606 −0.701746 −0.350873 0.936423i \(-0.614115\pi\)
−0.350873 + 0.936423i \(0.614115\pi\)
\(978\) 1552.45i 1.58737i
\(979\) 150.700 + 156.272i 0.153932 + 0.159624i
\(980\) 0 0
\(981\) 1180.99i 1.20386i
\(982\) −151.645 −0.154425
\(983\) −443.589 −0.451260 −0.225630 0.974213i \(-0.572444\pi\)
−0.225630 + 0.974213i \(0.572444\pi\)
\(984\) 1276.49 1.29724
\(985\) 0 0
\(986\) 332.971i 0.337699i
\(987\) 2507.91i 2.54094i
\(988\) 23.6537 0.0239410
\(989\) 1506.89i 1.52365i
\(990\) 0 0
\(991\) 458.627 0.462792 0.231396 0.972860i \(-0.425671\pi\)
0.231396 + 0.972860i \(0.425671\pi\)
\(992\) 1231.78i 1.24171i
\(993\) −922.730 −0.929234
\(994\) 884.325 0.889663
\(995\) 0 0
\(996\) 792.298i 0.795480i
\(997\) 166.538i 0.167040i −0.996506 0.0835198i \(-0.973384\pi\)
0.996506 0.0835198i \(-0.0266162\pi\)
\(998\) 390.084i 0.390865i
\(999\) −64.4127 −0.0644772
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.3.c.h.76.6 yes 8
5.2 odd 4 275.3.d.b.274.6 16
5.3 odd 4 275.3.d.b.274.11 16
5.4 even 2 275.3.c.g.76.3 8
11.10 odd 2 inner 275.3.c.h.76.3 yes 8
55.32 even 4 275.3.d.b.274.12 16
55.43 even 4 275.3.d.b.274.5 16
55.54 odd 2 275.3.c.g.76.6 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
275.3.c.g.76.3 8 5.4 even 2
275.3.c.g.76.6 yes 8 55.54 odd 2
275.3.c.h.76.3 yes 8 11.10 odd 2 inner
275.3.c.h.76.6 yes 8 1.1 even 1 trivial
275.3.d.b.274.5 16 55.43 even 4
275.3.d.b.274.6 16 5.2 odd 4
275.3.d.b.274.11 16 5.3 odd 4
275.3.d.b.274.12 16 55.32 even 4