Properties

Label 275.3.bk.c.82.7
Level $275$
Weight $3$
Character 275.82
Analytic conductor $7.493$
Analytic rank $0$
Dimension $128$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,3,Mod(82,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([5, 8])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.82"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 275.bk (of order \(20\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [128] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.49320726991\)
Analytic rank: \(0\)
Dimension: \(128\)
Relative dimension: \(16\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 82.7
Character \(\chi\) \(=\) 275.82
Dual form 275.3.bk.c.218.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.319362 + 0.626784i) q^{2} +(4.31726 - 0.683787i) q^{3} +(2.06028 + 2.83573i) q^{4} +(-0.950184 + 2.92437i) q^{6} +(13.0084 + 2.06033i) q^{7} +(-5.21454 + 0.825902i) q^{8} +(9.61169 - 3.12303i) q^{9} +(-0.213753 - 10.9979i) q^{11} +(10.8338 + 10.8338i) q^{12} +(-13.4978 - 6.87747i) q^{13} +(-5.44577 + 7.49547i) q^{14} +(-3.18494 + 9.80223i) q^{16} +(-14.5897 + 7.43382i) q^{17} +(-1.11215 + 7.02183i) q^{18} +(8.09319 - 11.1393i) q^{19} +57.5696 q^{21} +(6.96158 + 3.37834i) q^{22} +(-18.1828 + 18.1828i) q^{23} +(-21.9478 + 7.13127i) q^{24} +(8.62138 - 6.26380i) q^{26} +(4.30879 - 2.19544i) q^{27} +(20.9584 + 41.1331i) q^{28} +(-13.8997 - 19.1313i) q^{29} +(-7.50428 - 23.0958i) q^{31} +(-20.0595 - 20.0595i) q^{32} +(-8.44307 - 47.3348i) q^{33} -11.5187i q^{34} +(28.6588 + 20.8218i) q^{36} +(40.3915 + 6.39739i) q^{37} +(4.39728 + 8.63015i) q^{38} +(-62.9763 - 20.4622i) q^{39} +(6.47957 + 4.70768i) q^{41} +(-18.3855 + 36.0837i) q^{42} +(-2.02807 + 2.02807i) q^{43} +(30.7467 - 23.2649i) q^{44} +(-5.58978 - 17.2036i) q^{46} +(12.9511 + 81.7699i) q^{47} +(-7.04758 + 44.4966i) q^{48} +(118.372 + 38.4614i) q^{49} +(-57.9044 + 42.0700i) q^{51} +(-8.30656 - 52.4456i) q^{52} +(-31.8036 - 16.2048i) q^{53} +3.40182i q^{54} -69.5345 q^{56} +(27.3235 - 53.6254i) q^{57} +(16.4302 - 2.60229i) q^{58} +(-2.35343 - 3.23921i) q^{59} +(4.51999 - 13.9111i) q^{61} +(16.8727 + 2.67237i) q^{62} +(131.467 - 20.8224i) q^{63} +(-20.2297 + 6.57303i) q^{64} +(32.3651 + 9.82496i) q^{66} +(9.03804 + 9.03804i) q^{67} +(-51.1391 - 26.0566i) q^{68} +(-66.0667 + 90.9330i) q^{69} +(-13.6089 + 41.8839i) q^{71} +(-47.5413 + 24.2235i) q^{72} +(2.96178 - 18.6999i) q^{73} +(-16.9093 + 23.2737i) q^{74} +48.2622 q^{76} +(19.8788 - 143.506i) q^{77} +(32.9376 - 32.9376i) q^{78} +(-15.7496 + 5.11737i) q^{79} +(-56.4848 + 41.0386i) q^{81} +(-5.02003 + 2.55783i) q^{82} +(-40.1359 - 78.7712i) q^{83} +(118.609 + 163.251i) q^{84} +(-0.623474 - 1.91885i) q^{86} +(-73.0905 - 73.0905i) q^{87} +(10.1978 + 57.1726i) q^{88} -127.945i q^{89} +(-161.415 - 117.275i) q^{91} +(-89.0229 - 14.0998i) q^{92} +(-48.1906 - 94.5794i) q^{93} +(-55.3881 - 17.9967i) q^{94} +(-100.319 - 72.8858i) q^{96} +(-34.4715 + 67.6542i) q^{97} +(-61.9105 + 61.9105i) q^{98} +(-36.4014 - 105.041i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 128 q - 48 q^{6} + 32 q^{11} + 280 q^{16} - 8 q^{21} + 528 q^{26} - 16 q^{31} + 336 q^{36} - 604 q^{41} - 1152 q^{46} - 1024 q^{51} - 992 q^{56} - 320 q^{61} + 1624 q^{66} + 536 q^{71} + 1776 q^{76} + 3680 q^{81}+ \cdots - 6584 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.319362 + 0.626784i −0.159681 + 0.313392i −0.956960 0.290219i \(-0.906272\pi\)
0.797279 + 0.603611i \(0.206272\pi\)
\(3\) 4.31726 0.683787i 1.43909 0.227929i 0.612381 0.790562i \(-0.290212\pi\)
0.826707 + 0.562633i \(0.190212\pi\)
\(4\) 2.06028 + 2.83573i 0.515069 + 0.708931i
\(5\) 0 0
\(6\) −0.950184 + 2.92437i −0.158364 + 0.487394i
\(7\) 13.0084 + 2.06033i 1.85834 + 0.294333i 0.982217 0.187748i \(-0.0601189\pi\)
0.876127 + 0.482081i \(0.160119\pi\)
\(8\) −5.21454 + 0.825902i −0.651818 + 0.103238i
\(9\) 9.61169 3.12303i 1.06797 0.347003i
\(10\) 0 0
\(11\) −0.213753 10.9979i −0.0194321 0.999811i
\(12\) 10.8338 + 10.8338i 0.902816 + 0.902816i
\(13\) −13.4978 6.87747i −1.03829 0.529036i −0.150178 0.988659i \(-0.547985\pi\)
−0.888114 + 0.459623i \(0.847985\pi\)
\(14\) −5.44577 + 7.49547i −0.388984 + 0.535390i
\(15\) 0 0
\(16\) −3.18494 + 9.80223i −0.199059 + 0.612640i
\(17\) −14.5897 + 7.43382i −0.858217 + 0.437283i −0.826982 0.562229i \(-0.809944\pi\)
−0.0312352 + 0.999512i \(0.509944\pi\)
\(18\) −1.11215 + 7.02183i −0.0617860 + 0.390102i
\(19\) 8.09319 11.1393i 0.425957 0.586280i −0.541062 0.840983i \(-0.681978\pi\)
0.967019 + 0.254703i \(0.0819776\pi\)
\(20\) 0 0
\(21\) 57.5696 2.74141
\(22\) 6.96158 + 3.37834i 0.316436 + 0.153561i
\(23\) −18.1828 + 18.1828i −0.790556 + 0.790556i −0.981584 0.191029i \(-0.938818\pi\)
0.191029 + 0.981584i \(0.438818\pi\)
\(24\) −21.9478 + 7.13127i −0.914492 + 0.297136i
\(25\) 0 0
\(26\) 8.62138 6.26380i 0.331591 0.240915i
\(27\) 4.30879 2.19544i 0.159585 0.0813125i
\(28\) 20.9584 + 41.1331i 0.748513 + 1.46904i
\(29\) −13.8997 19.1313i −0.479300 0.659700i 0.499070 0.866562i \(-0.333675\pi\)
−0.978370 + 0.206861i \(0.933675\pi\)
\(30\) 0 0
\(31\) −7.50428 23.0958i −0.242074 0.745026i −0.996104 0.0881865i \(-0.971893\pi\)
0.754030 0.656840i \(-0.228107\pi\)
\(32\) −20.0595 20.0595i −0.626860 0.626860i
\(33\) −8.44307 47.3348i −0.255851 1.43439i
\(34\) 11.5187i 0.338784i
\(35\) 0 0
\(36\) 28.6588 + 20.8218i 0.796077 + 0.578384i
\(37\) 40.3915 + 6.39739i 1.09166 + 0.172902i 0.676208 0.736711i \(-0.263622\pi\)
0.415456 + 0.909613i \(0.363622\pi\)
\(38\) 4.39728 + 8.63015i 0.115718 + 0.227109i
\(39\) −62.9763 20.4622i −1.61478 0.524673i
\(40\) 0 0
\(41\) 6.47957 + 4.70768i 0.158038 + 0.114822i 0.663994 0.747738i \(-0.268860\pi\)
−0.505956 + 0.862559i \(0.668860\pi\)
\(42\) −18.3855 + 36.0837i −0.437751 + 0.859135i
\(43\) −2.02807 + 2.02807i −0.0471645 + 0.0471645i −0.730296 0.683131i \(-0.760618\pi\)
0.683131 + 0.730296i \(0.260618\pi\)
\(44\) 30.7467 23.2649i 0.698789 0.528748i
\(45\) 0 0
\(46\) −5.58978 17.2036i −0.121517 0.373990i
\(47\) 12.9511 + 81.7699i 0.275555 + 1.73979i 0.605554 + 0.795804i \(0.292952\pi\)
−0.329999 + 0.943981i \(0.607048\pi\)
\(48\) −7.04758 + 44.4966i −0.146825 + 0.927013i
\(49\) 118.372 + 38.4614i 2.41575 + 0.784926i
\(50\) 0 0
\(51\) −57.9044 + 42.0700i −1.13538 + 0.824902i
\(52\) −8.30656 52.4456i −0.159742 1.00857i
\(53\) −31.8036 16.2048i −0.600068 0.305750i 0.127443 0.991846i \(-0.459323\pi\)
−0.727511 + 0.686096i \(0.759323\pi\)
\(54\) 3.40182i 0.0629966i
\(55\) 0 0
\(56\) −69.5345 −1.24169
\(57\) 27.3235 53.6254i 0.479360 0.940796i
\(58\) 16.4302 2.60229i 0.283280 0.0448671i
\(59\) −2.35343 3.23921i −0.0398886 0.0549019i 0.788607 0.614898i \(-0.210803\pi\)
−0.828495 + 0.559996i \(0.810803\pi\)
\(60\) 0 0
\(61\) 4.51999 13.9111i 0.0740982 0.228051i −0.907147 0.420813i \(-0.861745\pi\)
0.981245 + 0.192763i \(0.0617447\pi\)
\(62\) 16.8727 + 2.67237i 0.272140 + 0.0431027i
\(63\) 131.467 20.8224i 2.08678 0.330514i
\(64\) −20.2297 + 6.57303i −0.316089 + 0.102704i
\(65\) 0 0
\(66\) 32.3651 + 9.82496i 0.490380 + 0.148863i
\(67\) 9.03804 + 9.03804i 0.134896 + 0.134896i 0.771331 0.636435i \(-0.219591\pi\)
−0.636435 + 0.771331i \(0.719591\pi\)
\(68\) −51.1391 26.0566i −0.752045 0.383186i
\(69\) −66.0667 + 90.9330i −0.957488 + 1.31787i
\(70\) 0 0
\(71\) −13.6089 + 41.8839i −0.191675 + 0.589914i 0.808325 + 0.588737i \(0.200375\pi\)
−0.999999 + 0.00117716i \(0.999625\pi\)
\(72\) −47.5413 + 24.2235i −0.660295 + 0.336437i
\(73\) 2.96178 18.6999i 0.0405723 0.256163i −0.959062 0.283195i \(-0.908606\pi\)
0.999635 + 0.0270318i \(0.00860554\pi\)
\(74\) −16.9093 + 23.2737i −0.228504 + 0.314509i
\(75\) 0 0
\(76\) 48.2622 0.635029
\(77\) 19.8788 143.506i 0.258166 1.86371i
\(78\) 32.9376 32.9376i 0.422278 0.422278i
\(79\) −15.7496 + 5.11737i −0.199363 + 0.0647768i −0.406996 0.913430i \(-0.633424\pi\)
0.207634 + 0.978207i \(0.433424\pi\)
\(80\) 0 0
\(81\) −56.4848 + 41.0386i −0.697343 + 0.506649i
\(82\) −5.02003 + 2.55783i −0.0612199 + 0.0311931i
\(83\) −40.1359 78.7712i −0.483565 0.949051i −0.995917 0.0902748i \(-0.971225\pi\)
0.512351 0.858776i \(-0.328775\pi\)
\(84\) 118.609 + 163.251i 1.41201 + 1.94347i
\(85\) 0 0
\(86\) −0.623474 1.91885i −0.00724969 0.0223123i
\(87\) −73.0905 73.0905i −0.840120 0.840120i
\(88\) 10.1978 + 57.1726i 0.115884 + 0.649688i
\(89\) 127.945i 1.43759i −0.695224 0.718793i \(-0.744695\pi\)
0.695224 0.718793i \(-0.255305\pi\)
\(90\) 0 0
\(91\) −161.415 117.275i −1.77379 1.28873i
\(92\) −89.0229 14.0998i −0.967640 0.153259i
\(93\) −48.1906 94.5794i −0.518178 1.01698i
\(94\) −55.3881 17.9967i −0.589236 0.191454i
\(95\) 0 0
\(96\) −100.319 72.8858i −1.04499 0.759227i
\(97\) −34.4715 + 67.6542i −0.355377 + 0.697466i −0.997614 0.0690401i \(-0.978006\pi\)
0.642237 + 0.766506i \(0.278006\pi\)
\(98\) −61.9105 + 61.9105i −0.631740 + 0.631740i
\(99\) −36.4014 105.041i −0.367690 1.06102i
\(100\) 0 0
\(101\) 2.71127 + 8.34445i 0.0268443 + 0.0826183i 0.963581 0.267416i \(-0.0861699\pi\)
−0.936737 + 0.350034i \(0.886170\pi\)
\(102\) −7.87631 49.7291i −0.0772188 0.487540i
\(103\) −12.7256 + 80.3463i −0.123550 + 0.780061i 0.845642 + 0.533751i \(0.179218\pi\)
−0.969191 + 0.246310i \(0.920782\pi\)
\(104\) 76.0650 + 24.7150i 0.731394 + 0.237644i
\(105\) 0 0
\(106\) 20.3138 14.7588i 0.191639 0.139234i
\(107\) −9.20763 58.1347i −0.0860526 0.543315i −0.992621 0.121256i \(-0.961308\pi\)
0.906569 0.422058i \(-0.138692\pi\)
\(108\) 15.1030 + 7.69534i 0.139842 + 0.0712531i
\(109\) 188.047i 1.72520i −0.505885 0.862601i \(-0.668834\pi\)
0.505885 0.862601i \(-0.331166\pi\)
\(110\) 0 0
\(111\) 178.755 1.61041
\(112\) −61.6268 + 120.949i −0.550239 + 1.07991i
\(113\) 152.384 24.1353i 1.34853 0.213587i 0.559956 0.828523i \(-0.310818\pi\)
0.788577 + 0.614936i \(0.210818\pi\)
\(114\) 24.8854 + 34.2518i 0.218293 + 0.300455i
\(115\) 0 0
\(116\) 25.6139 78.8315i 0.220810 0.679582i
\(117\) −151.215 23.9501i −1.29244 0.204702i
\(118\) 2.78188 0.440607i 0.0235753 0.00373395i
\(119\) −205.105 + 66.6426i −1.72357 + 0.560022i
\(120\) 0 0
\(121\) −120.909 + 4.70168i −0.999245 + 0.0388568i
\(122\) 7.27574 + 7.27574i 0.0596372 + 0.0596372i
\(123\) 31.1931 + 15.8937i 0.253602 + 0.129217i
\(124\) 50.0325 68.8638i 0.403488 0.555353i
\(125\) 0 0
\(126\) −28.9346 + 89.0514i −0.229639 + 0.706757i
\(127\) −142.858 + 72.7897i −1.12486 + 0.573147i −0.914544 0.404486i \(-0.867451\pi\)
−0.210320 + 0.977633i \(0.567451\pi\)
\(128\) 20.0920 126.856i 0.156968 0.991059i
\(129\) −7.36896 + 10.1425i −0.0571237 + 0.0786241i
\(130\) 0 0
\(131\) 101.790 0.777022 0.388511 0.921444i \(-0.372990\pi\)
0.388511 + 0.921444i \(0.372990\pi\)
\(132\) 116.833 121.465i 0.885102 0.920189i
\(133\) 128.230 128.230i 0.964136 0.964136i
\(134\) −8.55130 + 2.77849i −0.0638157 + 0.0207350i
\(135\) 0 0
\(136\) 69.9389 50.8136i 0.514257 0.373629i
\(137\) 66.1876 33.7243i 0.483121 0.246163i −0.195427 0.980718i \(-0.562609\pi\)
0.678548 + 0.734556i \(0.262609\pi\)
\(138\) −35.8961 70.4501i −0.260117 0.510508i
\(139\) 16.4112 + 22.5880i 0.118066 + 0.162504i 0.863959 0.503561i \(-0.167977\pi\)
−0.745893 + 0.666065i \(0.767977\pi\)
\(140\) 0 0
\(141\) 111.827 + 344.167i 0.793096 + 2.44090i
\(142\) −21.9060 21.9060i −0.154267 0.154267i
\(143\) −72.7527 + 149.918i −0.508760 + 1.04838i
\(144\) 104.163i 0.723352i
\(145\) 0 0
\(146\) 10.7749 + 7.82845i 0.0738009 + 0.0536195i
\(147\) 537.342 + 85.1067i 3.65539 + 0.578957i
\(148\) 65.0765 + 127.720i 0.439706 + 0.862971i
\(149\) 156.113 + 50.7242i 1.04774 + 0.340431i 0.781780 0.623554i \(-0.214312\pi\)
0.265958 + 0.963985i \(0.414312\pi\)
\(150\) 0 0
\(151\) −78.3338 56.9128i −0.518767 0.376906i 0.297372 0.954762i \(-0.403890\pi\)
−0.816139 + 0.577855i \(0.803890\pi\)
\(152\) −33.0023 + 64.7706i −0.217120 + 0.426122i
\(153\) −117.016 + 117.016i −0.764808 + 0.764808i
\(154\) 83.5986 + 58.2900i 0.542848 + 0.378507i
\(155\) 0 0
\(156\) −71.7232 220.741i −0.459764 1.41501i
\(157\) 30.5273 + 192.742i 0.194441 + 1.22765i 0.871006 + 0.491272i \(0.163468\pi\)
−0.676565 + 0.736383i \(0.736532\pi\)
\(158\) 1.82236 11.5059i 0.0115339 0.0728222i
\(159\) −148.385 48.2133i −0.933241 0.303228i
\(160\) 0 0
\(161\) −273.991 + 199.066i −1.70181 + 1.23644i
\(162\) −7.68322 48.5099i −0.0474273 0.299444i
\(163\) 67.2428 + 34.2619i 0.412532 + 0.210196i 0.647924 0.761705i \(-0.275637\pi\)
−0.235392 + 0.971901i \(0.575637\pi\)
\(164\) 28.0734i 0.171179i
\(165\) 0 0
\(166\) 62.1904 0.374641
\(167\) 41.2215 80.9018i 0.246836 0.484442i −0.734033 0.679114i \(-0.762364\pi\)
0.980868 + 0.194672i \(0.0623642\pi\)
\(168\) −300.199 + 47.5468i −1.78690 + 0.283017i
\(169\) 35.5553 + 48.9377i 0.210386 + 0.289572i
\(170\) 0 0
\(171\) 43.0008 132.343i 0.251467 0.773935i
\(172\) −9.92945 1.57267i −0.0577294 0.00914344i
\(173\) −110.029 + 17.4269i −0.636005 + 0.100733i −0.466107 0.884728i \(-0.654344\pi\)
−0.169898 + 0.985462i \(0.554344\pi\)
\(174\) 69.1542 22.4696i 0.397438 0.129135i
\(175\) 0 0
\(176\) 108.485 + 32.9325i 0.616392 + 0.187116i
\(177\) −12.3753 12.3753i −0.0699169 0.0699169i
\(178\) 80.1939 + 40.8609i 0.450528 + 0.229555i
\(179\) −64.2046 + 88.3700i −0.358685 + 0.493687i −0.949782 0.312913i \(-0.898695\pi\)
0.591097 + 0.806601i \(0.298695\pi\)
\(180\) 0 0
\(181\) 27.7256 85.3307i 0.153180 0.471440i −0.844792 0.535095i \(-0.820276\pi\)
0.997972 + 0.0636550i \(0.0202757\pi\)
\(182\) 125.056 63.7191i 0.687120 0.350105i
\(183\) 10.0018 63.1486i 0.0546544 0.345074i
\(184\) 79.7976 109.832i 0.433683 0.596913i
\(185\) 0 0
\(186\) 74.6711 0.401457
\(187\) 84.8751 + 158.867i 0.453878 + 0.849558i
\(188\) −205.194 + 205.194i −1.09146 + 1.09146i
\(189\) 60.5738 19.6816i 0.320496 0.104136i
\(190\) 0 0
\(191\) 272.747 198.163i 1.42800 1.03750i 0.437611 0.899164i \(-0.355825\pi\)
0.990385 0.138336i \(-0.0441755\pi\)
\(192\) −82.8424 + 42.2103i −0.431471 + 0.219845i
\(193\) 11.8565 + 23.2697i 0.0614328 + 0.120569i 0.919681 0.392666i \(-0.128447\pi\)
−0.858248 + 0.513235i \(0.828447\pi\)
\(194\) −31.3956 43.2124i −0.161833 0.222744i
\(195\) 0 0
\(196\) 134.813 + 414.911i 0.687821 + 2.11689i
\(197\) 232.768 + 232.768i 1.18157 + 1.18157i 0.979339 + 0.202227i \(0.0648179\pi\)
0.202227 + 0.979339i \(0.435182\pi\)
\(198\) 77.4633 + 10.7304i 0.391229 + 0.0541939i
\(199\) 177.068i 0.889787i 0.895583 + 0.444894i \(0.146758\pi\)
−0.895583 + 0.444894i \(0.853242\pi\)
\(200\) 0 0
\(201\) 45.1997 + 32.8395i 0.224874 + 0.163381i
\(202\) −6.09604 0.965518i −0.0301784 0.00477979i
\(203\) −141.396 277.506i −0.696533 1.36702i
\(204\) −238.598 77.5252i −1.16960 0.380025i
\(205\) 0 0
\(206\) −46.2957 33.6358i −0.224736 0.163280i
\(207\) −117.982 + 231.553i −0.569961 + 1.11861i
\(208\) 110.404 110.404i 0.530790 0.530790i
\(209\) −124.239 86.6272i −0.594446 0.414484i
\(210\) 0 0
\(211\) 59.0985 + 181.886i 0.280088 + 0.862021i 0.987828 + 0.155549i \(0.0497145\pi\)
−0.707741 + 0.706472i \(0.750285\pi\)
\(212\) −19.5720 123.573i −0.0923207 0.582890i
\(213\) −30.1136 + 190.130i −0.141378 + 0.892627i
\(214\) 39.3784 + 12.7948i 0.184011 + 0.0597889i
\(215\) 0 0
\(216\) −20.6551 + 15.0068i −0.0956257 + 0.0694761i
\(217\) −50.0338 315.901i −0.230571 1.45576i
\(218\) 117.865 + 60.0551i 0.540664 + 0.275482i
\(219\) 82.7578i 0.377889i
\(220\) 0 0
\(221\) 248.055 1.12242
\(222\) −57.0877 + 112.041i −0.257152 + 0.504689i
\(223\) 89.9452 14.2459i 0.403342 0.0638830i 0.0485320 0.998822i \(-0.484546\pi\)
0.354810 + 0.934939i \(0.384546\pi\)
\(224\) −219.613 302.272i −0.980416 1.34943i
\(225\) 0 0
\(226\) −33.5382 + 103.220i −0.148399 + 0.456725i
\(227\) −186.341 29.5135i −0.820886 0.130016i −0.268155 0.963376i \(-0.586414\pi\)
−0.552730 + 0.833360i \(0.686414\pi\)
\(228\) 208.361 33.0011i 0.913863 0.144742i
\(229\) 399.540 129.818i 1.74471 0.566892i 0.749272 0.662262i \(-0.230403\pi\)
0.995442 + 0.0953700i \(0.0304034\pi\)
\(230\) 0 0
\(231\) −12.3057 633.146i −0.0532712 2.74089i
\(232\) 88.2812 + 88.2812i 0.380522 + 0.380522i
\(233\) −66.4024 33.8337i −0.284989 0.145209i 0.305653 0.952143i \(-0.401125\pi\)
−0.590642 + 0.806934i \(0.701125\pi\)
\(234\) 63.3040 87.1305i 0.270530 0.372353i
\(235\) 0 0
\(236\) 4.33681 13.3473i 0.0183763 0.0565565i
\(237\) −64.4962 + 32.8624i −0.272136 + 0.138660i
\(238\) 23.7322 149.839i 0.0997153 0.629577i
\(239\) −223.524 + 307.655i −0.935249 + 1.28726i 0.0225279 + 0.999746i \(0.492829\pi\)
−0.957777 + 0.287513i \(0.907171\pi\)
\(240\) 0 0
\(241\) 200.573 0.832252 0.416126 0.909307i \(-0.363388\pi\)
0.416126 + 0.909307i \(0.363388\pi\)
\(242\) 35.6667 77.2851i 0.147383 0.319360i
\(243\) −246.573 + 246.573i −1.01471 + 1.01471i
\(244\) 48.7605 15.8432i 0.199838 0.0649313i
\(245\) 0 0
\(246\) −19.9238 + 14.4755i −0.0809909 + 0.0588434i
\(247\) −185.851 + 94.6956i −0.752431 + 0.383383i
\(248\) 58.2063 + 114.236i 0.234703 + 0.460630i
\(249\) −227.140 312.632i −0.912210 1.25555i
\(250\) 0 0
\(251\) −130.177 400.643i −0.518633 1.59619i −0.776574 0.630026i \(-0.783044\pi\)
0.257941 0.966161i \(-0.416956\pi\)
\(252\) 329.905 + 329.905i 1.30915 + 1.30915i
\(253\) 203.859 + 196.086i 0.805768 + 0.775044i
\(254\) 112.787i 0.444044i
\(255\) 0 0
\(256\) 4.26078 + 3.09564i 0.0166437 + 0.0120923i
\(257\) −285.808 45.2675i −1.11209 0.176138i −0.426758 0.904366i \(-0.640344\pi\)
−0.685335 + 0.728228i \(0.740344\pi\)
\(258\) −4.00379 7.85788i −0.0155186 0.0304569i
\(259\) 512.249 + 166.440i 1.97780 + 0.642625i
\(260\) 0 0
\(261\) −193.347 140.475i −0.740794 0.538219i
\(262\) −32.5078 + 63.8002i −0.124076 + 0.243512i
\(263\) 223.157 223.157i 0.848508 0.848508i −0.141439 0.989947i \(-0.545173\pi\)
0.989947 + 0.141439i \(0.0451730\pi\)
\(264\) 83.1206 + 239.856i 0.314851 + 0.908545i
\(265\) 0 0
\(266\) 39.4207 + 121.324i 0.148198 + 0.456107i
\(267\) −87.4873 552.373i −0.327668 2.06881i
\(268\) −7.00855 + 44.2502i −0.0261513 + 0.165113i
\(269\) −6.81385 2.21395i −0.0253303 0.00823031i 0.296324 0.955087i \(-0.404239\pi\)
−0.321655 + 0.946857i \(0.604239\pi\)
\(270\) 0 0
\(271\) 6.58911 4.78727i 0.0243141 0.0176652i −0.575562 0.817758i \(-0.695217\pi\)
0.599876 + 0.800093i \(0.295217\pi\)
\(272\) −26.4008 166.688i −0.0970616 0.612823i
\(273\) −777.062 395.933i −2.84638 1.45030i
\(274\) 52.2556i 0.190714i
\(275\) 0 0
\(276\) −393.977 −1.42745
\(277\) 49.1219 96.4071i 0.177335 0.348040i −0.785180 0.619268i \(-0.787430\pi\)
0.962515 + 0.271228i \(0.0874296\pi\)
\(278\) −19.3989 + 3.07249i −0.0697803 + 0.0110521i
\(279\) −144.258 198.554i −0.517053 0.711662i
\(280\) 0 0
\(281\) −149.234 + 459.294i −0.531081 + 1.63450i 0.220888 + 0.975299i \(0.429104\pi\)
−0.751969 + 0.659199i \(0.770896\pi\)
\(282\) −251.431 39.8228i −0.891600 0.141216i
\(283\) 345.559 54.7312i 1.22106 0.193396i 0.487560 0.873089i \(-0.337887\pi\)
0.733497 + 0.679693i \(0.237887\pi\)
\(284\) −146.809 + 47.7013i −0.516935 + 0.167962i
\(285\) 0 0
\(286\) −70.7316 93.4783i −0.247313 0.326847i
\(287\) 74.5895 + 74.5895i 0.259894 + 0.259894i
\(288\) −255.452 130.160i −0.886988 0.451943i
\(289\) −12.2725 + 16.8917i −0.0424656 + 0.0584488i
\(290\) 0 0
\(291\) −102.562 + 315.652i −0.352445 + 1.08472i
\(292\) 59.1300 30.1282i 0.202500 0.103179i
\(293\) −6.72234 + 42.4432i −0.0229431 + 0.144857i −0.996501 0.0835846i \(-0.973363\pi\)
0.973558 + 0.228442i \(0.0733631\pi\)
\(294\) −224.950 + 309.617i −0.765137 + 1.05312i
\(295\) 0 0
\(296\) −215.907 −0.729415
\(297\) −25.0663 46.9185i −0.0843982 0.157975i
\(298\) −81.6497 + 81.6497i −0.273992 + 0.273992i
\(299\) 370.479 120.376i 1.23906 0.402595i
\(300\) 0 0
\(301\) −30.5605 + 22.2035i −0.101530 + 0.0737658i
\(302\) 60.6889 30.9225i 0.200957 0.102392i
\(303\) 17.4111 + 34.1712i 0.0574624 + 0.112776i
\(304\) 83.4139 + 114.809i 0.274388 + 0.377662i
\(305\) 0 0
\(306\) −35.9731 110.714i −0.117559 0.361810i
\(307\) 193.007 + 193.007i 0.628687 + 0.628687i 0.947738 0.319051i \(-0.103364\pi\)
−0.319051 + 0.947738i \(0.603364\pi\)
\(308\) 447.899 239.291i 1.45422 0.776918i
\(309\) 355.578i 1.15074i
\(310\) 0 0
\(311\) 411.736 + 299.144i 1.32391 + 0.961877i 0.999875 + 0.0158323i \(0.00503980\pi\)
0.324036 + 0.946045i \(0.394960\pi\)
\(312\) 345.292 + 54.6889i 1.10671 + 0.175285i
\(313\) −80.7764 158.533i −0.258072 0.506494i 0.725223 0.688514i \(-0.241737\pi\)
−0.983295 + 0.182020i \(0.941737\pi\)
\(314\) −130.557 42.4204i −0.415785 0.135097i
\(315\) 0 0
\(316\) −46.9601 34.1185i −0.148608 0.107970i
\(317\) −156.348 + 306.850i −0.493211 + 0.967982i 0.501489 + 0.865164i \(0.332786\pi\)
−0.994700 + 0.102818i \(0.967214\pi\)
\(318\) 77.6079 77.6079i 0.244050 0.244050i
\(319\) −207.434 + 156.957i −0.650262 + 0.492029i
\(320\) 0 0
\(321\) −79.5035 244.687i −0.247674 0.762264i
\(322\) −37.2691 235.308i −0.115742 0.730769i
\(323\) −35.2694 + 222.682i −0.109193 + 0.689419i
\(324\) −232.748 75.6246i −0.718359 0.233409i
\(325\) 0 0
\(326\) −42.9496 + 31.2047i −0.131747 + 0.0957200i
\(327\) −128.584 811.849i −0.393224 2.48272i
\(328\) −37.6761 19.1969i −0.114866 0.0585272i
\(329\) 1090.38i 3.31423i
\(330\) 0 0
\(331\) −371.190 −1.12142 −0.560709 0.828013i \(-0.689471\pi\)
−0.560709 + 0.828013i \(0.689471\pi\)
\(332\) 140.682 276.105i 0.423742 0.831641i
\(333\) 408.210 64.6542i 1.22586 0.194157i
\(334\) 37.5433 + 51.6740i 0.112405 + 0.154712i
\(335\) 0 0
\(336\) −183.355 + 564.310i −0.545701 + 1.67949i
\(337\) −507.358 80.3577i −1.50551 0.238450i −0.651480 0.758666i \(-0.725851\pi\)
−0.854035 + 0.520216i \(0.825851\pi\)
\(338\) −42.0283 + 6.65663i −0.124344 + 0.0196942i
\(339\) 641.379 208.397i 1.89197 0.614740i
\(340\) 0 0
\(341\) −252.402 + 87.4683i −0.740181 + 0.256505i
\(342\) 69.2176 + 69.2176i 0.202391 + 0.202391i
\(343\) 885.569 + 451.220i 2.58184 + 1.31551i
\(344\) 8.90049 12.2505i 0.0258735 0.0356118i
\(345\) 0 0
\(346\) 24.2162 74.5297i 0.0699890 0.215404i
\(347\) 403.252 205.467i 1.16211 0.592124i 0.236882 0.971538i \(-0.423874\pi\)
0.925227 + 0.379414i \(0.123874\pi\)
\(348\) 56.6780 357.851i 0.162868 1.02831i
\(349\) 244.753 336.873i 0.701298 0.965254i −0.298643 0.954365i \(-0.596534\pi\)
0.999941 0.0108886i \(-0.00346603\pi\)
\(350\) 0 0
\(351\) −73.2582 −0.208713
\(352\) −216.325 + 224.901i −0.614561 + 0.638923i
\(353\) 37.2917 37.2917i 0.105642 0.105642i −0.652310 0.757952i \(-0.726200\pi\)
0.757952 + 0.652310i \(0.226200\pi\)
\(354\) 11.7088 3.80443i 0.0330758 0.0107470i
\(355\) 0 0
\(356\) 362.817 263.602i 1.01915 0.740456i
\(357\) −839.922 + 427.962i −2.35272 + 1.19877i
\(358\) −34.8844 68.4644i −0.0974424 0.191241i
\(359\) 30.7953 + 42.3861i 0.0857808 + 0.118067i 0.849751 0.527185i \(-0.176752\pi\)
−0.763970 + 0.645252i \(0.776752\pi\)
\(360\) 0 0
\(361\) 52.9704 + 163.026i 0.146733 + 0.451596i
\(362\) 44.6294 + 44.6294i 0.123286 + 0.123286i
\(363\) −518.779 + 102.974i −1.42914 + 0.283675i
\(364\) 699.347i 1.92128i
\(365\) 0 0
\(366\) 36.3863 + 26.4362i 0.0994162 + 0.0722301i
\(367\) 400.357 + 63.4104i 1.09089 + 0.172780i 0.675862 0.737028i \(-0.263771\pi\)
0.415029 + 0.909808i \(0.363771\pi\)
\(368\) −120.321 236.143i −0.326959 0.641692i
\(369\) 76.9819 + 25.0129i 0.208623 + 0.0677857i
\(370\) 0 0
\(371\) −380.327 276.324i −1.02514 0.744809i
\(372\) 168.915 331.515i 0.454073 0.891169i
\(373\) −302.827 + 302.827i −0.811869 + 0.811869i −0.984914 0.173045i \(-0.944639\pi\)
0.173045 + 0.984914i \(0.444639\pi\)
\(374\) −126.681 + 2.46215i −0.338720 + 0.00658328i
\(375\) 0 0
\(376\) −135.068 415.696i −0.359223 1.10558i
\(377\) 56.0404 + 353.825i 0.148648 + 0.938529i
\(378\) −7.00887 + 44.2522i −0.0185420 + 0.117069i
\(379\) −687.228 223.294i −1.81327 0.589166i −0.999973 0.00731228i \(-0.997672\pi\)
−0.813293 0.581854i \(-0.802328\pi\)
\(380\) 0 0
\(381\) −566.982 + 411.936i −1.48814 + 1.08120i
\(382\) 37.0999 + 234.239i 0.0971200 + 0.613192i
\(383\) −158.162 80.5874i −0.412955 0.210411i 0.235155 0.971958i \(-0.424440\pi\)
−0.648110 + 0.761547i \(0.724440\pi\)
\(384\) 561.408i 1.46200i
\(385\) 0 0
\(386\) −18.3716 −0.0475949
\(387\) −13.1595 + 25.8270i −0.0340039 + 0.0667363i
\(388\) −262.870 + 41.6344i −0.677499 + 0.107305i
\(389\) −125.468 172.692i −0.322540 0.443938i 0.616701 0.787198i \(-0.288469\pi\)
−0.939240 + 0.343260i \(0.888469\pi\)
\(390\) 0 0
\(391\) 130.114 400.449i 0.332771 1.02417i
\(392\) −649.021 102.795i −1.65566 0.262232i
\(393\) 439.454 69.6026i 1.11820 0.177106i
\(394\) −220.233 + 71.5580i −0.558967 + 0.181619i
\(395\) 0 0
\(396\) 222.871 319.638i 0.562806 0.807166i
\(397\) −233.012 233.012i −0.586931 0.586931i 0.349868 0.936799i \(-0.386227\pi\)
−0.936799 + 0.349868i \(0.886227\pi\)
\(398\) −110.983 56.5487i −0.278852 0.142082i
\(399\) 465.921 641.285i 1.16772 1.60723i
\(400\) 0 0
\(401\) 68.5200 210.883i 0.170873 0.525893i −0.828548 0.559918i \(-0.810833\pi\)
0.999421 + 0.0340253i \(0.0108327\pi\)
\(402\) −35.0183 + 17.8427i −0.0871103 + 0.0443849i
\(403\) −57.5495 + 363.353i −0.142803 + 0.901621i
\(404\) −18.0766 + 24.8803i −0.0447440 + 0.0615849i
\(405\) 0 0
\(406\) 219.093 0.539637
\(407\) 61.7242 445.591i 0.151657 1.09482i
\(408\) 267.199 267.199i 0.654900 0.654900i
\(409\) −626.680 + 203.621i −1.53222 + 0.497850i −0.949218 0.314618i \(-0.898123\pi\)
−0.583006 + 0.812468i \(0.698123\pi\)
\(410\) 0 0
\(411\) 262.689 190.855i 0.639146 0.464367i
\(412\) −254.058 + 129.449i −0.616646 + 0.314197i
\(413\) −23.9405 46.9858i −0.0579673 0.113767i
\(414\) −107.454 147.898i −0.259552 0.357242i
\(415\) 0 0
\(416\) 132.801 + 408.718i 0.319232 + 0.982496i
\(417\) 86.2968 + 86.2968i 0.206947 + 0.206947i
\(418\) 93.9738 50.2057i 0.224818 0.120109i
\(419\) 154.214i 0.368052i 0.982921 + 0.184026i \(0.0589131\pi\)
−0.982921 + 0.184026i \(0.941087\pi\)
\(420\) 0 0
\(421\) 39.6777 + 28.8275i 0.0942463 + 0.0684740i 0.633910 0.773406i \(-0.281449\pi\)
−0.539664 + 0.841880i \(0.681449\pi\)
\(422\) −132.877 21.0457i −0.314875 0.0498713i
\(423\) 379.852 + 745.501i 0.897995 + 1.76241i
\(424\) 179.225 + 58.2337i 0.422700 + 0.137344i
\(425\) 0 0
\(426\) −109.553 79.5949i −0.257167 0.186842i
\(427\) 87.4593 171.649i 0.204823 0.401987i
\(428\) 145.884 145.884i 0.340850 0.340850i
\(429\) −211.581 + 696.982i −0.493195 + 1.62467i
\(430\) 0 0
\(431\) 255.703 + 786.973i 0.593279 + 1.82592i 0.563114 + 0.826379i \(0.309603\pi\)
0.0301645 + 0.999545i \(0.490397\pi\)
\(432\) 7.79696 + 49.2281i 0.0180485 + 0.113954i
\(433\) 46.0859 290.975i 0.106434 0.671998i −0.875563 0.483103i \(-0.839510\pi\)
0.981997 0.188895i \(-0.0604904\pi\)
\(434\) 213.980 + 69.5265i 0.493043 + 0.160199i
\(435\) 0 0
\(436\) 533.250 387.429i 1.22305 0.888598i
\(437\) 55.3871 + 349.700i 0.126744 + 0.800230i
\(438\) 51.8712 + 26.4297i 0.118427 + 0.0603418i
\(439\) 29.9375i 0.0681948i −0.999419 0.0340974i \(-0.989144\pi\)
0.999419 0.0340974i \(-0.0108557\pi\)
\(440\) 0 0
\(441\) 1257.87 2.85231
\(442\) −79.2193 + 155.477i −0.179229 + 0.351757i
\(443\) −418.383 + 66.2654i −0.944431 + 0.149583i −0.609613 0.792699i \(-0.708675\pi\)
−0.334819 + 0.942283i \(0.608675\pi\)
\(444\) 368.285 + 506.901i 0.829472 + 1.14167i
\(445\) 0 0
\(446\) −19.7960 + 60.9258i −0.0443856 + 0.136605i
\(447\) 708.665 + 112.242i 1.58538 + 0.251100i
\(448\) −276.699 + 43.8248i −0.617631 + 0.0978231i
\(449\) 40.8177 13.2625i 0.0909081 0.0295378i −0.263210 0.964739i \(-0.584781\pi\)
0.354118 + 0.935201i \(0.384781\pi\)
\(450\) 0 0
\(451\) 50.3897 72.2681i 0.111729 0.160240i
\(452\) 382.394 + 382.394i 0.846005 + 0.846005i
\(453\) −377.104 192.144i −0.832459 0.424159i
\(454\) 78.0089 107.370i 0.171826 0.236498i
\(455\) 0 0
\(456\) −98.1902 + 302.198i −0.215329 + 0.662716i
\(457\) −74.0125 + 37.7112i −0.161953 + 0.0825191i −0.533088 0.846060i \(-0.678969\pi\)
0.371135 + 0.928579i \(0.378969\pi\)
\(458\) −46.2299 + 291.884i −0.100939 + 0.637301i
\(459\) −46.5434 + 64.0615i −0.101402 + 0.139568i
\(460\) 0 0
\(461\) −130.682 −0.283475 −0.141738 0.989904i \(-0.545269\pi\)
−0.141738 + 0.989904i \(0.545269\pi\)
\(462\) 400.775 + 194.490i 0.867479 + 0.420974i
\(463\) 199.934 199.934i 0.431823 0.431823i −0.457425 0.889248i \(-0.651228\pi\)
0.889248 + 0.457425i \(0.151228\pi\)
\(464\) 231.799 75.3161i 0.499567 0.162319i
\(465\) 0 0
\(466\) 42.4129 30.8147i 0.0910147 0.0661261i
\(467\) 420.327 214.167i 0.900057 0.458602i 0.0582017 0.998305i \(-0.481463\pi\)
0.841856 + 0.539703i \(0.181463\pi\)
\(468\) −243.629 478.149i −0.520575 1.02169i
\(469\) 98.9491 + 136.192i 0.210979 + 0.290388i
\(470\) 0 0
\(471\) 263.589 + 811.243i 0.559636 + 1.72238i
\(472\) 14.9473 + 14.9473i 0.0316680 + 0.0316680i
\(473\) 22.7381 + 21.8711i 0.0480721 + 0.0462391i
\(474\) 50.9202i 0.107427i
\(475\) 0 0
\(476\) −611.552 444.319i −1.28477 0.933443i
\(477\) −356.295 56.4315i −0.746949 0.118305i
\(478\) −121.448 238.355i −0.254075 0.498650i
\(479\) 31.1473 + 10.1204i 0.0650256 + 0.0211281i 0.341349 0.939937i \(-0.389116\pi\)
−0.276324 + 0.961065i \(0.589116\pi\)
\(480\) 0 0
\(481\) −501.199 364.142i −1.04199 0.757053i
\(482\) −64.0553 + 125.716i −0.132895 + 0.260821i
\(483\) −1046.77 + 1046.77i −2.16723 + 2.16723i
\(484\) −262.438 333.177i −0.542227 0.688382i
\(485\) 0 0
\(486\) −75.8019 233.294i −0.155971 0.480029i
\(487\) −28.7971 181.818i −0.0591317 0.373343i −0.999453 0.0330563i \(-0.989476\pi\)
0.940322 0.340287i \(-0.110524\pi\)
\(488\) −12.0805 + 76.2731i −0.0247551 + 0.156297i
\(489\) 313.733 + 101.938i 0.641580 + 0.208462i
\(490\) 0 0
\(491\) −59.1038 + 42.9414i −0.120374 + 0.0874571i −0.646344 0.763047i \(-0.723703\pi\)
0.525969 + 0.850504i \(0.323703\pi\)
\(492\) 19.1962 + 121.200i 0.0390168 + 0.246342i
\(493\) 345.011 + 175.792i 0.699820 + 0.356576i
\(494\) 146.730i 0.297025i
\(495\) 0 0
\(496\) 250.291 0.504619
\(497\) −263.325 + 516.804i −0.529829 + 1.03985i
\(498\) 268.492 42.5250i 0.539141 0.0853916i
\(499\) 347.130 + 477.783i 0.695651 + 0.957481i 0.999988 + 0.00491681i \(0.00156508\pi\)
−0.304337 + 0.952564i \(0.598435\pi\)
\(500\) 0 0
\(501\) 122.645 377.461i 0.244800 0.753416i
\(502\) 292.690 + 46.3575i 0.583048 + 0.0923457i
\(503\) −218.725 + 34.6426i −0.434840 + 0.0688719i −0.370017 0.929025i \(-0.620648\pi\)
−0.0648228 + 0.997897i \(0.520648\pi\)
\(504\) −668.344 + 217.158i −1.32608 + 0.430870i
\(505\) 0 0
\(506\) −188.009 + 65.1532i −0.371558 + 0.128761i
\(507\) 186.965 + 186.965i 0.368766 + 0.368766i
\(508\) −500.738 255.139i −0.985704 0.502241i
\(509\) 135.399 186.360i 0.266009 0.366130i −0.655028 0.755605i \(-0.727343\pi\)
0.921037 + 0.389474i \(0.127343\pi\)
\(510\) 0 0
\(511\) 77.0560 237.154i 0.150795 0.464098i
\(512\) 454.451 231.554i 0.887600 0.452255i
\(513\) 10.4162 65.7651i 0.0203044 0.128197i
\(514\) 119.649 164.683i 0.232781 0.320395i
\(515\) 0 0
\(516\) −43.9434 −0.0851617
\(517\) 896.531 159.914i 1.73410 0.309311i
\(518\) −267.915 + 267.915i −0.517210 + 0.517210i
\(519\) −463.107 + 150.473i −0.892307 + 0.289928i
\(520\) 0 0
\(521\) 360.809 262.143i 0.692531 0.503153i −0.184960 0.982746i \(-0.559216\pi\)
0.877491 + 0.479593i \(0.159216\pi\)
\(522\) 149.795 76.3245i 0.286964 0.146216i
\(523\) −1.31625 2.58329i −0.00251673 0.00493937i 0.889745 0.456458i \(-0.150882\pi\)
−0.892261 + 0.451519i \(0.850882\pi\)
\(524\) 209.715 + 288.648i 0.400220 + 0.550855i
\(525\) 0 0
\(526\) 68.6034 + 211.140i 0.130425 + 0.401406i
\(527\) 281.175 + 281.175i 0.533539 + 0.533539i
\(528\) 490.877 + 67.9974i 0.929691 + 0.128783i
\(529\) 132.227i 0.249956i
\(530\) 0 0
\(531\) −32.7366 23.7845i −0.0616508 0.0447919i
\(532\) 627.815 + 99.4361i 1.18010 + 0.186910i
\(533\) −55.0830 108.106i −0.103345 0.202826i
\(534\) 374.159 + 121.571i 0.700671 + 0.227662i
\(535\) 0 0
\(536\) −54.5938 39.6647i −0.101854 0.0740013i
\(537\) −216.762 + 425.419i −0.403653 + 0.792214i
\(538\) 3.56375 3.56375i 0.00662408 0.00662408i
\(539\) 397.693 1310.07i 0.737835 2.43055i
\(540\) 0 0
\(541\) 182.354 + 561.227i 0.337068 + 1.03739i 0.965695 + 0.259680i \(0.0836172\pi\)
−0.628627 + 0.777707i \(0.716383\pi\)
\(542\) 0.896269 + 5.65882i 0.00165363 + 0.0104406i
\(543\) 61.3508 387.353i 0.112985 0.713358i
\(544\) 441.781 + 143.543i 0.812098 + 0.263867i
\(545\) 0 0
\(546\) 496.329 360.604i 0.909027 0.660447i
\(547\) 31.5603 + 199.264i 0.0576971 + 0.364285i 0.999597 + 0.0283912i \(0.00903841\pi\)
−0.941900 + 0.335894i \(0.890962\pi\)
\(548\) 231.998 + 118.209i 0.423353 + 0.215709i
\(549\) 147.825i 0.269263i
\(550\) 0 0
\(551\) −325.603 −0.590930
\(552\) 269.406 528.738i 0.488054 0.957860i
\(553\) −215.421 + 34.1194i −0.389550 + 0.0616987i
\(554\) 44.7387 + 61.5776i 0.0807558 + 0.111151i
\(555\) 0 0
\(556\) −30.2420 + 93.0752i −0.0543920 + 0.167401i
\(557\) 50.4026 + 7.98299i 0.0904894 + 0.0143321i 0.201515 0.979485i \(-0.435414\pi\)
−0.111026 + 0.993818i \(0.535414\pi\)
\(558\) 170.521 27.0078i 0.305593 0.0484011i
\(559\) 41.3226 13.4265i 0.0739223 0.0240188i
\(560\) 0 0
\(561\) 475.060 + 627.835i 0.846809 + 1.11914i
\(562\) −240.218 240.218i −0.427435 0.427435i
\(563\) 391.463 + 199.460i 0.695317 + 0.354281i 0.765664 0.643241i \(-0.222411\pi\)
−0.0703471 + 0.997523i \(0.522411\pi\)
\(564\) −745.569 + 1026.19i −1.32193 + 1.81948i
\(565\) 0 0
\(566\) −76.0539 + 234.070i −0.134371 + 0.413551i
\(567\) −819.330 + 417.470i −1.44503 + 0.736278i
\(568\) 36.3722 229.645i 0.0640356 0.404305i
\(569\) 202.911 279.283i 0.356609 0.490831i −0.592591 0.805504i \(-0.701895\pi\)
0.949200 + 0.314673i \(0.101895\pi\)
\(570\) 0 0
\(571\) −326.598 −0.571975 −0.285987 0.958233i \(-0.592322\pi\)
−0.285987 + 0.958233i \(0.592322\pi\)
\(572\) −575.017 + 102.565i −1.00527 + 0.179310i
\(573\) 1042.02 1042.02i 1.81854 1.81854i
\(574\) −70.5725 + 22.9304i −0.122949 + 0.0399484i
\(575\) 0 0
\(576\) −173.914 + 126.356i −0.301934 + 0.219368i
\(577\) 24.0532 12.2557i 0.0416867 0.0212404i −0.433023 0.901383i \(-0.642553\pi\)
0.474710 + 0.880142i \(0.342553\pi\)
\(578\) −6.66806 13.0868i −0.0115364 0.0226415i
\(579\) 67.0993 + 92.3543i 0.115888 + 0.159507i
\(580\) 0 0
\(581\) −359.810 1107.38i −0.619294 1.90599i
\(582\) −165.091 165.091i −0.283662 0.283662i
\(583\) −171.421 + 353.238i −0.294032 + 0.605896i
\(584\) 99.9577i 0.171160i
\(585\) 0 0
\(586\) −24.4558 17.7682i −0.0417335 0.0303212i
\(587\) −607.382 96.1998i −1.03472 0.163884i −0.384105 0.923290i \(-0.625490\pi\)
−0.650617 + 0.759406i \(0.725490\pi\)
\(588\) 865.734 + 1699.10i 1.47234 + 2.88962i
\(589\) −318.005 103.326i −0.539907 0.175426i
\(590\) 0 0
\(591\) 1164.09 + 845.759i 1.96969 + 1.43106i
\(592\) −191.353 + 375.552i −0.323232 + 0.634378i
\(593\) −76.0314 + 76.0314i −0.128215 + 0.128215i −0.768302 0.640087i \(-0.778898\pi\)
0.640087 + 0.768302i \(0.278898\pi\)
\(594\) 37.4129 0.727149i 0.0629847 0.00122416i
\(595\) 0 0
\(596\) 177.796 + 547.199i 0.298315 + 0.918120i
\(597\) 121.077 + 764.448i 0.202808 + 1.28048i
\(598\) −42.8673 + 270.654i −0.0716845 + 0.452598i
\(599\) 117.889 + 38.3046i 0.196810 + 0.0639475i 0.405763 0.913978i \(-0.367006\pi\)
−0.208953 + 0.977926i \(0.567006\pi\)
\(600\) 0 0
\(601\) −621.369 + 451.451i −1.03389 + 0.751167i −0.969084 0.246731i \(-0.920644\pi\)
−0.0648083 + 0.997898i \(0.520644\pi\)
\(602\) −4.15693 26.2458i −0.00690519 0.0435977i
\(603\) 115.097 + 58.6448i 0.190874 + 0.0972551i
\(604\) 339.389i 0.561903i
\(605\) 0 0
\(606\) −26.9784 −0.0445189
\(607\) 541.208 1062.18i 0.891612 1.74989i 0.277382 0.960760i \(-0.410533\pi\)
0.614230 0.789127i \(-0.289467\pi\)
\(608\) −385.795 + 61.1039i −0.634531 + 0.100500i
\(609\) −800.200 1101.38i −1.31396 1.80851i
\(610\) 0 0
\(611\) 387.559 1192.79i 0.634303 1.95219i
\(612\) −572.909 90.7398i −0.936125 0.148268i
\(613\) −797.332 + 126.285i −1.30071 + 0.206011i −0.768088 0.640345i \(-0.778792\pi\)
−0.532617 + 0.846356i \(0.678792\pi\)
\(614\) −182.613 + 59.3345i −0.297415 + 0.0966360i
\(615\) 0 0
\(616\) 14.8632 + 764.735i 0.0241286 + 1.24145i
\(617\) 235.936 + 235.936i 0.382392 + 0.382392i 0.871963 0.489571i \(-0.162847\pi\)
−0.489571 + 0.871963i \(0.662847\pi\)
\(618\) −222.870 113.558i −0.360631 0.183751i
\(619\) −176.392 + 242.783i −0.284963 + 0.392218i −0.927370 0.374146i \(-0.877936\pi\)
0.642407 + 0.766364i \(0.277936\pi\)
\(620\) 0 0
\(621\) −38.4266 + 118.265i −0.0618786 + 0.190443i
\(622\) −318.991 + 162.534i −0.512848 + 0.261309i
\(623\) 263.609 1664.36i 0.423129 2.67153i
\(624\) 401.151 552.137i 0.642871 0.884835i
\(625\) 0 0
\(626\) 125.163 0.199940
\(627\) −595.608 289.039i −0.949934 0.460987i
\(628\) −483.668 + 483.668i −0.770172 + 0.770172i
\(629\) −636.857 + 206.927i −1.01249 + 0.328978i
\(630\) 0 0
\(631\) −13.7479 + 9.98844i −0.0217875 + 0.0158295i −0.598626 0.801029i \(-0.704286\pi\)
0.576838 + 0.816858i \(0.304286\pi\)
\(632\) 77.9007 39.6924i 0.123261 0.0628044i
\(633\) 379.515 + 744.841i 0.599550 + 1.17668i
\(634\) −142.397 195.993i −0.224601 0.309137i
\(635\) 0 0
\(636\) −168.995 520.113i −0.265715 0.817787i
\(637\) −1333.24 1333.24i −2.09300 2.09300i
\(638\) −32.1318 180.142i −0.0503634 0.282355i
\(639\) 445.076i 0.696520i
\(640\) 0 0
\(641\) −365.294 265.402i −0.569882 0.414043i 0.265181 0.964199i \(-0.414568\pi\)
−0.835062 + 0.550156i \(0.814568\pi\)
\(642\) 178.756 + 28.3122i 0.278436 + 0.0441000i
\(643\) −527.892 1036.05i −0.820983 1.61127i −0.791077 0.611716i \(-0.790479\pi\)
−0.0299052 0.999553i \(-0.509521\pi\)
\(644\) −1129.00 366.833i −1.75310 0.569616i
\(645\) 0 0
\(646\) −128.310 93.2227i −0.198622 0.144308i
\(647\) 29.5178 57.9320i 0.0456226 0.0895395i −0.867070 0.498187i \(-0.833999\pi\)
0.912692 + 0.408647i \(0.133999\pi\)
\(648\) 260.648 260.648i 0.402235 0.402235i
\(649\) −35.1216 + 26.5752i −0.0541164 + 0.0409479i
\(650\) 0 0
\(651\) −432.018 1329.62i −0.663623 2.04242i
\(652\) 41.3813 + 261.271i 0.0634682 + 0.400722i
\(653\) −129.098 + 815.090i −0.197699 + 1.24822i 0.666665 + 0.745358i \(0.267721\pi\)
−0.864364 + 0.502866i \(0.832279\pi\)
\(654\) 549.918 + 178.679i 0.840854 + 0.273210i
\(655\) 0 0
\(656\) −66.7828 + 48.5206i −0.101803 + 0.0739643i
\(657\) −29.9327 188.988i −0.0455597 0.287653i
\(658\) −683.432 348.226i −1.03865 0.529219i
\(659\) 162.422i 0.246467i −0.992378 0.123234i \(-0.960674\pi\)
0.992378 0.123234i \(-0.0393264\pi\)
\(660\) 0 0
\(661\) −665.501 −1.00681 −0.503405 0.864051i \(-0.667920\pi\)
−0.503405 + 0.864051i \(0.667920\pi\)
\(662\) 118.544 232.656i 0.179069 0.351443i
\(663\) 1070.92 169.617i 1.61526 0.255832i
\(664\) 274.348 + 377.607i 0.413174 + 0.568686i
\(665\) 0 0
\(666\) −89.8428 + 276.508i −0.134899 + 0.415177i
\(667\) 600.596 + 95.1250i 0.900443 + 0.142616i
\(668\) 314.343 49.7871i 0.470574 0.0745315i
\(669\) 378.576 123.007i 0.565883 0.183867i
\(670\) 0 0
\(671\) −153.959 46.7370i −0.229448 0.0696527i
\(672\) −1154.82 1154.82i −1.71848 1.71848i
\(673\) −476.355 242.715i −0.707808 0.360646i 0.0627386 0.998030i \(-0.480017\pi\)
−0.770546 + 0.637384i \(0.780017\pi\)
\(674\) 212.398 292.341i 0.315130 0.433740i
\(675\) 0 0
\(676\) −65.5201 + 201.650i −0.0969232 + 0.298299i
\(677\) −434.836 + 221.560i −0.642298 + 0.327267i −0.744624 0.667484i \(-0.767371\pi\)
0.102326 + 0.994751i \(0.467371\pi\)
\(678\) −74.2126 + 468.560i −0.109458 + 0.691092i
\(679\) −587.809 + 809.050i −0.865699 + 1.19153i
\(680\) 0 0
\(681\) −824.665 −1.21096
\(682\) 25.7839 186.135i 0.0378063 0.272926i
\(683\) −586.916 + 586.916i −0.859321 + 0.859321i −0.991258 0.131937i \(-0.957880\pi\)
0.131937 + 0.991258i \(0.457880\pi\)
\(684\) 463.882 150.724i 0.678190 0.220357i
\(685\) 0 0
\(686\) −565.635 + 410.958i −0.824541 + 0.599064i
\(687\) 1636.15 833.660i 2.38159 1.21348i
\(688\) −13.4204 26.3389i −0.0195063 0.0382834i
\(689\) 317.831 + 437.457i 0.461294 + 0.634916i
\(690\) 0 0
\(691\) −210.321 647.301i −0.304372 0.936759i −0.979911 0.199435i \(-0.936089\pi\)
0.675539 0.737324i \(-0.263911\pi\)
\(692\) −276.107 276.107i −0.398999 0.398999i
\(693\) −257.104 1441.42i −0.371002 2.07997i
\(694\) 318.370i 0.458747i
\(695\) 0 0
\(696\) 441.499 + 320.768i 0.634337 + 0.460873i
\(697\) −129.531 20.5157i −0.185841 0.0294343i
\(698\) 132.982 + 260.992i 0.190519 + 0.373914i
\(699\) −309.812 100.664i −0.443222 0.144011i
\(700\) 0 0
\(701\) 306.948 + 223.011i 0.437872 + 0.318133i 0.784789 0.619763i \(-0.212771\pi\)
−0.346917 + 0.937896i \(0.612771\pi\)
\(702\) 23.3959 45.9171i 0.0333275 0.0654089i
\(703\) 398.159 398.159i 0.566371 0.566371i
\(704\) 76.6138 + 221.080i 0.108826 + 0.314033i
\(705\) 0 0
\(706\) 11.4643 + 35.2834i 0.0162383 + 0.0499765i
\(707\) 18.0771 + 114.134i 0.0255687 + 0.161434i
\(708\) 9.59643 60.5895i 0.0135543 0.0855783i
\(709\) 496.742 + 161.401i 0.700623 + 0.227646i 0.637602 0.770366i \(-0.279926\pi\)
0.0630213 + 0.998012i \(0.479926\pi\)
\(710\) 0 0
\(711\) −135.399 + 98.3732i −0.190435 + 0.138359i
\(712\) 105.670 + 667.175i 0.148413 + 0.937044i
\(713\) 556.395 + 283.497i 0.780357 + 0.397612i
\(714\) 663.124i 0.928745i
\(715\) 0 0
\(716\) −382.872 −0.534738
\(717\) −754.643 + 1481.07i −1.05250 + 2.06565i
\(718\) −36.4018 + 5.76547i −0.0506988 + 0.00802991i
\(719\) 661.760 + 910.834i 0.920389 + 1.26681i 0.963492 + 0.267736i \(0.0862755\pi\)
−0.0431034 + 0.999071i \(0.513724\pi\)
\(720\) 0 0
\(721\) −331.080 + 1018.96i −0.459195 + 1.41326i
\(722\) −119.099 18.8634i −0.164957 0.0261266i
\(723\) 865.925 137.149i 1.19768 0.189694i
\(724\) 299.097 97.1824i 0.413117 0.134230i
\(725\) 0 0
\(726\) 101.136 358.049i 0.139306 0.493180i
\(727\) 417.576 + 417.576i 0.574382 + 0.574382i 0.933350 0.358968i \(-0.116871\pi\)
−0.358968 + 0.933350i \(0.616871\pi\)
\(728\) 938.563 + 478.222i 1.28923 + 0.656898i
\(729\) −526.571 + 724.763i −0.722320 + 0.994188i
\(730\) 0 0
\(731\) 14.5126 44.6653i 0.0198531 0.0611017i
\(732\) 199.679 101.741i 0.272785 0.138991i
\(733\) −88.4052 + 558.168i −0.120607 + 0.761485i 0.851049 + 0.525086i \(0.175967\pi\)
−0.971656 + 0.236398i \(0.924033\pi\)
\(734\) −167.604 + 230.686i −0.228343 + 0.314287i
\(735\) 0 0
\(736\) 729.476 0.991136
\(737\) 97.4677 101.332i 0.132249 0.137492i
\(738\) −40.2628 + 40.2628i −0.0545566 + 0.0545566i
\(739\) −50.0728 + 16.2696i −0.0677575 + 0.0220157i −0.342700 0.939445i \(-0.611341\pi\)
0.274942 + 0.961461i \(0.411341\pi\)
\(740\) 0 0
\(741\) −737.614 + 535.908i −0.995431 + 0.723223i
\(742\) 294.658 150.136i 0.397113 0.202339i
\(743\) 83.3096 + 163.504i 0.112126 + 0.220060i 0.940250 0.340486i \(-0.110592\pi\)
−0.828124 + 0.560545i \(0.810592\pi\)
\(744\) 329.405 + 453.387i 0.442749 + 0.609392i
\(745\) 0 0
\(746\) −93.0955 286.519i −0.124793 0.384073i
\(747\) −631.779 631.779i −0.845755 0.845755i
\(748\) −275.638 + 567.993i −0.368500 + 0.759349i
\(749\) 775.210i 1.03499i
\(750\) 0 0
\(751\) −733.343 532.805i −0.976488 0.709460i −0.0195674 0.999809i \(-0.506229\pi\)
−0.956921 + 0.290348i \(0.906229\pi\)
\(752\) −842.776 133.483i −1.12071 0.177504i
\(753\) −835.962 1640.67i −1.11018 2.17884i
\(754\) −239.669 77.8732i −0.317864 0.103280i
\(755\) 0 0
\(756\) 180.610 + 131.221i 0.238903 + 0.173573i
\(757\) 323.576 635.055i 0.427446 0.838910i −0.572375 0.819992i \(-0.693978\pi\)
0.999821 0.0189178i \(-0.00602207\pi\)
\(758\) 359.432 359.432i 0.474184 0.474184i
\(759\) 1014.20 + 707.159i 1.33623 + 0.931699i
\(760\) 0 0
\(761\) 291.455 + 897.006i 0.382989 + 1.17872i 0.937928 + 0.346829i \(0.112741\pi\)
−0.554939 + 0.831891i \(0.687259\pi\)
\(762\) −77.1224 486.932i −0.101211 0.639018i
\(763\) 387.439 2446.19i 0.507783 3.20602i
\(764\) 1123.87 + 365.167i 1.47103 + 0.477968i
\(765\) 0 0
\(766\) 101.022 73.3966i 0.131882 0.0958180i
\(767\) 9.48847 + 59.9079i 0.0123709 + 0.0781067i
\(768\) 20.5117 + 10.4512i 0.0267079 + 0.0136084i
\(769\) 220.165i 0.286301i 0.989701 + 0.143150i \(0.0457232\pi\)
−0.989701 + 0.143150i \(0.954277\pi\)
\(770\) 0 0
\(771\) −1264.86 −1.64055
\(772\) −41.5589 + 81.5639i −0.0538328 + 0.105653i
\(773\) 1243.99 197.028i 1.60930 0.254887i 0.713930 0.700217i \(-0.246914\pi\)
0.895367 + 0.445330i \(0.146914\pi\)
\(774\) −11.9853 16.4963i −0.0154848 0.0213131i
\(775\) 0 0
\(776\) 123.877 381.256i 0.159636 0.491309i
\(777\) 2325.32 + 368.295i 2.99269 + 0.473996i
\(778\) 148.310 23.4900i 0.190630 0.0301928i
\(779\) 104.881 34.0778i 0.134635 0.0437456i
\(780\) 0 0
\(781\) 463.545 + 140.717i 0.593528 + 0.180175i
\(782\) 209.441 + 209.441i 0.267828 + 0.267828i
\(783\) −101.893 51.9168i −0.130131 0.0663050i
\(784\) −754.015 + 1037.81i −0.961753 + 1.32374i
\(785\) 0 0
\(786\) −96.7191 + 297.671i −0.123052 + 0.378716i
\(787\) −862.761 + 439.599i −1.09627 + 0.558575i −0.906052 0.423167i \(-0.860918\pi\)
−0.190214 + 0.981743i \(0.560918\pi\)
\(788\) −180.500 + 1139.63i −0.229061 + 1.44624i
\(789\) 810.837 1116.02i 1.02768 1.41448i
\(790\) 0 0
\(791\) 2032.00 2.56890
\(792\) 276.570 + 517.677i 0.349205 + 0.653633i
\(793\) −156.683 + 156.683i −0.197583 + 0.197583i
\(794\) 220.463 71.6328i 0.277661 0.0902176i
\(795\) 0 0
\(796\) −502.115 + 364.808i −0.630798 + 0.458302i
\(797\) 44.2726 22.5580i 0.0555490 0.0283036i −0.425995 0.904725i \(-0.640076\pi\)
0.481544 + 0.876422i \(0.340076\pi\)
\(798\) 253.150 + 496.834i 0.317230 + 0.622599i
\(799\) −796.815 1096.72i −0.997266 1.37262i
\(800\) 0 0
\(801\) −399.576 1229.77i −0.498847 1.53529i
\(802\) 110.295 + 110.295i 0.137525 + 0.137525i
\(803\) −206.294 28.5762i −0.256903 0.0355869i
\(804\) 195.832i 0.243573i
\(805\) 0 0
\(806\) −209.365 152.112i −0.259758 0.188725i
\(807\) −30.9310 4.89900i −0.0383284 0.00607063i
\(808\) −21.0297 41.2732i −0.0260269 0.0510807i
\(809\) −599.027 194.636i −0.740454 0.240588i −0.0855854 0.996331i \(-0.527276\pi\)
−0.654869 + 0.755743i \(0.727276\pi\)
\(810\) 0 0
\(811\) 542.416 + 394.089i 0.668824 + 0.485929i 0.869631 0.493702i \(-0.164356\pi\)
−0.200807 + 0.979631i \(0.564356\pi\)
\(812\) 495.615 972.700i 0.610363 1.19791i
\(813\) 25.1734 25.1734i 0.0309636 0.0309636i
\(814\) 259.576 + 180.993i 0.318890 + 0.222350i
\(815\) 0 0
\(816\) −227.958 701.583i −0.279360 0.859783i
\(817\) 6.17778 + 39.0049i 0.00756154 + 0.0477417i
\(818\) 72.5118 457.821i 0.0886452 0.559684i
\(819\) −1917.72 623.106i −2.34154 0.760814i
\(820\) 0 0
\(821\) 199.936 145.262i 0.243528 0.176933i −0.459326 0.888268i \(-0.651909\pi\)
0.702854 + 0.711335i \(0.251909\pi\)
\(822\) 35.7317 + 225.601i 0.0434692 + 0.274454i
\(823\) −666.072 339.381i −0.809322 0.412370i −0.000192247 1.00000i \(-0.500061\pi\)
−0.809130 + 0.587630i \(0.800061\pi\)
\(824\) 429.479i 0.521212i
\(825\) 0 0
\(826\) 37.0956 0.0449100
\(827\) −450.337 + 883.836i −0.544543 + 1.06873i 0.440714 + 0.897647i \(0.354725\pi\)
−0.985257 + 0.171078i \(0.945275\pi\)
\(828\) −899.695 + 142.498i −1.08659 + 0.172099i
\(829\) −240.484 330.998i −0.290090 0.399274i 0.638954 0.769245i \(-0.279368\pi\)
−0.929043 + 0.369971i \(0.879368\pi\)
\(830\) 0 0
\(831\) 146.150 449.804i 0.175873 0.541280i
\(832\) 318.262 + 50.4078i 0.382527 + 0.0605863i
\(833\) −2012.92 + 318.816i −2.41648 + 0.382732i
\(834\) −81.6493 + 26.5295i −0.0979009 + 0.0318099i
\(835\) 0 0
\(836\) −10.3162 530.784i −0.0123399 0.634910i
\(837\) −83.0398 83.0398i −0.0992112 0.0992112i
\(838\) −96.6587 49.2501i −0.115345 0.0587710i
\(839\) 880.069 1211.31i 1.04895 1.44376i 0.159234 0.987241i \(-0.449098\pi\)
0.889716 0.456515i \(-0.150902\pi\)
\(840\) 0 0
\(841\) 87.0783 267.999i 0.103541 0.318667i
\(842\) −30.7402 + 15.6629i −0.0365085 + 0.0186020i
\(843\) −330.222 + 2084.94i −0.391722 + 2.47324i
\(844\) −394.021 + 542.323i −0.466849 + 0.642563i
\(845\) 0 0
\(846\) −588.578 −0.695719
\(847\) −1582.52 187.950i −1.86838 0.221901i
\(848\) 260.135 260.135i 0.306763 0.306763i
\(849\) 1454.45 472.578i 1.71313 0.556629i
\(850\) 0 0
\(851\) −850.753 + 618.108i −0.999710 + 0.726332i
\(852\) −601.197 + 306.325i −0.705631 + 0.359537i
\(853\) 325.133 + 638.110i 0.381164 + 0.748077i 0.999277 0.0380123i \(-0.0121026\pi\)
−0.618113 + 0.786089i \(0.712103\pi\)
\(854\) 79.6553 + 109.636i 0.0932732 + 0.128380i
\(855\) 0 0
\(856\) 96.0271 + 295.541i 0.112181 + 0.345258i
\(857\) −626.565 626.565i −0.731114 0.731114i 0.239726 0.970841i \(-0.422942\pi\)
−0.970841 + 0.239726i \(0.922942\pi\)
\(858\) −369.286 355.205i −0.430404 0.413992i
\(859\) 842.626i 0.980938i −0.871459 0.490469i \(-0.836825\pi\)
0.871459 0.490469i \(-0.163175\pi\)
\(860\) 0 0
\(861\) 373.026 + 271.019i 0.433247 + 0.314773i
\(862\) −574.924 91.0590i −0.666965 0.105637i
\(863\) 450.407 + 883.974i 0.521909 + 1.02430i 0.990059 + 0.140655i \(0.0449208\pi\)
−0.468150 + 0.883649i \(0.655079\pi\)
\(864\) −130.472 42.3928i −0.151009 0.0490658i
\(865\) 0 0
\(866\) 167.660 + 121.812i 0.193603 + 0.140661i
\(867\) −41.4335 + 81.3178i −0.0477895 + 0.0937922i
\(868\) 792.725 792.725i 0.913278 0.913278i
\(869\) 59.6470 + 172.120i 0.0686386 + 0.198066i
\(870\) 0 0
\(871\) −59.8348 184.153i −0.0686966 0.211427i
\(872\) 155.308 + 980.579i 0.178106 + 1.12452i
\(873\) −120.044 + 757.927i −0.137507 + 0.868186i
\(874\) −236.875 76.9653i −0.271024 0.0880610i
\(875\) 0 0
\(876\) 234.678 170.504i 0.267898 0.194639i
\(877\) −93.2731 588.903i −0.106355 0.671497i −0.982048 0.188630i \(-0.939595\pi\)
0.875693 0.482867i \(-0.160405\pi\)
\(878\) 18.7644 + 9.56092i 0.0213717 + 0.0108894i
\(879\) 187.835i 0.213692i
\(880\) 0 0
\(881\) 1087.40 1.23428 0.617138 0.786855i \(-0.288292\pi\)
0.617138 + 0.786855i \(0.288292\pi\)
\(882\) −401.716 + 788.413i −0.455461 + 0.893892i
\(883\) −283.520 + 44.9052i −0.321088 + 0.0508553i −0.314898 0.949126i \(-0.601970\pi\)
−0.00618976 + 0.999981i \(0.501970\pi\)
\(884\) 511.061 + 703.415i 0.578123 + 0.795718i
\(885\) 0 0
\(886\) 92.0817 283.398i 0.103930 0.319863i
\(887\) 588.141 + 93.1524i 0.663068 + 0.105020i 0.478892 0.877874i \(-0.341038\pi\)
0.184176 + 0.982893i \(0.441038\pi\)
\(888\) −932.127 + 147.634i −1.04969 + 0.166255i
\(889\) −2008.32 + 652.543i −2.25908 + 0.734020i
\(890\) 0 0
\(891\) 463.413 + 612.443i 0.520105 + 0.687366i
\(892\) 225.709 + 225.709i 0.253037 + 0.253037i
\(893\) 1015.68 + 517.513i 1.13738 + 0.579522i
\(894\) −296.672 + 408.334i −0.331848 + 0.456750i
\(895\) 0 0
\(896\) 522.729 1608.79i 0.583402 1.79553i
\(897\) 1517.14 773.024i 1.69135 0.861788i
\(898\) −4.72293 + 29.8194i −0.00525939 + 0.0332065i
\(899\) −337.546 + 464.592i −0.375468 + 0.516787i
\(900\) 0 0
\(901\) 584.468 0.648688
\(902\) 29.2039 + 54.6631i 0.0323768 + 0.0606021i
\(903\) −116.755 + 116.755i −0.129297 + 0.129297i
\(904\) −774.680 + 251.709i −0.856947 + 0.278439i
\(905\) 0 0
\(906\) 240.866 174.999i 0.265856 0.193156i
\(907\) 29.1369 14.8460i 0.0321245 0.0163682i −0.437854 0.899046i \(-0.644261\pi\)
0.469979 + 0.882678i \(0.344261\pi\)
\(908\) −300.222 589.218i −0.330641 0.648919i
\(909\) 52.1199 + 71.7369i 0.0573376 + 0.0789184i
\(910\) 0 0
\(911\) 236.993 + 729.389i 0.260146 + 0.800646i 0.992772 + 0.120015i \(0.0382943\pi\)
−0.732626 + 0.680631i \(0.761706\pi\)
\(912\) 438.625 + 438.625i 0.480948 + 0.480948i
\(913\) −857.740 + 458.249i −0.939475 + 0.501916i
\(914\) 58.4333i 0.0639314i
\(915\) 0 0
\(916\) 1191.29 + 865.523i 1.30054 + 0.944894i
\(917\) 1324.12 + 209.721i 1.44397 + 0.228703i
\(918\) −25.2885 49.6315i −0.0275474 0.0540648i
\(919\) −441.604 143.486i −0.480526 0.156132i 0.0587304 0.998274i \(-0.481295\pi\)
−0.539257 + 0.842141i \(0.681295\pi\)
\(920\) 0 0
\(921\) 965.238 + 701.286i 1.04803 + 0.761440i
\(922\) 41.7349 81.9093i 0.0452656 0.0888388i
\(923\) 471.746 471.746i 0.511101 0.511101i
\(924\) 1770.07 1339.35i 1.91566 1.44951i
\(925\) 0 0
\(926\) 61.4640 + 189.167i 0.0663759 + 0.204284i
\(927\) 128.609 + 812.006i 0.138737 + 0.875951i
\(928\) −104.943 + 662.587i −0.113086 + 0.713994i
\(929\) −1166.82 379.121i −1.25599 0.408096i −0.395927 0.918282i \(-0.629577\pi\)
−0.860064 + 0.510186i \(0.829577\pi\)
\(930\) 0 0
\(931\) 1386.44 1007.31i 1.48919 1.08196i
\(932\) −40.8641 258.006i −0.0438456 0.276830i
\(933\) 1982.12 + 1009.94i 2.12446 + 1.08247i
\(934\) 331.851i 0.355301i
\(935\) 0 0
\(936\) 808.299 0.863567
\(937\) 630.977 1238.36i 0.673401 1.32162i −0.260978 0.965345i \(-0.584045\pi\)
0.934379 0.356280i \(-0.115955\pi\)
\(938\) −116.963 + 18.5252i −0.124694 + 0.0197497i
\(939\) −457.136 629.193i −0.486833 0.670067i
\(940\) 0 0
\(941\) −452.206 + 1391.75i −0.480559 + 1.47901i 0.357753 + 0.933816i \(0.383543\pi\)
−0.838311 + 0.545192i \(0.816457\pi\)
\(942\) −592.654 93.8672i −0.629144 0.0996467i
\(943\) −203.415 + 32.2178i −0.215711 + 0.0341652i
\(944\) 39.2470 12.7521i 0.0415752 0.0135086i
\(945\) 0 0
\(946\) −20.9701 + 7.26707i −0.0221672 + 0.00768190i
\(947\) −760.281 760.281i −0.802831 0.802831i 0.180706 0.983537i \(-0.442162\pi\)
−0.983537 + 0.180706i \(0.942162\pi\)
\(948\) −226.069 115.188i −0.238469 0.121506i
\(949\) −168.586 + 232.038i −0.177646 + 0.244508i
\(950\) 0 0
\(951\) −465.175 + 1431.66i −0.489143 + 1.50543i
\(952\) 1014.49 516.907i 1.06564 0.542969i
\(953\) 226.751 1431.65i 0.237934 1.50225i −0.522389 0.852708i \(-0.674959\pi\)
0.760322 0.649546i \(-0.225041\pi\)
\(954\) 149.157 205.298i 0.156349 0.215197i
\(955\) 0 0
\(956\) −1332.95 −1.39430
\(957\) −788.220 + 819.467i −0.823636 + 0.856287i
\(958\) −16.2905 + 16.2905i −0.0170047 + 0.0170047i
\(959\) 930.479 302.331i 0.970259 0.315256i
\(960\) 0 0
\(961\) 300.363 218.227i 0.312553 0.227083i
\(962\) 388.303 197.850i 0.403641 0.205665i
\(963\) −270.057 530.017i −0.280433 0.550381i
\(964\) 413.235 + 568.769i 0.428667 + 0.590009i
\(965\) 0 0
\(966\) −321.801 990.401i −0.333127 1.02526i
\(967\) 915.159 + 915.159i 0.946390 + 0.946390i 0.998634 0.0522446i \(-0.0166376\pi\)
−0.0522446 + 0.998634i \(0.516638\pi\)
\(968\) 626.600 124.376i 0.647314 0.128487i
\(969\) 985.496i 1.01702i
\(970\) 0 0
\(971\) 1380.55 + 1003.03i 1.42178 + 1.03298i 0.991475 + 0.130299i \(0.0415937\pi\)
0.430304 + 0.902684i \(0.358406\pi\)
\(972\) −1207.22 191.205i −1.24200 0.196713i
\(973\) 166.944 + 327.647i 0.171577 + 0.336739i
\(974\) 123.157 + 40.0162i 0.126445 + 0.0410844i
\(975\) 0 0
\(976\) 121.964 + 88.6120i 0.124963 + 0.0907910i
\(977\) 624.597 1225.84i 0.639301 1.25470i −0.313063 0.949732i \(-0.601355\pi\)
0.952363 0.304966i \(-0.0986450\pi\)
\(978\) −164.087 + 164.087i −0.167778 + 0.167778i
\(979\) −1407.13 + 27.3487i −1.43731 + 0.0279353i
\(980\) 0 0
\(981\) −587.276 1807.45i −0.598651 1.84246i
\(982\) −8.03946 50.7592i −0.00818682 0.0516896i
\(983\) 3.59295 22.6850i 0.00365508 0.0230773i −0.985793 0.167962i \(-0.946281\pi\)
0.989448 + 0.144885i \(0.0462813\pi\)
\(984\) −175.784 57.1157i −0.178642 0.0580444i
\(985\) 0 0
\(986\) −220.367 + 160.106i −0.223496 + 0.162379i
\(987\) 745.588 + 4707.46i 0.755409 + 4.76946i
\(988\) −651.434 331.922i −0.659346 0.335954i
\(989\) 73.7521i 0.0745723i
\(990\) 0 0
\(991\) −1037.25 −1.04667 −0.523337 0.852126i \(-0.675313\pi\)
−0.523337 + 0.852126i \(0.675313\pi\)
\(992\) −312.759 + 613.823i −0.315281 + 0.618774i
\(993\) −1602.52 + 253.815i −1.61382 + 0.255604i
\(994\) −239.828 330.095i −0.241276 0.332088i
\(995\) 0 0
\(996\) 418.566 1288.21i 0.420247 1.29339i
\(997\) 27.9529 + 4.42730i 0.0280370 + 0.00444063i 0.170437 0.985369i \(-0.445482\pi\)
−0.142400 + 0.989809i \(0.545482\pi\)
\(998\) −410.327 + 64.9894i −0.411149 + 0.0651196i
\(999\) 188.084 61.1121i 0.188272 0.0611733i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.3.bk.c.82.7 128
5.2 odd 4 inner 275.3.bk.c.93.7 yes 128
5.3 odd 4 inner 275.3.bk.c.93.10 yes 128
5.4 even 2 inner 275.3.bk.c.82.10 yes 128
11.9 even 5 inner 275.3.bk.c.207.10 yes 128
55.9 even 10 inner 275.3.bk.c.207.7 yes 128
55.42 odd 20 inner 275.3.bk.c.218.10 yes 128
55.53 odd 20 inner 275.3.bk.c.218.7 yes 128
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
275.3.bk.c.82.7 128 1.1 even 1 trivial
275.3.bk.c.82.10 yes 128 5.4 even 2 inner
275.3.bk.c.93.7 yes 128 5.2 odd 4 inner
275.3.bk.c.93.10 yes 128 5.3 odd 4 inner
275.3.bk.c.207.7 yes 128 55.9 even 10 inner
275.3.bk.c.207.10 yes 128 11.9 even 5 inner
275.3.bk.c.218.7 yes 128 55.53 odd 20 inner
275.3.bk.c.218.10 yes 128 55.42 odd 20 inner