Properties

Label 275.3.bk.c.82.10
Level $275$
Weight $3$
Character 275.82
Analytic conductor $7.493$
Analytic rank $0$
Dimension $128$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,3,Mod(82,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([5, 8])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.82"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 275.bk (of order \(20\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [128] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.49320726991\)
Analytic rank: \(0\)
Dimension: \(128\)
Relative dimension: \(16\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 82.10
Character \(\chi\) \(=\) 275.82
Dual form 275.3.bk.c.218.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.319362 - 0.626784i) q^{2} +(-4.31726 + 0.683787i) q^{3} +(2.06028 + 2.83573i) q^{4} +(-0.950184 + 2.92437i) q^{6} +(-13.0084 - 2.06033i) q^{7} +(5.21454 - 0.825902i) q^{8} +(9.61169 - 3.12303i) q^{9} +(-0.213753 - 10.9979i) q^{11} +(-10.8338 - 10.8338i) q^{12} +(13.4978 + 6.87747i) q^{13} +(-5.44577 + 7.49547i) q^{14} +(-3.18494 + 9.80223i) q^{16} +(14.5897 - 7.43382i) q^{17} +(1.11215 - 7.02183i) q^{18} +(8.09319 - 11.1393i) q^{19} +57.5696 q^{21} +(-6.96158 - 3.37834i) q^{22} +(18.1828 - 18.1828i) q^{23} +(-21.9478 + 7.13127i) q^{24} +(8.62138 - 6.26380i) q^{26} +(-4.30879 + 2.19544i) q^{27} +(-20.9584 - 41.1331i) q^{28} +(-13.8997 - 19.1313i) q^{29} +(-7.50428 - 23.0958i) q^{31} +(20.0595 + 20.0595i) q^{32} +(8.44307 + 47.3348i) q^{33} -11.5187i q^{34} +(28.6588 + 20.8218i) q^{36} +(-40.3915 - 6.39739i) q^{37} +(-4.39728 - 8.63015i) q^{38} +(-62.9763 - 20.4622i) q^{39} +(6.47957 + 4.70768i) q^{41} +(18.3855 - 36.0837i) q^{42} +(2.02807 - 2.02807i) q^{43} +(30.7467 - 23.2649i) q^{44} +(-5.58978 - 17.2036i) q^{46} +(-12.9511 - 81.7699i) q^{47} +(7.04758 - 44.4966i) q^{48} +(118.372 + 38.4614i) q^{49} +(-57.9044 + 42.0700i) q^{51} +(8.30656 + 52.4456i) q^{52} +(31.8036 + 16.2048i) q^{53} +3.40182i q^{54} -69.5345 q^{56} +(-27.3235 + 53.6254i) q^{57} +(-16.4302 + 2.60229i) q^{58} +(-2.35343 - 3.23921i) q^{59} +(4.51999 - 13.9111i) q^{61} +(-16.8727 - 2.67237i) q^{62} +(-131.467 + 20.8224i) q^{63} +(-20.2297 + 6.57303i) q^{64} +(32.3651 + 9.82496i) q^{66} +(-9.03804 - 9.03804i) q^{67} +(51.1391 + 26.0566i) q^{68} +(-66.0667 + 90.9330i) q^{69} +(-13.6089 + 41.8839i) q^{71} +(47.5413 - 24.2235i) q^{72} +(-2.96178 + 18.6999i) q^{73} +(-16.9093 + 23.2737i) q^{74} +48.2622 q^{76} +(-19.8788 + 143.506i) q^{77} +(-32.9376 + 32.9376i) q^{78} +(-15.7496 + 5.11737i) q^{79} +(-56.4848 + 41.0386i) q^{81} +(5.02003 - 2.55783i) q^{82} +(40.1359 + 78.7712i) q^{83} +(118.609 + 163.251i) q^{84} +(-0.623474 - 1.91885i) q^{86} +(73.0905 + 73.0905i) q^{87} +(-10.1978 - 57.1726i) q^{88} -127.945i q^{89} +(-161.415 - 117.275i) q^{91} +(89.0229 + 14.0998i) q^{92} +(48.1906 + 94.5794i) q^{93} +(-55.3881 - 17.9967i) q^{94} +(-100.319 - 72.8858i) q^{96} +(34.4715 - 67.6542i) q^{97} +(61.9105 - 61.9105i) q^{98} +(-36.4014 - 105.041i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 128 q - 48 q^{6} + 32 q^{11} + 280 q^{16} - 8 q^{21} + 528 q^{26} - 16 q^{31} + 336 q^{36} - 604 q^{41} - 1152 q^{46} - 1024 q^{51} - 992 q^{56} - 320 q^{61} + 1624 q^{66} + 536 q^{71} + 1776 q^{76} + 3680 q^{81}+ \cdots - 6584 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.319362 0.626784i 0.159681 0.313392i −0.797279 0.603611i \(-0.793728\pi\)
0.956960 + 0.290219i \(0.0937281\pi\)
\(3\) −4.31726 + 0.683787i −1.43909 + 0.227929i −0.826707 0.562633i \(-0.809788\pi\)
−0.612381 + 0.790562i \(0.709788\pi\)
\(4\) 2.06028 + 2.83573i 0.515069 + 0.708931i
\(5\) 0 0
\(6\) −0.950184 + 2.92437i −0.158364 + 0.487394i
\(7\) −13.0084 2.06033i −1.85834 0.294333i −0.876127 0.482081i \(-0.839881\pi\)
−0.982217 + 0.187748i \(0.939881\pi\)
\(8\) 5.21454 0.825902i 0.651818 0.103238i
\(9\) 9.61169 3.12303i 1.06797 0.347003i
\(10\) 0 0
\(11\) −0.213753 10.9979i −0.0194321 0.999811i
\(12\) −10.8338 10.8338i −0.902816 0.902816i
\(13\) 13.4978 + 6.87747i 1.03829 + 0.529036i 0.888114 0.459623i \(-0.152015\pi\)
0.150178 + 0.988659i \(0.452015\pi\)
\(14\) −5.44577 + 7.49547i −0.388984 + 0.535390i
\(15\) 0 0
\(16\) −3.18494 + 9.80223i −0.199059 + 0.612640i
\(17\) 14.5897 7.43382i 0.858217 0.437283i 0.0312352 0.999512i \(-0.490056\pi\)
0.826982 + 0.562229i \(0.190056\pi\)
\(18\) 1.11215 7.02183i 0.0617860 0.390102i
\(19\) 8.09319 11.1393i 0.425957 0.586280i −0.541062 0.840983i \(-0.681978\pi\)
0.967019 + 0.254703i \(0.0819776\pi\)
\(20\) 0 0
\(21\) 57.5696 2.74141
\(22\) −6.96158 3.37834i −0.316436 0.153561i
\(23\) 18.1828 18.1828i 0.790556 0.790556i −0.191029 0.981584i \(-0.561182\pi\)
0.981584 + 0.191029i \(0.0611824\pi\)
\(24\) −21.9478 + 7.13127i −0.914492 + 0.297136i
\(25\) 0 0
\(26\) 8.62138 6.26380i 0.331591 0.240915i
\(27\) −4.30879 + 2.19544i −0.159585 + 0.0813125i
\(28\) −20.9584 41.1331i −0.748513 1.46904i
\(29\) −13.8997 19.1313i −0.479300 0.659700i 0.499070 0.866562i \(-0.333675\pi\)
−0.978370 + 0.206861i \(0.933675\pi\)
\(30\) 0 0
\(31\) −7.50428 23.0958i −0.242074 0.745026i −0.996104 0.0881865i \(-0.971893\pi\)
0.754030 0.656840i \(-0.228107\pi\)
\(32\) 20.0595 + 20.0595i 0.626860 + 0.626860i
\(33\) 8.44307 + 47.3348i 0.255851 + 1.43439i
\(34\) 11.5187i 0.338784i
\(35\) 0 0
\(36\) 28.6588 + 20.8218i 0.796077 + 0.578384i
\(37\) −40.3915 6.39739i −1.09166 0.172902i −0.415456 0.909613i \(-0.636378\pi\)
−0.676208 + 0.736711i \(0.736378\pi\)
\(38\) −4.39728 8.63015i −0.115718 0.227109i
\(39\) −62.9763 20.4622i −1.61478 0.524673i
\(40\) 0 0
\(41\) 6.47957 + 4.70768i 0.158038 + 0.114822i 0.663994 0.747738i \(-0.268860\pi\)
−0.505956 + 0.862559i \(0.668860\pi\)
\(42\) 18.3855 36.0837i 0.437751 0.859135i
\(43\) 2.02807 2.02807i 0.0471645 0.0471645i −0.683131 0.730296i \(-0.739382\pi\)
0.730296 + 0.683131i \(0.239382\pi\)
\(44\) 30.7467 23.2649i 0.698789 0.528748i
\(45\) 0 0
\(46\) −5.58978 17.2036i −0.121517 0.373990i
\(47\) −12.9511 81.7699i −0.275555 1.73979i −0.605554 0.795804i \(-0.707048\pi\)
0.329999 0.943981i \(-0.392952\pi\)
\(48\) 7.04758 44.4966i 0.146825 0.927013i
\(49\) 118.372 + 38.4614i 2.41575 + 0.784926i
\(50\) 0 0
\(51\) −57.9044 + 42.0700i −1.13538 + 0.824902i
\(52\) 8.30656 + 52.4456i 0.159742 + 1.00857i
\(53\) 31.8036 + 16.2048i 0.600068 + 0.305750i 0.727511 0.686096i \(-0.240677\pi\)
−0.127443 + 0.991846i \(0.540677\pi\)
\(54\) 3.40182i 0.0629966i
\(55\) 0 0
\(56\) −69.5345 −1.24169
\(57\) −27.3235 + 53.6254i −0.479360 + 0.940796i
\(58\) −16.4302 + 2.60229i −0.283280 + 0.0448671i
\(59\) −2.35343 3.23921i −0.0398886 0.0549019i 0.788607 0.614898i \(-0.210803\pi\)
−0.828495 + 0.559996i \(0.810803\pi\)
\(60\) 0 0
\(61\) 4.51999 13.9111i 0.0740982 0.228051i −0.907147 0.420813i \(-0.861745\pi\)
0.981245 + 0.192763i \(0.0617447\pi\)
\(62\) −16.8727 2.67237i −0.272140 0.0431027i
\(63\) −131.467 + 20.8224i −2.08678 + 0.330514i
\(64\) −20.2297 + 6.57303i −0.316089 + 0.102704i
\(65\) 0 0
\(66\) 32.3651 + 9.82496i 0.490380 + 0.148863i
\(67\) −9.03804 9.03804i −0.134896 0.134896i 0.636435 0.771331i \(-0.280409\pi\)
−0.771331 + 0.636435i \(0.780409\pi\)
\(68\) 51.1391 + 26.0566i 0.752045 + 0.383186i
\(69\) −66.0667 + 90.9330i −0.957488 + 1.31787i
\(70\) 0 0
\(71\) −13.6089 + 41.8839i −0.191675 + 0.589914i 0.808325 + 0.588737i \(0.200375\pi\)
−0.999999 + 0.00117716i \(0.999625\pi\)
\(72\) 47.5413 24.2235i 0.660295 0.336437i
\(73\) −2.96178 + 18.6999i −0.0405723 + 0.256163i −0.999635 0.0270318i \(-0.991394\pi\)
0.959062 + 0.283195i \(0.0913945\pi\)
\(74\) −16.9093 + 23.2737i −0.228504 + 0.314509i
\(75\) 0 0
\(76\) 48.2622 0.635029
\(77\) −19.8788 + 143.506i −0.258166 + 1.86371i
\(78\) −32.9376 + 32.9376i −0.422278 + 0.422278i
\(79\) −15.7496 + 5.11737i −0.199363 + 0.0647768i −0.406996 0.913430i \(-0.633424\pi\)
0.207634 + 0.978207i \(0.433424\pi\)
\(80\) 0 0
\(81\) −56.4848 + 41.0386i −0.697343 + 0.506649i
\(82\) 5.02003 2.55783i 0.0612199 0.0311931i
\(83\) 40.1359 + 78.7712i 0.483565 + 0.949051i 0.995917 + 0.0902748i \(0.0287745\pi\)
−0.512351 + 0.858776i \(0.671225\pi\)
\(84\) 118.609 + 163.251i 1.41201 + 1.94347i
\(85\) 0 0
\(86\) −0.623474 1.91885i −0.00724969 0.0223123i
\(87\) 73.0905 + 73.0905i 0.840120 + 0.840120i
\(88\) −10.1978 57.1726i −0.115884 0.649688i
\(89\) 127.945i 1.43759i −0.695224 0.718793i \(-0.744695\pi\)
0.695224 0.718793i \(-0.255305\pi\)
\(90\) 0 0
\(91\) −161.415 117.275i −1.77379 1.28873i
\(92\) 89.0229 + 14.0998i 0.967640 + 0.153259i
\(93\) 48.1906 + 94.5794i 0.518178 + 1.01698i
\(94\) −55.3881 17.9967i −0.589236 0.191454i
\(95\) 0 0
\(96\) −100.319 72.8858i −1.04499 0.759227i
\(97\) 34.4715 67.6542i 0.355377 0.697466i −0.642237 0.766506i \(-0.721994\pi\)
0.997614 + 0.0690401i \(0.0219937\pi\)
\(98\) 61.9105 61.9105i 0.631740 0.631740i
\(99\) −36.4014 105.041i −0.367690 1.06102i
\(100\) 0 0
\(101\) 2.71127 + 8.34445i 0.0268443 + 0.0826183i 0.963581 0.267416i \(-0.0861699\pi\)
−0.936737 + 0.350034i \(0.886170\pi\)
\(102\) 7.87631 + 49.7291i 0.0772188 + 0.487540i
\(103\) 12.7256 80.3463i 0.123550 0.780061i −0.845642 0.533751i \(-0.820782\pi\)
0.969191 0.246310i \(-0.0792181\pi\)
\(104\) 76.0650 + 24.7150i 0.731394 + 0.237644i
\(105\) 0 0
\(106\) 20.3138 14.7588i 0.191639 0.139234i
\(107\) 9.20763 + 58.1347i 0.0860526 + 0.543315i 0.992621 + 0.121256i \(0.0386923\pi\)
−0.906569 + 0.422058i \(0.861308\pi\)
\(108\) −15.1030 7.69534i −0.139842 0.0712531i
\(109\) 188.047i 1.72520i −0.505885 0.862601i \(-0.668834\pi\)
0.505885 0.862601i \(-0.331166\pi\)
\(110\) 0 0
\(111\) 178.755 1.61041
\(112\) 61.6268 120.949i 0.550239 1.07991i
\(113\) −152.384 + 24.1353i −1.34853 + 0.213587i −0.788577 0.614936i \(-0.789182\pi\)
−0.559956 + 0.828523i \(0.689182\pi\)
\(114\) 24.8854 + 34.2518i 0.218293 + 0.300455i
\(115\) 0 0
\(116\) 25.6139 78.8315i 0.220810 0.679582i
\(117\) 151.215 + 23.9501i 1.29244 + 0.204702i
\(118\) −2.78188 + 0.440607i −0.0235753 + 0.00373395i
\(119\) −205.105 + 66.6426i −1.72357 + 0.560022i
\(120\) 0 0
\(121\) −120.909 + 4.70168i −0.999245 + 0.0388568i
\(122\) −7.27574 7.27574i −0.0596372 0.0596372i
\(123\) −31.1931 15.8937i −0.253602 0.129217i
\(124\) 50.0325 68.8638i 0.403488 0.555353i
\(125\) 0 0
\(126\) −28.9346 + 89.0514i −0.229639 + 0.706757i
\(127\) 142.858 72.7897i 1.12486 0.573147i 0.210320 0.977633i \(-0.432549\pi\)
0.914544 + 0.404486i \(0.132549\pi\)
\(128\) −20.0920 + 126.856i −0.156968 + 0.991059i
\(129\) −7.36896 + 10.1425i −0.0571237 + 0.0786241i
\(130\) 0 0
\(131\) 101.790 0.777022 0.388511 0.921444i \(-0.372990\pi\)
0.388511 + 0.921444i \(0.372990\pi\)
\(132\) −116.833 + 121.465i −0.885102 + 0.920189i
\(133\) −128.230 + 128.230i −0.964136 + 0.964136i
\(134\) −8.55130 + 2.77849i −0.0638157 + 0.0207350i
\(135\) 0 0
\(136\) 69.9389 50.8136i 0.514257 0.373629i
\(137\) −66.1876 + 33.7243i −0.483121 + 0.246163i −0.678548 0.734556i \(-0.737391\pi\)
0.195427 + 0.980718i \(0.437391\pi\)
\(138\) 35.8961 + 70.4501i 0.260117 + 0.510508i
\(139\) 16.4112 + 22.5880i 0.118066 + 0.162504i 0.863959 0.503561i \(-0.167977\pi\)
−0.745893 + 0.666065i \(0.767977\pi\)
\(140\) 0 0
\(141\) 111.827 + 344.167i 0.793096 + 2.44090i
\(142\) 21.9060 + 21.9060i 0.154267 + 0.154267i
\(143\) 72.7527 149.918i 0.508760 1.04838i
\(144\) 104.163i 0.723352i
\(145\) 0 0
\(146\) 10.7749 + 7.82845i 0.0738009 + 0.0536195i
\(147\) −537.342 85.1067i −3.65539 0.578957i
\(148\) −65.0765 127.720i −0.439706 0.862971i
\(149\) 156.113 + 50.7242i 1.04774 + 0.340431i 0.781780 0.623554i \(-0.214312\pi\)
0.265958 + 0.963985i \(0.414312\pi\)
\(150\) 0 0
\(151\) −78.3338 56.9128i −0.518767 0.376906i 0.297372 0.954762i \(-0.403890\pi\)
−0.816139 + 0.577855i \(0.803890\pi\)
\(152\) 33.0023 64.7706i 0.217120 0.426122i
\(153\) 117.016 117.016i 0.764808 0.764808i
\(154\) 83.5986 + 58.2900i 0.542848 + 0.378507i
\(155\) 0 0
\(156\) −71.7232 220.741i −0.459764 1.41501i
\(157\) −30.5273 192.742i −0.194441 1.22765i −0.871006 0.491272i \(-0.836532\pi\)
0.676565 0.736383i \(-0.263468\pi\)
\(158\) −1.82236 + 11.5059i −0.0115339 + 0.0728222i
\(159\) −148.385 48.2133i −0.933241 0.303228i
\(160\) 0 0
\(161\) −273.991 + 199.066i −1.70181 + 1.23644i
\(162\) 7.68322 + 48.5099i 0.0474273 + 0.299444i
\(163\) −67.2428 34.2619i −0.412532 0.210196i 0.235392 0.971901i \(-0.424363\pi\)
−0.647924 + 0.761705i \(0.724363\pi\)
\(164\) 28.0734i 0.171179i
\(165\) 0 0
\(166\) 62.1904 0.374641
\(167\) −41.2215 + 80.9018i −0.246836 + 0.484442i −0.980868 0.194672i \(-0.937636\pi\)
0.734033 + 0.679114i \(0.237636\pi\)
\(168\) 300.199 47.5468i 1.78690 0.283017i
\(169\) 35.5553 + 48.9377i 0.210386 + 0.289572i
\(170\) 0 0
\(171\) 43.0008 132.343i 0.251467 0.773935i
\(172\) 9.92945 + 1.57267i 0.0577294 + 0.00914344i
\(173\) 110.029 17.4269i 0.636005 0.100733i 0.169898 0.985462i \(-0.445656\pi\)
0.466107 + 0.884728i \(0.345656\pi\)
\(174\) 69.1542 22.4696i 0.397438 0.129135i
\(175\) 0 0
\(176\) 108.485 + 32.9325i 0.616392 + 0.187116i
\(177\) 12.3753 + 12.3753i 0.0699169 + 0.0699169i
\(178\) −80.1939 40.8609i −0.450528 0.229555i
\(179\) −64.2046 + 88.3700i −0.358685 + 0.493687i −0.949782 0.312913i \(-0.898695\pi\)
0.591097 + 0.806601i \(0.298695\pi\)
\(180\) 0 0
\(181\) 27.7256 85.3307i 0.153180 0.471440i −0.844792 0.535095i \(-0.820276\pi\)
0.997972 + 0.0636550i \(0.0202757\pi\)
\(182\) −125.056 + 63.7191i −0.687120 + 0.350105i
\(183\) −10.0018 + 63.1486i −0.0546544 + 0.345074i
\(184\) 79.7976 109.832i 0.433683 0.596913i
\(185\) 0 0
\(186\) 74.6711 0.401457
\(187\) −84.8751 158.867i −0.453878 0.849558i
\(188\) 205.194 205.194i 1.09146 1.09146i
\(189\) 60.5738 19.6816i 0.320496 0.104136i
\(190\) 0 0
\(191\) 272.747 198.163i 1.42800 1.03750i 0.437611 0.899164i \(-0.355825\pi\)
0.990385 0.138336i \(-0.0441755\pi\)
\(192\) 82.8424 42.2103i 0.431471 0.219845i
\(193\) −11.8565 23.2697i −0.0614328 0.120569i 0.858248 0.513235i \(-0.171553\pi\)
−0.919681 + 0.392666i \(0.871553\pi\)
\(194\) −31.3956 43.2124i −0.161833 0.222744i
\(195\) 0 0
\(196\) 134.813 + 414.911i 0.687821 + 2.11689i
\(197\) −232.768 232.768i −1.18157 1.18157i −0.979339 0.202227i \(-0.935182\pi\)
−0.202227 0.979339i \(-0.564818\pi\)
\(198\) −77.4633 10.7304i −0.391229 0.0541939i
\(199\) 177.068i 0.889787i 0.895583 + 0.444894i \(0.146758\pi\)
−0.895583 + 0.444894i \(0.853242\pi\)
\(200\) 0 0
\(201\) 45.1997 + 32.8395i 0.224874 + 0.163381i
\(202\) 6.09604 + 0.965518i 0.0301784 + 0.00477979i
\(203\) 141.396 + 277.506i 0.696533 + 1.36702i
\(204\) −238.598 77.5252i −1.16960 0.380025i
\(205\) 0 0
\(206\) −46.2957 33.6358i −0.224736 0.163280i
\(207\) 117.982 231.553i 0.569961 1.11861i
\(208\) −110.404 + 110.404i −0.530790 + 0.530790i
\(209\) −124.239 86.6272i −0.594446 0.414484i
\(210\) 0 0
\(211\) 59.0985 + 181.886i 0.280088 + 0.862021i 0.987828 + 0.155549i \(0.0497145\pi\)
−0.707741 + 0.706472i \(0.750285\pi\)
\(212\) 19.5720 + 123.573i 0.0923207 + 0.582890i
\(213\) 30.1136 190.130i 0.141378 0.892627i
\(214\) 39.3784 + 12.7948i 0.184011 + 0.0597889i
\(215\) 0 0
\(216\) −20.6551 + 15.0068i −0.0956257 + 0.0694761i
\(217\) 50.0338 + 315.901i 0.230571 + 1.45576i
\(218\) −117.865 60.0551i −0.540664 0.275482i
\(219\) 82.7578i 0.377889i
\(220\) 0 0
\(221\) 248.055 1.12242
\(222\) 57.0877 112.041i 0.257152 0.504689i
\(223\) −89.9452 + 14.2459i −0.403342 + 0.0638830i −0.354810 0.934939i \(-0.615454\pi\)
−0.0485320 + 0.998822i \(0.515454\pi\)
\(224\) −219.613 302.272i −0.980416 1.34943i
\(225\) 0 0
\(226\) −33.5382 + 103.220i −0.148399 + 0.456725i
\(227\) 186.341 + 29.5135i 0.820886 + 0.130016i 0.552730 0.833360i \(-0.313586\pi\)
0.268155 + 0.963376i \(0.413586\pi\)
\(228\) −208.361 + 33.0011i −0.913863 + 0.144742i
\(229\) 399.540 129.818i 1.74471 0.566892i 0.749272 0.662262i \(-0.230403\pi\)
0.995442 + 0.0953700i \(0.0304034\pi\)
\(230\) 0 0
\(231\) −12.3057 633.146i −0.0532712 2.74089i
\(232\) −88.2812 88.2812i −0.380522 0.380522i
\(233\) 66.4024 + 33.8337i 0.284989 + 0.145209i 0.590642 0.806934i \(-0.298875\pi\)
−0.305653 + 0.952143i \(0.598875\pi\)
\(234\) 63.3040 87.1305i 0.270530 0.372353i
\(235\) 0 0
\(236\) 4.33681 13.3473i 0.0183763 0.0565565i
\(237\) 64.4962 32.8624i 0.272136 0.138660i
\(238\) −23.7322 + 149.839i −0.0997153 + 0.629577i
\(239\) −223.524 + 307.655i −0.935249 + 1.28726i 0.0225279 + 0.999746i \(0.492829\pi\)
−0.957777 + 0.287513i \(0.907171\pi\)
\(240\) 0 0
\(241\) 200.573 0.832252 0.416126 0.909307i \(-0.363388\pi\)
0.416126 + 0.909307i \(0.363388\pi\)
\(242\) −35.6667 + 77.2851i −0.147383 + 0.319360i
\(243\) 246.573 246.573i 1.01471 1.01471i
\(244\) 48.7605 15.8432i 0.199838 0.0649313i
\(245\) 0 0
\(246\) −19.9238 + 14.4755i −0.0809909 + 0.0588434i
\(247\) 185.851 94.6956i 0.752431 0.383383i
\(248\) −58.2063 114.236i −0.234703 0.460630i
\(249\) −227.140 312.632i −0.912210 1.25555i
\(250\) 0 0
\(251\) −130.177 400.643i −0.518633 1.59619i −0.776574 0.630026i \(-0.783044\pi\)
0.257941 0.966161i \(-0.416956\pi\)
\(252\) −329.905 329.905i −1.30915 1.30915i
\(253\) −203.859 196.086i −0.805768 0.775044i
\(254\) 112.787i 0.444044i
\(255\) 0 0
\(256\) 4.26078 + 3.09564i 0.0166437 + 0.0120923i
\(257\) 285.808 + 45.2675i 1.11209 + 0.176138i 0.685335 0.728228i \(-0.259656\pi\)
0.426758 + 0.904366i \(0.359656\pi\)
\(258\) 4.00379 + 7.85788i 0.0155186 + 0.0304569i
\(259\) 512.249 + 166.440i 1.97780 + 0.642625i
\(260\) 0 0
\(261\) −193.347 140.475i −0.740794 0.538219i
\(262\) 32.5078 63.8002i 0.124076 0.243512i
\(263\) −223.157 + 223.157i −0.848508 + 0.848508i −0.989947 0.141439i \(-0.954827\pi\)
0.141439 + 0.989947i \(0.454827\pi\)
\(264\) 83.1206 + 239.856i 0.314851 + 0.908545i
\(265\) 0 0
\(266\) 39.4207 + 121.324i 0.148198 + 0.456107i
\(267\) 87.4873 + 552.373i 0.327668 + 2.06881i
\(268\) 7.00855 44.2502i 0.0261513 0.165113i
\(269\) −6.81385 2.21395i −0.0253303 0.00823031i 0.296324 0.955087i \(-0.404239\pi\)
−0.321655 + 0.946857i \(0.604239\pi\)
\(270\) 0 0
\(271\) 6.58911 4.78727i 0.0243141 0.0176652i −0.575562 0.817758i \(-0.695217\pi\)
0.599876 + 0.800093i \(0.295217\pi\)
\(272\) 26.4008 + 166.688i 0.0970616 + 0.612823i
\(273\) 777.062 + 395.933i 2.84638 + 1.45030i
\(274\) 52.2556i 0.190714i
\(275\) 0 0
\(276\) −393.977 −1.42745
\(277\) −49.1219 + 96.4071i −0.177335 + 0.348040i −0.962515 0.271228i \(-0.912570\pi\)
0.785180 + 0.619268i \(0.212570\pi\)
\(278\) 19.3989 3.07249i 0.0697803 0.0110521i
\(279\) −144.258 198.554i −0.517053 0.711662i
\(280\) 0 0
\(281\) −149.234 + 459.294i −0.531081 + 1.63450i 0.220888 + 0.975299i \(0.429104\pi\)
−0.751969 + 0.659199i \(0.770896\pi\)
\(282\) 251.431 + 39.8228i 0.891600 + 0.141216i
\(283\) −345.559 + 54.7312i −1.22106 + 0.193396i −0.733497 0.679693i \(-0.762113\pi\)
−0.487560 + 0.873089i \(0.662113\pi\)
\(284\) −146.809 + 47.7013i −0.516935 + 0.167962i
\(285\) 0 0
\(286\) −70.7316 93.4783i −0.247313 0.326847i
\(287\) −74.5895 74.5895i −0.259894 0.259894i
\(288\) 255.452 + 130.160i 0.886988 + 0.451943i
\(289\) −12.2725 + 16.8917i −0.0424656 + 0.0584488i
\(290\) 0 0
\(291\) −102.562 + 315.652i −0.352445 + 1.08472i
\(292\) −59.1300 + 30.1282i −0.202500 + 0.103179i
\(293\) 6.72234 42.4432i 0.0229431 0.144857i −0.973558 0.228442i \(-0.926637\pi\)
0.996501 + 0.0835846i \(0.0266369\pi\)
\(294\) −224.950 + 309.617i −0.765137 + 1.05312i
\(295\) 0 0
\(296\) −215.907 −0.729415
\(297\) 25.0663 + 46.9185i 0.0843982 + 0.157975i
\(298\) 81.6497 81.6497i 0.273992 0.273992i
\(299\) 370.479 120.376i 1.23906 0.402595i
\(300\) 0 0
\(301\) −30.5605 + 22.2035i −0.101530 + 0.0737658i
\(302\) −60.6889 + 30.9225i −0.200957 + 0.102392i
\(303\) −17.4111 34.1712i −0.0574624 0.112776i
\(304\) 83.4139 + 114.809i 0.274388 + 0.377662i
\(305\) 0 0
\(306\) −35.9731 110.714i −0.117559 0.361810i
\(307\) −193.007 193.007i −0.628687 0.628687i 0.319051 0.947738i \(-0.396636\pi\)
−0.947738 + 0.319051i \(0.896636\pi\)
\(308\) −447.899 + 239.291i −1.45422 + 0.776918i
\(309\) 355.578i 1.15074i
\(310\) 0 0
\(311\) 411.736 + 299.144i 1.32391 + 0.961877i 0.999875 + 0.0158323i \(0.00503980\pi\)
0.324036 + 0.946045i \(0.394960\pi\)
\(312\) −345.292 54.6889i −1.10671 0.175285i
\(313\) 80.7764 + 158.533i 0.258072 + 0.506494i 0.983295 0.182020i \(-0.0582635\pi\)
−0.725223 + 0.688514i \(0.758263\pi\)
\(314\) −130.557 42.4204i −0.415785 0.135097i
\(315\) 0 0
\(316\) −46.9601 34.1185i −0.148608 0.107970i
\(317\) 156.348 306.850i 0.493211 0.967982i −0.501489 0.865164i \(-0.667214\pi\)
0.994700 0.102818i \(-0.0327859\pi\)
\(318\) −77.6079 + 77.6079i −0.244050 + 0.244050i
\(319\) −207.434 + 156.957i −0.650262 + 0.492029i
\(320\) 0 0
\(321\) −79.5035 244.687i −0.247674 0.762264i
\(322\) 37.2691 + 235.308i 0.115742 + 0.730769i
\(323\) 35.2694 222.682i 0.109193 0.689419i
\(324\) −232.748 75.6246i −0.718359 0.233409i
\(325\) 0 0
\(326\) −42.9496 + 31.2047i −0.131747 + 0.0957200i
\(327\) 128.584 + 811.849i 0.393224 + 2.48272i
\(328\) 37.6761 + 19.1969i 0.114866 + 0.0585272i
\(329\) 1090.38i 3.31423i
\(330\) 0 0
\(331\) −371.190 −1.12142 −0.560709 0.828013i \(-0.689471\pi\)
−0.560709 + 0.828013i \(0.689471\pi\)
\(332\) −140.682 + 276.105i −0.423742 + 0.831641i
\(333\) −408.210 + 64.6542i −1.22586 + 0.194157i
\(334\) 37.5433 + 51.6740i 0.112405 + 0.154712i
\(335\) 0 0
\(336\) −183.355 + 564.310i −0.545701 + 1.67949i
\(337\) 507.358 + 80.3577i 1.50551 + 0.238450i 0.854035 0.520216i \(-0.174149\pi\)
0.651480 + 0.758666i \(0.274149\pi\)
\(338\) 42.0283 6.65663i 0.124344 0.0196942i
\(339\) 641.379 208.397i 1.89197 0.614740i
\(340\) 0 0
\(341\) −252.402 + 87.4683i −0.740181 + 0.256505i
\(342\) −69.2176 69.2176i −0.202391 0.202391i
\(343\) −885.569 451.220i −2.58184 1.31551i
\(344\) 8.90049 12.2505i 0.0258735 0.0356118i
\(345\) 0 0
\(346\) 24.2162 74.5297i 0.0699890 0.215404i
\(347\) −403.252 + 205.467i −1.16211 + 0.592124i −0.925227 0.379414i \(-0.876126\pi\)
−0.236882 + 0.971538i \(0.576126\pi\)
\(348\) −56.6780 + 357.851i −0.162868 + 1.02831i
\(349\) 244.753 336.873i 0.701298 0.965254i −0.298643 0.954365i \(-0.596534\pi\)
0.999941 0.0108886i \(-0.00346603\pi\)
\(350\) 0 0
\(351\) −73.2582 −0.208713
\(352\) 216.325 224.901i 0.614561 0.638923i
\(353\) −37.2917 + 37.2917i −0.105642 + 0.105642i −0.757952 0.652310i \(-0.773800\pi\)
0.652310 + 0.757952i \(0.273800\pi\)
\(354\) 11.7088 3.80443i 0.0330758 0.0107470i
\(355\) 0 0
\(356\) 362.817 263.602i 1.01915 0.740456i
\(357\) 839.922 427.962i 2.35272 1.19877i
\(358\) 34.8844 + 68.4644i 0.0974424 + 0.191241i
\(359\) 30.7953 + 42.3861i 0.0857808 + 0.118067i 0.849751 0.527185i \(-0.176752\pi\)
−0.763970 + 0.645252i \(0.776752\pi\)
\(360\) 0 0
\(361\) 52.9704 + 163.026i 0.146733 + 0.451596i
\(362\) −44.6294 44.6294i −0.123286 0.123286i
\(363\) 518.779 102.974i 1.42914 0.283675i
\(364\) 699.347i 1.92128i
\(365\) 0 0
\(366\) 36.3863 + 26.4362i 0.0994162 + 0.0722301i
\(367\) −400.357 63.4104i −1.09089 0.172780i −0.415029 0.909808i \(-0.636229\pi\)
−0.675862 + 0.737028i \(0.736229\pi\)
\(368\) 120.321 + 236.143i 0.326959 + 0.641692i
\(369\) 76.9819 + 25.0129i 0.208623 + 0.0677857i
\(370\) 0 0
\(371\) −380.327 276.324i −1.02514 0.744809i
\(372\) −168.915 + 331.515i −0.454073 + 0.891169i
\(373\) 302.827 302.827i 0.811869 0.811869i −0.173045 0.984914i \(-0.555361\pi\)
0.984914 + 0.173045i \(0.0553606\pi\)
\(374\) −126.681 + 2.46215i −0.338720 + 0.00658328i
\(375\) 0 0
\(376\) −135.068 415.696i −0.359223 1.10558i
\(377\) −56.0404 353.825i −0.148648 0.938529i
\(378\) 7.00887 44.2522i 0.0185420 0.117069i
\(379\) −687.228 223.294i −1.81327 0.589166i −0.999973 0.00731228i \(-0.997672\pi\)
−0.813293 0.581854i \(-0.802328\pi\)
\(380\) 0 0
\(381\) −566.982 + 411.936i −1.48814 + 1.08120i
\(382\) −37.0999 234.239i −0.0971200 0.613192i
\(383\) 158.162 + 80.5874i 0.412955 + 0.210411i 0.648110 0.761547i \(-0.275560\pi\)
−0.235155 + 0.971958i \(0.575560\pi\)
\(384\) 561.408i 1.46200i
\(385\) 0 0
\(386\) −18.3716 −0.0475949
\(387\) 13.1595 25.8270i 0.0340039 0.0667363i
\(388\) 262.870 41.6344i 0.677499 0.107305i
\(389\) −125.468 172.692i −0.322540 0.443938i 0.616701 0.787198i \(-0.288469\pi\)
−0.939240 + 0.343260i \(0.888469\pi\)
\(390\) 0 0
\(391\) 130.114 400.449i 0.332771 1.02417i
\(392\) 649.021 + 102.795i 1.65566 + 0.262232i
\(393\) −439.454 + 69.6026i −1.11820 + 0.177106i
\(394\) −220.233 + 71.5580i −0.558967 + 0.181619i
\(395\) 0 0
\(396\) 222.871 319.638i 0.562806 0.807166i
\(397\) 233.012 + 233.012i 0.586931 + 0.586931i 0.936799 0.349868i \(-0.113773\pi\)
−0.349868 + 0.936799i \(0.613773\pi\)
\(398\) 110.983 + 56.5487i 0.278852 + 0.142082i
\(399\) 465.921 641.285i 1.16772 1.60723i
\(400\) 0 0
\(401\) 68.5200 210.883i 0.170873 0.525893i −0.828548 0.559918i \(-0.810833\pi\)
0.999421 + 0.0340253i \(0.0108327\pi\)
\(402\) 35.0183 17.8427i 0.0871103 0.0443849i
\(403\) 57.5495 363.353i 0.142803 0.901621i
\(404\) −18.0766 + 24.8803i −0.0447440 + 0.0615849i
\(405\) 0 0
\(406\) 219.093 0.539637
\(407\) −61.7242 + 445.591i −0.151657 + 1.09482i
\(408\) −267.199 + 267.199i −0.654900 + 0.654900i
\(409\) −626.680 + 203.621i −1.53222 + 0.497850i −0.949218 0.314618i \(-0.898123\pi\)
−0.583006 + 0.812468i \(0.698123\pi\)
\(410\) 0 0
\(411\) 262.689 190.855i 0.639146 0.464367i
\(412\) 254.058 129.449i 0.616646 0.314197i
\(413\) 23.9405 + 46.9858i 0.0579673 + 0.113767i
\(414\) −107.454 147.898i −0.259552 0.357242i
\(415\) 0 0
\(416\) 132.801 + 408.718i 0.319232 + 0.982496i
\(417\) −86.2968 86.2968i −0.206947 0.206947i
\(418\) −93.9738 + 50.2057i −0.224818 + 0.120109i
\(419\) 154.214i 0.368052i 0.982921 + 0.184026i \(0.0589131\pi\)
−0.982921 + 0.184026i \(0.941087\pi\)
\(420\) 0 0
\(421\) 39.6777 + 28.8275i 0.0942463 + 0.0684740i 0.633910 0.773406i \(-0.281449\pi\)
−0.539664 + 0.841880i \(0.681449\pi\)
\(422\) 132.877 + 21.0457i 0.314875 + 0.0498713i
\(423\) −379.852 745.501i −0.897995 1.76241i
\(424\) 179.225 + 58.2337i 0.422700 + 0.137344i
\(425\) 0 0
\(426\) −109.553 79.5949i −0.257167 0.186842i
\(427\) −87.4593 + 171.649i −0.204823 + 0.401987i
\(428\) −145.884 + 145.884i −0.340850 + 0.340850i
\(429\) −211.581 + 696.982i −0.493195 + 1.62467i
\(430\) 0 0
\(431\) 255.703 + 786.973i 0.593279 + 1.82592i 0.563114 + 0.826379i \(0.309603\pi\)
0.0301645 + 0.999545i \(0.490397\pi\)
\(432\) −7.79696 49.2281i −0.0180485 0.113954i
\(433\) −46.0859 + 290.975i −0.106434 + 0.671998i 0.875563 + 0.483103i \(0.160490\pi\)
−0.981997 + 0.188895i \(0.939510\pi\)
\(434\) 213.980 + 69.5265i 0.493043 + 0.160199i
\(435\) 0 0
\(436\) 533.250 387.429i 1.22305 0.888598i
\(437\) −55.3871 349.700i −0.126744 0.800230i
\(438\) −51.8712 26.4297i −0.118427 0.0603418i
\(439\) 29.9375i 0.0681948i −0.999419 0.0340974i \(-0.989144\pi\)
0.999419 0.0340974i \(-0.0108557\pi\)
\(440\) 0 0
\(441\) 1257.87 2.85231
\(442\) 79.2193 155.477i 0.179229 0.351757i
\(443\) 418.383 66.2654i 0.944431 0.149583i 0.334819 0.942283i \(-0.391325\pi\)
0.609613 + 0.792699i \(0.291325\pi\)
\(444\) 368.285 + 506.901i 0.829472 + 1.14167i
\(445\) 0 0
\(446\) −19.7960 + 60.9258i −0.0443856 + 0.136605i
\(447\) −708.665 112.242i −1.58538 0.251100i
\(448\) 276.699 43.8248i 0.617631 0.0978231i
\(449\) 40.8177 13.2625i 0.0909081 0.0295378i −0.263210 0.964739i \(-0.584781\pi\)
0.354118 + 0.935201i \(0.384781\pi\)
\(450\) 0 0
\(451\) 50.3897 72.2681i 0.111729 0.160240i
\(452\) −382.394 382.394i −0.846005 0.846005i
\(453\) 377.104 + 192.144i 0.832459 + 0.424159i
\(454\) 78.0089 107.370i 0.171826 0.236498i
\(455\) 0 0
\(456\) −98.1902 + 302.198i −0.215329 + 0.662716i
\(457\) 74.0125 37.7112i 0.161953 0.0825191i −0.371135 0.928579i \(-0.621031\pi\)
0.533088 + 0.846060i \(0.321031\pi\)
\(458\) 46.2299 291.884i 0.100939 0.637301i
\(459\) −46.5434 + 64.0615i −0.101402 + 0.139568i
\(460\) 0 0
\(461\) −130.682 −0.283475 −0.141738 0.989904i \(-0.545269\pi\)
−0.141738 + 0.989904i \(0.545269\pi\)
\(462\) −400.775 194.490i −0.867479 0.420974i
\(463\) −199.934 + 199.934i −0.431823 + 0.431823i −0.889248 0.457425i \(-0.848772\pi\)
0.457425 + 0.889248i \(0.348772\pi\)
\(464\) 231.799 75.3161i 0.499567 0.162319i
\(465\) 0 0
\(466\) 42.4129 30.8147i 0.0910147 0.0661261i
\(467\) −420.327 + 214.167i −0.900057 + 0.458602i −0.841856 0.539703i \(-0.818537\pi\)
−0.0582017 + 0.998305i \(0.518537\pi\)
\(468\) 243.629 + 478.149i 0.520575 + 1.02169i
\(469\) 98.9491 + 136.192i 0.210979 + 0.290388i
\(470\) 0 0
\(471\) 263.589 + 811.243i 0.559636 + 1.72238i
\(472\) −14.9473 14.9473i −0.0316680 0.0316680i
\(473\) −22.7381 21.8711i −0.0480721 0.0462391i
\(474\) 50.9202i 0.107427i
\(475\) 0 0
\(476\) −611.552 444.319i −1.28477 0.933443i
\(477\) 356.295 + 56.4315i 0.746949 + 0.118305i
\(478\) 121.448 + 238.355i 0.254075 + 0.498650i
\(479\) 31.1473 + 10.1204i 0.0650256 + 0.0211281i 0.341349 0.939937i \(-0.389116\pi\)
−0.276324 + 0.961065i \(0.589116\pi\)
\(480\) 0 0
\(481\) −501.199 364.142i −1.04199 0.757053i
\(482\) 64.0553 125.716i 0.132895 0.260821i
\(483\) 1046.77 1046.77i 2.16723 2.16723i
\(484\) −262.438 333.177i −0.542227 0.688382i
\(485\) 0 0
\(486\) −75.8019 233.294i −0.155971 0.480029i
\(487\) 28.7971 + 181.818i 0.0591317 + 0.373343i 0.999453 + 0.0330563i \(0.0105241\pi\)
−0.940322 + 0.340287i \(0.889476\pi\)
\(488\) 12.0805 76.2731i 0.0247551 0.156297i
\(489\) 313.733 + 101.938i 0.641580 + 0.208462i
\(490\) 0 0
\(491\) −59.1038 + 42.9414i −0.120374 + 0.0874571i −0.646344 0.763047i \(-0.723703\pi\)
0.525969 + 0.850504i \(0.323703\pi\)
\(492\) −19.1962 121.200i −0.0390168 0.246342i
\(493\) −345.011 175.792i −0.699820 0.356576i
\(494\) 146.730i 0.297025i
\(495\) 0 0
\(496\) 250.291 0.504619
\(497\) 263.325 516.804i 0.529829 1.03985i
\(498\) −268.492 + 42.5250i −0.539141 + 0.0853916i
\(499\) 347.130 + 477.783i 0.695651 + 0.957481i 0.999988 + 0.00491681i \(0.00156508\pi\)
−0.304337 + 0.952564i \(0.598435\pi\)
\(500\) 0 0
\(501\) 122.645 377.461i 0.244800 0.753416i
\(502\) −292.690 46.3575i −0.583048 0.0923457i
\(503\) 218.725 34.6426i 0.434840 0.0688719i 0.0648228 0.997897i \(-0.479352\pi\)
0.370017 + 0.929025i \(0.379352\pi\)
\(504\) −668.344 + 217.158i −1.32608 + 0.430870i
\(505\) 0 0
\(506\) −188.009 + 65.1532i −0.371558 + 0.128761i
\(507\) −186.965 186.965i −0.368766 0.368766i
\(508\) 500.738 + 255.139i 0.985704 + 0.502241i
\(509\) 135.399 186.360i 0.266009 0.366130i −0.655028 0.755605i \(-0.727343\pi\)
0.921037 + 0.389474i \(0.127343\pi\)
\(510\) 0 0
\(511\) 77.0560 237.154i 0.150795 0.464098i
\(512\) −454.451 + 231.554i −0.887600 + 0.452255i
\(513\) −10.4162 + 65.7651i −0.0203044 + 0.128197i
\(514\) 119.649 164.683i 0.232781 0.320395i
\(515\) 0 0
\(516\) −43.9434 −0.0851617
\(517\) −896.531 + 159.914i −1.73410 + 0.309311i
\(518\) 267.915 267.915i 0.517210 0.517210i
\(519\) −463.107 + 150.473i −0.892307 + 0.289928i
\(520\) 0 0
\(521\) 360.809 262.143i 0.692531 0.503153i −0.184960 0.982746i \(-0.559216\pi\)
0.877491 + 0.479593i \(0.159216\pi\)
\(522\) −149.795 + 76.3245i −0.286964 + 0.146216i
\(523\) 1.31625 + 2.58329i 0.00251673 + 0.00493937i 0.892261 0.451519i \(-0.149118\pi\)
−0.889745 + 0.456458i \(0.849118\pi\)
\(524\) 209.715 + 288.648i 0.400220 + 0.550855i
\(525\) 0 0
\(526\) 68.6034 + 211.140i 0.130425 + 0.401406i
\(527\) −281.175 281.175i −0.533539 0.533539i
\(528\) −490.877 67.9974i −0.929691 0.128783i
\(529\) 132.227i 0.249956i
\(530\) 0 0
\(531\) −32.7366 23.7845i −0.0616508 0.0447919i
\(532\) −627.815 99.4361i −1.18010 0.186910i
\(533\) 55.0830 + 108.106i 0.103345 + 0.202826i
\(534\) 374.159 + 121.571i 0.700671 + 0.227662i
\(535\) 0 0
\(536\) −54.5938 39.6647i −0.101854 0.0740013i
\(537\) 216.762 425.419i 0.403653 0.792214i
\(538\) −3.56375 + 3.56375i −0.00662408 + 0.00662408i
\(539\) 397.693 1310.07i 0.737835 2.43055i
\(540\) 0 0
\(541\) 182.354 + 561.227i 0.337068 + 1.03739i 0.965695 + 0.259680i \(0.0836172\pi\)
−0.628627 + 0.777707i \(0.716383\pi\)
\(542\) −0.896269 5.65882i −0.00165363 0.0104406i
\(543\) −61.3508 + 387.353i −0.112985 + 0.713358i
\(544\) 441.781 + 143.543i 0.812098 + 0.263867i
\(545\) 0 0
\(546\) 496.329 360.604i 0.909027 0.660447i
\(547\) −31.5603 199.264i −0.0576971 0.364285i −0.999597 0.0283912i \(-0.990962\pi\)
0.941900 0.335894i \(-0.109038\pi\)
\(548\) −231.998 118.209i −0.423353 0.215709i
\(549\) 147.825i 0.269263i
\(550\) 0 0
\(551\) −325.603 −0.590930
\(552\) −269.406 + 528.738i −0.488054 + 0.957860i
\(553\) 215.421 34.1194i 0.389550 0.0616987i
\(554\) 44.7387 + 61.5776i 0.0807558 + 0.111151i
\(555\) 0 0
\(556\) −30.2420 + 93.0752i −0.0543920 + 0.167401i
\(557\) −50.4026 7.98299i −0.0904894 0.0143321i 0.111026 0.993818i \(-0.464586\pi\)
−0.201515 + 0.979485i \(0.564586\pi\)
\(558\) −170.521 + 27.0078i −0.305593 + 0.0484011i
\(559\) 41.3226 13.4265i 0.0739223 0.0240188i
\(560\) 0 0
\(561\) 475.060 + 627.835i 0.846809 + 1.11914i
\(562\) 240.218 + 240.218i 0.427435 + 0.427435i
\(563\) −391.463 199.460i −0.695317 0.354281i 0.0703471 0.997523i \(-0.477589\pi\)
−0.765664 + 0.643241i \(0.777589\pi\)
\(564\) −745.569 + 1026.19i −1.32193 + 1.81948i
\(565\) 0 0
\(566\) −76.0539 + 234.070i −0.134371 + 0.413551i
\(567\) 819.330 417.470i 1.44503 0.736278i
\(568\) −36.3722 + 229.645i −0.0640356 + 0.404305i
\(569\) 202.911 279.283i 0.356609 0.490831i −0.592591 0.805504i \(-0.701895\pi\)
0.949200 + 0.314673i \(0.101895\pi\)
\(570\) 0 0
\(571\) −326.598 −0.571975 −0.285987 0.958233i \(-0.592322\pi\)
−0.285987 + 0.958233i \(0.592322\pi\)
\(572\) 575.017 102.565i 1.00527 0.179310i
\(573\) −1042.02 + 1042.02i −1.81854 + 1.81854i
\(574\) −70.5725 + 22.9304i −0.122949 + 0.0399484i
\(575\) 0 0
\(576\) −173.914 + 126.356i −0.301934 + 0.219368i
\(577\) −24.0532 + 12.2557i −0.0416867 + 0.0212404i −0.474710 0.880142i \(-0.657447\pi\)
0.433023 + 0.901383i \(0.357447\pi\)
\(578\) 6.66806 + 13.0868i 0.0115364 + 0.0226415i
\(579\) 67.0993 + 92.3543i 0.115888 + 0.159507i
\(580\) 0 0
\(581\) −359.810 1107.38i −0.619294 1.90599i
\(582\) 165.091 + 165.091i 0.283662 + 0.283662i
\(583\) 171.421 353.238i 0.294032 0.605896i
\(584\) 99.9577i 0.171160i
\(585\) 0 0
\(586\) −24.4558 17.7682i −0.0417335 0.0303212i
\(587\) 607.382 + 96.1998i 1.03472 + 0.163884i 0.650617 0.759406i \(-0.274510\pi\)
0.384105 + 0.923290i \(0.374510\pi\)
\(588\) −865.734 1699.10i −1.47234 2.88962i
\(589\) −318.005 103.326i −0.539907 0.175426i
\(590\) 0 0
\(591\) 1164.09 + 845.759i 1.96969 + 1.43106i
\(592\) 191.353 375.552i 0.323232 0.634378i
\(593\) 76.0314 76.0314i 0.128215 0.128215i −0.640087 0.768302i \(-0.721102\pi\)
0.768302 + 0.640087i \(0.221102\pi\)
\(594\) 37.4129 0.727149i 0.0629847 0.00122416i
\(595\) 0 0
\(596\) 177.796 + 547.199i 0.298315 + 0.918120i
\(597\) −121.077 764.448i −0.202808 1.28048i
\(598\) 42.8673 270.654i 0.0716845 0.452598i
\(599\) 117.889 + 38.3046i 0.196810 + 0.0639475i 0.405763 0.913978i \(-0.367006\pi\)
−0.208953 + 0.977926i \(0.567006\pi\)
\(600\) 0 0
\(601\) −621.369 + 451.451i −1.03389 + 0.751167i −0.969084 0.246731i \(-0.920644\pi\)
−0.0648083 + 0.997898i \(0.520644\pi\)
\(602\) 4.15693 + 26.2458i 0.00690519 + 0.0435977i
\(603\) −115.097 58.6448i −0.190874 0.0972551i
\(604\) 339.389i 0.561903i
\(605\) 0 0
\(606\) −26.9784 −0.0445189
\(607\) −541.208 + 1062.18i −0.891612 + 1.74989i −0.277382 + 0.960760i \(0.589467\pi\)
−0.614230 + 0.789127i \(0.710533\pi\)
\(608\) 385.795 61.1039i 0.634531 0.100500i
\(609\) −800.200 1101.38i −1.31396 1.80851i
\(610\) 0 0
\(611\) 387.559 1192.79i 0.634303 1.95219i
\(612\) 572.909 + 90.7398i 0.936125 + 0.148268i
\(613\) 797.332 126.285i 1.30071 0.206011i 0.532617 0.846356i \(-0.321208\pi\)
0.768088 + 0.640345i \(0.221208\pi\)
\(614\) −182.613 + 59.3345i −0.297415 + 0.0966360i
\(615\) 0 0
\(616\) 14.8632 + 764.735i 0.0241286 + 1.24145i
\(617\) −235.936 235.936i −0.382392 0.382392i 0.489571 0.871963i \(-0.337153\pi\)
−0.871963 + 0.489571i \(0.837153\pi\)
\(618\) 222.870 + 113.558i 0.360631 + 0.183751i
\(619\) −176.392 + 242.783i −0.284963 + 0.392218i −0.927370 0.374146i \(-0.877936\pi\)
0.642407 + 0.766364i \(0.277936\pi\)
\(620\) 0 0
\(621\) −38.4266 + 118.265i −0.0618786 + 0.190443i
\(622\) 318.991 162.534i 0.512848 0.261309i
\(623\) −263.609 + 1664.36i −0.423129 + 2.67153i
\(624\) 401.151 552.137i 0.642871 0.884835i
\(625\) 0 0
\(626\) 125.163 0.199940
\(627\) 595.608 + 289.039i 0.949934 + 0.460987i
\(628\) 483.668 483.668i 0.770172 0.770172i
\(629\) −636.857 + 206.927i −1.01249 + 0.328978i
\(630\) 0 0
\(631\) −13.7479 + 9.98844i −0.0217875 + 0.0158295i −0.598626 0.801029i \(-0.704286\pi\)
0.576838 + 0.816858i \(0.304286\pi\)
\(632\) −77.9007 + 39.6924i −0.123261 + 0.0628044i
\(633\) −379.515 744.841i −0.599550 1.17668i
\(634\) −142.397 195.993i −0.224601 0.309137i
\(635\) 0 0
\(636\) −168.995 520.113i −0.265715 0.817787i
\(637\) 1333.24 + 1333.24i 2.09300 + 2.09300i
\(638\) 32.1318 + 180.142i 0.0503634 + 0.282355i
\(639\) 445.076i 0.696520i
\(640\) 0 0
\(641\) −365.294 265.402i −0.569882 0.414043i 0.265181 0.964199i \(-0.414568\pi\)
−0.835062 + 0.550156i \(0.814568\pi\)
\(642\) −178.756 28.3122i −0.278436 0.0441000i
\(643\) 527.892 + 1036.05i 0.820983 + 1.61127i 0.791077 + 0.611716i \(0.209521\pi\)
0.0299052 + 0.999553i \(0.490479\pi\)
\(644\) −1129.00 366.833i −1.75310 0.569616i
\(645\) 0 0
\(646\) −128.310 93.2227i −0.198622 0.144308i
\(647\) −29.5178 + 57.9320i −0.0456226 + 0.0895395i −0.912692 0.408647i \(-0.866001\pi\)
0.867070 + 0.498187i \(0.166001\pi\)
\(648\) −260.648 + 260.648i −0.402235 + 0.402235i
\(649\) −35.1216 + 26.5752i −0.0541164 + 0.0409479i
\(650\) 0 0
\(651\) −432.018 1329.62i −0.663623 2.04242i
\(652\) −41.3813 261.271i −0.0634682 0.400722i
\(653\) 129.098 815.090i 0.197699 1.24822i −0.666665 0.745358i \(-0.732279\pi\)
0.864364 0.502866i \(-0.167721\pi\)
\(654\) 549.918 + 178.679i 0.840854 + 0.273210i
\(655\) 0 0
\(656\) −66.7828 + 48.5206i −0.101803 + 0.0739643i
\(657\) 29.9327 + 188.988i 0.0455597 + 0.287653i
\(658\) 683.432 + 348.226i 1.03865 + 0.529219i
\(659\) 162.422i 0.246467i −0.992378 0.123234i \(-0.960674\pi\)
0.992378 0.123234i \(-0.0393264\pi\)
\(660\) 0 0
\(661\) −665.501 −1.00681 −0.503405 0.864051i \(-0.667920\pi\)
−0.503405 + 0.864051i \(0.667920\pi\)
\(662\) −118.544 + 232.656i −0.179069 + 0.351443i
\(663\) −1070.92 + 169.617i −1.61526 + 0.255832i
\(664\) 274.348 + 377.607i 0.413174 + 0.568686i
\(665\) 0 0
\(666\) −89.8428 + 276.508i −0.134899 + 0.415177i
\(667\) −600.596 95.1250i −0.900443 0.142616i
\(668\) −314.343 + 49.7871i −0.470574 + 0.0745315i
\(669\) 378.576 123.007i 0.565883 0.183867i
\(670\) 0 0
\(671\) −153.959 46.7370i −0.229448 0.0696527i
\(672\) 1154.82 + 1154.82i 1.71848 + 1.71848i
\(673\) 476.355 + 242.715i 0.707808 + 0.360646i 0.770546 0.637384i \(-0.219983\pi\)
−0.0627386 + 0.998030i \(0.519983\pi\)
\(674\) 212.398 292.341i 0.315130 0.433740i
\(675\) 0 0
\(676\) −65.5201 + 201.650i −0.0969232 + 0.298299i
\(677\) 434.836 221.560i 0.642298 0.327267i −0.102326 0.994751i \(-0.532629\pi\)
0.744624 + 0.667484i \(0.232629\pi\)
\(678\) 74.2126 468.560i 0.109458 0.691092i
\(679\) −587.809 + 809.050i −0.865699 + 1.19153i
\(680\) 0 0
\(681\) −824.665 −1.21096
\(682\) −25.7839 + 186.135i −0.0378063 + 0.272926i
\(683\) 586.916 586.916i 0.859321 0.859321i −0.131937 0.991258i \(-0.542120\pi\)
0.991258 + 0.131937i \(0.0421197\pi\)
\(684\) 463.882 150.724i 0.678190 0.220357i
\(685\) 0 0
\(686\) −565.635 + 410.958i −0.824541 + 0.599064i
\(687\) −1636.15 + 833.660i −2.38159 + 1.21348i
\(688\) 13.4204 + 26.3389i 0.0195063 + 0.0382834i
\(689\) 317.831 + 437.457i 0.461294 + 0.634916i
\(690\) 0 0
\(691\) −210.321 647.301i −0.304372 0.936759i −0.979911 0.199435i \(-0.936089\pi\)
0.675539 0.737324i \(-0.263911\pi\)
\(692\) 276.107 + 276.107i 0.398999 + 0.398999i
\(693\) 257.104 + 1441.42i 0.371002 + 2.07997i
\(694\) 318.370i 0.458747i
\(695\) 0 0
\(696\) 441.499 + 320.768i 0.634337 + 0.460873i
\(697\) 129.531 + 20.5157i 0.185841 + 0.0294343i
\(698\) −132.982 260.992i −0.190519 0.373914i
\(699\) −309.812 100.664i −0.443222 0.144011i
\(700\) 0 0
\(701\) 306.948 + 223.011i 0.437872 + 0.318133i 0.784789 0.619763i \(-0.212771\pi\)
−0.346917 + 0.937896i \(0.612771\pi\)
\(702\) −23.3959 + 45.9171i −0.0333275 + 0.0654089i
\(703\) −398.159 + 398.159i −0.566371 + 0.566371i
\(704\) 76.6138 + 221.080i 0.108826 + 0.314033i
\(705\) 0 0
\(706\) 11.4643 + 35.2834i 0.0162383 + 0.0499765i
\(707\) −18.0771 114.134i −0.0255687 0.161434i
\(708\) −9.59643 + 60.5895i −0.0135543 + 0.0855783i
\(709\) 496.742 + 161.401i 0.700623 + 0.227646i 0.637602 0.770366i \(-0.279926\pi\)
0.0630213 + 0.998012i \(0.479926\pi\)
\(710\) 0 0
\(711\) −135.399 + 98.3732i −0.190435 + 0.138359i
\(712\) −105.670 667.175i −0.148413 0.937044i
\(713\) −556.395 283.497i −0.780357 0.397612i
\(714\) 663.124i 0.928745i
\(715\) 0 0
\(716\) −382.872 −0.534738
\(717\) 754.643 1481.07i 1.05250 2.06565i
\(718\) 36.4018 5.76547i 0.0506988 0.00802991i
\(719\) 661.760 + 910.834i 0.920389 + 1.26681i 0.963492 + 0.267736i \(0.0862755\pi\)
−0.0431034 + 0.999071i \(0.513724\pi\)
\(720\) 0 0
\(721\) −331.080 + 1018.96i −0.459195 + 1.41326i
\(722\) 119.099 + 18.8634i 0.164957 + 0.0261266i
\(723\) −865.925 + 137.149i −1.19768 + 0.189694i
\(724\) 299.097 97.1824i 0.413117 0.134230i
\(725\) 0 0
\(726\) 101.136 358.049i 0.139306 0.493180i
\(727\) −417.576 417.576i −0.574382 0.574382i 0.358968 0.933350i \(-0.383129\pi\)
−0.933350 + 0.358968i \(0.883129\pi\)
\(728\) −938.563 478.222i −1.28923 0.656898i
\(729\) −526.571 + 724.763i −0.722320 + 0.994188i
\(730\) 0 0
\(731\) 14.5126 44.6653i 0.0198531 0.0611017i
\(732\) −199.679 + 101.741i −0.272785 + 0.138991i
\(733\) 88.4052 558.168i 0.120607 0.761485i −0.851049 0.525086i \(-0.824033\pi\)
0.971656 0.236398i \(-0.0759670\pi\)
\(734\) −167.604 + 230.686i −0.228343 + 0.314287i
\(735\) 0 0
\(736\) 729.476 0.991136
\(737\) −97.4677 + 101.332i −0.132249 + 0.137492i
\(738\) 40.2628 40.2628i 0.0545566 0.0545566i
\(739\) −50.0728 + 16.2696i −0.0677575 + 0.0220157i −0.342700 0.939445i \(-0.611341\pi\)
0.274942 + 0.961461i \(0.411341\pi\)
\(740\) 0 0
\(741\) −737.614 + 535.908i −0.995431 + 0.723223i
\(742\) −294.658 + 150.136i −0.397113 + 0.202339i
\(743\) −83.3096 163.504i −0.112126 0.220060i 0.828124 0.560545i \(-0.189408\pi\)
−0.940250 + 0.340486i \(0.889408\pi\)
\(744\) 329.405 + 453.387i 0.442749 + 0.609392i
\(745\) 0 0
\(746\) −93.0955 286.519i −0.124793 0.384073i
\(747\) 631.779 + 631.779i 0.845755 + 0.845755i
\(748\) 275.638 567.993i 0.368500 0.759349i
\(749\) 775.210i 1.03499i
\(750\) 0 0
\(751\) −733.343 532.805i −0.976488 0.709460i −0.0195674 0.999809i \(-0.506229\pi\)
−0.956921 + 0.290348i \(0.906229\pi\)
\(752\) 842.776 + 133.483i 1.12071 + 0.177504i
\(753\) 835.962 + 1640.67i 1.11018 + 2.17884i
\(754\) −239.669 77.8732i −0.317864 0.103280i
\(755\) 0 0
\(756\) 180.610 + 131.221i 0.238903 + 0.173573i
\(757\) −323.576 + 635.055i −0.427446 + 0.838910i 0.572375 + 0.819992i \(0.306022\pi\)
−0.999821 + 0.0189178i \(0.993978\pi\)
\(758\) −359.432 + 359.432i −0.474184 + 0.474184i
\(759\) 1014.20 + 707.159i 1.33623 + 0.931699i
\(760\) 0 0
\(761\) 291.455 + 897.006i 0.382989 + 1.17872i 0.937928 + 0.346829i \(0.112741\pi\)
−0.554939 + 0.831891i \(0.687259\pi\)
\(762\) 77.1224 + 486.932i 0.101211 + 0.639018i
\(763\) −387.439 + 2446.19i −0.507783 + 3.20602i
\(764\) 1123.87 + 365.167i 1.47103 + 0.477968i
\(765\) 0 0
\(766\) 101.022 73.3966i 0.131882 0.0958180i
\(767\) −9.48847 59.9079i −0.0123709 0.0781067i
\(768\) −20.5117 10.4512i −0.0267079 0.0136084i
\(769\) 220.165i 0.286301i 0.989701 + 0.143150i \(0.0457232\pi\)
−0.989701 + 0.143150i \(0.954277\pi\)
\(770\) 0 0
\(771\) −1264.86 −1.64055
\(772\) 41.5589 81.5639i 0.0538328 0.105653i
\(773\) −1243.99 + 197.028i −1.60930 + 0.254887i −0.895367 0.445330i \(-0.853086\pi\)
−0.713930 + 0.700217i \(0.753086\pi\)
\(774\) −11.9853 16.4963i −0.0154848 0.0213131i
\(775\) 0 0
\(776\) 123.877 381.256i 0.159636 0.491309i
\(777\) −2325.32 368.295i −2.99269 0.473996i
\(778\) −148.310 + 23.4900i −0.190630 + 0.0301928i
\(779\) 104.881 34.0778i 0.134635 0.0437456i
\(780\) 0 0
\(781\) 463.545 + 140.717i 0.593528 + 0.180175i
\(782\) −209.441 209.441i −0.267828 0.267828i
\(783\) 101.893 + 51.9168i 0.130131 + 0.0663050i
\(784\) −754.015 + 1037.81i −0.961753 + 1.32374i
\(785\) 0 0
\(786\) −96.7191 + 297.671i −0.123052 + 0.378716i
\(787\) 862.761 439.599i 1.09627 0.558575i 0.190214 0.981743i \(-0.439082\pi\)
0.906052 + 0.423167i \(0.139082\pi\)
\(788\) 180.500 1139.63i 0.229061 1.44624i
\(789\) 810.837 1116.02i 1.02768 1.41448i
\(790\) 0 0
\(791\) 2032.00 2.56890
\(792\) −276.570 517.677i −0.349205 0.653633i
\(793\) 156.683 156.683i 0.197583 0.197583i
\(794\) 220.463 71.6328i 0.277661 0.0902176i
\(795\) 0 0
\(796\) −502.115 + 364.808i −0.630798 + 0.458302i
\(797\) −44.2726 + 22.5580i −0.0555490 + 0.0283036i −0.481544 0.876422i \(-0.659924\pi\)
0.425995 + 0.904725i \(0.359924\pi\)
\(798\) −253.150 496.834i −0.317230 0.622599i
\(799\) −796.815 1096.72i −0.997266 1.37262i
\(800\) 0 0
\(801\) −399.576 1229.77i −0.498847 1.53529i
\(802\) −110.295 110.295i −0.137525 0.137525i
\(803\) 206.294 + 28.5762i 0.256903 + 0.0355869i
\(804\) 195.832i 0.243573i
\(805\) 0 0
\(806\) −209.365 152.112i −0.259758 0.188725i
\(807\) 30.9310 + 4.89900i 0.0383284 + 0.00607063i
\(808\) 21.0297 + 41.2732i 0.0260269 + 0.0510807i
\(809\) −599.027 194.636i −0.740454 0.240588i −0.0855854 0.996331i \(-0.527276\pi\)
−0.654869 + 0.755743i \(0.727276\pi\)
\(810\) 0 0
\(811\) 542.416 + 394.089i 0.668824 + 0.485929i 0.869631 0.493702i \(-0.164356\pi\)
−0.200807 + 0.979631i \(0.564356\pi\)
\(812\) −495.615 + 972.700i −0.610363 + 1.19791i
\(813\) −25.1734 + 25.1734i −0.0309636 + 0.0309636i
\(814\) 259.576 + 180.993i 0.318890 + 0.222350i
\(815\) 0 0
\(816\) −227.958 701.583i −0.279360 0.859783i
\(817\) −6.17778 39.0049i −0.00756154 0.0477417i
\(818\) −72.5118 + 457.821i −0.0886452 + 0.559684i
\(819\) −1917.72 623.106i −2.34154 0.760814i
\(820\) 0 0
\(821\) 199.936 145.262i 0.243528 0.176933i −0.459326 0.888268i \(-0.651909\pi\)
0.702854 + 0.711335i \(0.251909\pi\)
\(822\) −35.7317 225.601i −0.0434692 0.274454i
\(823\) 666.072 + 339.381i 0.809322 + 0.412370i 0.809130 0.587630i \(-0.199939\pi\)
0.000192247 1.00000i \(0.499939\pi\)
\(824\) 429.479i 0.521212i
\(825\) 0 0
\(826\) 37.0956 0.0449100
\(827\) 450.337 883.836i 0.544543 1.06873i −0.440714 0.897647i \(-0.645275\pi\)
0.985257 0.171078i \(-0.0547251\pi\)
\(828\) 899.695 142.498i 1.08659 0.172099i
\(829\) −240.484 330.998i −0.290090 0.399274i 0.638954 0.769245i \(-0.279368\pi\)
−0.929043 + 0.369971i \(0.879368\pi\)
\(830\) 0 0
\(831\) 146.150 449.804i 0.175873 0.541280i
\(832\) −318.262 50.4078i −0.382527 0.0605863i
\(833\) 2012.92 318.816i 2.41648 0.382732i
\(834\) −81.6493 + 26.5295i −0.0979009 + 0.0318099i
\(835\) 0 0
\(836\) −10.3162 530.784i −0.0123399 0.634910i
\(837\) 83.0398 + 83.0398i 0.0992112 + 0.0992112i
\(838\) 96.6587 + 49.2501i 0.115345 + 0.0587710i
\(839\) 880.069 1211.31i 1.04895 1.44376i 0.159234 0.987241i \(-0.449098\pi\)
0.889716 0.456515i \(-0.150902\pi\)
\(840\) 0 0
\(841\) 87.0783 267.999i 0.103541 0.318667i
\(842\) 30.7402 15.6629i 0.0365085 0.0186020i
\(843\) 330.222 2084.94i 0.391722 2.47324i
\(844\) −394.021 + 542.323i −0.466849 + 0.642563i
\(845\) 0 0
\(846\) −588.578 −0.695719
\(847\) 1582.52 + 187.950i 1.86838 + 0.221901i
\(848\) −260.135 + 260.135i −0.306763 + 0.306763i
\(849\) 1454.45 472.578i 1.71313 0.556629i
\(850\) 0 0
\(851\) −850.753 + 618.108i −0.999710 + 0.726332i
\(852\) 601.197 306.325i 0.705631 0.359537i
\(853\) −325.133 638.110i −0.381164 0.748077i 0.618113 0.786089i \(-0.287897\pi\)
−0.999277 + 0.0380123i \(0.987897\pi\)
\(854\) 79.6553 + 109.636i 0.0932732 + 0.128380i
\(855\) 0 0
\(856\) 96.0271 + 295.541i 0.112181 + 0.345258i
\(857\) 626.565 + 626.565i 0.731114 + 0.731114i 0.970841 0.239726i \(-0.0770577\pi\)
−0.239726 + 0.970841i \(0.577058\pi\)
\(858\) 369.286 + 355.205i 0.430404 + 0.413992i
\(859\) 842.626i 0.980938i −0.871459 0.490469i \(-0.836825\pi\)
0.871459 0.490469i \(-0.163175\pi\)
\(860\) 0 0
\(861\) 373.026 + 271.019i 0.433247 + 0.314773i
\(862\) 574.924 + 91.0590i 0.666965 + 0.105637i
\(863\) −450.407 883.974i −0.521909 1.02430i −0.990059 0.140655i \(-0.955079\pi\)
0.468150 0.883649i \(-0.344921\pi\)
\(864\) −130.472 42.3928i −0.151009 0.0490658i
\(865\) 0 0
\(866\) 167.660 + 121.812i 0.193603 + 0.140661i
\(867\) 41.4335 81.3178i 0.0477895 0.0937922i
\(868\) −792.725 + 792.725i −0.913278 + 0.913278i
\(869\) 59.6470 + 172.120i 0.0686386 + 0.198066i
\(870\) 0 0
\(871\) −59.8348 184.153i −0.0686966 0.211427i
\(872\) −155.308 980.579i −0.178106 1.12452i
\(873\) 120.044 757.927i 0.137507 0.868186i
\(874\) −236.875 76.9653i −0.271024 0.0880610i
\(875\) 0 0
\(876\) 234.678 170.504i 0.267898 0.194639i
\(877\) 93.2731 + 588.903i 0.106355 + 0.671497i 0.982048 + 0.188630i \(0.0604047\pi\)
−0.875693 + 0.482867i \(0.839595\pi\)
\(878\) −18.7644 9.56092i −0.0213717 0.0108894i
\(879\) 187.835i 0.213692i
\(880\) 0 0
\(881\) 1087.40 1.23428 0.617138 0.786855i \(-0.288292\pi\)
0.617138 + 0.786855i \(0.288292\pi\)
\(882\) 401.716 788.413i 0.455461 0.893892i
\(883\) 283.520 44.9052i 0.321088 0.0508553i 0.00618976 0.999981i \(-0.498030\pi\)
0.314898 + 0.949126i \(0.398030\pi\)
\(884\) 511.061 + 703.415i 0.578123 + 0.795718i
\(885\) 0 0
\(886\) 92.0817 283.398i 0.103930 0.319863i
\(887\) −588.141 93.1524i −0.663068 0.105020i −0.184176 0.982893i \(-0.558962\pi\)
−0.478892 + 0.877874i \(0.658962\pi\)
\(888\) 932.127 147.634i 1.04969 0.166255i
\(889\) −2008.32 + 652.543i −2.25908 + 0.734020i
\(890\) 0 0
\(891\) 463.413 + 612.443i 0.520105 + 0.687366i
\(892\) −225.709 225.709i −0.253037 0.253037i
\(893\) −1015.68 517.513i −1.13738 0.579522i
\(894\) −296.672 + 408.334i −0.331848 + 0.456750i
\(895\) 0 0
\(896\) 522.729 1608.79i 0.583402 1.79553i
\(897\) −1517.14 + 773.024i −1.69135 + 0.861788i
\(898\) 4.72293 29.8194i 0.00525939 0.0332065i
\(899\) −337.546 + 464.592i −0.375468 + 0.516787i
\(900\) 0 0
\(901\) 584.468 0.648688
\(902\) −29.2039 54.6631i −0.0323768 0.0606021i
\(903\) 116.755 116.755i 0.129297 0.129297i
\(904\) −774.680 + 251.709i −0.856947 + 0.278439i
\(905\) 0 0
\(906\) 240.866 174.999i 0.265856 0.193156i
\(907\) −29.1369 + 14.8460i −0.0321245 + 0.0163682i −0.469979 0.882678i \(-0.655739\pi\)
0.437854 + 0.899046i \(0.355739\pi\)
\(908\) 300.222 + 589.218i 0.330641 + 0.648919i
\(909\) 52.1199 + 71.7369i 0.0573376 + 0.0789184i
\(910\) 0 0
\(911\) 236.993 + 729.389i 0.260146 + 0.800646i 0.992772 + 0.120015i \(0.0382943\pi\)
−0.732626 + 0.680631i \(0.761706\pi\)
\(912\) −438.625 438.625i −0.480948 0.480948i
\(913\) 857.740 458.249i 0.939475 0.501916i
\(914\) 58.4333i 0.0639314i
\(915\) 0 0
\(916\) 1191.29 + 865.523i 1.30054 + 0.944894i
\(917\) −1324.12 209.721i −1.44397 0.228703i
\(918\) 25.2885 + 49.6315i 0.0275474 + 0.0540648i
\(919\) −441.604 143.486i −0.480526 0.156132i 0.0587304 0.998274i \(-0.481295\pi\)
−0.539257 + 0.842141i \(0.681295\pi\)
\(920\) 0 0
\(921\) 965.238 + 701.286i 1.04803 + 0.761440i
\(922\) −41.7349 + 81.9093i −0.0452656 + 0.0888388i
\(923\) −471.746 + 471.746i −0.511101 + 0.511101i
\(924\) 1770.07 1339.35i 1.91566 1.44951i
\(925\) 0 0
\(926\) 61.4640 + 189.167i 0.0663759 + 0.204284i
\(927\) −128.609 812.006i −0.138737 0.875951i
\(928\) 104.943 662.587i 0.113086 0.713994i
\(929\) −1166.82 379.121i −1.25599 0.408096i −0.395927 0.918282i \(-0.629577\pi\)
−0.860064 + 0.510186i \(0.829577\pi\)
\(930\) 0 0
\(931\) 1386.44 1007.31i 1.48919 1.08196i
\(932\) 40.8641 + 258.006i 0.0438456 + 0.276830i
\(933\) −1982.12 1009.94i −2.12446 1.08247i
\(934\) 331.851i 0.355301i
\(935\) 0 0
\(936\) 808.299 0.863567
\(937\) −630.977 + 1238.36i −0.673401 + 1.32162i 0.260978 + 0.965345i \(0.415955\pi\)
−0.934379 + 0.356280i \(0.884045\pi\)
\(938\) 116.963 18.5252i 0.124694 0.0197497i
\(939\) −457.136 629.193i −0.486833 0.670067i
\(940\) 0 0
\(941\) −452.206 + 1391.75i −0.480559 + 1.47901i 0.357753 + 0.933816i \(0.383543\pi\)
−0.838311 + 0.545192i \(0.816457\pi\)
\(942\) 592.654 + 93.8672i 0.629144 + 0.0996467i
\(943\) 203.415 32.2178i 0.215711 0.0341652i
\(944\) 39.2470 12.7521i 0.0415752 0.0135086i
\(945\) 0 0
\(946\) −20.9701 + 7.26707i −0.0221672 + 0.00768190i
\(947\) 760.281 + 760.281i 0.802831 + 0.802831i 0.983537 0.180706i \(-0.0578383\pi\)
−0.180706 + 0.983537i \(0.557838\pi\)
\(948\) 226.069 + 115.188i 0.238469 + 0.121506i
\(949\) −168.586 + 232.038i −0.177646 + 0.244508i
\(950\) 0 0
\(951\) −465.175 + 1431.66i −0.489143 + 1.50543i
\(952\) −1014.49 + 516.907i −1.06564 + 0.542969i
\(953\) −226.751 + 1431.65i −0.237934 + 1.50225i 0.522389 + 0.852708i \(0.325041\pi\)
−0.760322 + 0.649546i \(0.774959\pi\)
\(954\) 149.157 205.298i 0.156349 0.215197i
\(955\) 0 0
\(956\) −1332.95 −1.39430
\(957\) 788.220 819.467i 0.823636 0.856287i
\(958\) 16.2905 16.2905i 0.0170047 0.0170047i
\(959\) 930.479 302.331i 0.970259 0.315256i
\(960\) 0 0
\(961\) 300.363 218.227i 0.312553 0.227083i
\(962\) −388.303 + 197.850i −0.403641 + 0.205665i
\(963\) 270.057 + 530.017i 0.280433 + 0.550381i
\(964\) 413.235 + 568.769i 0.428667 + 0.590009i
\(965\) 0 0
\(966\) −321.801 990.401i −0.333127 1.02526i
\(967\) −915.159 915.159i −0.946390 0.946390i 0.0522446 0.998634i \(-0.483362\pi\)
−0.998634 + 0.0522446i \(0.983362\pi\)
\(968\) −626.600 + 124.376i −0.647314 + 0.128487i
\(969\) 985.496i 1.01702i
\(970\) 0 0
\(971\) 1380.55 + 1003.03i 1.42178 + 1.03298i 0.991475 + 0.130299i \(0.0415937\pi\)
0.430304 + 0.902684i \(0.358406\pi\)
\(972\) 1207.22 + 191.205i 1.24200 + 0.196713i
\(973\) −166.944 327.647i −0.171577 0.336739i
\(974\) 123.157 + 40.0162i 0.126445 + 0.0410844i
\(975\) 0 0
\(976\) 121.964 + 88.6120i 0.124963 + 0.0907910i
\(977\) −624.597 + 1225.84i −0.639301 + 1.25470i 0.313063 + 0.949732i \(0.398645\pi\)
−0.952363 + 0.304966i \(0.901355\pi\)
\(978\) 164.087 164.087i 0.167778 0.167778i
\(979\) −1407.13 + 27.3487i −1.43731 + 0.0279353i
\(980\) 0 0
\(981\) −587.276 1807.45i −0.598651 1.84246i
\(982\) 8.03946 + 50.7592i 0.00818682 + 0.0516896i
\(983\) −3.59295 + 22.6850i −0.00365508 + 0.0230773i −0.989448 0.144885i \(-0.953719\pi\)
0.985793 + 0.167962i \(0.0537187\pi\)
\(984\) −175.784 57.1157i −0.178642 0.0580444i
\(985\) 0 0
\(986\) −220.367 + 160.106i −0.223496 + 0.162379i
\(987\) −745.588 4707.46i −0.755409 4.76946i
\(988\) 651.434 + 331.922i 0.659346 + 0.335954i
\(989\) 73.7521i 0.0745723i
\(990\) 0 0
\(991\) −1037.25 −1.04667 −0.523337 0.852126i \(-0.675313\pi\)
−0.523337 + 0.852126i \(0.675313\pi\)
\(992\) 312.759 613.823i 0.315281 0.618774i
\(993\) 1602.52 253.815i 1.61382 0.255604i
\(994\) −239.828 330.095i −0.241276 0.332088i
\(995\) 0 0
\(996\) 418.566 1288.21i 0.420247 1.29339i
\(997\) −27.9529 4.42730i −0.0280370 0.00444063i 0.142400 0.989809i \(-0.454518\pi\)
−0.170437 + 0.985369i \(0.554518\pi\)
\(998\) 410.327 64.9894i 0.411149 0.0651196i
\(999\) 188.084 61.1121i 0.188272 0.0611733i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.3.bk.c.82.10 yes 128
5.2 odd 4 inner 275.3.bk.c.93.10 yes 128
5.3 odd 4 inner 275.3.bk.c.93.7 yes 128
5.4 even 2 inner 275.3.bk.c.82.7 128
11.9 even 5 inner 275.3.bk.c.207.7 yes 128
55.9 even 10 inner 275.3.bk.c.207.10 yes 128
55.42 odd 20 inner 275.3.bk.c.218.7 yes 128
55.53 odd 20 inner 275.3.bk.c.218.10 yes 128
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
275.3.bk.c.82.7 128 5.4 even 2 inner
275.3.bk.c.82.10 yes 128 1.1 even 1 trivial
275.3.bk.c.93.7 yes 128 5.3 odd 4 inner
275.3.bk.c.93.10 yes 128 5.2 odd 4 inner
275.3.bk.c.207.7 yes 128 11.9 even 5 inner
275.3.bk.c.207.10 yes 128 55.9 even 10 inner
275.3.bk.c.218.7 yes 128 55.42 odd 20 inner
275.3.bk.c.218.10 yes 128 55.53 odd 20 inner