Properties

Label 275.3.bk.c.82.5
Level $275$
Weight $3$
Character 275.82
Analytic conductor $7.493$
Analytic rank $0$
Dimension $128$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,3,Mod(82,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([5, 8])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.82"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 275.bk (of order \(20\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [128] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.49320726991\)
Analytic rank: \(0\)
Dimension: \(128\)
Relative dimension: \(16\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 82.5
Character \(\chi\) \(=\) 275.82
Dual form 275.3.bk.c.218.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.807274 + 1.58436i) q^{2} +(0.0974353 - 0.0154322i) q^{3} +(0.492622 + 0.678036i) q^{4} +(-0.0542067 + 0.166831i) q^{6} +(-2.29002 - 0.362704i) q^{7} +(-8.49706 + 1.34580i) q^{8} +(-8.55025 + 2.77815i) q^{9} +(10.4743 - 3.35998i) q^{11} +(0.0584623 + 0.0584623i) q^{12} +(-10.0820 - 5.13704i) q^{13} +(2.42333 - 3.33543i) q^{14} +(3.69127 - 11.3606i) q^{16} +(-23.3644 + 11.9048i) q^{17} +(2.50080 - 15.7894i) q^{18} +(-6.52576 + 8.98194i) q^{19} -0.228726 q^{21} +(-3.13218 + 19.3075i) q^{22} +(-2.20560 + 2.20560i) q^{23} +(-0.807145 + 0.262257i) q^{24} +(16.2779 - 11.8266i) q^{26} +(-1.58130 + 0.805713i) q^{27} +(-0.882189 - 1.73139i) q^{28} +(9.68796 + 13.3343i) q^{29} +(-7.66619 - 23.5941i) q^{31} +(-9.31350 - 9.31350i) q^{32} +(0.968712 - 0.489022i) q^{33} -46.6282i q^{34} +(-6.09572 - 4.42880i) q^{36} +(-22.0420 - 3.49111i) q^{37} +(-8.96259 - 17.5901i) q^{38} +(-1.06162 - 0.344941i) q^{39} +(-42.0056 - 30.5189i) q^{41} +(0.184645 - 0.362386i) q^{42} +(22.3480 - 22.3480i) q^{43} +(7.43805 + 5.44673i) q^{44} +(-1.71395 - 5.27500i) q^{46} +(0.432857 + 2.73295i) q^{47} +(0.184341 - 1.16388i) q^{48} +(-41.4891 - 13.4806i) q^{49} +(-2.09280 + 1.52051i) q^{51} +(-1.48352 - 9.36658i) q^{52} +(72.8878 + 37.1382i) q^{53} -3.15579i q^{54} +19.9466 q^{56} +(-0.497228 + 0.975864i) q^{57} +(-28.9473 + 4.58480i) q^{58} +(27.6110 + 38.0033i) q^{59} +(-15.8306 + 48.7215i) q^{61} +(43.5704 + 6.90087i) q^{62} +(20.5879 - 3.26081i) q^{63} +(67.7168 - 22.0025i) q^{64} +(-0.00722659 + 1.92957i) q^{66} +(-1.56835 - 1.56835i) q^{67} +(-19.5817 - 9.97737i) q^{68} +(-0.180866 + 0.248941i) q^{69} +(-33.2289 + 102.268i) q^{71} +(68.9132 - 35.1130i) q^{72} +(-12.5990 + 79.5472i) q^{73} +(23.3252 - 32.1043i) q^{74} -9.30481 q^{76} +(-25.2050 + 3.89537i) q^{77} +(1.40353 - 1.40353i) q^{78} +(-80.4790 + 26.1492i) q^{79} +(65.3179 - 47.4562i) q^{81} +(82.2631 - 41.9151i) q^{82} +(-6.21119 - 12.1901i) q^{83} +(-0.112676 - 0.155085i) q^{84} +(17.3664 + 53.4484i) q^{86} +(1.14973 + 1.14973i) q^{87} +(-84.4787 + 42.6463i) q^{88} +92.0338i q^{89} +(21.2248 + 15.4207i) q^{91} +(-2.58200 - 0.408949i) q^{92} +(-1.11107 - 2.18059i) q^{93} +(-4.67942 - 1.52044i) q^{94} +(-1.05119 - 0.763735i) q^{96} +(69.8642 - 137.116i) q^{97} +(54.8513 - 54.8513i) q^{98} +(-80.2232 + 57.8278i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 128 q - 48 q^{6} + 32 q^{11} + 280 q^{16} - 8 q^{21} + 528 q^{26} - 16 q^{31} + 336 q^{36} - 604 q^{41} - 1152 q^{46} - 1024 q^{51} - 992 q^{56} - 320 q^{61} + 1624 q^{66} + 536 q^{71} + 1776 q^{76} + 3680 q^{81}+ \cdots - 6584 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.807274 + 1.58436i −0.403637 + 0.792182i −0.999944 0.0105742i \(-0.996634\pi\)
0.596307 + 0.802756i \(0.296634\pi\)
\(3\) 0.0974353 0.0154322i 0.0324784 0.00514408i −0.140174 0.990127i \(-0.544766\pi\)
0.172653 + 0.984983i \(0.444766\pi\)
\(4\) 0.492622 + 0.678036i 0.123155 + 0.169509i
\(5\) 0 0
\(6\) −0.0542067 + 0.166831i −0.00903445 + 0.0278052i
\(7\) −2.29002 0.362704i −0.327146 0.0518148i −0.00929877 0.999957i \(-0.502960\pi\)
−0.317847 + 0.948142i \(0.602960\pi\)
\(8\) −8.49706 + 1.34580i −1.06213 + 0.168225i
\(9\) −8.55025 + 2.77815i −0.950028 + 0.308683i
\(10\) 0 0
\(11\) 10.4743 3.35998i 0.952207 0.305453i
\(12\) 0.0584623 + 0.0584623i 0.00487186 + 0.00487186i
\(13\) −10.0820 5.13704i −0.775539 0.395157i 0.0209727 0.999780i \(-0.493324\pi\)
−0.796512 + 0.604623i \(0.793324\pi\)
\(14\) 2.42333 3.33543i 0.173095 0.238245i
\(15\) 0 0
\(16\) 3.69127 11.3606i 0.230704 0.710035i
\(17\) −23.3644 + 11.9048i −1.37438 + 0.700281i −0.976169 0.217013i \(-0.930368\pi\)
−0.398210 + 0.917294i \(0.630368\pi\)
\(18\) 2.50080 15.7894i 0.138933 0.877191i
\(19\) −6.52576 + 8.98194i −0.343461 + 0.472734i −0.945448 0.325772i \(-0.894376\pi\)
0.601987 + 0.798506i \(0.294376\pi\)
\(20\) 0 0
\(21\) −0.228726 −0.0108917
\(22\) −3.13218 + 19.3075i −0.142372 + 0.877614i
\(23\) −2.20560 + 2.20560i −0.0958957 + 0.0958957i −0.753427 0.657531i \(-0.771601\pi\)
0.657531 + 0.753427i \(0.271601\pi\)
\(24\) −0.807145 + 0.262257i −0.0336310 + 0.0109274i
\(25\) 0 0
\(26\) 16.2779 11.8266i 0.626072 0.454868i
\(27\) −1.58130 + 0.805713i −0.0585667 + 0.0298412i
\(28\) −0.882189 1.73139i −0.0315067 0.0618355i
\(29\) 9.68796 + 13.3343i 0.334068 + 0.459805i 0.942697 0.333650i \(-0.108280\pi\)
−0.608629 + 0.793455i \(0.708280\pi\)
\(30\) 0 0
\(31\) −7.66619 23.5941i −0.247297 0.761101i −0.995250 0.0973497i \(-0.968963\pi\)
0.747954 0.663751i \(-0.231037\pi\)
\(32\) −9.31350 9.31350i −0.291047 0.291047i
\(33\) 0.968712 0.489022i 0.0293549 0.0148189i
\(34\) 46.6282i 1.37142i
\(35\) 0 0
\(36\) −6.09572 4.42880i −0.169326 0.123022i
\(37\) −22.0420 3.49111i −0.595730 0.0943544i −0.148714 0.988880i \(-0.547513\pi\)
−0.447016 + 0.894526i \(0.647513\pi\)
\(38\) −8.96259 17.5901i −0.235858 0.462897i
\(39\) −1.06162 0.344941i −0.0272210 0.00884464i
\(40\) 0 0
\(41\) −42.0056 30.5189i −1.02453 0.744363i −0.0573217 0.998356i \(-0.518256\pi\)
−0.967206 + 0.253993i \(0.918256\pi\)
\(42\) 0.184645 0.362386i 0.00439630 0.00862823i
\(43\) 22.3480 22.3480i 0.519722 0.519722i −0.397765 0.917487i \(-0.630214\pi\)
0.917487 + 0.397765i \(0.130214\pi\)
\(44\) 7.43805 + 5.44673i 0.169046 + 0.123789i
\(45\) 0 0
\(46\) −1.71395 5.27500i −0.0372598 0.114674i
\(47\) 0.432857 + 2.73295i 0.00920972 + 0.0581479i 0.991865 0.127293i \(-0.0406288\pi\)
−0.982655 + 0.185441i \(0.940629\pi\)
\(48\) 0.184341 1.16388i 0.00384044 0.0242476i
\(49\) −41.4891 13.4806i −0.846717 0.275115i
\(50\) 0 0
\(51\) −2.09280 + 1.52051i −0.0410353 + 0.0298139i
\(52\) −1.48352 9.36658i −0.0285292 0.180126i
\(53\) 72.8878 + 37.1382i 1.37524 + 0.700721i 0.976334 0.216270i \(-0.0693892\pi\)
0.398908 + 0.916991i \(0.369389\pi\)
\(54\) 3.15579i 0.0584405i
\(55\) 0 0
\(56\) 19.9466 0.356189
\(57\) −0.497228 + 0.975864i −0.00872329 + 0.0171204i
\(58\) −28.9473 + 4.58480i −0.499091 + 0.0790483i
\(59\) 27.6110 + 38.0033i 0.467983 + 0.644124i 0.976140 0.217141i \(-0.0696731\pi\)
−0.508157 + 0.861264i \(0.669673\pi\)
\(60\) 0 0
\(61\) −15.8306 + 48.7215i −0.259518 + 0.798713i 0.733388 + 0.679810i \(0.237938\pi\)
−0.992906 + 0.118903i \(0.962062\pi\)
\(62\) 43.5704 + 6.90087i 0.702748 + 0.111304i
\(63\) 20.5879 3.26081i 0.326792 0.0517588i
\(64\) 67.7168 22.0025i 1.05807 0.343789i
\(65\) 0 0
\(66\) −0.00722659 + 1.92957i −0.000109494 + 0.0292359i
\(67\) −1.56835 1.56835i −0.0234081 0.0234081i 0.695306 0.718714i \(-0.255269\pi\)
−0.718714 + 0.695306i \(0.755269\pi\)
\(68\) −19.5817 9.97737i −0.287966 0.146726i
\(69\) −0.180866 + 0.248941i −0.00262124 + 0.00360783i
\(70\) 0 0
\(71\) −33.2289 + 102.268i −0.468013 + 1.44040i 0.387140 + 0.922021i \(0.373463\pi\)
−0.855153 + 0.518375i \(0.826537\pi\)
\(72\) 68.9132 35.1130i 0.957128 0.487681i
\(73\) −12.5990 + 79.5472i −0.172590 + 1.08969i 0.737522 + 0.675323i \(0.235996\pi\)
−0.910111 + 0.414364i \(0.864004\pi\)
\(74\) 23.3252 32.1043i 0.315205 0.433842i
\(75\) 0 0
\(76\) −9.30481 −0.122432
\(77\) −25.2050 + 3.89537i −0.327338 + 0.0505893i
\(78\) 1.40353 1.40353i 0.0179940 0.0179940i
\(79\) −80.4790 + 26.1492i −1.01872 + 0.331003i −0.770322 0.637655i \(-0.779904\pi\)
−0.248399 + 0.968658i \(0.579904\pi\)
\(80\) 0 0
\(81\) 65.3179 47.4562i 0.806394 0.585879i
\(82\) 82.2631 41.9151i 1.00321 0.511160i
\(83\) −6.21119 12.1901i −0.0748336 0.146869i 0.850558 0.525881i \(-0.176264\pi\)
−0.925392 + 0.379011i \(0.876264\pi\)
\(84\) −0.112676 0.155085i −0.00134138 0.00184624i
\(85\) 0 0
\(86\) 17.3664 + 53.4484i 0.201935 + 0.621493i
\(87\) 1.14973 + 1.14973i 0.0132153 + 0.0132153i
\(88\) −84.4787 + 42.6463i −0.959986 + 0.484617i
\(89\) 92.0338i 1.03409i 0.855959 + 0.517044i \(0.172968\pi\)
−0.855959 + 0.517044i \(0.827032\pi\)
\(90\) 0 0
\(91\) 21.2248 + 15.4207i 0.233239 + 0.169458i
\(92\) −2.58200 0.408949i −0.0280652 0.00444510i
\(93\) −1.11107 2.18059i −0.0119470 0.0234472i
\(94\) −4.67942 1.52044i −0.0497811 0.0161749i
\(95\) 0 0
\(96\) −1.05119 0.763735i −0.0109499 0.00795557i
\(97\) 69.8642 137.116i 0.720249 1.41357i −0.182414 0.983222i \(-0.558391\pi\)
0.902664 0.430347i \(-0.141609\pi\)
\(98\) 54.8513 54.8513i 0.559707 0.559707i
\(99\) −80.2232 + 57.8278i −0.810335 + 0.584119i
\(100\) 0 0
\(101\) 54.3328 + 167.219i 0.537948 + 1.65563i 0.737191 + 0.675684i \(0.236152\pi\)
−0.199243 + 0.979950i \(0.563848\pi\)
\(102\) −0.719577 4.54323i −0.00705468 0.0445415i
\(103\) −19.9427 + 125.913i −0.193619 + 1.22246i 0.679030 + 0.734111i \(0.262401\pi\)
−0.872649 + 0.488349i \(0.837599\pi\)
\(104\) 92.5809 + 30.0813i 0.890201 + 0.289244i
\(105\) 0 0
\(106\) −117.681 + 85.5002i −1.11020 + 0.806605i
\(107\) 25.9863 + 164.071i 0.242863 + 1.53338i 0.744101 + 0.668067i \(0.232878\pi\)
−0.501238 + 0.865310i \(0.667122\pi\)
\(108\) −1.32529 0.675267i −0.0122712 0.00625247i
\(109\) 95.5708i 0.876796i −0.898781 0.438398i \(-0.855546\pi\)
0.898781 0.438398i \(-0.144454\pi\)
\(110\) 0 0
\(111\) −2.20155 −0.0198337
\(112\) −12.5736 + 24.6771i −0.112264 + 0.220331i
\(113\) 115.722 18.3285i 1.02408 0.162199i 0.378272 0.925695i \(-0.376519\pi\)
0.645813 + 0.763496i \(0.276519\pi\)
\(114\) −1.14473 1.57558i −0.0100415 0.0138209i
\(115\) 0 0
\(116\) −4.26865 + 13.1376i −0.0367987 + 0.113255i
\(117\) 100.475 + 15.9137i 0.858762 + 0.136015i
\(118\) −82.5007 + 13.0668i −0.699159 + 0.110736i
\(119\) 57.8230 18.7878i 0.485907 0.157881i
\(120\) 0 0
\(121\) 98.4210 70.3868i 0.813397 0.581709i
\(122\) −64.4130 64.4130i −0.527976 0.527976i
\(123\) −4.56380 2.32537i −0.0371041 0.0189055i
\(124\) 12.2211 16.8209i 0.0985574 0.135653i
\(125\) 0 0
\(126\) −11.4538 + 35.2511i −0.0909031 + 0.279771i
\(127\) 4.81465 2.45318i 0.0379106 0.0193164i −0.434932 0.900463i \(-0.643228\pi\)
0.472843 + 0.881147i \(0.343228\pi\)
\(128\) −11.5642 + 73.0136i −0.0903455 + 0.570419i
\(129\) 1.83261 2.52237i 0.0142063 0.0195532i
\(130\) 0 0
\(131\) −86.8414 −0.662912 −0.331456 0.943471i \(-0.607540\pi\)
−0.331456 + 0.943471i \(0.607540\pi\)
\(132\) 0.808783 + 0.415918i 0.00612714 + 0.00315090i
\(133\) 18.2019 18.2019i 0.136857 0.136857i
\(134\) 3.75092 1.21875i 0.0279919 0.00909512i
\(135\) 0 0
\(136\) 182.508 132.600i 1.34197 0.974996i
\(137\) −81.2550 + 41.4015i −0.593102 + 0.302201i −0.724659 0.689108i \(-0.758002\pi\)
0.131557 + 0.991309i \(0.458002\pi\)
\(138\) −0.248404 0.487521i −0.00180003 0.00353276i
\(139\) −56.9198 78.3433i −0.409495 0.563621i 0.553600 0.832782i \(-0.313253\pi\)
−0.963095 + 0.269161i \(0.913253\pi\)
\(140\) 0 0
\(141\) 0.0843510 + 0.259606i 0.000598234 + 0.00184117i
\(142\) −135.205 135.205i −0.952149 0.952149i
\(143\) −122.862 19.9314i −0.859175 0.139380i
\(144\) 107.391i 0.745768i
\(145\) 0 0
\(146\) −115.861 84.1778i −0.793568 0.576561i
\(147\) −4.25054 0.673219i −0.0289152 0.00457972i
\(148\) −8.49128 16.6651i −0.0573735 0.112602i
\(149\) −46.3778 15.0691i −0.311260 0.101135i 0.149221 0.988804i \(-0.452323\pi\)
−0.460482 + 0.887669i \(0.652323\pi\)
\(150\) 0 0
\(151\) −233.936 169.964i −1.54924 1.12559i −0.944188 0.329409i \(-0.893151\pi\)
−0.605056 0.796183i \(-0.706849\pi\)
\(152\) 43.3619 85.1025i 0.285275 0.559885i
\(153\) 166.699 166.699i 1.08953 1.08953i
\(154\) 14.1757 43.0786i 0.0920497 0.279731i
\(155\) 0 0
\(156\) −0.289094 0.889741i −0.00185317 0.00570347i
\(157\) 0.989679 + 6.24859i 0.00630369 + 0.0397999i 0.990640 0.136503i \(-0.0435863\pi\)
−0.984336 + 0.176303i \(0.943586\pi\)
\(158\) 23.5387 148.618i 0.148979 0.940618i
\(159\) 7.67497 + 2.49375i 0.0482702 + 0.0156839i
\(160\) 0 0
\(161\) 5.85085 4.25089i 0.0363407 0.0264031i
\(162\) 22.4585 + 141.797i 0.138633 + 0.875293i
\(163\) 204.201 + 104.046i 1.25277 + 0.638318i 0.949255 0.314509i \(-0.101840\pi\)
0.303515 + 0.952827i \(0.401840\pi\)
\(164\) 43.5156i 0.265339i
\(165\) 0 0
\(166\) 24.3278 0.146553
\(167\) −71.4859 + 140.299i −0.428059 + 0.840114i 0.571747 + 0.820430i \(0.306266\pi\)
−0.999806 + 0.0196836i \(0.993734\pi\)
\(168\) 1.94350 0.307820i 0.0115685 0.00183226i
\(169\) −24.0780 33.1406i −0.142474 0.196098i
\(170\) 0 0
\(171\) 30.8438 94.9274i 0.180373 0.555131i
\(172\) 26.1619 + 4.14364i 0.152104 + 0.0240909i
\(173\) 10.8143 1.71282i 0.0625104 0.00990068i −0.125101 0.992144i \(-0.539925\pi\)
0.187611 + 0.982243i \(0.439925\pi\)
\(174\) −2.74973 + 0.893442i −0.0158031 + 0.00513473i
\(175\) 0 0
\(176\) 0.492103 131.396i 0.00279604 0.746570i
\(177\) 3.27676 + 3.27676i 0.0185128 + 0.0185128i
\(178\) −145.815 74.2965i −0.819186 0.417396i
\(179\) 8.66776 11.9301i 0.0484232 0.0666488i −0.784119 0.620611i \(-0.786885\pi\)
0.832542 + 0.553962i \(0.186885\pi\)
\(180\) 0 0
\(181\) −52.5269 + 161.661i −0.290204 + 0.893156i 0.694586 + 0.719409i \(0.255587\pi\)
−0.984790 + 0.173747i \(0.944413\pi\)
\(182\) −41.5663 + 21.1791i −0.228386 + 0.116368i
\(183\) −0.790575 + 4.99149i −0.00432008 + 0.0272759i
\(184\) 15.7728 21.7094i 0.0857219 0.117986i
\(185\) 0 0
\(186\) 4.35179 0.0233967
\(187\) −204.726 + 203.198i −1.09479 + 1.08662i
\(188\) −1.63980 + 1.63980i −0.00872235 + 0.00872235i
\(189\) 3.91345 1.27156i 0.0207061 0.00672782i
\(190\) 0 0
\(191\) 284.824 206.937i 1.49123 1.08344i 0.517511 0.855676i \(-0.326859\pi\)
0.973716 0.227764i \(-0.0731414\pi\)
\(192\) 6.25845 3.18884i 0.0325961 0.0166085i
\(193\) −49.7456 97.6313i −0.257749 0.505861i 0.725478 0.688245i \(-0.241619\pi\)
−0.983227 + 0.182384i \(0.941619\pi\)
\(194\) 160.842 + 221.381i 0.829085 + 1.14114i
\(195\) 0 0
\(196\) −11.2981 34.7720i −0.0576433 0.177408i
\(197\) −117.931 117.931i −0.598636 0.598636i 0.341313 0.939950i \(-0.389128\pi\)
−0.939950 + 0.341313i \(0.889128\pi\)
\(198\) −26.8582 173.786i −0.135647 0.877705i
\(199\) 299.028i 1.50265i −0.659931 0.751326i \(-0.729415\pi\)
0.659931 0.751326i \(-0.270585\pi\)
\(200\) 0 0
\(201\) −0.177015 0.128609i −0.000880673 0.000639846i
\(202\) −308.797 48.9087i −1.52870 0.242122i
\(203\) −17.3492 34.0498i −0.0854642 0.167733i
\(204\) −2.06192 0.669958i −0.0101075 0.00328411i
\(205\) 0 0
\(206\) −183.393 133.243i −0.890259 0.646811i
\(207\) 12.7310 24.9859i 0.0615022 0.120705i
\(208\) −95.5750 + 95.5750i −0.459495 + 0.459495i
\(209\) −38.1735 + 116.006i −0.182648 + 0.555052i
\(210\) 0 0
\(211\) −46.9412 144.470i −0.222470 0.684693i −0.998539 0.0540442i \(-0.982789\pi\)
0.776068 0.630649i \(-0.217211\pi\)
\(212\) 10.7251 + 67.7156i 0.0505901 + 0.319413i
\(213\) −1.65944 + 10.4773i −0.00779082 + 0.0491893i
\(214\) −280.927 91.2787i −1.31274 0.426536i
\(215\) 0 0
\(216\) 12.3521 8.97432i 0.0571856 0.0415478i
\(217\) 8.99808 + 56.8116i 0.0414658 + 0.261805i
\(218\) 151.419 + 77.1518i 0.694582 + 0.353907i
\(219\) 7.94513i 0.0362791i
\(220\) 0 0
\(221\) 296.716 1.34260
\(222\) 1.77725 3.48805i 0.00800563 0.0157119i
\(223\) −304.194 + 48.1796i −1.36410 + 0.216052i −0.795196 0.606353i \(-0.792632\pi\)
−0.568903 + 0.822405i \(0.692632\pi\)
\(224\) 17.9501 + 24.7062i 0.0801343 + 0.110295i
\(225\) 0 0
\(226\) −64.3800 + 198.141i −0.284867 + 0.876731i
\(227\) 370.529 + 58.6861i 1.63229 + 0.258529i 0.904249 0.427006i \(-0.140432\pi\)
0.728040 + 0.685535i \(0.240432\pi\)
\(228\) −0.906616 + 0.143594i −0.00397639 + 0.000629798i
\(229\) 118.770 38.5907i 0.518646 0.168518i −0.0379849 0.999278i \(-0.512094\pi\)
0.556631 + 0.830760i \(0.312094\pi\)
\(230\) 0 0
\(231\) −2.39574 + 0.768516i −0.0103712 + 0.00332691i
\(232\) −100.265 100.265i −0.432175 0.432175i
\(233\) −227.137 115.732i −0.974837 0.496704i −0.107381 0.994218i \(-0.534246\pi\)
−0.867456 + 0.497514i \(0.834246\pi\)
\(234\) −106.324 + 146.343i −0.454376 + 0.625395i
\(235\) 0 0
\(236\) −12.1658 + 37.4425i −0.0515500 + 0.158655i
\(237\) −7.43795 + 3.78982i −0.0313837 + 0.0159908i
\(238\) −16.9122 + 106.780i −0.0710598 + 0.448654i
\(239\) −146.021 + 200.980i −0.610965 + 0.840921i −0.996656 0.0817069i \(-0.973963\pi\)
0.385692 + 0.922628i \(0.373963\pi\)
\(240\) 0 0
\(241\) 287.218 1.19177 0.595887 0.803068i \(-0.296800\pi\)
0.595887 + 0.803068i \(0.296800\pi\)
\(242\) 32.0656 + 212.756i 0.132502 + 0.879158i
\(243\) 16.9263 16.9263i 0.0696554 0.0696554i
\(244\) −40.8334 + 13.2676i −0.167350 + 0.0543753i
\(245\) 0 0
\(246\) 7.36848 5.35352i 0.0299532 0.0217623i
\(247\) 111.933 57.0329i 0.453171 0.230902i
\(248\) 96.8932 + 190.164i 0.390698 + 0.766788i
\(249\) −0.793310 1.09190i −0.00318598 0.00438513i
\(250\) 0 0
\(251\) 64.7604 + 199.312i 0.258010 + 0.794072i 0.993222 + 0.116235i \(0.0370825\pi\)
−0.735212 + 0.677837i \(0.762917\pi\)
\(252\) 12.3530 + 12.3530i 0.0490198 + 0.0490198i
\(253\) −15.6913 + 30.5129i −0.0620209 + 0.120604i
\(254\) 9.60854i 0.0378289i
\(255\) 0 0
\(256\) 124.069 + 90.1411i 0.484643 + 0.352114i
\(257\) −331.611 52.5220i −1.29031 0.204366i −0.526707 0.850047i \(-0.676574\pi\)
−0.763607 + 0.645681i \(0.776574\pi\)
\(258\) 2.51693 + 4.93976i 0.00975555 + 0.0191464i
\(259\) 49.2105 + 15.9895i 0.190002 + 0.0617354i
\(260\) 0 0
\(261\) −119.879 87.0974i −0.459307 0.333706i
\(262\) 70.1048 137.588i 0.267576 0.525147i
\(263\) 191.280 191.280i 0.727299 0.727299i −0.242782 0.970081i \(-0.578060\pi\)
0.970081 + 0.242782i \(0.0780600\pi\)
\(264\) −7.57308 + 5.45895i −0.0286859 + 0.0206778i
\(265\) 0 0
\(266\) 14.1445 + 43.5324i 0.0531750 + 0.163656i
\(267\) 1.42029 + 8.96734i 0.00531943 + 0.0335855i
\(268\) 0.290793 1.83600i 0.00108505 0.00685073i
\(269\) 19.6590 + 6.38760i 0.0730818 + 0.0237457i 0.345330 0.938481i \(-0.387767\pi\)
−0.272248 + 0.962227i \(0.587767\pi\)
\(270\) 0 0
\(271\) −371.981 + 270.260i −1.37262 + 0.997269i −0.375096 + 0.926986i \(0.622390\pi\)
−0.997527 + 0.0702831i \(0.977610\pi\)
\(272\) 49.0005 + 309.377i 0.180149 + 1.13741i
\(273\) 2.30602 + 1.17498i 0.00844696 + 0.00430394i
\(274\) 162.160i 0.591824i
\(275\) 0 0
\(276\) −0.257889 −0.000934381
\(277\) 174.111 341.712i 0.628559 1.23362i −0.328713 0.944430i \(-0.606615\pi\)
0.957273 0.289187i \(-0.0933851\pi\)
\(278\) 170.074 26.9371i 0.611778 0.0968961i
\(279\) 131.096 + 180.438i 0.469877 + 0.646731i
\(280\) 0 0
\(281\) −58.9055 + 181.292i −0.209628 + 0.645169i 0.789863 + 0.613283i \(0.210151\pi\)
−0.999492 + 0.0318861i \(0.989849\pi\)
\(282\) −0.479404 0.0759302i −0.00170002 0.000269256i
\(283\) −548.838 + 86.9274i −1.93936 + 0.307164i −0.999416 0.0341733i \(-0.989120\pi\)
−0.939941 + 0.341337i \(0.889120\pi\)
\(284\) −85.7107 + 27.8491i −0.301798 + 0.0980602i
\(285\) 0 0
\(286\) 130.762 178.568i 0.457210 0.624364i
\(287\) 85.1245 + 85.1245i 0.296601 + 0.296601i
\(288\) 105.507 + 53.7585i 0.366344 + 0.186662i
\(289\) 234.303 322.491i 0.810738 1.11588i
\(290\) 0 0
\(291\) 4.69123 14.4381i 0.0161211 0.0496155i
\(292\) −60.1424 + 30.6441i −0.205967 + 0.104945i
\(293\) −24.4572 + 154.417i −0.0834718 + 0.527020i 0.910152 + 0.414274i \(0.135965\pi\)
−0.993624 + 0.112746i \(0.964035\pi\)
\(294\) 4.49797 6.19093i 0.0152992 0.0210576i
\(295\) 0 0
\(296\) 191.991 0.648618
\(297\) −13.8558 + 13.7524i −0.0466526 + 0.0463044i
\(298\) 61.3145 61.3145i 0.205753 0.205753i
\(299\) 33.5671 10.9066i 0.112265 0.0364770i
\(300\) 0 0
\(301\) −59.2832 + 43.0718i −0.196954 + 0.143096i
\(302\) 458.136 233.432i 1.51701 0.772953i
\(303\) 7.87449 + 15.4546i 0.0259884 + 0.0510051i
\(304\) 77.9515 + 107.291i 0.256419 + 0.352931i
\(305\) 0 0
\(306\) 129.540 + 398.683i 0.423333 + 1.30289i
\(307\) 23.5348 + 23.5348i 0.0766605 + 0.0766605i 0.744397 0.667737i \(-0.232737\pi\)
−0.667737 + 0.744397i \(0.732737\pi\)
\(308\) −15.0577 15.1710i −0.0488888 0.0492563i
\(309\) 12.5762i 0.0406995i
\(310\) 0 0
\(311\) −134.134 97.4541i −0.431299 0.313357i 0.350869 0.936425i \(-0.385886\pi\)
−0.782168 + 0.623067i \(0.785886\pi\)
\(312\) 9.48486 + 1.50225i 0.0304002 + 0.00481492i
\(313\) 233.885 + 459.024i 0.747235 + 1.46653i 0.879794 + 0.475356i \(0.157681\pi\)
−0.132559 + 0.991175i \(0.542319\pi\)
\(314\) −10.6990 3.47631i −0.0340732 0.0110711i
\(315\) 0 0
\(316\) −57.3758 41.6859i −0.181569 0.131918i
\(317\) 263.414 516.979i 0.830958 1.63085i 0.0563462 0.998411i \(-0.482055\pi\)
0.774612 0.632436i \(-0.217945\pi\)
\(318\) −10.1468 + 10.1468i −0.0319082 + 0.0319082i
\(319\) 146.278 + 107.116i 0.458550 + 0.335787i
\(320\) 0 0
\(321\) 5.06397 + 15.5853i 0.0157756 + 0.0485523i
\(322\) 2.01172 + 12.7015i 0.00624759 + 0.0394457i
\(323\) 45.5428 287.546i 0.140999 0.890234i
\(324\) 64.3540 + 20.9099i 0.198623 + 0.0645367i
\(325\) 0 0
\(326\) −329.693 + 239.536i −1.01133 + 0.734773i
\(327\) −1.47487 9.31196i −0.00451031 0.0284770i
\(328\) 397.997 + 202.790i 1.21341 + 0.618261i
\(329\) 6.41551i 0.0195000i
\(330\) 0 0
\(331\) −337.154 −1.01859 −0.509296 0.860592i \(-0.670094\pi\)
−0.509296 + 0.860592i \(0.670094\pi\)
\(332\) 5.20559 10.2165i 0.0156795 0.0307727i
\(333\) 198.164 31.3861i 0.595086 0.0942524i
\(334\) −164.576 226.519i −0.492742 0.678202i
\(335\) 0 0
\(336\) −0.844290 + 2.59846i −0.00251277 + 0.00773351i
\(337\) 139.008 + 22.0167i 0.412487 + 0.0653315i 0.359229 0.933249i \(-0.383040\pi\)
0.0532574 + 0.998581i \(0.483040\pi\)
\(338\) 71.9443 11.3949i 0.212853 0.0337126i
\(339\) 10.9925 3.57168i 0.0324263 0.0105359i
\(340\) 0 0
\(341\) −159.574 221.373i −0.467958 0.649188i
\(342\) 125.500 + 125.500i 0.366960 + 0.366960i
\(343\) 191.349 + 97.4970i 0.557868 + 0.284248i
\(344\) −159.817 + 219.969i −0.464583 + 0.639444i
\(345\) 0 0
\(346\) −6.01638 + 18.5165i −0.0173884 + 0.0535159i
\(347\) 315.980 161.000i 0.910606 0.463977i 0.0650608 0.997881i \(-0.479276\pi\)
0.845545 + 0.533905i \(0.179276\pi\)
\(348\) −0.213175 + 1.34594i −0.000612573 + 0.00386763i
\(349\) −48.1418 + 66.2614i −0.137942 + 0.189861i −0.872399 0.488794i \(-0.837437\pi\)
0.734457 + 0.678655i \(0.237437\pi\)
\(350\) 0 0
\(351\) 20.0817 0.0572127
\(352\) −128.845 66.2590i −0.366038 0.188236i
\(353\) 197.329 197.329i 0.559006 0.559006i −0.370018 0.929025i \(-0.620649\pi\)
0.929025 + 0.370018i \(0.120649\pi\)
\(354\) −7.83683 + 2.54634i −0.0221379 + 0.00719305i
\(355\) 0 0
\(356\) −62.4022 + 45.3379i −0.175287 + 0.127354i
\(357\) 5.34406 2.72293i 0.0149694 0.00762727i
\(358\) 11.9044 + 23.3638i 0.0332526 + 0.0652619i
\(359\) −183.112 252.032i −0.510060 0.702038i 0.473869 0.880595i \(-0.342857\pi\)
−0.983930 + 0.178557i \(0.942857\pi\)
\(360\) 0 0
\(361\) 73.4655 + 226.103i 0.203505 + 0.626325i
\(362\) −213.727 213.727i −0.590405 0.590405i
\(363\) 8.50345 8.37701i 0.0234255 0.0230772i
\(364\) 21.9877i 0.0604059i
\(365\) 0 0
\(366\) −7.27013 5.28206i −0.0198638 0.0144319i
\(367\) −100.232 15.8753i −0.273113 0.0432568i 0.0183757 0.999831i \(-0.494151\pi\)
−0.291489 + 0.956574i \(0.594151\pi\)
\(368\) 16.9154 + 33.1983i 0.0459657 + 0.0902128i
\(369\) 443.945 + 144.246i 1.20310 + 0.390912i
\(370\) 0 0
\(371\) −153.445 111.484i −0.413597 0.300496i
\(372\) 0.931184 1.82755i 0.00250318 0.00491277i
\(373\) −212.910 + 212.910i −0.570803 + 0.570803i −0.932353 0.361550i \(-0.882248\pi\)
0.361550 + 0.932353i \(0.382248\pi\)
\(374\) −156.670 488.397i −0.418904 1.30587i
\(375\) 0 0
\(376\) −7.35602 22.6395i −0.0195639 0.0602114i
\(377\) −29.1751 184.204i −0.0773875 0.488605i
\(378\) −1.14462 + 7.22683i −0.00302809 + 0.0191186i
\(379\) 570.872 + 185.487i 1.50626 + 0.489413i 0.941836 0.336073i \(-0.109099\pi\)
0.564422 + 0.825486i \(0.309099\pi\)
\(380\) 0 0
\(381\) 0.431258 0.313327i 0.00113191 0.000822381i
\(382\) 97.9324 + 618.321i 0.256367 + 1.61864i
\(383\) −543.751 277.055i −1.41972 0.723381i −0.435473 0.900202i \(-0.643419\pi\)
−0.984243 + 0.176821i \(0.943419\pi\)
\(384\) 7.29256i 0.0189910i
\(385\) 0 0
\(386\) 194.842 0.504772
\(387\) −128.995 + 253.168i −0.333321 + 0.654180i
\(388\) 127.386 20.1760i 0.328315 0.0520000i
\(389\) −230.163 316.792i −0.591679 0.814376i 0.403236 0.915096i \(-0.367885\pi\)
−0.994915 + 0.100720i \(0.967885\pi\)
\(390\) 0 0
\(391\) 25.2754 77.7898i 0.0646430 0.198951i
\(392\) 370.678 + 58.7096i 0.945607 + 0.149769i
\(393\) −8.46142 + 1.34016i −0.0215303 + 0.00341007i
\(394\) 282.049 91.6433i 0.715861 0.232597i
\(395\) 0 0
\(396\) −78.7290 25.9070i −0.198811 0.0654217i
\(397\) −437.032 437.032i −1.10084 1.10084i −0.994310 0.106526i \(-0.966027\pi\)
−0.106526 0.994310i \(-0.533973\pi\)
\(398\) 473.769 + 241.397i 1.19037 + 0.606526i
\(399\) 1.49261 2.05440i 0.00374088 0.00514888i
\(400\) 0 0
\(401\) −67.2375 + 206.936i −0.167675 + 0.516049i −0.999223 0.0394025i \(-0.987455\pi\)
0.831549 + 0.555452i \(0.187455\pi\)
\(402\) 0.346663 0.176634i 0.000862347 0.000439388i
\(403\) −43.9133 + 277.258i −0.108966 + 0.687984i
\(404\) −86.6150 + 119.215i −0.214393 + 0.295087i
\(405\) 0 0
\(406\) 67.9529 0.167372
\(407\) −242.604 + 37.4939i −0.596080 + 0.0921227i
\(408\) 15.7364 15.7364i 0.0385695 0.0385695i
\(409\) 158.994 51.6604i 0.388739 0.126309i −0.108125 0.994137i \(-0.534485\pi\)
0.496864 + 0.867828i \(0.334485\pi\)
\(410\) 0 0
\(411\) −7.27818 + 5.28791i −0.0177085 + 0.0128660i
\(412\) −95.1979 + 48.5058i −0.231063 + 0.117732i
\(413\) −49.4459 97.0430i −0.119724 0.234971i
\(414\) 29.3094 + 40.3410i 0.0707957 + 0.0974420i
\(415\) 0 0
\(416\) 46.0549 + 141.743i 0.110709 + 0.340727i
\(417\) −6.75500 6.75500i −0.0161990 0.0161990i
\(418\) −152.979 154.129i −0.365978 0.368730i
\(419\) 187.271i 0.446948i 0.974710 + 0.223474i \(0.0717398\pi\)
−0.974710 + 0.223474i \(0.928260\pi\)
\(420\) 0 0
\(421\) 215.858 + 156.830i 0.512726 + 0.372517i 0.813857 0.581066i \(-0.197364\pi\)
−0.301131 + 0.953583i \(0.597364\pi\)
\(422\) 266.788 + 42.2551i 0.632199 + 0.100130i
\(423\) −11.2936 22.1649i −0.0266987 0.0523992i
\(424\) −669.313 217.473i −1.57857 0.512908i
\(425\) 0 0
\(426\) −15.2603 11.0872i −0.0358222 0.0260264i
\(427\) 53.9239 105.832i 0.126285 0.247849i
\(428\) −98.4448 + 98.4448i −0.230011 + 0.230011i
\(429\) −12.2787 0.0459859i −0.0286216 0.000107193i
\(430\) 0 0
\(431\) −133.538 410.989i −0.309834 0.953570i −0.977829 0.209404i \(-0.932847\pi\)
0.667996 0.744165i \(-0.267153\pi\)
\(432\) 3.31634 + 20.9386i 0.00767672 + 0.0484689i
\(433\) 107.820 680.747i 0.249006 1.57216i −0.473497 0.880795i \(-0.657009\pi\)
0.722503 0.691368i \(-0.242991\pi\)
\(434\) −97.2742 31.6063i −0.224134 0.0728256i
\(435\) 0 0
\(436\) 64.8004 47.0802i 0.148625 0.107982i
\(437\) −5.41735 34.2038i −0.0123967 0.0782695i
\(438\) −12.5880 6.41390i −0.0287397 0.0146436i
\(439\) 620.821i 1.41417i 0.707129 + 0.707085i \(0.249990\pi\)
−0.707129 + 0.707085i \(0.750010\pi\)
\(440\) 0 0
\(441\) 392.194 0.889328
\(442\) −239.531 + 470.106i −0.541925 + 1.06359i
\(443\) −700.851 + 111.004i −1.58206 + 0.250573i −0.884703 0.466154i \(-0.845639\pi\)
−0.697353 + 0.716728i \(0.745639\pi\)
\(444\) −1.08453 1.49273i −0.00244263 0.00336200i
\(445\) 0 0
\(446\) 169.234 520.848i 0.379448 1.16782i
\(447\) −4.75138 0.752545i −0.0106295 0.00168355i
\(448\) −163.053 + 25.8251i −0.363958 + 0.0576453i
\(449\) −346.705 + 112.651i −0.772173 + 0.250894i −0.668495 0.743717i \(-0.733061\pi\)
−0.103678 + 0.994611i \(0.533061\pi\)
\(450\) 0 0
\(451\) −542.522 178.525i −1.20293 0.395843i
\(452\) 69.4343 + 69.4343i 0.153616 + 0.153616i
\(453\) −25.4165 12.9504i −0.0561071 0.0285880i
\(454\) −392.099 + 539.678i −0.863654 + 1.18872i
\(455\) 0 0
\(456\) 2.91165 8.96115i 0.00638521 0.0196516i
\(457\) 382.378 194.831i 0.836713 0.426327i 0.0175216 0.999846i \(-0.494422\pi\)
0.819192 + 0.573520i \(0.194422\pi\)
\(458\) −34.7381 + 219.328i −0.0758475 + 0.478882i
\(459\) 27.3544 37.6501i 0.0595956 0.0820263i
\(460\) 0 0
\(461\) 721.637 1.56537 0.782687 0.622416i \(-0.213849\pi\)
0.782687 + 0.622416i \(0.213849\pi\)
\(462\) 0.716411 4.41613i 0.00155067 0.00955873i
\(463\) −180.799 + 180.799i −0.390494 + 0.390494i −0.874863 0.484370i \(-0.839049\pi\)
0.484370 + 0.874863i \(0.339049\pi\)
\(464\) 187.246 60.8400i 0.403548 0.131121i
\(465\) 0 0
\(466\) 366.724 266.440i 0.786961 0.571760i
\(467\) −513.866 + 261.828i −1.10036 + 0.560659i −0.907281 0.420525i \(-0.861846\pi\)
−0.193075 + 0.981184i \(0.561846\pi\)
\(468\) 38.7062 + 75.9652i 0.0827055 + 0.162319i
\(469\) 3.02270 + 4.16039i 0.00644499 + 0.00887077i
\(470\) 0 0
\(471\) 0.192859 + 0.593560i 0.000409468 + 0.00126021i
\(472\) −285.757 285.757i −0.605418 0.605418i
\(473\) 158.991 309.169i 0.336132 0.653634i
\(474\) 14.8438i 0.0313161i
\(475\) 0 0
\(476\) 41.2237 + 29.9508i 0.0866044 + 0.0629218i
\(477\) −726.385 115.048i −1.52282 0.241191i
\(478\) −200.547 393.596i −0.419555 0.823422i
\(479\) 232.826 + 75.6499i 0.486068 + 0.157933i 0.541791 0.840513i \(-0.317746\pi\)
−0.0557233 + 0.998446i \(0.517746\pi\)
\(480\) 0 0
\(481\) 204.294 + 148.428i 0.424727 + 0.308582i
\(482\) −231.863 + 455.058i −0.481044 + 0.944103i
\(483\) 0.504479 0.504479i 0.00104447 0.00104447i
\(484\) 96.2091 + 32.0589i 0.198779 + 0.0662374i
\(485\) 0 0
\(486\) 13.1532 + 40.4815i 0.0270643 + 0.0832953i
\(487\) 133.328 + 841.801i 0.273775 + 1.72855i 0.614968 + 0.788552i \(0.289169\pi\)
−0.341193 + 0.939993i \(0.610831\pi\)
\(488\) 68.9439 435.295i 0.141278 0.891997i
\(489\) 21.5021 + 6.98645i 0.0439715 + 0.0142872i
\(490\) 0 0
\(491\) 349.478 253.910i 0.711767 0.517129i −0.171976 0.985101i \(-0.555015\pi\)
0.883743 + 0.467972i \(0.155015\pi\)
\(492\) −0.671542 4.23995i −0.00136492 0.00861779i
\(493\) −385.096 196.216i −0.781128 0.398004i
\(494\) 223.384i 0.452195i
\(495\) 0 0
\(496\) −296.340 −0.597460
\(497\) 113.188 222.144i 0.227743 0.446970i
\(498\) 2.37038 0.375432i 0.00475980 0.000753879i
\(499\) −464.030 638.682i −0.929919 1.27992i −0.959891 0.280373i \(-0.909542\pi\)
0.0299719 0.999551i \(-0.490458\pi\)
\(500\) 0 0
\(501\) −4.80012 + 14.7733i −0.00958108 + 0.0294875i
\(502\) −368.062 58.2953i −0.733192 0.116126i
\(503\) −213.537 + 33.8209i −0.424527 + 0.0672385i −0.365043 0.930991i \(-0.618946\pi\)
−0.0594843 + 0.998229i \(0.518946\pi\)
\(504\) −170.548 + 55.4145i −0.338390 + 0.109949i
\(505\) 0 0
\(506\) −35.6763 49.4930i −0.0705065 0.0978122i
\(507\) −2.85748 2.85748i −0.00563606 0.00563606i
\(508\) 4.03515 + 2.05601i 0.00794320 + 0.00404726i
\(509\) 342.653 471.621i 0.673188 0.926564i −0.326639 0.945149i \(-0.605916\pi\)
0.999827 + 0.0185853i \(0.00591622\pi\)
\(510\) 0 0
\(511\) 57.7042 177.595i 0.112924 0.347544i
\(512\) −506.440 + 258.044i −0.989140 + 0.503992i
\(513\) 3.08233 19.4610i 0.00600843 0.0379358i
\(514\) 350.915 482.993i 0.682713 0.939674i
\(515\) 0 0
\(516\) 2.61304 0.00506402
\(517\) 13.7165 + 27.1713i 0.0265310 + 0.0525557i
\(518\) −65.0595 + 65.0595i −0.125597 + 0.125597i
\(519\) 1.02726 0.333778i 0.00197931 0.000643117i
\(520\) 0 0
\(521\) −212.021 + 154.042i −0.406950 + 0.295666i −0.772366 0.635178i \(-0.780927\pi\)
0.365416 + 0.930844i \(0.380927\pi\)
\(522\) 234.769 119.621i 0.449750 0.229159i
\(523\) −49.0341 96.2349i −0.0937555 0.184006i 0.839366 0.543567i \(-0.182926\pi\)
−0.933122 + 0.359561i \(0.882926\pi\)
\(524\) −42.7800 58.8816i −0.0816412 0.112369i
\(525\) 0 0
\(526\) 148.642 + 457.472i 0.282588 + 0.869718i
\(527\) 459.999 + 459.999i 0.872863 + 0.872863i
\(528\) −1.97979 12.8102i −0.00374960 0.0242618i
\(529\) 519.271i 0.981608i
\(530\) 0 0
\(531\) −341.660 248.230i −0.643427 0.467477i
\(532\) 21.3082 + 3.37489i 0.0400530 + 0.00634378i
\(533\) 266.724 + 523.476i 0.500421 + 0.982132i
\(534\) −15.3541 4.98885i −0.0287530 0.00934241i
\(535\) 0 0
\(536\) 15.4370 + 11.2156i 0.0288004 + 0.0209247i
\(537\) 0.660436 1.29618i 0.00122986 0.00241374i
\(538\) −25.9905 + 25.9905i −0.0483095 + 0.0483095i
\(539\) −479.863 1.79718i −0.890284 0.00333428i
\(540\) 0 0
\(541\) −202.598 623.533i −0.374488 1.15256i −0.943823 0.330450i \(-0.892799\pi\)
0.569335 0.822105i \(-0.307201\pi\)
\(542\) −127.900 807.527i −0.235977 1.48990i
\(543\) −2.62318 + 16.5621i −0.00483090 + 0.0305011i
\(544\) 328.480 + 106.730i 0.603823 + 0.196194i
\(545\) 0 0
\(546\) −3.72318 + 2.70505i −0.00681901 + 0.00495430i
\(547\) 30.6938 + 193.793i 0.0561130 + 0.354283i 0.999730 + 0.0232437i \(0.00739937\pi\)
−0.943617 + 0.331040i \(0.892601\pi\)
\(548\) −68.0996 34.6985i −0.124269 0.0633184i
\(549\) 460.561i 0.838909i
\(550\) 0 0
\(551\) −182.989 −0.332104
\(552\) 1.20180 2.35867i 0.00217718 0.00427296i
\(553\) 193.783 30.6922i 0.350421 0.0555013i
\(554\) 400.841 + 551.710i 0.723540 + 0.995867i
\(555\) 0 0
\(556\) 25.0797 77.1872i 0.0451073 0.138826i
\(557\) −22.3245 3.53585i −0.0400799 0.00634803i 0.136362 0.990659i \(-0.456459\pi\)
−0.176442 + 0.984311i \(0.556459\pi\)
\(558\) −391.710 + 62.0407i −0.701989 + 0.111184i
\(559\) −340.116 + 110.510i −0.608436 + 0.197693i
\(560\) 0 0
\(561\) −16.8117 + 22.9580i −0.0299674 + 0.0409234i
\(562\) −239.680 239.680i −0.426478 0.426478i
\(563\) −67.0356 34.1564i −0.119069 0.0606685i 0.393442 0.919350i \(-0.371284\pi\)
−0.512510 + 0.858681i \(0.671284\pi\)
\(564\) −0.134469 + 0.185080i −0.000238420 + 0.000328157i
\(565\) 0 0
\(566\) 305.338 939.734i 0.539466 1.66031i
\(567\) −166.792 + 84.9847i −0.294166 + 0.149885i
\(568\) 144.716 913.698i 0.254781 1.60862i
\(569\) −322.832 + 444.341i −0.567368 + 0.780915i −0.992240 0.124338i \(-0.960319\pi\)
0.424872 + 0.905253i \(0.360319\pi\)
\(570\) 0 0
\(571\) 451.066 0.789957 0.394979 0.918690i \(-0.370752\pi\)
0.394979 + 0.918690i \(0.370752\pi\)
\(572\) −47.0103 93.1235i −0.0821859 0.162803i
\(573\) 24.5584 24.5584i 0.0428594 0.0428594i
\(574\) −203.587 + 66.1495i −0.354681 + 0.115243i
\(575\) 0 0
\(576\) −517.869 + 376.254i −0.899079 + 0.653219i
\(577\) −36.5804 + 18.6386i −0.0633975 + 0.0323026i −0.485402 0.874291i \(-0.661327\pi\)
0.422004 + 0.906594i \(0.361327\pi\)
\(578\) 321.796 + 631.560i 0.556740 + 1.09266i
\(579\) −6.35364 8.74504i −0.0109735 0.0151037i
\(580\) 0 0
\(581\) 9.80235 + 30.1685i 0.0168715 + 0.0519252i
\(582\) 19.0881 + 19.0881i 0.0327975 + 0.0327975i
\(583\) 888.231 + 144.094i 1.52355 + 0.247160i
\(584\) 692.873i 1.18643i
\(585\) 0 0
\(586\) −224.909 163.406i −0.383804 0.278850i
\(587\) −9.99314 1.58276i −0.0170241 0.00269635i 0.147917 0.989000i \(-0.452743\pi\)
−0.164941 + 0.986303i \(0.552743\pi\)
\(588\) −1.63744 3.21366i −0.00278476 0.00546541i
\(589\) 261.949 + 85.1123i 0.444735 + 0.144503i
\(590\) 0 0
\(591\) −13.3106 9.67073i −0.0225222 0.0163633i
\(592\) −121.024 + 237.523i −0.204433 + 0.401221i
\(593\) 239.814 239.814i 0.404408 0.404408i −0.475375 0.879783i \(-0.657688\pi\)
0.879783 + 0.475375i \(0.157688\pi\)
\(594\) −10.6034 33.0546i −0.0178508 0.0556475i
\(595\) 0 0
\(596\) −12.6294 38.8692i −0.0211902 0.0652167i
\(597\) −4.61466 29.1358i −0.00772976 0.0488038i
\(598\) −9.81781 + 61.9872i −0.0164177 + 0.103658i
\(599\) −336.022 109.180i −0.560971 0.182271i 0.0147869 0.999891i \(-0.495293\pi\)
−0.575758 + 0.817620i \(0.695293\pi\)
\(600\) 0 0
\(601\) −276.836 + 201.133i −0.460626 + 0.334664i −0.793777 0.608209i \(-0.791888\pi\)
0.333151 + 0.942873i \(0.391888\pi\)
\(602\) −20.3836 128.697i −0.0338598 0.213782i
\(603\) 17.7668 + 9.05266i 0.0294641 + 0.0150127i
\(604\) 242.345i 0.401233i
\(605\) 0 0
\(606\) −30.8425 −0.0508952
\(607\) 227.460 446.416i 0.374728 0.735446i −0.624222 0.781247i \(-0.714584\pi\)
0.998951 + 0.0458010i \(0.0145840\pi\)
\(608\) 144.431 22.8756i 0.237551 0.0376244i
\(609\) −2.21589 3.04991i −0.00363857 0.00500807i
\(610\) 0 0
\(611\) 9.67520 29.7772i 0.0158350 0.0487352i
\(612\) 195.147 + 30.9082i 0.318868 + 0.0505037i
\(613\) 527.169 83.4954i 0.859983 0.136208i 0.289160 0.957281i \(-0.406624\pi\)
0.570823 + 0.821073i \(0.306624\pi\)
\(614\) −56.2866 + 18.2886i −0.0916720 + 0.0297861i
\(615\) 0 0
\(616\) 208.926 67.0202i 0.339166 0.108799i
\(617\) 194.972 + 194.972i 0.316001 + 0.316001i 0.847229 0.531228i \(-0.178269\pi\)
−0.531228 + 0.847229i \(0.678269\pi\)
\(618\) −19.9252 10.1524i −0.0322414 0.0164278i
\(619\) 483.351 665.276i 0.780858 1.07476i −0.214329 0.976762i \(-0.568756\pi\)
0.995187 0.0979970i \(-0.0312436\pi\)
\(620\) 0 0
\(621\) 1.71064 5.26480i 0.00275465 0.00847794i
\(622\) 262.686 133.845i 0.422324 0.215185i
\(623\) 33.3810 210.760i 0.0535811 0.338298i
\(624\) −7.83744 + 10.7873i −0.0125600 + 0.0172874i
\(625\) 0 0
\(626\) −916.071 −1.46337
\(627\) −1.92921 + 11.8922i −0.00307690 + 0.0189668i
\(628\) −3.74923 + 3.74923i −0.00597011 + 0.00597011i
\(629\) 556.560 180.837i 0.884834 0.287500i
\(630\) 0 0
\(631\) −645.846 + 469.235i −1.02353 + 0.743637i −0.967003 0.254764i \(-0.918002\pi\)
−0.0565250 + 0.998401i \(0.518002\pi\)
\(632\) 648.643 330.500i 1.02633 0.522943i
\(633\) −6.80323 13.3521i −0.0107476 0.0210933i
\(634\) 606.436 + 834.687i 0.956523 + 1.31654i
\(635\) 0 0
\(636\) 2.09001 + 6.43238i 0.00328617 + 0.0101138i
\(637\) 349.043 + 349.043i 0.547948 + 0.547948i
\(638\) −287.797 + 145.285i −0.451093 + 0.227719i
\(639\) 966.733i 1.51288i
\(640\) 0 0
\(641\) 534.242 + 388.150i 0.833451 + 0.605538i 0.920534 0.390663i \(-0.127754\pi\)
−0.0870824 + 0.996201i \(0.527754\pi\)
\(642\) −28.7808 4.55843i −0.0448299 0.00710036i
\(643\) 186.876 + 366.766i 0.290632 + 0.570398i 0.989445 0.144907i \(-0.0462882\pi\)
−0.698813 + 0.715304i \(0.746288\pi\)
\(644\) 5.76452 + 1.87300i 0.00895111 + 0.00290839i
\(645\) 0 0
\(646\) 418.812 + 304.284i 0.648315 + 0.471028i
\(647\) −16.7738 + 32.9204i −0.0259255 + 0.0508816i −0.903606 0.428365i \(-0.859090\pi\)
0.877681 + 0.479246i \(0.159090\pi\)
\(648\) −491.143 + 491.143i −0.757937 + 0.757937i
\(649\) 416.896 + 305.285i 0.642366 + 0.470392i
\(650\) 0 0
\(651\) 1.75346 + 5.39659i 0.00269349 + 0.00828970i
\(652\) 30.0473 + 189.711i 0.0460848 + 0.290968i
\(653\) −73.3615 + 463.186i −0.112345 + 0.709320i 0.865643 + 0.500661i \(0.166910\pi\)
−0.977988 + 0.208659i \(0.933090\pi\)
\(654\) 15.9442 + 5.18057i 0.0243795 + 0.00792137i
\(655\) 0 0
\(656\) −501.766 + 364.554i −0.764887 + 0.555723i
\(657\) −113.269 715.151i −0.172403 1.08851i
\(658\) 10.1645 + 5.17908i 0.0154476 + 0.00787094i
\(659\) 476.130i 0.722504i 0.932468 + 0.361252i \(0.117651\pi\)
−0.932468 + 0.361252i \(0.882349\pi\)
\(660\) 0 0
\(661\) −23.2329 −0.0351481 −0.0175740 0.999846i \(-0.505594\pi\)
−0.0175740 + 0.999846i \(0.505594\pi\)
\(662\) 272.175 534.174i 0.411141 0.806910i
\(663\) 28.9106 4.57898i 0.0436057 0.00690646i
\(664\) 69.1824 + 95.2214i 0.104190 + 0.143406i
\(665\) 0 0
\(666\) −110.245 + 339.301i −0.165534 + 0.509461i
\(667\) −50.7780 8.04244i −0.0761289 0.0120576i
\(668\) −130.343 + 20.6443i −0.195125 + 0.0309047i
\(669\) −28.8957 + 9.38878i −0.0431924 + 0.0140341i
\(670\) 0 0
\(671\) −2.11046 + 563.513i −0.00314525 + 0.839811i
\(672\) 2.13024 + 2.13024i 0.00317000 + 0.00317000i
\(673\) 566.940 + 288.871i 0.842408 + 0.429228i 0.821264 0.570548i \(-0.193269\pi\)
0.0211437 + 0.999776i \(0.493269\pi\)
\(674\) −147.100 + 202.466i −0.218249 + 0.300394i
\(675\) 0 0
\(676\) 10.6091 32.6515i 0.0156940 0.0483011i
\(677\) −470.522 + 239.743i −0.695010 + 0.354125i −0.765543 0.643384i \(-0.777530\pi\)
0.0705336 + 0.997509i \(0.477530\pi\)
\(678\) −3.21512 + 20.2995i −0.00474206 + 0.0299402i
\(679\) −209.723 + 288.659i −0.308871 + 0.425124i
\(680\) 0 0
\(681\) 37.0083 0.0543440
\(682\) 479.555 74.1141i 0.703160 0.108672i
\(683\) −18.9735 + 18.9735i −0.0277797 + 0.0277797i −0.720860 0.693081i \(-0.756253\pi\)
0.693081 + 0.720860i \(0.256253\pi\)
\(684\) 79.5584 25.8501i 0.116314 0.0377926i
\(685\) 0 0
\(686\) −308.942 + 224.459i −0.450352 + 0.327200i
\(687\) 10.9768 5.59298i 0.0159779 0.00814116i
\(688\) −171.394 336.379i −0.249119 0.488923i
\(689\) −544.075 748.855i −0.789659 1.08687i
\(690\) 0 0
\(691\) 26.2414 + 80.7627i 0.0379759 + 0.116878i 0.968247 0.249994i \(-0.0804287\pi\)
−0.930271 + 0.366872i \(0.880429\pi\)
\(692\) 6.48871 + 6.48871i 0.00937675 + 0.00937675i
\(693\) 204.687 103.330i 0.295364 0.149105i
\(694\) 630.599i 0.908644i
\(695\) 0 0
\(696\) −11.3166 8.22200i −0.0162595 0.0118132i
\(697\) 1344.76 + 212.989i 1.92935 + 0.305579i
\(698\) −66.1187 129.765i −0.0947259 0.185910i
\(699\) −23.9172 7.77116i −0.0342162 0.0111175i
\(700\) 0 0
\(701\) 300.312 + 218.189i 0.428405 + 0.311254i 0.781011 0.624517i \(-0.214704\pi\)
−0.352606 + 0.935772i \(0.614704\pi\)
\(702\) −16.2114 + 31.8167i −0.0230932 + 0.0453229i
\(703\) 175.198 175.198i 0.249215 0.249215i
\(704\) 635.356 457.988i 0.902495 0.650551i
\(705\) 0 0
\(706\) 153.343 + 471.940i 0.217199 + 0.668471i
\(707\) −63.7722 402.642i −0.0902012 0.569508i
\(708\) −0.607557 + 3.83596i −0.000858131 + 0.00541803i
\(709\) −613.715 199.408i −0.865607 0.281253i −0.157639 0.987497i \(-0.550388\pi\)
−0.707968 + 0.706244i \(0.750388\pi\)
\(710\) 0 0
\(711\) 615.469 447.165i 0.865639 0.628923i
\(712\) −123.859 782.017i −0.173960 1.09834i
\(713\) 68.9478 + 35.1306i 0.0967009 + 0.0492716i
\(714\) 10.6651i 0.0149371i
\(715\) 0 0
\(716\) 12.3590 0.0172612
\(717\) −11.1260 + 21.8360i −0.0155174 + 0.0304546i
\(718\) 547.131 86.6571i 0.762021 0.120692i
\(719\) 409.022 + 562.970i 0.568876 + 0.782991i 0.992421 0.122885i \(-0.0392145\pi\)
−0.423545 + 0.905875i \(0.639214\pi\)
\(720\) 0 0
\(721\) 91.3385 281.111i 0.126683 0.389890i
\(722\) −417.537 66.1314i −0.578306 0.0915947i
\(723\) 27.9851 4.43241i 0.0387070 0.00613058i
\(724\) −135.488 + 44.0227i −0.187138 + 0.0608048i
\(725\) 0 0
\(726\) 6.40762 + 20.2351i 0.00882592 + 0.0278721i
\(727\) 840.761 + 840.761i 1.15648 + 1.15648i 0.985227 + 0.171254i \(0.0547818\pi\)
0.171254 + 0.985227i \(0.445218\pi\)
\(728\) −201.102 102.466i −0.276239 0.140751i
\(729\) −425.718 + 585.950i −0.583975 + 0.803773i
\(730\) 0 0
\(731\) −256.101 + 788.198i −0.350343 + 1.07825i
\(732\) −3.77386 + 1.92288i −0.00515555 + 0.00262689i
\(733\) −85.4375 + 539.431i −0.116559 + 0.735922i 0.858308 + 0.513134i \(0.171516\pi\)
−0.974867 + 0.222788i \(0.928484\pi\)
\(734\) 106.067 145.989i 0.144506 0.198895i
\(735\) 0 0
\(736\) 41.0837 0.0558203
\(737\) −21.6969 11.1577i −0.0294395 0.0151393i
\(738\) −586.924 + 586.924i −0.795290 + 0.795290i
\(739\) −1133.64 + 368.342i −1.53402 + 0.498433i −0.949719 0.313105i \(-0.898631\pi\)
−0.584300 + 0.811538i \(0.698631\pi\)
\(740\) 0 0
\(741\) 10.0261 7.28439i 0.0135305 0.00983049i
\(742\) 300.503 153.114i 0.404991 0.206353i
\(743\) 125.677 + 246.656i 0.169149 + 0.331973i 0.959983 0.280057i \(-0.0903533\pi\)
−0.790835 + 0.612030i \(0.790353\pi\)
\(744\) 12.3755 + 17.0334i 0.0166337 + 0.0228943i
\(745\) 0 0
\(746\) −165.450 509.203i −0.221783 0.682578i
\(747\) 86.9733 + 86.9733i 0.116430 + 0.116430i
\(748\) −238.628 38.7116i −0.319021 0.0517535i
\(749\) 385.152i 0.514222i
\(750\) 0 0
\(751\) 579.889 + 421.314i 0.772156 + 0.561004i 0.902615 0.430450i \(-0.141645\pi\)
−0.130459 + 0.991454i \(0.541645\pi\)
\(752\) 32.6456 + 5.17056i 0.0434117 + 0.00687574i
\(753\) 9.38578 + 18.4206i 0.0124645 + 0.0244630i
\(754\) 315.399 + 102.479i 0.418301 + 0.135914i
\(755\) 0 0
\(756\) 2.79001 + 2.02706i 0.00369049 + 0.00268130i
\(757\) −149.714 + 293.829i −0.197772 + 0.388150i −0.968500 0.249015i \(-0.919893\pi\)
0.770727 + 0.637165i \(0.219893\pi\)
\(758\) −754.730 + 754.730i −0.995686 + 0.995686i
\(759\) −1.05800 + 3.21518i −0.00139394 + 0.00423607i
\(760\) 0 0
\(761\) 157.983 + 486.220i 0.207599 + 0.638923i 0.999597 + 0.0283993i \(0.00904099\pi\)
−0.791998 + 0.610524i \(0.790959\pi\)
\(762\) 0.148281 + 0.936211i 0.000194595 + 0.00122862i
\(763\) −34.6639 + 218.859i −0.0454311 + 0.286840i
\(764\) 280.621 + 91.1794i 0.367306 + 0.119345i
\(765\) 0 0
\(766\) 877.912 637.841i 1.14610 0.832690i
\(767\) −83.1500 524.988i −0.108409 0.684470i
\(768\) 13.4797 + 6.86827i 0.0175517 + 0.00894306i
\(769\) 1149.32i 1.49456i 0.664507 + 0.747282i \(0.268642\pi\)
−0.664507 + 0.747282i \(0.731358\pi\)
\(770\) 0 0
\(771\) −33.1211 −0.0429586
\(772\) 41.6917 81.8246i 0.0540048 0.105990i
\(773\) −1425.52 + 225.780i −1.84413 + 0.292082i −0.978136 0.207965i \(-0.933316\pi\)
−0.865998 + 0.500047i \(0.833316\pi\)
\(774\) −296.975 408.751i −0.383689 0.528102i
\(775\) 0 0
\(776\) −409.109 + 1259.11i −0.527202 + 1.62256i
\(777\) 5.04159 + 0.798509i 0.00648853 + 0.00102768i
\(778\) 687.719 108.924i 0.883958 0.140005i
\(779\) 548.237 178.133i 0.703771 0.228669i
\(780\) 0 0
\(781\) −4.42993 + 1182.83i −0.00567212 + 1.51451i
\(782\) 102.843 + 102.843i 0.131513 + 0.131513i
\(783\) −26.0632 13.2799i −0.0332864 0.0169603i
\(784\) −306.295 + 421.579i −0.390682 + 0.537728i
\(785\) 0 0
\(786\) 4.70739 14.4878i 0.00598904 0.0184324i
\(787\) 686.578 349.829i 0.872399 0.444510i 0.0403333 0.999186i \(-0.487158\pi\)
0.832066 + 0.554677i \(0.187158\pi\)
\(788\) 21.8661 138.057i 0.0277489 0.175199i
\(789\) 15.6855 21.5892i 0.0198802 0.0273628i
\(790\) 0 0
\(791\) −271.653 −0.343430
\(792\) 603.837 599.331i 0.762420 0.756731i
\(793\) 409.888 409.888i 0.516883 0.516883i
\(794\) 1045.22 339.613i 1.31640 0.427725i
\(795\) 0 0
\(796\) 202.751 147.308i 0.254713 0.185060i
\(797\) −1366.39 + 696.209i −1.71441 + 0.873537i −0.733350 + 0.679851i \(0.762044\pi\)
−0.981064 + 0.193686i \(0.937956\pi\)
\(798\) 2.04998 + 4.02331i 0.00256890 + 0.00504174i
\(799\) −42.6486 58.7008i −0.0533775 0.0734678i
\(800\) 0 0
\(801\) −255.683 786.913i −0.319205 0.982413i
\(802\) −273.582 273.582i −0.341125 0.341125i
\(803\) 135.311 + 875.532i 0.168507 + 1.09033i
\(804\) 0.183378i 0.000228082i
\(805\) 0 0
\(806\) −403.827 293.397i −0.501026 0.364017i
\(807\) 2.01406 + 0.318995i 0.00249573 + 0.000395285i
\(808\) −686.713 1347.75i −0.849892 1.66801i
\(809\) −408.675 132.787i −0.505161 0.164137i 0.0453394 0.998972i \(-0.485563\pi\)
−0.550500 + 0.834835i \(0.685563\pi\)
\(810\) 0 0
\(811\) −66.5901 48.3805i −0.0821086 0.0596554i 0.545974 0.837802i \(-0.316160\pi\)
−0.628082 + 0.778147i \(0.716160\pi\)
\(812\) 14.5404 28.5371i 0.0179068 0.0351442i
\(813\) −32.0733 + 32.0733i −0.0394506 + 0.0394506i
\(814\) 136.444 414.642i 0.167622 0.509388i
\(815\) 0 0
\(816\) 9.54875 + 29.3880i 0.0117019 + 0.0360147i
\(817\) 54.8908 + 346.567i 0.0671858 + 0.424194i
\(818\) −46.5031 + 293.609i −0.0568497 + 0.358935i
\(819\) −224.318 72.8855i −0.273893 0.0889932i
\(820\) 0 0
\(821\) 231.122 167.920i 0.281513 0.204531i −0.438064 0.898944i \(-0.644336\pi\)
0.719577 + 0.694412i \(0.244336\pi\)
\(822\) −2.50249 15.8001i −0.00304439 0.0192215i
\(823\) −67.9203 34.6071i −0.0825277 0.0420500i 0.412240 0.911076i \(-0.364747\pi\)
−0.494767 + 0.869026i \(0.664747\pi\)
\(824\) 1096.73i 1.33099i
\(825\) 0 0
\(826\) 193.668 0.234465
\(827\) −469.154 + 920.766i −0.567296 + 1.11338i 0.412044 + 0.911164i \(0.364815\pi\)
−0.979341 + 0.202218i \(0.935185\pi\)
\(828\) 23.2129 3.67656i 0.0280349 0.00444029i
\(829\) −181.436 249.725i −0.218861 0.301237i 0.685442 0.728127i \(-0.259609\pi\)
−0.904303 + 0.426890i \(0.859609\pi\)
\(830\) 0 0
\(831\) 11.6912 35.9817i 0.0140688 0.0432993i
\(832\) −795.748 126.034i −0.956428 0.151483i
\(833\) 1129.85 178.951i 1.35637 0.214827i
\(834\) 16.1555 5.24925i 0.0193711 0.00629406i
\(835\) 0 0
\(836\) −97.4611 + 31.2640i −0.116580 + 0.0373971i
\(837\) 31.1327 + 31.1327i 0.0371955 + 0.0371955i
\(838\) −296.706 151.179i −0.354065 0.180405i
\(839\) 206.489 284.207i 0.246113 0.338745i −0.668032 0.744132i \(-0.732863\pi\)
0.914145 + 0.405387i \(0.132863\pi\)
\(840\) 0 0
\(841\) 175.935 541.473i 0.209198 0.643845i
\(842\) −422.732 + 215.392i −0.502057 + 0.255811i
\(843\) −2.94172 + 18.5733i −0.00348959 + 0.0220324i
\(844\) 74.8317 102.997i 0.0886632 0.122034i
\(845\) 0 0
\(846\) 44.2342 0.0522863
\(847\) −250.916 + 125.490i −0.296241 + 0.148158i
\(848\) 690.959 690.959i 0.814810 0.814810i
\(849\) −52.1347 + 16.9396i −0.0614072 + 0.0199524i
\(850\) 0 0
\(851\) 56.3159 40.9159i 0.0661762 0.0480798i
\(852\) −7.92147 + 4.03619i −0.00929750 + 0.00473731i
\(853\) −529.736 1039.67i −0.621027 1.21883i −0.960516 0.278224i \(-0.910254\pi\)
0.339489 0.940610i \(-0.389746\pi\)
\(854\) 124.144 + 170.870i 0.145368 + 0.200082i
\(855\) 0 0
\(856\) −441.615 1359.15i −0.515906 1.58779i
\(857\) 242.005 + 242.005i 0.282387 + 0.282387i 0.834060 0.551673i \(-0.186011\pi\)
−0.551673 + 0.834060i \(0.686011\pi\)
\(858\) 9.98512 19.4168i 0.0116377 0.0226303i
\(859\) 1371.72i 1.59688i 0.602076 + 0.798439i \(0.294340\pi\)
−0.602076 + 0.798439i \(0.705660\pi\)
\(860\) 0 0
\(861\) 9.60779 + 6.98047i 0.0111589 + 0.00810740i
\(862\) 758.958 + 120.207i 0.880461 + 0.139451i
\(863\) −62.2624 122.197i −0.0721465 0.141595i 0.852116 0.523353i \(-0.175319\pi\)
−0.924263 + 0.381757i \(0.875319\pi\)
\(864\) 22.2315 + 7.22344i 0.0257309 + 0.00836046i
\(865\) 0 0
\(866\) 991.511 + 720.375i 1.14493 + 0.831841i
\(867\) 17.8526 35.0378i 0.0205913 0.0404127i
\(868\) −34.0877 + 34.0877i −0.0392715 + 0.0392715i
\(869\) −755.098 + 544.302i −0.868928 + 0.626354i
\(870\) 0 0
\(871\) 7.75542 + 23.8687i 0.00890404 + 0.0274038i
\(872\) 128.619 + 812.071i 0.147499 + 0.931274i
\(873\) −216.428 + 1366.47i −0.247913 + 1.56526i
\(874\) 58.5645 + 19.0288i 0.0670075 + 0.0217721i
\(875\) 0 0
\(876\) −5.38708 + 3.91394i −0.00614964 + 0.00446797i
\(877\) −89.6933 566.301i −0.102273 0.645726i −0.984564 0.175022i \(-0.944000\pi\)
0.882292 0.470703i \(-0.156000\pi\)
\(878\) −983.606 501.172i −1.12028 0.570811i
\(879\) 15.4231i 0.0175462i
\(880\) 0 0
\(881\) −340.367 −0.386341 −0.193171 0.981165i \(-0.561877\pi\)
−0.193171 + 0.981165i \(0.561877\pi\)
\(882\) −316.608 + 621.378i −0.358966 + 0.704510i
\(883\) 1480.77 234.531i 1.67698 0.265607i 0.755814 0.654787i \(-0.227242\pi\)
0.921162 + 0.389180i \(0.127242\pi\)
\(884\) 146.169 + 201.184i 0.165349 + 0.227583i
\(885\) 0 0
\(886\) 389.908 1200.01i 0.440077 1.35442i
\(887\) −1427.16 226.040i −1.60898 0.254837i −0.713734 0.700417i \(-0.752997\pi\)
−0.895242 + 0.445581i \(0.852997\pi\)
\(888\) 18.7067 2.96285i 0.0210661 0.00333654i
\(889\) −11.9154 + 3.87156i −0.0134032 + 0.00435496i
\(890\) 0 0
\(891\) 524.706 716.537i 0.588895 0.804194i
\(892\) −182.520 182.520i −0.204619 0.204619i
\(893\) −27.3719 13.9467i −0.0306516 0.0156178i
\(894\) 5.02797 6.92041i 0.00562413 0.00774095i
\(895\) 0 0
\(896\) 52.9646 163.008i 0.0591123 0.181929i
\(897\) 3.10231 1.58070i 0.00345854 0.00176221i
\(898\) 101.405 640.248i 0.112924 0.712972i
\(899\) 240.342 330.803i 0.267344 0.367967i
\(900\) 0 0
\(901\) −2145.10 −2.38080
\(902\) 720.812 715.433i 0.799127 0.793164i
\(903\) −5.11158 + 5.11158i −0.00566067 + 0.00566067i
\(904\) −958.627 + 311.477i −1.06043 + 0.344554i
\(905\) 0 0
\(906\) 41.0362 29.8145i 0.0452938 0.0329079i
\(907\) −556.910 + 283.760i −0.614013 + 0.312855i −0.733196 0.680017i \(-0.761972\pi\)
0.119183 + 0.992872i \(0.461972\pi\)
\(908\) 142.740 + 280.142i 0.157202 + 0.308527i
\(909\) −929.118 1278.82i −1.02213 1.40684i
\(910\) 0 0
\(911\) −430.867 1326.07i −0.472961 1.45562i −0.848688 0.528894i \(-0.822607\pi\)
0.375727 0.926730i \(-0.377393\pi\)
\(912\) 9.25096 + 9.25096i 0.0101436 + 0.0101436i
\(913\) −106.016 106.814i −0.116119 0.116992i
\(914\) 763.108i 0.834911i
\(915\) 0 0
\(916\) 84.6745 + 61.5196i 0.0924394 + 0.0671611i
\(917\) 198.869 + 31.4977i 0.216869 + 0.0343487i
\(918\) 37.5690 + 73.7332i 0.0409248 + 0.0803194i
\(919\) 526.505 + 171.072i 0.572911 + 0.186150i 0.581122 0.813816i \(-0.302614\pi\)
−0.00821145 + 0.999966i \(0.502614\pi\)
\(920\) 0 0
\(921\) 2.65631 + 1.92992i 0.00288416 + 0.00209546i
\(922\) −582.559 + 1143.34i −0.631843 + 1.24006i
\(923\) 860.369 860.369i 0.932145 0.932145i
\(924\) −1.70128 1.24581i −0.00184121 0.00134828i
\(925\) 0 0
\(926\) −140.497 432.405i −0.151724 0.466960i
\(927\) −179.290 1131.99i −0.193409 1.22114i
\(928\) 33.9605 214.418i 0.0365954 0.231054i
\(929\) 409.865 + 133.173i 0.441190 + 0.143351i 0.521184 0.853444i \(-0.325490\pi\)
−0.0799947 + 0.996795i \(0.525490\pi\)
\(930\) 0 0
\(931\) 391.830 284.681i 0.420870 0.305780i
\(932\) −33.4221 211.019i −0.0358607 0.226415i
\(933\) −14.5733 7.42548i −0.0156198 0.00795871i
\(934\) 1025.52i 1.09798i
\(935\) 0 0
\(936\) −875.160 −0.935000
\(937\) 376.319 738.568i 0.401622 0.788227i −0.598293 0.801277i \(-0.704154\pi\)
0.999915 + 0.0130505i \(0.00415422\pi\)
\(938\) −9.03172 + 1.43048i −0.00962870 + 0.00152504i
\(939\) 29.8724 + 41.1158i 0.0318130 + 0.0437868i
\(940\) 0 0
\(941\) 275.334 847.390i 0.292597 0.900520i −0.691421 0.722452i \(-0.743015\pi\)
0.984018 0.178069i \(-0.0569849\pi\)
\(942\) −1.09611 0.173606i −0.00116359 0.000184295i
\(943\) 159.960 25.3352i 0.169629 0.0268666i
\(944\) 533.658 173.396i 0.565316 0.183682i
\(945\) 0 0
\(946\) 361.487 + 501.483i 0.382121 + 0.530109i
\(947\) −604.866 604.866i −0.638718 0.638718i 0.311521 0.950239i \(-0.399162\pi\)
−0.950239 + 0.311521i \(0.899162\pi\)
\(948\) −6.23373 3.17624i −0.00657566 0.00335047i
\(949\) 535.661 737.273i 0.564447 0.776895i
\(950\) 0 0
\(951\) 17.6877 54.4370i 0.0185990 0.0572419i
\(952\) −466.041 + 237.460i −0.489539 + 0.249432i
\(953\) 90.1909 569.443i 0.0946389 0.597527i −0.894099 0.447869i \(-0.852183\pi\)
0.988738 0.149657i \(-0.0478170\pi\)
\(954\) 768.669 1057.98i 0.805733 1.10900i
\(955\) 0 0
\(956\) −208.205 −0.217787
\(957\) 15.9056 + 8.17950i 0.0166203 + 0.00854702i
\(958\) −307.812 + 307.812i −0.321306 + 0.321306i
\(959\) 201.092 65.3388i 0.209689 0.0681322i
\(960\) 0 0
\(961\) 279.553 203.107i 0.290898 0.211350i
\(962\) −400.085 + 203.854i −0.415889 + 0.211906i
\(963\) −678.004 1330.66i −0.704054 1.38178i
\(964\) 141.490 + 194.744i 0.146774 + 0.202016i
\(965\) 0 0
\(966\) 0.392026 + 1.20653i 0.000405824 + 0.00124900i
\(967\) 792.160 + 792.160i 0.819193 + 0.819193i 0.985991 0.166798i \(-0.0533428\pi\)
−0.166798 + 0.985991i \(0.553343\pi\)
\(968\) −741.563 + 730.536i −0.766077 + 0.754686i
\(969\) 28.7199i 0.0296387i
\(970\) 0 0
\(971\) −924.936 672.005i −0.952560 0.692075i −0.00114909 0.999999i \(-0.500366\pi\)
−0.951411 + 0.307924i \(0.900366\pi\)
\(972\) 19.8149 + 3.13836i 0.0203856 + 0.00322877i
\(973\) 101.932 + 200.053i 0.104761 + 0.205604i
\(974\) −1441.35 468.324i −1.47983 0.480825i
\(975\) 0 0
\(976\) 495.069 + 359.688i 0.507242 + 0.368533i
\(977\) −607.003 + 1191.31i −0.621293 + 1.21936i 0.339112 + 0.940746i \(0.389874\pi\)
−0.960404 + 0.278610i \(0.910126\pi\)
\(978\) −28.4271 + 28.4271i −0.0290666 + 0.0290666i
\(979\) 309.232 + 963.988i 0.315865 + 0.984666i
\(980\) 0 0
\(981\) 265.510 + 817.154i 0.270652 + 0.832981i
\(982\) 120.162 + 758.675i 0.122365 + 0.772582i
\(983\) −131.614 + 830.976i −0.133890 + 0.845346i 0.825734 + 0.564060i \(0.190761\pi\)
−0.959624 + 0.281287i \(0.909239\pi\)
\(984\) 41.9084 + 13.6169i 0.0425899 + 0.0138383i
\(985\) 0 0
\(986\) 621.756 451.732i 0.630584 0.458146i
\(987\) −0.0990057 0.625097i −0.000100310 0.000633330i
\(988\) 93.8111 + 47.7991i 0.0949505 + 0.0483797i
\(989\) 98.5817i 0.0996782i
\(990\) 0 0
\(991\) −190.257 −0.191985 −0.0959925 0.995382i \(-0.530602\pi\)
−0.0959925 + 0.995382i \(0.530602\pi\)
\(992\) −148.345 + 291.143i −0.149541 + 0.293491i
\(993\) −32.8507 + 5.20303i −0.0330822 + 0.00523971i
\(994\) 260.583 + 358.662i 0.262156 + 0.360827i
\(995\) 0 0
\(996\) 0.349544 1.07578i 0.000350947 0.00108011i
\(997\) −1063.21 168.395i −1.06641 0.168902i −0.401522 0.915849i \(-0.631519\pi\)
−0.664883 + 0.746947i \(0.731519\pi\)
\(998\) 1386.50 219.601i 1.38928 0.220041i
\(999\) 37.6679 12.2391i 0.0377056 0.0122513i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.3.bk.c.82.5 128
5.2 odd 4 inner 275.3.bk.c.93.5 yes 128
5.3 odd 4 inner 275.3.bk.c.93.12 yes 128
5.4 even 2 inner 275.3.bk.c.82.12 yes 128
11.9 even 5 inner 275.3.bk.c.207.12 yes 128
55.9 even 10 inner 275.3.bk.c.207.5 yes 128
55.42 odd 20 inner 275.3.bk.c.218.12 yes 128
55.53 odd 20 inner 275.3.bk.c.218.5 yes 128
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
275.3.bk.c.82.5 128 1.1 even 1 trivial
275.3.bk.c.82.12 yes 128 5.4 even 2 inner
275.3.bk.c.93.5 yes 128 5.2 odd 4 inner
275.3.bk.c.93.12 yes 128 5.3 odd 4 inner
275.3.bk.c.207.5 yes 128 55.9 even 10 inner
275.3.bk.c.207.12 yes 128 11.9 even 5 inner
275.3.bk.c.218.5 yes 128 55.53 odd 20 inner
275.3.bk.c.218.12 yes 128 55.42 odd 20 inner