Properties

Label 275.3.d.b.274.12
Level $275$
Weight $3$
Character 275.274
Analytic conductor $7.493$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,3,Mod(274,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.274"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 275.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.49320726991\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 50x^{14} + 939x^{12} + 8450x^{10} + 39245x^{8} + 93316x^{6} + 104420x^{4} + 45264x^{2} + 6400 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4}\cdot 5^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 274.12
Root \(0.547046i\) of defining polynomial
Character \(\chi\) \(=\) 275.274
Dual form 275.3.d.b.274.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.54705 q^{2} +4.06604i q^{3} -1.60665 q^{4} +6.29036i q^{6} -8.53587 q^{7} -8.67374 q^{8} -7.53270 q^{9} +(7.63571 - 7.91807i) q^{11} -6.53270i q^{12} -16.6490 q^{13} -13.2054 q^{14} -6.99209 q^{16} +5.33961 q^{17} -11.6534 q^{18} -0.884280i q^{19} -34.7072i q^{21} +(11.8128 - 12.2496i) q^{22} +20.2635i q^{23} -35.2678i q^{24} -25.7568 q^{26} +5.96611i q^{27} +13.7141 q^{28} +40.3082i q^{29} -51.5865 q^{31} +23.8779 q^{32} +(32.1952 + 31.0471i) q^{33} +8.26062 q^{34} +12.1024 q^{36} -10.7964i q^{37} -1.36802i q^{38} -67.6956i q^{39} -36.1941i q^{41} -53.6937i q^{42} -74.3649 q^{43} +(-12.2679 + 12.7216i) q^{44} +31.3486i q^{46} +72.2589i q^{47} -28.4301i q^{48} +23.8611 q^{49} +21.7111i q^{51} +26.7491 q^{52} -13.8913i q^{53} +9.22985i q^{54} +74.0380 q^{56} +3.59552 q^{57} +62.3587i q^{58} +26.9285 q^{59} +45.5691i q^{61} -79.8067 q^{62} +64.2981 q^{63} +64.9086 q^{64} +(49.8075 + 48.0314i) q^{66} +78.3584i q^{67} -8.57887 q^{68} -82.3923 q^{69} +66.9670 q^{71} +65.3367 q^{72} +27.9462 q^{73} -16.7026i q^{74} +1.42073i q^{76} +(-65.1775 + 67.5876i) q^{77} -104.728i q^{78} +10.4721i q^{79} -92.0527 q^{81} -55.9939i q^{82} +121.282 q^{83} +55.7623i q^{84} -115.046 q^{86} -163.895 q^{87} +(-66.2302 + 68.6793i) q^{88} -19.7361 q^{89} +142.114 q^{91} -32.5563i q^{92} -209.753i q^{93} +111.788i q^{94} +97.0885i q^{96} -148.321i q^{97} +36.9142 q^{98} +(-57.5175 + 59.6444i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 20 q^{4} - 64 q^{9} - 2 q^{11} - 36 q^{14} - 28 q^{16} + 136 q^{26} - 84 q^{31} + 284 q^{34} - 168 q^{36} - 138 q^{44} + 100 q^{49} + 332 q^{56} + 320 q^{59} - 576 q^{64} - 630 q^{66} + 32 q^{69}+ \cdots - 736 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.54705 0.773523 0.386762 0.922180i \(-0.373594\pi\)
0.386762 + 0.922180i \(0.373594\pi\)
\(3\) 4.06604i 1.35535i 0.735363 + 0.677674i \(0.237012\pi\)
−0.735363 + 0.677674i \(0.762988\pi\)
\(4\) −1.60665 −0.401662
\(5\) 0 0
\(6\) 6.29036i 1.04839i
\(7\) −8.53587 −1.21941 −0.609705 0.792628i \(-0.708712\pi\)
−0.609705 + 0.792628i \(0.708712\pi\)
\(8\) −8.67374 −1.08422
\(9\) −7.53270 −0.836966
\(10\) 0 0
\(11\) 7.63571 7.91807i 0.694156 0.719825i
\(12\) 6.53270i 0.544391i
\(13\) −16.6490 −1.28069 −0.640347 0.768086i \(-0.721209\pi\)
−0.640347 + 0.768086i \(0.721209\pi\)
\(14\) −13.2054 −0.943242
\(15\) 0 0
\(16\) −6.99209 −0.437006
\(17\) 5.33961 0.314095 0.157047 0.987591i \(-0.449802\pi\)
0.157047 + 0.987591i \(0.449802\pi\)
\(18\) −11.6534 −0.647413
\(19\) 0.884280i 0.0465410i −0.999729 0.0232705i \(-0.992592\pi\)
0.999729 0.0232705i \(-0.00740790\pi\)
\(20\) 0 0
\(21\) 34.7072i 1.65272i
\(22\) 11.8128 12.2496i 0.536946 0.556801i
\(23\) 20.2635i 0.881023i 0.897747 + 0.440511i \(0.145203\pi\)
−0.897747 + 0.440511i \(0.854797\pi\)
\(24\) 35.2678i 1.46949i
\(25\) 0 0
\(26\) −25.7568 −0.990646
\(27\) 5.96611i 0.220967i
\(28\) 13.7141 0.489791
\(29\) 40.3082i 1.38994i 0.719040 + 0.694969i \(0.244582\pi\)
−0.719040 + 0.694969i \(0.755418\pi\)
\(30\) 0 0
\(31\) −51.5865 −1.66408 −0.832040 0.554716i \(-0.812827\pi\)
−0.832040 + 0.554716i \(0.812827\pi\)
\(32\) 23.8779 0.746184
\(33\) 32.1952 + 31.0471i 0.975613 + 0.940822i
\(34\) 8.26062 0.242959
\(35\) 0 0
\(36\) 12.1024 0.336178
\(37\) 10.7964i 0.291795i −0.989300 0.145898i \(-0.953393\pi\)
0.989300 0.145898i \(-0.0466070\pi\)
\(38\) 1.36802i 0.0360006i
\(39\) 67.6956i 1.73578i
\(40\) 0 0
\(41\) 36.1941i 0.882783i −0.897315 0.441391i \(-0.854485\pi\)
0.897315 0.441391i \(-0.145515\pi\)
\(42\) 53.6937i 1.27842i
\(43\) −74.3649 −1.72942 −0.864708 0.502275i \(-0.832496\pi\)
−0.864708 + 0.502275i \(0.832496\pi\)
\(44\) −12.2679 + 12.7216i −0.278816 + 0.289126i
\(45\) 0 0
\(46\) 31.3486i 0.681491i
\(47\) 72.2589i 1.53742i 0.639595 + 0.768712i \(0.279102\pi\)
−0.639595 + 0.768712i \(0.720898\pi\)
\(48\) 28.4301i 0.592295i
\(49\) 23.8611 0.486961
\(50\) 0 0
\(51\) 21.7111i 0.425707i
\(52\) 26.7491 0.514406
\(53\) 13.8913i 0.262101i −0.991376 0.131050i \(-0.958165\pi\)
0.991376 0.131050i \(-0.0418350\pi\)
\(54\) 9.22985i 0.170923i
\(55\) 0 0
\(56\) 74.0380 1.32211
\(57\) 3.59552 0.0630793
\(58\) 62.3587i 1.07515i
\(59\) 26.9285 0.456415 0.228208 0.973612i \(-0.426713\pi\)
0.228208 + 0.973612i \(0.426713\pi\)
\(60\) 0 0
\(61\) 45.5691i 0.747035i 0.927623 + 0.373517i \(0.121848\pi\)
−0.927623 + 0.373517i \(0.878152\pi\)
\(62\) −79.8067 −1.28720
\(63\) 64.2981 1.02061
\(64\) 64.9086 1.01420
\(65\) 0 0
\(66\) 49.8075 + 48.0314i 0.754659 + 0.727748i
\(67\) 78.3584i 1.16953i 0.811203 + 0.584764i \(0.198813\pi\)
−0.811203 + 0.584764i \(0.801187\pi\)
\(68\) −8.57887 −0.126160
\(69\) −82.3923 −1.19409
\(70\) 0 0
\(71\) 66.9670 0.943197 0.471598 0.881813i \(-0.343677\pi\)
0.471598 + 0.881813i \(0.343677\pi\)
\(72\) 65.3367 0.907454
\(73\) 27.9462 0.382825 0.191412 0.981510i \(-0.438693\pi\)
0.191412 + 0.981510i \(0.438693\pi\)
\(74\) 16.7026i 0.225710i
\(75\) 0 0
\(76\) 1.42073i 0.0186938i
\(77\) −65.1775 + 67.5876i −0.846461 + 0.877762i
\(78\) 104.728i 1.34267i
\(79\) 10.4721i 0.132558i 0.997801 + 0.0662789i \(0.0211127\pi\)
−0.997801 + 0.0662789i \(0.978887\pi\)
\(80\) 0 0
\(81\) −92.0527 −1.13645
\(82\) 55.9939i 0.682853i
\(83\) 121.282 1.46123 0.730614 0.682791i \(-0.239234\pi\)
0.730614 + 0.682791i \(0.239234\pi\)
\(84\) 55.7623i 0.663836i
\(85\) 0 0
\(86\) −115.046 −1.33774
\(87\) −163.895 −1.88385
\(88\) −66.2302 + 68.6793i −0.752616 + 0.780447i
\(89\) −19.7361 −0.221754 −0.110877 0.993834i \(-0.535366\pi\)
−0.110877 + 0.993834i \(0.535366\pi\)
\(90\) 0 0
\(91\) 142.114 1.56169
\(92\) 32.5563i 0.353873i
\(93\) 209.753i 2.25541i
\(94\) 111.788i 1.18923i
\(95\) 0 0
\(96\) 97.0885i 1.01134i
\(97\) 148.321i 1.52909i −0.644573 0.764543i \(-0.722965\pi\)
0.644573 0.764543i \(-0.277035\pi\)
\(98\) 36.9142 0.376676
\(99\) −57.5175 + 59.6444i −0.580985 + 0.602469i
\(100\) 0 0
\(101\) 119.352i 1.18171i −0.806779 0.590853i \(-0.798791\pi\)
0.806779 0.590853i \(-0.201209\pi\)
\(102\) 33.5880i 0.329294i
\(103\) 163.050i 1.58300i −0.611166 0.791502i \(-0.709299\pi\)
0.611166 0.791502i \(-0.290701\pi\)
\(104\) 144.409 1.38855
\(105\) 0 0
\(106\) 21.4906i 0.202741i
\(107\) 96.1684 0.898770 0.449385 0.893338i \(-0.351643\pi\)
0.449385 + 0.893338i \(0.351643\pi\)
\(108\) 9.58544i 0.0887541i
\(109\) 156.781i 1.43836i 0.694823 + 0.719181i \(0.255483\pi\)
−0.694823 + 0.719181i \(0.744517\pi\)
\(110\) 0 0
\(111\) 43.8987 0.395484
\(112\) 59.6836 0.532889
\(113\) 72.2303i 0.639206i 0.947552 + 0.319603i \(0.103550\pi\)
−0.947552 + 0.319603i \(0.896450\pi\)
\(114\) 5.56243 0.0487933
\(115\) 0 0
\(116\) 64.7611i 0.558285i
\(117\) 125.412 1.07190
\(118\) 41.6597 0.353048
\(119\) −45.5782 −0.383010
\(120\) 0 0
\(121\) −4.39172 120.920i −0.0362952 0.999341i
\(122\) 70.4975i 0.577849i
\(123\) 147.167 1.19648
\(124\) 82.8813 0.668397
\(125\) 0 0
\(126\) 99.4722 0.789462
\(127\) −113.469 −0.893454 −0.446727 0.894670i \(-0.647410\pi\)
−0.446727 + 0.894670i \(0.647410\pi\)
\(128\) 4.90501 0.0383204
\(129\) 302.371i 2.34396i
\(130\) 0 0
\(131\) 125.812i 0.960398i 0.877160 + 0.480199i \(0.159435\pi\)
−0.877160 + 0.480199i \(0.840565\pi\)
\(132\) −51.7264 49.8818i −0.391866 0.377893i
\(133\) 7.54810i 0.0567526i
\(134\) 121.224i 0.904658i
\(135\) 0 0
\(136\) −46.3144 −0.340547
\(137\) 79.0330i 0.576883i 0.957497 + 0.288442i \(0.0931371\pi\)
−0.957497 + 0.288442i \(0.906863\pi\)
\(138\) −127.465 −0.923658
\(139\) 105.709i 0.760496i −0.924885 0.380248i \(-0.875839\pi\)
0.924885 0.380248i \(-0.124161\pi\)
\(140\) 0 0
\(141\) −293.808 −2.08374
\(142\) 103.601 0.729585
\(143\) −127.127 + 131.828i −0.889001 + 0.921875i
\(144\) 52.6693 0.365759
\(145\) 0 0
\(146\) 43.2341 0.296124
\(147\) 97.0202i 0.660001i
\(148\) 17.3461i 0.117203i
\(149\) 238.710i 1.60208i −0.598609 0.801041i \(-0.704280\pi\)
0.598609 0.801041i \(-0.295720\pi\)
\(150\) 0 0
\(151\) 284.704i 1.88545i 0.333565 + 0.942727i \(0.391748\pi\)
−0.333565 + 0.942727i \(0.608252\pi\)
\(152\) 7.67002i 0.0504606i
\(153\) −40.2217 −0.262887
\(154\) −100.833 + 104.561i −0.654757 + 0.678969i
\(155\) 0 0
\(156\) 108.763i 0.697199i
\(157\) 152.650i 0.972293i −0.873877 0.486146i \(-0.838402\pi\)
0.873877 0.486146i \(-0.161598\pi\)
\(158\) 16.2008i 0.102537i
\(159\) 56.4828 0.355238
\(160\) 0 0
\(161\) 172.967i 1.07433i
\(162\) −142.410 −0.879073
\(163\) 246.798i 1.51410i 0.653359 + 0.757048i \(0.273359\pi\)
−0.653359 + 0.757048i \(0.726641\pi\)
\(164\) 58.1511i 0.354580i
\(165\) 0 0
\(166\) 187.629 1.13029
\(167\) −124.912 −0.747978 −0.373989 0.927433i \(-0.622010\pi\)
−0.373989 + 0.927433i \(0.622010\pi\)
\(168\) 301.041i 1.79191i
\(169\) 108.190 0.640176
\(170\) 0 0
\(171\) 6.66101i 0.0389533i
\(172\) 119.478 0.694641
\(173\) 79.2272 0.457961 0.228980 0.973431i \(-0.426461\pi\)
0.228980 + 0.973431i \(0.426461\pi\)
\(174\) −253.553 −1.45720
\(175\) 0 0
\(176\) −53.3896 + 55.3639i −0.303350 + 0.314568i
\(177\) 109.492i 0.618602i
\(178\) −30.5327 −0.171532
\(179\) −320.405 −1.78997 −0.894985 0.446097i \(-0.852814\pi\)
−0.894985 + 0.446097i \(0.852814\pi\)
\(180\) 0 0
\(181\) 62.4120 0.344818 0.172409 0.985025i \(-0.444845\pi\)
0.172409 + 0.985025i \(0.444845\pi\)
\(182\) 219.857 1.20800
\(183\) −185.286 −1.01249
\(184\) 175.761i 0.955221i
\(185\) 0 0
\(186\) 324.497i 1.74461i
\(187\) 40.7717 42.2794i 0.218031 0.226093i
\(188\) 116.095i 0.617525i
\(189\) 50.9260i 0.269450i
\(190\) 0 0
\(191\) 45.7787 0.239679 0.119840 0.992793i \(-0.461762\pi\)
0.119840 + 0.992793i \(0.461762\pi\)
\(192\) 263.921i 1.37459i
\(193\) −273.871 −1.41902 −0.709511 0.704694i \(-0.751084\pi\)
−0.709511 + 0.704694i \(0.751084\pi\)
\(194\) 229.460i 1.18278i
\(195\) 0 0
\(196\) −38.3364 −0.195594
\(197\) −168.083 −0.853214 −0.426607 0.904437i \(-0.640291\pi\)
−0.426607 + 0.904437i \(0.640291\pi\)
\(198\) −88.9823 + 92.2727i −0.449405 + 0.466024i
\(199\) 304.174 1.52851 0.764256 0.644913i \(-0.223106\pi\)
0.764256 + 0.644913i \(0.223106\pi\)
\(200\) 0 0
\(201\) −318.609 −1.58512
\(202\) 184.644i 0.914078i
\(203\) 344.066i 1.69490i
\(204\) 34.8820i 0.170990i
\(205\) 0 0
\(206\) 252.245i 1.22449i
\(207\) 152.639i 0.737386i
\(208\) 116.411 0.559670
\(209\) −7.00179 6.75211i −0.0335014 0.0323067i
\(210\) 0 0
\(211\) 31.8928i 0.151151i 0.997140 + 0.0755754i \(0.0240793\pi\)
−0.997140 + 0.0755754i \(0.975921\pi\)
\(212\) 22.3185i 0.105276i
\(213\) 272.291i 1.27836i
\(214\) 148.777 0.695219
\(215\) 0 0
\(216\) 51.7485i 0.239577i
\(217\) 440.335 2.02920
\(218\) 242.548i 1.11261i
\(219\) 113.630i 0.518860i
\(220\) 0 0
\(221\) −88.8992 −0.402259
\(222\) 67.9134 0.305916
\(223\) 140.029i 0.627931i −0.949434 0.313965i \(-0.898342\pi\)
0.949434 0.313965i \(-0.101658\pi\)
\(224\) −203.819 −0.909904
\(225\) 0 0
\(226\) 111.744i 0.494441i
\(227\) −153.141 −0.674629 −0.337314 0.941392i \(-0.609519\pi\)
−0.337314 + 0.941392i \(0.609519\pi\)
\(228\) −5.77673 −0.0253365
\(229\) −199.559 −0.871435 −0.435717 0.900084i \(-0.643505\pi\)
−0.435717 + 0.900084i \(0.643505\pi\)
\(230\) 0 0
\(231\) −274.814 265.014i −1.18967 1.14725i
\(232\) 349.623i 1.50700i
\(233\) −102.599 −0.440338 −0.220169 0.975462i \(-0.570661\pi\)
−0.220169 + 0.975462i \(0.570661\pi\)
\(234\) 194.018 0.829138
\(235\) 0 0
\(236\) −43.2646 −0.183325
\(237\) −42.5799 −0.179662
\(238\) −70.5116 −0.296267
\(239\) 366.949i 1.53535i 0.640838 + 0.767676i \(0.278587\pi\)
−0.640838 + 0.767676i \(0.721413\pi\)
\(240\) 0 0
\(241\) 199.190i 0.826513i 0.910615 + 0.413256i \(0.135609\pi\)
−0.910615 + 0.413256i \(0.864391\pi\)
\(242\) −6.79420 187.069i −0.0280752 0.773013i
\(243\) 320.595i 1.31932i
\(244\) 73.2135i 0.300055i
\(245\) 0 0
\(246\) 227.674 0.925503
\(247\) 14.7224i 0.0596048i
\(248\) 447.448 1.80423
\(249\) 493.137i 1.98047i
\(250\) 0 0
\(251\) 267.673 1.06643 0.533213 0.845981i \(-0.320984\pi\)
0.533213 + 0.845981i \(0.320984\pi\)
\(252\) −103.304 −0.409938
\(253\) 160.448 + 154.726i 0.634182 + 0.611567i
\(254\) −175.541 −0.691107
\(255\) 0 0
\(256\) −252.046 −0.984555
\(257\) 170.577i 0.663725i −0.943328 0.331862i \(-0.892323\pi\)
0.943328 0.331862i \(-0.107677\pi\)
\(258\) 467.781i 1.81311i
\(259\) 92.1569i 0.355818i
\(260\) 0 0
\(261\) 303.629i 1.16333i
\(262\) 194.637i 0.742890i
\(263\) −252.398 −0.959688 −0.479844 0.877354i \(-0.659307\pi\)
−0.479844 + 0.877354i \(0.659307\pi\)
\(264\) −279.253 269.295i −1.05778 1.02006i
\(265\) 0 0
\(266\) 11.6773i 0.0438995i
\(267\) 80.2480i 0.300554i
\(268\) 125.894i 0.469755i
\(269\) −10.5405 −0.0391840 −0.0195920 0.999808i \(-0.506237\pi\)
−0.0195920 + 0.999808i \(0.506237\pi\)
\(270\) 0 0
\(271\) 310.989i 1.14756i 0.819009 + 0.573781i \(0.194524\pi\)
−0.819009 + 0.573781i \(0.805476\pi\)
\(272\) −37.3350 −0.137261
\(273\) 577.841i 2.11663i
\(274\) 122.268i 0.446233i
\(275\) 0 0
\(276\) 132.375 0.479621
\(277\) −1.23402 −0.00445494 −0.00222747 0.999998i \(-0.500709\pi\)
−0.00222747 + 0.999998i \(0.500709\pi\)
\(278\) 163.537i 0.588261i
\(279\) 388.585 1.39278
\(280\) 0 0
\(281\) 138.442i 0.492675i −0.969184 0.246337i \(-0.920773\pi\)
0.969184 0.246337i \(-0.0792271\pi\)
\(282\) −454.534 −1.61182
\(283\) 15.0453 0.0531637 0.0265819 0.999647i \(-0.491538\pi\)
0.0265819 + 0.999647i \(0.491538\pi\)
\(284\) −107.592 −0.378846
\(285\) 0 0
\(286\) −196.672 + 203.944i −0.687663 + 0.713092i
\(287\) 308.948i 1.07647i
\(288\) −179.865 −0.624531
\(289\) −260.489 −0.901345
\(290\) 0 0
\(291\) 603.081 2.07244
\(292\) −44.8997 −0.153766
\(293\) −95.4236 −0.325678 −0.162839 0.986653i \(-0.552065\pi\)
−0.162839 + 0.986653i \(0.552065\pi\)
\(294\) 150.095i 0.510526i
\(295\) 0 0
\(296\) 93.6455i 0.316370i
\(297\) 47.2401 + 45.5555i 0.159058 + 0.153386i
\(298\) 369.296i 1.23925i
\(299\) 337.368i 1.12832i
\(300\) 0 0
\(301\) 634.769 2.10887
\(302\) 440.450i 1.45844i
\(303\) 485.292 1.60162
\(304\) 6.18296i 0.0203387i
\(305\) 0 0
\(306\) −62.2248 −0.203349
\(307\) 273.765 0.891742 0.445871 0.895097i \(-0.352894\pi\)
0.445871 + 0.895097i \(0.352894\pi\)
\(308\) 104.717 108.590i 0.339991 0.352563i
\(309\) 662.966 2.14552
\(310\) 0 0
\(311\) −277.610 −0.892635 −0.446318 0.894875i \(-0.647265\pi\)
−0.446318 + 0.894875i \(0.647265\pi\)
\(312\) 587.174i 1.88197i
\(313\) 171.212i 0.547004i −0.961871 0.273502i \(-0.911818\pi\)
0.961871 0.273502i \(-0.0881820\pi\)
\(314\) 236.157i 0.752091i
\(315\) 0 0
\(316\) 16.8249i 0.0532434i
\(317\) 107.731i 0.339847i 0.985457 + 0.169923i \(0.0543520\pi\)
−0.985457 + 0.169923i \(0.945648\pi\)
\(318\) 87.3815 0.274785
\(319\) 319.163 + 307.782i 1.00051 + 0.964834i
\(320\) 0 0
\(321\) 391.025i 1.21815i
\(322\) 267.588i 0.831018i
\(323\) 4.72171i 0.0146183i
\(324\) 147.896 0.456470
\(325\) 0 0
\(326\) 381.808i 1.17119i
\(327\) −637.480 −1.94948
\(328\) 313.938i 0.957129i
\(329\) 616.793i 1.87475i
\(330\) 0 0
\(331\) 226.936 0.685606 0.342803 0.939407i \(-0.388624\pi\)
0.342803 + 0.939407i \(0.388624\pi\)
\(332\) −194.857 −0.586920
\(333\) 81.3262i 0.244223i
\(334\) −193.245 −0.578578
\(335\) 0 0
\(336\) 242.676i 0.722250i
\(337\) 164.018 0.486701 0.243350 0.969938i \(-0.421753\pi\)
0.243350 + 0.969938i \(0.421753\pi\)
\(338\) 167.375 0.495191
\(339\) −293.691 −0.866346
\(340\) 0 0
\(341\) −393.900 + 408.465i −1.15513 + 1.19785i
\(342\) 10.3049i 0.0301313i
\(343\) 214.582 0.625605
\(344\) 645.022 1.87506
\(345\) 0 0
\(346\) 122.568 0.354243
\(347\) 283.936 0.818260 0.409130 0.912476i \(-0.365832\pi\)
0.409130 + 0.912476i \(0.365832\pi\)
\(348\) 263.321 0.756670
\(349\) 107.964i 0.309352i 0.987965 + 0.154676i \(0.0494333\pi\)
−0.987965 + 0.154676i \(0.950567\pi\)
\(350\) 0 0
\(351\) 99.3299i 0.282991i
\(352\) 182.325 189.067i 0.517968 0.537122i
\(353\) 299.299i 0.847871i −0.905692 0.423936i \(-0.860648\pi\)
0.905692 0.423936i \(-0.139352\pi\)
\(354\) 169.390i 0.478503i
\(355\) 0 0
\(356\) 31.7090 0.0890703
\(357\) 185.323i 0.519112i
\(358\) −495.681 −1.38458
\(359\) 315.451i 0.878694i 0.898318 + 0.439347i \(0.144790\pi\)
−0.898318 + 0.439347i \(0.855210\pi\)
\(360\) 0 0
\(361\) 360.218 0.997834
\(362\) 96.5542 0.266724
\(363\) 491.667 17.8569i 1.35445 0.0491927i
\(364\) −228.327 −0.627272
\(365\) 0 0
\(366\) −286.646 −0.783185
\(367\) 170.851i 0.465535i 0.972532 + 0.232768i \(0.0747782\pi\)
−0.972532 + 0.232768i \(0.925222\pi\)
\(368\) 141.684i 0.385012i
\(369\) 272.639i 0.738859i
\(370\) 0 0
\(371\) 118.575i 0.319609i
\(372\) 336.999i 0.905911i
\(373\) −63.4196 −0.170026 −0.0850129 0.996380i \(-0.527093\pi\)
−0.0850129 + 0.996380i \(0.527093\pi\)
\(374\) 63.0757 65.4082i 0.168652 0.174888i
\(375\) 0 0
\(376\) 626.756i 1.66690i
\(377\) 671.092i 1.78008i
\(378\) 78.7848i 0.208426i
\(379\) 395.811 1.04436 0.522178 0.852837i \(-0.325120\pi\)
0.522178 + 0.852837i \(0.325120\pi\)
\(380\) 0 0
\(381\) 461.368i 1.21094i
\(382\) 70.8218 0.185397
\(383\) 239.493i 0.625308i 0.949867 + 0.312654i \(0.101218\pi\)
−0.949867 + 0.312654i \(0.898782\pi\)
\(384\) 19.9440i 0.0519374i
\(385\) 0 0
\(386\) −423.691 −1.09765
\(387\) 560.168 1.44746
\(388\) 238.300i 0.614175i
\(389\) −225.687 −0.580172 −0.290086 0.957001i \(-0.593684\pi\)
−0.290086 + 0.957001i \(0.593684\pi\)
\(390\) 0 0
\(391\) 108.199i 0.276724i
\(392\) −206.965 −0.527972
\(393\) −511.557 −1.30167
\(394\) −260.032 −0.659981
\(395\) 0 0
\(396\) 92.4104 95.8276i 0.233360 0.241989i
\(397\) 46.1196i 0.116170i 0.998312 + 0.0580851i \(0.0184995\pi\)
−0.998312 + 0.0580851i \(0.981501\pi\)
\(398\) 470.571 1.18234
\(399\) −30.6909 −0.0769195
\(400\) 0 0
\(401\) 273.371 0.681722 0.340861 0.940114i \(-0.389281\pi\)
0.340861 + 0.940114i \(0.389281\pi\)
\(402\) −492.902 −1.22613
\(403\) 858.864 2.13118
\(404\) 191.757i 0.474647i
\(405\) 0 0
\(406\) 532.285i 1.31105i
\(407\) −85.4869 82.4385i −0.210042 0.202551i
\(408\) 188.316i 0.461559i
\(409\) 355.118i 0.868259i 0.900850 + 0.434130i \(0.142944\pi\)
−0.900850 + 0.434130i \(0.857056\pi\)
\(410\) 0 0
\(411\) −321.352 −0.781877
\(412\) 261.963i 0.635833i
\(413\) −229.858 −0.556558
\(414\) 236.140i 0.570385i
\(415\) 0 0
\(416\) −397.543 −0.955633
\(417\) 429.817 1.03074
\(418\) −10.8321 10.4458i −0.0259141 0.0249900i
\(419\) 137.679 0.328590 0.164295 0.986411i \(-0.447465\pi\)
0.164295 + 0.986411i \(0.447465\pi\)
\(420\) 0 0
\(421\) 42.5093 0.100972 0.0504861 0.998725i \(-0.483923\pi\)
0.0504861 + 0.998725i \(0.483923\pi\)
\(422\) 49.3396i 0.116919i
\(423\) 544.305i 1.28677i
\(424\) 120.490i 0.284175i
\(425\) 0 0
\(426\) 421.246i 0.988841i
\(427\) 388.972i 0.910941i
\(428\) −154.509 −0.361002
\(429\) −536.019 516.904i −1.24946 1.20491i
\(430\) 0 0
\(431\) 18.0213i 0.0418128i 0.999781 + 0.0209064i \(0.00665520\pi\)
−0.999781 + 0.0209064i \(0.993345\pi\)
\(432\) 41.7156i 0.0965639i
\(433\) 443.870i 1.02510i 0.858656 + 0.512552i \(0.171300\pi\)
−0.858656 + 0.512552i \(0.828700\pi\)
\(434\) 681.219 1.56963
\(435\) 0 0
\(436\) 251.892i 0.577735i
\(437\) 17.9186 0.0410037
\(438\) 175.791i 0.401350i
\(439\) 420.410i 0.957654i −0.877909 0.478827i \(-0.841062\pi\)
0.877909 0.478827i \(-0.158938\pi\)
\(440\) 0 0
\(441\) −179.738 −0.407570
\(442\) −137.531 −0.311157
\(443\) 526.465i 1.18841i −0.804314 0.594204i \(-0.797467\pi\)
0.804314 0.594204i \(-0.202533\pi\)
\(444\) −70.5298 −0.158851
\(445\) 0 0
\(446\) 216.631i 0.485719i
\(447\) 970.606 2.17138
\(448\) −554.051 −1.23672
\(449\) −115.197 −0.256564 −0.128282 0.991738i \(-0.540946\pi\)
−0.128282 + 0.991738i \(0.540946\pi\)
\(450\) 0 0
\(451\) −286.587 276.368i −0.635449 0.612789i
\(452\) 116.049i 0.256745i
\(453\) −1157.62 −2.55544
\(454\) −236.916 −0.521841
\(455\) 0 0
\(456\) −31.1866 −0.0683917
\(457\) −331.393 −0.725148 −0.362574 0.931955i \(-0.618102\pi\)
−0.362574 + 0.931955i \(0.618102\pi\)
\(458\) −308.726 −0.674075
\(459\) 31.8567i 0.0694046i
\(460\) 0 0
\(461\) 440.253i 0.954997i 0.878633 + 0.477498i \(0.158456\pi\)
−0.878633 + 0.477498i \(0.841544\pi\)
\(462\) −425.150 409.989i −0.920239 0.887423i
\(463\) 119.267i 0.257595i 0.991671 + 0.128798i \(0.0411118\pi\)
−0.991671 + 0.128798i \(0.958888\pi\)
\(464\) 281.839i 0.607411i
\(465\) 0 0
\(466\) −158.725 −0.340612
\(467\) 411.442i 0.881031i −0.897745 0.440516i \(-0.854796\pi\)
0.897745 0.440516i \(-0.145204\pi\)
\(468\) −201.493 −0.430540
\(469\) 668.858i 1.42614i
\(470\) 0 0
\(471\) 620.681 1.31779
\(472\) −233.571 −0.494854
\(473\) −567.829 + 588.826i −1.20048 + 1.24488i
\(474\) −65.8730 −0.138973
\(475\) 0 0
\(476\) 73.2281 0.153841
\(477\) 104.639i 0.219370i
\(478\) 567.687i 1.18763i
\(479\) 923.838i 1.92868i 0.264666 + 0.964340i \(0.414738\pi\)
−0.264666 + 0.964340i \(0.585262\pi\)
\(480\) 0 0
\(481\) 179.750i 0.373701i
\(482\) 308.155i 0.639327i
\(483\) 703.290 1.45609
\(484\) 7.05596 + 194.276i 0.0145784 + 0.401397i
\(485\) 0 0
\(486\) 495.976i 1.02053i
\(487\) 277.052i 0.568895i 0.958692 + 0.284447i \(0.0918101\pi\)
−0.958692 + 0.284447i \(0.908190\pi\)
\(488\) 395.255i 0.809948i
\(489\) −1003.49 −2.05213
\(490\) 0 0
\(491\) 98.0225i 0.199639i −0.995006 0.0998193i \(-0.968174\pi\)
0.995006 0.0998193i \(-0.0318265\pi\)
\(492\) −236.445 −0.480579
\(493\) 215.230i 0.436572i
\(494\) 22.7762i 0.0461057i
\(495\) 0 0
\(496\) 360.697 0.727212
\(497\) −571.622 −1.15014
\(498\) 762.907i 1.53194i
\(499\) −252.147 −0.505305 −0.252653 0.967557i \(-0.581303\pi\)
−0.252653 + 0.967557i \(0.581303\pi\)
\(500\) 0 0
\(501\) 507.899i 1.01377i
\(502\) 414.103 0.824906
\(503\) −438.637 −0.872041 −0.436021 0.899937i \(-0.643613\pi\)
−0.436021 + 0.899937i \(0.643613\pi\)
\(504\) −557.706 −1.10656
\(505\) 0 0
\(506\) 248.221 + 239.369i 0.490554 + 0.473061i
\(507\) 439.904i 0.867661i
\(508\) 182.304 0.358866
\(509\) −869.942 −1.70912 −0.854560 0.519352i \(-0.826173\pi\)
−0.854560 + 0.519352i \(0.826173\pi\)
\(510\) 0 0
\(511\) −238.545 −0.466820
\(512\) −409.547 −0.799896
\(513\) 5.27571 0.0102840
\(514\) 263.891i 0.513407i
\(515\) 0 0
\(516\) 485.803i 0.941479i
\(517\) 572.152 + 551.749i 1.10668 + 1.06721i
\(518\) 142.571i 0.275234i
\(519\) 322.141i 0.620696i
\(520\) 0 0
\(521\) 387.883 0.744498 0.372249 0.928133i \(-0.378587\pi\)
0.372249 + 0.928133i \(0.378587\pi\)
\(522\) 469.729i 0.899864i
\(523\) −284.445 −0.543872 −0.271936 0.962315i \(-0.587664\pi\)
−0.271936 + 0.962315i \(0.587664\pi\)
\(524\) 202.136i 0.385755i
\(525\) 0 0
\(526\) −390.471 −0.742341
\(527\) −275.452 −0.522678
\(528\) −225.112 217.084i −0.426348 0.411145i
\(529\) 118.390 0.223799
\(530\) 0 0
\(531\) −202.844 −0.382004
\(532\) 12.1271i 0.0227954i
\(533\) 602.596i 1.13057i
\(534\) 124.147i 0.232486i
\(535\) 0 0
\(536\) 679.661i 1.26802i
\(537\) 1302.78i 2.42603i
\(538\) −16.3066 −0.0303097
\(539\) 182.196 188.934i 0.338027 0.350527i
\(540\) 0 0
\(541\) 181.011i 0.334585i −0.985907 0.167293i \(-0.946498\pi\)
0.985907 0.167293i \(-0.0535025\pi\)
\(542\) 481.114i 0.887665i
\(543\) 253.770i 0.467347i
\(544\) 127.499 0.234372
\(545\) 0 0
\(546\) 893.947i 1.63726i
\(547\) −602.153 −1.10083 −0.550414 0.834892i \(-0.685530\pi\)
−0.550414 + 0.834892i \(0.685530\pi\)
\(548\) 126.978i 0.231712i
\(549\) 343.258i 0.625243i
\(550\) 0 0
\(551\) 35.6437 0.0646891
\(552\) 714.650 1.29466
\(553\) 89.3882i 0.161642i
\(554\) −1.90908 −0.00344600
\(555\) 0 0
\(556\) 169.837i 0.305462i
\(557\) −264.253 −0.474422 −0.237211 0.971458i \(-0.576233\pi\)
−0.237211 + 0.971458i \(0.576233\pi\)
\(558\) 601.159 1.07735
\(559\) 1238.10 2.21485
\(560\) 0 0
\(561\) 171.910 + 165.780i 0.306435 + 0.295507i
\(562\) 214.176i 0.381095i
\(563\) 210.532 0.373946 0.186973 0.982365i \(-0.440132\pi\)
0.186973 + 0.982365i \(0.440132\pi\)
\(564\) 472.046 0.836961
\(565\) 0 0
\(566\) 23.2758 0.0411234
\(567\) 785.750 1.38580
\(568\) −580.854 −1.02263
\(569\) 93.1571i 0.163721i 0.996644 + 0.0818604i \(0.0260862\pi\)
−0.996644 + 0.0818604i \(0.973914\pi\)
\(570\) 0 0
\(571\) 823.255i 1.44178i 0.693051 + 0.720889i \(0.256266\pi\)
−0.693051 + 0.720889i \(0.743734\pi\)
\(572\) 204.249 211.801i 0.357078 0.370282i
\(573\) 186.138i 0.324848i
\(574\) 477.957i 0.832678i
\(575\) 0 0
\(576\) −488.937 −0.848848
\(577\) 750.486i 1.30067i 0.759648 + 0.650335i \(0.225371\pi\)
−0.759648 + 0.650335i \(0.774629\pi\)
\(578\) −402.988 −0.697211
\(579\) 1113.57i 1.92327i
\(580\) 0 0
\(581\) −1035.25 −1.78184
\(582\) 932.993 1.60308
\(583\) −109.993 106.070i −0.188667 0.181939i
\(584\) −242.398 −0.415065
\(585\) 0 0
\(586\) −147.625 −0.251919
\(587\) 1050.85i 1.79021i −0.445854 0.895106i \(-0.647100\pi\)
0.445854 0.895106i \(-0.352900\pi\)
\(588\) 155.877i 0.265097i
\(589\) 45.6169i 0.0774480i
\(590\) 0 0
\(591\) 683.433i 1.15640i
\(592\) 75.4896i 0.127516i
\(593\) 172.160 0.290321 0.145161 0.989408i \(-0.453630\pi\)
0.145161 + 0.989408i \(0.453630\pi\)
\(594\) 73.0826 + 70.4765i 0.123035 + 0.118647i
\(595\) 0 0
\(596\) 383.523i 0.643496i
\(597\) 1236.78i 2.07167i
\(598\) 521.923i 0.872782i
\(599\) 674.329 1.12576 0.562879 0.826539i \(-0.309694\pi\)
0.562879 + 0.826539i \(0.309694\pi\)
\(600\) 0 0
\(601\) 521.125i 0.867096i −0.901131 0.433548i \(-0.857261\pi\)
0.901131 0.433548i \(-0.142739\pi\)
\(602\) 982.017 1.63126
\(603\) 590.250i 0.978856i
\(604\) 457.418i 0.757315i
\(605\) 0 0
\(606\) 750.769 1.23889
\(607\) −719.195 −1.18484 −0.592418 0.805631i \(-0.701826\pi\)
−0.592418 + 0.805631i \(0.701826\pi\)
\(608\) 21.1147i 0.0347282i
\(609\) 1398.99 2.29718
\(610\) 0 0
\(611\) 1203.04i 1.96897i
\(612\) 64.6220 0.105592
\(613\) 802.668 1.30941 0.654705 0.755884i \(-0.272793\pi\)
0.654705 + 0.755884i \(0.272793\pi\)
\(614\) 423.527 0.689783
\(615\) 0 0
\(616\) 565.333 586.238i 0.917748 0.951685i
\(617\) 15.2837i 0.0247710i 0.999923 + 0.0123855i \(0.00394253\pi\)
−0.999923 + 0.0123855i \(0.996057\pi\)
\(618\) 1025.64 1.65961
\(619\) −511.627 −0.826537 −0.413269 0.910609i \(-0.635613\pi\)
−0.413269 + 0.910609i \(0.635613\pi\)
\(620\) 0 0
\(621\) −120.894 −0.194677
\(622\) −429.475 −0.690474
\(623\) 168.465 0.270410
\(624\) 473.334i 0.758548i
\(625\) 0 0
\(626\) 264.873i 0.423120i
\(627\) 27.4544 28.4696i 0.0437868 0.0454060i
\(628\) 245.255i 0.390533i
\(629\) 57.6487i 0.0916514i
\(630\) 0 0
\(631\) −1120.05 −1.77503 −0.887517 0.460775i \(-0.847571\pi\)
−0.887517 + 0.460775i \(0.847571\pi\)
\(632\) 90.8320i 0.143722i
\(633\) −129.677 −0.204862
\(634\) 166.665i 0.262879i
\(635\) 0 0
\(636\) −90.7480 −0.142686
\(637\) −397.264 −0.623648
\(638\) 493.760 + 476.153i 0.773919 + 0.746321i
\(639\) −504.442 −0.789424
\(640\) 0 0
\(641\) 782.877 1.22134 0.610668 0.791886i \(-0.290901\pi\)
0.610668 + 0.791886i \(0.290901\pi\)
\(642\) 604.933i 0.942264i
\(643\) 865.718i 1.34637i −0.739473 0.673186i \(-0.764925\pi\)
0.739473 0.673186i \(-0.235075\pi\)
\(644\) 277.897i 0.431517i
\(645\) 0 0
\(646\) 7.30470i 0.0113076i
\(647\) 464.538i 0.717987i 0.933340 + 0.358994i \(0.116880\pi\)
−0.933340 + 0.358994i \(0.883120\pi\)
\(648\) 798.442 1.23216
\(649\) 205.618 213.222i 0.316823 0.328539i
\(650\) 0 0
\(651\) 1790.42i 2.75026i
\(652\) 396.517i 0.608155i
\(653\) 48.3757i 0.0740823i −0.999314 0.0370412i \(-0.988207\pi\)
0.999314 0.0370412i \(-0.0117933\pi\)
\(654\) −986.211 −1.50797
\(655\) 0 0
\(656\) 253.072i 0.385781i
\(657\) −210.510 −0.320411
\(658\) 954.207i 1.45016i
\(659\) 1071.21i 1.62551i 0.582603 + 0.812757i \(0.302034\pi\)
−0.582603 + 0.812757i \(0.697966\pi\)
\(660\) 0 0
\(661\) −809.703 −1.22497 −0.612483 0.790484i \(-0.709829\pi\)
−0.612483 + 0.790484i \(0.709829\pi\)
\(662\) 351.080 0.530332
\(663\) 361.468i 0.545201i
\(664\) −1051.97 −1.58429
\(665\) 0 0
\(666\) 125.815i 0.188912i
\(667\) −816.786 −1.22457
\(668\) 200.690 0.300434
\(669\) 569.362 0.851064
\(670\) 0 0
\(671\) 360.819 + 347.953i 0.537734 + 0.518558i
\(672\) 828.735i 1.23324i
\(673\) 230.577 0.342611 0.171305 0.985218i \(-0.445201\pi\)
0.171305 + 0.985218i \(0.445201\pi\)
\(674\) 253.744 0.376474
\(675\) 0 0
\(676\) −173.823 −0.257134
\(677\) 229.733 0.339339 0.169670 0.985501i \(-0.445730\pi\)
0.169670 + 0.985501i \(0.445730\pi\)
\(678\) −454.354 −0.670139
\(679\) 1266.05i 1.86458i
\(680\) 0 0
\(681\) 622.677i 0.914356i
\(682\) −609.381 + 631.915i −0.893520 + 0.926561i
\(683\) 830.100i 1.21537i 0.794177 + 0.607687i \(0.207902\pi\)
−0.794177 + 0.607687i \(0.792098\pi\)
\(684\) 10.7019i 0.0156461i
\(685\) 0 0
\(686\) 331.969 0.483920
\(687\) 811.413i 1.18110i
\(688\) 519.966 0.755765
\(689\) 231.277i 0.335671i
\(690\) 0 0
\(691\) −35.7315 −0.0517098 −0.0258549 0.999666i \(-0.508231\pi\)
−0.0258549 + 0.999666i \(0.508231\pi\)
\(692\) −127.290 −0.183945
\(693\) 490.962 509.117i 0.708459 0.734657i
\(694\) 439.263 0.632943
\(695\) 0 0
\(696\) 1421.58 2.04250
\(697\) 193.262i 0.277277i
\(698\) 167.025i 0.239291i
\(699\) 417.171i 0.596811i
\(700\) 0 0
\(701\) 663.222i 0.946109i 0.881033 + 0.473054i \(0.156849\pi\)
−0.881033 + 0.473054i \(0.843151\pi\)
\(702\) 153.668i 0.218900i
\(703\) −9.54706 −0.0135805
\(704\) 495.623 513.951i 0.704010 0.730044i
\(705\) 0 0
\(706\) 463.029i 0.655848i
\(707\) 1018.78i 1.44099i
\(708\) 175.916i 0.248469i
\(709\) −44.6451 −0.0629691 −0.0314845 0.999504i \(-0.510023\pi\)
−0.0314845 + 0.999504i \(0.510023\pi\)
\(710\) 0 0
\(711\) 78.8829i 0.110946i
\(712\) 171.186 0.240430
\(713\) 1045.32i 1.46609i
\(714\) 286.703i 0.401545i
\(715\) 0 0
\(716\) 514.777 0.718963
\(717\) −1492.03 −2.08094
\(718\) 488.017i 0.679690i
\(719\) 166.507 0.231582 0.115791 0.993274i \(-0.463060\pi\)
0.115791 + 0.993274i \(0.463060\pi\)
\(720\) 0 0
\(721\) 1391.77i 1.93033i
\(722\) 557.274 0.771848
\(723\) −809.913 −1.12021
\(724\) −100.274 −0.138500
\(725\) 0 0
\(726\) 760.631 27.6255i 1.04770 0.0380517i
\(727\) 844.769i 1.16199i 0.813906 + 0.580996i \(0.197337\pi\)
−0.813906 + 0.580996i \(0.802663\pi\)
\(728\) −1232.66 −1.69321
\(729\) 475.079 0.651686
\(730\) 0 0
\(731\) −397.079 −0.543200
\(732\) 297.689 0.406679
\(733\) −136.236 −0.185861 −0.0929303 0.995673i \(-0.529623\pi\)
−0.0929303 + 0.995673i \(0.529623\pi\)
\(734\) 264.315i 0.360102i
\(735\) 0 0
\(736\) 483.850i 0.657405i
\(737\) 620.448 + 598.323i 0.841856 + 0.811835i
\(738\) 421.785i 0.571525i
\(739\) 867.760i 1.17424i −0.809502 0.587118i \(-0.800263\pi\)
0.809502 0.587118i \(-0.199737\pi\)
\(740\) 0 0
\(741\) −59.8618 −0.0807852
\(742\) 183.441i 0.247225i
\(743\) 366.969 0.493902 0.246951 0.969028i \(-0.420571\pi\)
0.246951 + 0.969028i \(0.420571\pi\)
\(744\) 1819.34i 2.44535i
\(745\) 0 0
\(746\) −98.1131 −0.131519
\(747\) −913.580 −1.22300
\(748\) −65.5058 + 67.9281i −0.0875746 + 0.0908130i
\(749\) −820.881 −1.09597
\(750\) 0 0
\(751\) 674.177 0.897705 0.448853 0.893606i \(-0.351833\pi\)
0.448853 + 0.893606i \(0.351833\pi\)
\(752\) 505.241i 0.671863i
\(753\) 1088.37i 1.44538i
\(754\) 1038.21i 1.37694i
\(755\) 0 0
\(756\) 81.8201i 0.108228i
\(757\) 65.4072i 0.0864032i 0.999066 + 0.0432016i \(0.0137558\pi\)
−0.999066 + 0.0432016i \(0.986244\pi\)
\(758\) 612.337 0.807833
\(759\) −629.124 + 652.388i −0.828886 + 0.859537i
\(760\) 0 0
\(761\) 21.0476i 0.0276578i 0.999904 + 0.0138289i \(0.00440201\pi\)
−0.999904 + 0.0138289i \(0.995598\pi\)
\(762\) 713.758i 0.936690i
\(763\) 1338.27i 1.75395i
\(764\) −73.5503 −0.0962700
\(765\) 0 0
\(766\) 370.507i 0.483690i
\(767\) −448.333 −0.584528
\(768\) 1024.83i 1.33441i
\(769\) 66.0422i 0.0858806i 0.999078 + 0.0429403i \(0.0136725\pi\)
−0.999078 + 0.0429403i \(0.986327\pi\)
\(770\) 0 0
\(771\) 693.575 0.899578
\(772\) 440.015 0.569967
\(773\) 16.5144i 0.0213640i 0.999943 + 0.0106820i \(0.00340026\pi\)
−0.999943 + 0.0106820i \(0.996600\pi\)
\(774\) 866.606 1.11965
\(775\) 0 0
\(776\) 1286.50i 1.65786i
\(777\) −374.714 −0.482257
\(778\) −349.148 −0.448777
\(779\) −32.0057 −0.0410856
\(780\) 0 0
\(781\) 511.341 530.249i 0.654726 0.678937i
\(782\) 167.389i 0.214053i
\(783\) −240.483 −0.307131
\(784\) −166.839 −0.212805
\(785\) 0 0
\(786\) −791.403 −1.00687
\(787\) −778.394 −0.989065 −0.494533 0.869159i \(-0.664661\pi\)
−0.494533 + 0.869159i \(0.664661\pi\)
\(788\) 270.051 0.342704
\(789\) 1026.26i 1.30071i
\(790\) 0 0
\(791\) 616.548i 0.779454i
\(792\) 498.892 517.341i 0.629915 0.653208i
\(793\) 758.681i 0.956722i
\(794\) 71.3491i 0.0898604i
\(795\) 0 0
\(796\) −488.700 −0.613945
\(797\) 318.852i 0.400066i −0.979789 0.200033i \(-0.935895\pi\)
0.979789 0.200033i \(-0.0641049\pi\)
\(798\) −47.4802 −0.0594990
\(799\) 385.834i 0.482897i
\(800\) 0 0
\(801\) 148.666 0.185601
\(802\) 422.917 0.527328
\(803\) 213.389 221.280i 0.265740 0.275567i
\(804\) 511.892 0.636682
\(805\) 0 0
\(806\) 1328.70 1.64851
\(807\) 42.8581i 0.0531079i
\(808\) 1035.23i 1.28123i
\(809\) 253.404i 0.313231i 0.987660 + 0.156616i \(0.0500584\pi\)
−0.987660 + 0.156616i \(0.949942\pi\)
\(810\) 0 0
\(811\) 1021.32i 1.25934i −0.776864 0.629668i \(-0.783191\pi\)
0.776864 0.629668i \(-0.216809\pi\)
\(812\) 552.792i 0.680779i
\(813\) −1264.49 −1.55534
\(814\) −132.252 127.536i −0.162472 0.156678i
\(815\) 0 0
\(816\) 151.806i 0.186037i
\(817\) 65.7593i 0.0804888i
\(818\) 549.384i 0.671619i
\(819\) −1070.50 −1.30708
\(820\) 0 0
\(821\) 889.675i 1.08365i −0.840492 0.541824i \(-0.817734\pi\)
0.840492 0.541824i \(-0.182266\pi\)
\(822\) −497.146 −0.604800
\(823\) 92.7923i 0.112749i −0.998410 0.0563744i \(-0.982046\pi\)
0.998410 0.0563744i \(-0.0179541\pi\)
\(824\) 1414.25i 1.71632i
\(825\) 0 0
\(826\) −355.601 −0.430510
\(827\) 1582.62 1.91369 0.956845 0.290597i \(-0.0938540\pi\)
0.956845 + 0.290597i \(0.0938540\pi\)
\(828\) 245.237i 0.296180i
\(829\) −925.797 −1.11676 −0.558382 0.829584i \(-0.688578\pi\)
−0.558382 + 0.829584i \(0.688578\pi\)
\(830\) 0 0
\(831\) 5.01757i 0.00603799i
\(832\) −1080.66 −1.29887
\(833\) 127.409 0.152952
\(834\) 664.947 0.797298
\(835\) 0 0
\(836\) 11.2494 + 10.8483i 0.0134562 + 0.0129764i
\(837\) 307.771i 0.367707i
\(838\) 212.996 0.254172
\(839\) −169.321 −0.201813 −0.100907 0.994896i \(-0.532174\pi\)
−0.100907 + 0.994896i \(0.532174\pi\)
\(840\) 0 0
\(841\) −783.751 −0.931927
\(842\) 65.7639 0.0781044
\(843\) 562.909 0.667746
\(844\) 51.2405i 0.0607115i
\(845\) 0 0
\(846\) 842.065i 0.995348i
\(847\) 37.4872 + 1032.16i 0.0442588 + 1.21861i
\(848\) 97.1296i 0.114540i
\(849\) 61.1750i 0.0720553i
\(850\) 0 0
\(851\) 218.774 0.257078
\(852\) 437.475i 0.513468i
\(853\) 1296.08 1.51943 0.759717 0.650254i \(-0.225338\pi\)
0.759717 + 0.650254i \(0.225338\pi\)
\(854\) 601.758i 0.704634i
\(855\) 0 0
\(856\) −834.140 −0.974462
\(857\) 1439.08 1.67921 0.839605 0.543197i \(-0.182786\pi\)
0.839605 + 0.543197i \(0.182786\pi\)
\(858\) −829.246 799.675i −0.966487 0.932022i
\(859\) −1287.02 −1.49827 −0.749137 0.662415i \(-0.769532\pi\)
−0.749137 + 0.662415i \(0.769532\pi\)
\(860\) 0 0
\(861\) −1256.20 −1.45900
\(862\) 27.8798i 0.0323432i
\(863\) 1467.32i 1.70026i 0.526573 + 0.850130i \(0.323477\pi\)
−0.526573 + 0.850130i \(0.676523\pi\)
\(864\) 142.458i 0.164882i
\(865\) 0 0
\(866\) 686.687i 0.792941i
\(867\) 1059.16i 1.22163i
\(868\) −707.464 −0.815051
\(869\) 82.9186 + 79.9617i 0.0954184 + 0.0920158i
\(870\) 0 0
\(871\) 1304.59i 1.49781i
\(872\) 1359.88i 1.55950i
\(873\) 1117.26i 1.27979i
\(874\) 27.7209 0.0317173
\(875\) 0 0
\(876\) 182.564i 0.208406i
\(877\) −267.438 −0.304947 −0.152473 0.988308i \(-0.548724\pi\)
−0.152473 + 0.988308i \(0.548724\pi\)
\(878\) 650.394i 0.740768i
\(879\) 387.996i 0.441407i
\(880\) 0 0
\(881\) −1753.38 −1.99022 −0.995109 0.0987811i \(-0.968506\pi\)
−0.995109 + 0.0987811i \(0.968506\pi\)
\(882\) −278.064 −0.315265
\(883\) 525.703i 0.595360i −0.954666 0.297680i \(-0.903787\pi\)
0.954666 0.297680i \(-0.0962128\pi\)
\(884\) 142.830 0.161572
\(885\) 0 0
\(886\) 814.465i 0.919261i
\(887\) 21.4678 0.0242027 0.0121014 0.999927i \(-0.496148\pi\)
0.0121014 + 0.999927i \(0.496148\pi\)
\(888\) −380.766 −0.428791
\(889\) 968.553 1.08949
\(890\) 0 0
\(891\) −702.888 + 728.880i −0.788876 + 0.818047i
\(892\) 224.977i 0.252216i
\(893\) 63.8971 0.0715533
\(894\) 1501.57 1.67961
\(895\) 0 0
\(896\) −41.8685 −0.0467282
\(897\) 1371.75 1.52927
\(898\) −178.216 −0.198458
\(899\) 2079.36i 2.31297i
\(900\) 0 0
\(901\) 74.1744i 0.0823245i
\(902\) −443.364 427.554i −0.491534 0.474006i
\(903\) 2581.00i 2.85825i
\(904\) 626.507i 0.693039i
\(905\) 0 0
\(906\) −1790.89 −1.97670
\(907\) 16.7154i 0.0184294i −0.999958 0.00921469i \(-0.997067\pi\)
0.999958 0.00921469i \(-0.00293317\pi\)
\(908\) 246.043 0.270973
\(909\) 899.046i 0.989049i
\(910\) 0 0
\(911\) 1401.06 1.53793 0.768967 0.639289i \(-0.220771\pi\)
0.768967 + 0.639289i \(0.220771\pi\)
\(912\) −25.1402 −0.0275660
\(913\) 926.074 960.319i 1.01432 1.05183i
\(914\) −512.680 −0.560919
\(915\) 0 0
\(916\) 320.620 0.350022
\(917\) 1073.92i 1.17112i
\(918\) 49.2838i 0.0536861i
\(919\) 1598.11i 1.73896i −0.493965 0.869482i \(-0.664453\pi\)
0.493965 0.869482i \(-0.335547\pi\)
\(920\) 0 0
\(921\) 1113.14i 1.20862i
\(922\) 681.092i 0.738712i
\(923\) −1114.93 −1.20795
\(924\) 441.530 + 425.785i 0.477846 + 0.460806i
\(925\) 0 0
\(926\) 184.511i 0.199256i
\(927\) 1228.20i 1.32492i
\(928\) 962.475i 1.03715i
\(929\) 149.678 0.161117 0.0805585 0.996750i \(-0.474330\pi\)
0.0805585 + 0.996750i \(0.474330\pi\)
\(930\) 0 0
\(931\) 21.0999i 0.0226637i
\(932\) 164.840 0.176867
\(933\) 1128.77i 1.20983i
\(934\) 636.519i 0.681498i
\(935\) 0 0
\(936\) −1087.79 −1.16217
\(937\) 1699.25 1.81351 0.906753 0.421663i \(-0.138553\pi\)
0.906753 + 0.421663i \(0.138553\pi\)
\(938\) 1034.75i 1.10315i
\(939\) 696.156 0.741380
\(940\) 0 0
\(941\) 1130.78i 1.20168i −0.799368 0.600841i \(-0.794832\pi\)
0.799368 0.600841i \(-0.205168\pi\)
\(942\) 960.223 1.01934
\(943\) 733.420 0.777751
\(944\) −188.287 −0.199456
\(945\) 0 0
\(946\) −878.458 + 910.942i −0.928602 + 0.962941i
\(947\) 346.852i 0.366264i 0.983088 + 0.183132i \(0.0586236\pi\)
−0.983088 + 0.183132i \(0.941376\pi\)
\(948\) 68.4108 0.0721633
\(949\) −465.277 −0.490281
\(950\) 0 0
\(951\) −438.040 −0.460610
\(952\) 395.334 0.415266
\(953\) 116.543 0.122291 0.0611453 0.998129i \(-0.480525\pi\)
0.0611453 + 0.998129i \(0.480525\pi\)
\(954\) 161.882i 0.169688i
\(955\) 0 0
\(956\) 589.558i 0.616693i
\(957\) −1251.45 + 1297.73i −1.30768 + 1.35604i
\(958\) 1429.22i 1.49188i
\(959\) 674.616i 0.703457i
\(960\) 0 0
\(961\) 1700.16 1.76916
\(962\) 278.081i 0.289066i
\(963\) −724.407 −0.752240
\(964\) 320.027i 0.331979i
\(965\) 0 0
\(966\) 1088.02 1.12632
\(967\) −1721.69 −1.78044 −0.890222 0.455527i \(-0.849451\pi\)
−0.890222 + 0.455527i \(0.849451\pi\)
\(968\) 38.0927 + 1048.83i 0.0393520 + 1.08350i
\(969\) 19.1987 0.0198129
\(970\) 0 0
\(971\) −333.995 −0.343970 −0.171985 0.985100i \(-0.555018\pi\)
−0.171985 + 0.985100i \(0.555018\pi\)
\(972\) 515.084i 0.529922i
\(973\) 902.318i 0.927356i
\(974\) 428.612i 0.440053i
\(975\) 0 0
\(976\) 318.623i 0.326458i
\(977\) 685.606i 0.701746i −0.936423 0.350873i \(-0.885885\pi\)
0.936423 0.350873i \(-0.114115\pi\)
\(978\) −1552.45 −1.58737
\(979\) −150.700 + 156.272i −0.153932 + 0.159624i
\(980\) 0 0
\(981\) 1180.99i 1.20386i
\(982\) 151.645i 0.154425i
\(983\) 443.589i 0.451260i 0.974213 + 0.225630i \(0.0724440\pi\)
−0.974213 + 0.225630i \(0.927556\pi\)
\(984\) −1276.49 −1.29724
\(985\) 0 0
\(986\) 332.971i 0.337699i
\(987\) 2507.91 2.54094
\(988\) 23.6537i 0.0239410i
\(989\) 1506.89i 1.52365i
\(990\) 0 0
\(991\) 458.627 0.462792 0.231396 0.972860i \(-0.425671\pi\)
0.231396 + 0.972860i \(0.425671\pi\)
\(992\) −1231.78 −1.24171
\(993\) 922.730i 0.929234i
\(994\) −884.325 −0.889663
\(995\) 0 0
\(996\) 792.298i 0.795480i
\(997\) −166.538 −0.167040 −0.0835198 0.996506i \(-0.526616\pi\)
−0.0835198 + 0.996506i \(0.526616\pi\)
\(998\) −390.084 −0.390865
\(999\) 64.4127 0.0644772
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.3.d.b.274.12 16
5.2 odd 4 275.3.c.g.76.6 yes 8
5.3 odd 4 275.3.c.h.76.3 yes 8
5.4 even 2 inner 275.3.d.b.274.5 16
11.10 odd 2 inner 275.3.d.b.274.6 16
55.32 even 4 275.3.c.g.76.3 8
55.43 even 4 275.3.c.h.76.6 yes 8
55.54 odd 2 inner 275.3.d.b.274.11 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
275.3.c.g.76.3 8 55.32 even 4
275.3.c.g.76.6 yes 8 5.2 odd 4
275.3.c.h.76.3 yes 8 5.3 odd 4
275.3.c.h.76.6 yes 8 55.43 even 4
275.3.d.b.274.5 16 5.4 even 2 inner
275.3.d.b.274.6 16 11.10 odd 2 inner
275.3.d.b.274.11 16 55.54 odd 2 inner
275.3.d.b.274.12 16 1.1 even 1 trivial