Properties

Label 275.3.bk.c.82.12
Level $275$
Weight $3$
Character 275.82
Analytic conductor $7.493$
Analytic rank $0$
Dimension $128$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,3,Mod(82,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([5, 8])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.82"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 275.bk (of order \(20\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [128] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.49320726991\)
Analytic rank: \(0\)
Dimension: \(128\)
Relative dimension: \(16\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 82.12
Character \(\chi\) \(=\) 275.82
Dual form 275.3.bk.c.218.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.807274 - 1.58436i) q^{2} +(-0.0974353 + 0.0154322i) q^{3} +(0.492622 + 0.678036i) q^{4} +(-0.0542067 + 0.166831i) q^{6} +(2.29002 + 0.362704i) q^{7} +(8.49706 - 1.34580i) q^{8} +(-8.55025 + 2.77815i) q^{9} +(10.4743 - 3.35998i) q^{11} +(-0.0584623 - 0.0584623i) q^{12} +(10.0820 + 5.13704i) q^{13} +(2.42333 - 3.33543i) q^{14} +(3.69127 - 11.3606i) q^{16} +(23.3644 - 11.9048i) q^{17} +(-2.50080 + 15.7894i) q^{18} +(-6.52576 + 8.98194i) q^{19} -0.228726 q^{21} +(3.13218 - 19.3075i) q^{22} +(2.20560 - 2.20560i) q^{23} +(-0.807145 + 0.262257i) q^{24} +(16.2779 - 11.8266i) q^{26} +(1.58130 - 0.805713i) q^{27} +(0.882189 + 1.73139i) q^{28} +(9.68796 + 13.3343i) q^{29} +(-7.66619 - 23.5941i) q^{31} +(9.31350 + 9.31350i) q^{32} +(-0.968712 + 0.489022i) q^{33} -46.6282i q^{34} +(-6.09572 - 4.42880i) q^{36} +(22.0420 + 3.49111i) q^{37} +(8.96259 + 17.5901i) q^{38} +(-1.06162 - 0.344941i) q^{39} +(-42.0056 - 30.5189i) q^{41} +(-0.184645 + 0.362386i) q^{42} +(-22.3480 + 22.3480i) q^{43} +(7.43805 + 5.44673i) q^{44} +(-1.71395 - 5.27500i) q^{46} +(-0.432857 - 2.73295i) q^{47} +(-0.184341 + 1.16388i) q^{48} +(-41.4891 - 13.4806i) q^{49} +(-2.09280 + 1.52051i) q^{51} +(1.48352 + 9.36658i) q^{52} +(-72.8878 - 37.1382i) q^{53} -3.15579i q^{54} +19.9466 q^{56} +(0.497228 - 0.975864i) q^{57} +(28.9473 - 4.58480i) q^{58} +(27.6110 + 38.0033i) q^{59} +(-15.8306 + 48.7215i) q^{61} +(-43.5704 - 6.90087i) q^{62} +(-20.5879 + 3.26081i) q^{63} +(67.7168 - 22.0025i) q^{64} +(-0.00722659 + 1.92957i) q^{66} +(1.56835 + 1.56835i) q^{67} +(19.5817 + 9.97737i) q^{68} +(-0.180866 + 0.248941i) q^{69} +(-33.2289 + 102.268i) q^{71} +(-68.9132 + 35.1130i) q^{72} +(12.5990 - 79.5472i) q^{73} +(23.3252 - 32.1043i) q^{74} -9.30481 q^{76} +(25.2050 - 3.89537i) q^{77} +(-1.40353 + 1.40353i) q^{78} +(-80.4790 + 26.1492i) q^{79} +(65.3179 - 47.4562i) q^{81} +(-82.2631 + 41.9151i) q^{82} +(6.21119 + 12.1901i) q^{83} +(-0.112676 - 0.155085i) q^{84} +(17.3664 + 53.4484i) q^{86} +(-1.14973 - 1.14973i) q^{87} +(84.4787 - 42.6463i) q^{88} +92.0338i q^{89} +(21.2248 + 15.4207i) q^{91} +(2.58200 + 0.408949i) q^{92} +(1.11107 + 2.18059i) q^{93} +(-4.67942 - 1.52044i) q^{94} +(-1.05119 - 0.763735i) q^{96} +(-69.8642 + 137.116i) q^{97} +(-54.8513 + 54.8513i) q^{98} +(-80.2232 + 57.8278i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 128 q - 48 q^{6} + 32 q^{11} + 280 q^{16} - 8 q^{21} + 528 q^{26} - 16 q^{31} + 336 q^{36} - 604 q^{41} - 1152 q^{46} - 1024 q^{51} - 992 q^{56} - 320 q^{61} + 1624 q^{66} + 536 q^{71} + 1776 q^{76} + 3680 q^{81}+ \cdots - 6584 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.807274 1.58436i 0.403637 0.792182i −0.596307 0.802756i \(-0.703366\pi\)
0.999944 + 0.0105742i \(0.00336594\pi\)
\(3\) −0.0974353 + 0.0154322i −0.0324784 + 0.00514408i −0.172653 0.984983i \(-0.555234\pi\)
0.140174 + 0.990127i \(0.455234\pi\)
\(4\) 0.492622 + 0.678036i 0.123155 + 0.169509i
\(5\) 0 0
\(6\) −0.0542067 + 0.166831i −0.00903445 + 0.0278052i
\(7\) 2.29002 + 0.362704i 0.327146 + 0.0518148i 0.317847 0.948142i \(-0.397040\pi\)
0.00929877 + 0.999957i \(0.497040\pi\)
\(8\) 8.49706 1.34580i 1.06213 0.168225i
\(9\) −8.55025 + 2.77815i −0.950028 + 0.308683i
\(10\) 0 0
\(11\) 10.4743 3.35998i 0.952207 0.305453i
\(12\) −0.0584623 0.0584623i −0.00487186 0.00487186i
\(13\) 10.0820 + 5.13704i 0.775539 + 0.395157i 0.796512 0.604623i \(-0.206676\pi\)
−0.0209727 + 0.999780i \(0.506676\pi\)
\(14\) 2.42333 3.33543i 0.173095 0.238245i
\(15\) 0 0
\(16\) 3.69127 11.3606i 0.230704 0.710035i
\(17\) 23.3644 11.9048i 1.37438 0.700281i 0.398210 0.917294i \(-0.369632\pi\)
0.976169 + 0.217013i \(0.0696316\pi\)
\(18\) −2.50080 + 15.7894i −0.138933 + 0.877191i
\(19\) −6.52576 + 8.98194i −0.343461 + 0.472734i −0.945448 0.325772i \(-0.894376\pi\)
0.601987 + 0.798506i \(0.294376\pi\)
\(20\) 0 0
\(21\) −0.228726 −0.0108917
\(22\) 3.13218 19.3075i 0.142372 0.877614i
\(23\) 2.20560 2.20560i 0.0958957 0.0958957i −0.657531 0.753427i \(-0.728399\pi\)
0.753427 + 0.657531i \(0.228399\pi\)
\(24\) −0.807145 + 0.262257i −0.0336310 + 0.0109274i
\(25\) 0 0
\(26\) 16.2779 11.8266i 0.626072 0.454868i
\(27\) 1.58130 0.805713i 0.0585667 0.0298412i
\(28\) 0.882189 + 1.73139i 0.0315067 + 0.0618355i
\(29\) 9.68796 + 13.3343i 0.334068 + 0.459805i 0.942697 0.333650i \(-0.108280\pi\)
−0.608629 + 0.793455i \(0.708280\pi\)
\(30\) 0 0
\(31\) −7.66619 23.5941i −0.247297 0.761101i −0.995250 0.0973497i \(-0.968963\pi\)
0.747954 0.663751i \(-0.231037\pi\)
\(32\) 9.31350 + 9.31350i 0.291047 + 0.291047i
\(33\) −0.968712 + 0.489022i −0.0293549 + 0.0148189i
\(34\) 46.6282i 1.37142i
\(35\) 0 0
\(36\) −6.09572 4.42880i −0.169326 0.123022i
\(37\) 22.0420 + 3.49111i 0.595730 + 0.0943544i 0.447016 0.894526i \(-0.352487\pi\)
0.148714 + 0.988880i \(0.452487\pi\)
\(38\) 8.96259 + 17.5901i 0.235858 + 0.462897i
\(39\) −1.06162 0.344941i −0.0272210 0.00884464i
\(40\) 0 0
\(41\) −42.0056 30.5189i −1.02453 0.744363i −0.0573217 0.998356i \(-0.518256\pi\)
−0.967206 + 0.253993i \(0.918256\pi\)
\(42\) −0.184645 + 0.362386i −0.00439630 + 0.00862823i
\(43\) −22.3480 + 22.3480i −0.519722 + 0.519722i −0.917487 0.397765i \(-0.869786\pi\)
0.397765 + 0.917487i \(0.369786\pi\)
\(44\) 7.43805 + 5.44673i 0.169046 + 0.123789i
\(45\) 0 0
\(46\) −1.71395 5.27500i −0.0372598 0.114674i
\(47\) −0.432857 2.73295i −0.00920972 0.0581479i 0.982655 0.185441i \(-0.0593712\pi\)
−0.991865 + 0.127293i \(0.959371\pi\)
\(48\) −0.184341 + 1.16388i −0.00384044 + 0.0242476i
\(49\) −41.4891 13.4806i −0.846717 0.275115i
\(50\) 0 0
\(51\) −2.09280 + 1.52051i −0.0410353 + 0.0298139i
\(52\) 1.48352 + 9.36658i 0.0285292 + 0.180126i
\(53\) −72.8878 37.1382i −1.37524 0.700721i −0.398908 0.916991i \(-0.630611\pi\)
−0.976334 + 0.216270i \(0.930611\pi\)
\(54\) 3.15579i 0.0584405i
\(55\) 0 0
\(56\) 19.9466 0.356189
\(57\) 0.497228 0.975864i 0.00872329 0.0171204i
\(58\) 28.9473 4.58480i 0.499091 0.0790483i
\(59\) 27.6110 + 38.0033i 0.467983 + 0.644124i 0.976140 0.217141i \(-0.0696731\pi\)
−0.508157 + 0.861264i \(0.669673\pi\)
\(60\) 0 0
\(61\) −15.8306 + 48.7215i −0.259518 + 0.798713i 0.733388 + 0.679810i \(0.237938\pi\)
−0.992906 + 0.118903i \(0.962062\pi\)
\(62\) −43.5704 6.90087i −0.702748 0.111304i
\(63\) −20.5879 + 3.26081i −0.326792 + 0.0517588i
\(64\) 67.7168 22.0025i 1.05807 0.343789i
\(65\) 0 0
\(66\) −0.00722659 + 1.92957i −0.000109494 + 0.0292359i
\(67\) 1.56835 + 1.56835i 0.0234081 + 0.0234081i 0.718714 0.695306i \(-0.244731\pi\)
−0.695306 + 0.718714i \(0.744731\pi\)
\(68\) 19.5817 + 9.97737i 0.287966 + 0.146726i
\(69\) −0.180866 + 0.248941i −0.00262124 + 0.00360783i
\(70\) 0 0
\(71\) −33.2289 + 102.268i −0.468013 + 1.44040i 0.387140 + 0.922021i \(0.373463\pi\)
−0.855153 + 0.518375i \(0.826537\pi\)
\(72\) −68.9132 + 35.1130i −0.957128 + 0.487681i
\(73\) 12.5990 79.5472i 0.172590 1.08969i −0.737522 0.675323i \(-0.764004\pi\)
0.910111 0.414364i \(-0.135996\pi\)
\(74\) 23.3252 32.1043i 0.315205 0.433842i
\(75\) 0 0
\(76\) −9.30481 −0.122432
\(77\) 25.2050 3.89537i 0.327338 0.0505893i
\(78\) −1.40353 + 1.40353i −0.0179940 + 0.0179940i
\(79\) −80.4790 + 26.1492i −1.01872 + 0.331003i −0.770322 0.637655i \(-0.779904\pi\)
−0.248399 + 0.968658i \(0.579904\pi\)
\(80\) 0 0
\(81\) 65.3179 47.4562i 0.806394 0.585879i
\(82\) −82.2631 + 41.9151i −1.00321 + 0.511160i
\(83\) 6.21119 + 12.1901i 0.0748336 + 0.146869i 0.925392 0.379011i \(-0.123736\pi\)
−0.850558 + 0.525881i \(0.823736\pi\)
\(84\) −0.112676 0.155085i −0.00134138 0.00184624i
\(85\) 0 0
\(86\) 17.3664 + 53.4484i 0.201935 + 0.621493i
\(87\) −1.14973 1.14973i −0.0132153 0.0132153i
\(88\) 84.4787 42.6463i 0.959986 0.484617i
\(89\) 92.0338i 1.03409i 0.855959 + 0.517044i \(0.172968\pi\)
−0.855959 + 0.517044i \(0.827032\pi\)
\(90\) 0 0
\(91\) 21.2248 + 15.4207i 0.233239 + 0.169458i
\(92\) 2.58200 + 0.408949i 0.0280652 + 0.00444510i
\(93\) 1.11107 + 2.18059i 0.0119470 + 0.0234472i
\(94\) −4.67942 1.52044i −0.0497811 0.0161749i
\(95\) 0 0
\(96\) −1.05119 0.763735i −0.0109499 0.00795557i
\(97\) −69.8642 + 137.116i −0.720249 + 1.41357i 0.182414 + 0.983222i \(0.441609\pi\)
−0.902664 + 0.430347i \(0.858391\pi\)
\(98\) −54.8513 + 54.8513i −0.559707 + 0.559707i
\(99\) −80.2232 + 57.8278i −0.810335 + 0.584119i
\(100\) 0 0
\(101\) 54.3328 + 167.219i 0.537948 + 1.65563i 0.737191 + 0.675684i \(0.236152\pi\)
−0.199243 + 0.979950i \(0.563848\pi\)
\(102\) 0.719577 + 4.54323i 0.00705468 + 0.0445415i
\(103\) 19.9427 125.913i 0.193619 1.22246i −0.679030 0.734111i \(-0.737599\pi\)
0.872649 0.488349i \(-0.162401\pi\)
\(104\) 92.5809 + 30.0813i 0.890201 + 0.289244i
\(105\) 0 0
\(106\) −117.681 + 85.5002i −1.11020 + 0.806605i
\(107\) −25.9863 164.071i −0.242863 1.53338i −0.744101 0.668067i \(-0.767122\pi\)
0.501238 0.865310i \(-0.332878\pi\)
\(108\) 1.32529 + 0.675267i 0.0122712 + 0.00625247i
\(109\) 95.5708i 0.876796i −0.898781 0.438398i \(-0.855546\pi\)
0.898781 0.438398i \(-0.144454\pi\)
\(110\) 0 0
\(111\) −2.20155 −0.0198337
\(112\) 12.5736 24.6771i 0.112264 0.220331i
\(113\) −115.722 + 18.3285i −1.02408 + 0.162199i −0.645813 0.763496i \(-0.723481\pi\)
−0.378272 + 0.925695i \(0.623481\pi\)
\(114\) −1.14473 1.57558i −0.0100415 0.0138209i
\(115\) 0 0
\(116\) −4.26865 + 13.1376i −0.0367987 + 0.113255i
\(117\) −100.475 15.9137i −0.858762 0.136015i
\(118\) 82.5007 13.0668i 0.699159 0.110736i
\(119\) 57.8230 18.7878i 0.485907 0.157881i
\(120\) 0 0
\(121\) 98.4210 70.3868i 0.813397 0.581709i
\(122\) 64.4130 + 64.4130i 0.527976 + 0.527976i
\(123\) 4.56380 + 2.32537i 0.0371041 + 0.0189055i
\(124\) 12.2211 16.8209i 0.0985574 0.135653i
\(125\) 0 0
\(126\) −11.4538 + 35.2511i −0.0909031 + 0.279771i
\(127\) −4.81465 + 2.45318i −0.0379106 + 0.0193164i −0.472843 0.881147i \(-0.656772\pi\)
0.434932 + 0.900463i \(0.356772\pi\)
\(128\) 11.5642 73.0136i 0.0903455 0.570419i
\(129\) 1.83261 2.52237i 0.0142063 0.0195532i
\(130\) 0 0
\(131\) −86.8414 −0.662912 −0.331456 0.943471i \(-0.607540\pi\)
−0.331456 + 0.943471i \(0.607540\pi\)
\(132\) −0.808783 0.415918i −0.00612714 0.00315090i
\(133\) −18.2019 + 18.2019i −0.136857 + 0.136857i
\(134\) 3.75092 1.21875i 0.0279919 0.00909512i
\(135\) 0 0
\(136\) 182.508 132.600i 1.34197 0.974996i
\(137\) 81.2550 41.4015i 0.593102 0.302201i −0.131557 0.991309i \(-0.541998\pi\)
0.724659 + 0.689108i \(0.241998\pi\)
\(138\) 0.248404 + 0.487521i 0.00180003 + 0.00353276i
\(139\) −56.9198 78.3433i −0.409495 0.563621i 0.553600 0.832782i \(-0.313253\pi\)
−0.963095 + 0.269161i \(0.913253\pi\)
\(140\) 0 0
\(141\) 0.0843510 + 0.259606i 0.000598234 + 0.00184117i
\(142\) 135.205 + 135.205i 0.952149 + 0.952149i
\(143\) 122.862 + 19.9314i 0.859175 + 0.139380i
\(144\) 107.391i 0.745768i
\(145\) 0 0
\(146\) −115.861 84.1778i −0.793568 0.576561i
\(147\) 4.25054 + 0.673219i 0.0289152 + 0.00457972i
\(148\) 8.49128 + 16.6651i 0.0573735 + 0.112602i
\(149\) −46.3778 15.0691i −0.311260 0.101135i 0.149221 0.988804i \(-0.452323\pi\)
−0.460482 + 0.887669i \(0.652323\pi\)
\(150\) 0 0
\(151\) −233.936 169.964i −1.54924 1.12559i −0.944188 0.329409i \(-0.893151\pi\)
−0.605056 0.796183i \(-0.706849\pi\)
\(152\) −43.3619 + 85.1025i −0.285275 + 0.559885i
\(153\) −166.699 + 166.699i −1.08953 + 1.08953i
\(154\) 14.1757 43.0786i 0.0920497 0.279731i
\(155\) 0 0
\(156\) −0.289094 0.889741i −0.00185317 0.00570347i
\(157\) −0.989679 6.24859i −0.00630369 0.0397999i 0.984336 0.176303i \(-0.0564137\pi\)
−0.990640 + 0.136503i \(0.956414\pi\)
\(158\) −23.5387 + 148.618i −0.148979 + 0.940618i
\(159\) 7.67497 + 2.49375i 0.0482702 + 0.0156839i
\(160\) 0 0
\(161\) 5.85085 4.25089i 0.0363407 0.0264031i
\(162\) −22.4585 141.797i −0.138633 0.875293i
\(163\) −204.201 104.046i −1.25277 0.638318i −0.303515 0.952827i \(-0.598160\pi\)
−0.949255 + 0.314509i \(0.898160\pi\)
\(164\) 43.5156i 0.265339i
\(165\) 0 0
\(166\) 24.3278 0.146553
\(167\) 71.4859 140.299i 0.428059 0.840114i −0.571747 0.820430i \(-0.693734\pi\)
0.999806 0.0196836i \(-0.00626589\pi\)
\(168\) −1.94350 + 0.307820i −0.0115685 + 0.00183226i
\(169\) −24.0780 33.1406i −0.142474 0.196098i
\(170\) 0 0
\(171\) 30.8438 94.9274i 0.180373 0.555131i
\(172\) −26.1619 4.14364i −0.152104 0.0240909i
\(173\) −10.8143 + 1.71282i −0.0625104 + 0.00990068i −0.187611 0.982243i \(-0.560075\pi\)
0.125101 + 0.992144i \(0.460075\pi\)
\(174\) −2.74973 + 0.893442i −0.0158031 + 0.00513473i
\(175\) 0 0
\(176\) 0.492103 131.396i 0.00279604 0.746570i
\(177\) −3.27676 3.27676i −0.0185128 0.0185128i
\(178\) 145.815 + 74.2965i 0.819186 + 0.417396i
\(179\) 8.66776 11.9301i 0.0484232 0.0666488i −0.784119 0.620611i \(-0.786885\pi\)
0.832542 + 0.553962i \(0.186885\pi\)
\(180\) 0 0
\(181\) −52.5269 + 161.661i −0.290204 + 0.893156i 0.694586 + 0.719409i \(0.255587\pi\)
−0.984790 + 0.173747i \(0.944413\pi\)
\(182\) 41.5663 21.1791i 0.228386 0.116368i
\(183\) 0.790575 4.99149i 0.00432008 0.0272759i
\(184\) 15.7728 21.7094i 0.0857219 0.117986i
\(185\) 0 0
\(186\) 4.35179 0.0233967
\(187\) 204.726 203.198i 1.09479 1.08662i
\(188\) 1.63980 1.63980i 0.00872235 0.00872235i
\(189\) 3.91345 1.27156i 0.0207061 0.00672782i
\(190\) 0 0
\(191\) 284.824 206.937i 1.49123 1.08344i 0.517511 0.855676i \(-0.326859\pi\)
0.973716 0.227764i \(-0.0731414\pi\)
\(192\) −6.25845 + 3.18884i −0.0325961 + 0.0166085i
\(193\) 49.7456 + 97.6313i 0.257749 + 0.505861i 0.983227 0.182384i \(-0.0583813\pi\)
−0.725478 + 0.688245i \(0.758381\pi\)
\(194\) 160.842 + 221.381i 0.829085 + 1.14114i
\(195\) 0 0
\(196\) −11.2981 34.7720i −0.0576433 0.177408i
\(197\) 117.931 + 117.931i 0.598636 + 0.598636i 0.939950 0.341313i \(-0.110872\pi\)
−0.341313 + 0.939950i \(0.610872\pi\)
\(198\) 26.8582 + 173.786i 0.135647 + 0.877705i
\(199\) 299.028i 1.50265i −0.659931 0.751326i \(-0.729415\pi\)
0.659931 0.751326i \(-0.270585\pi\)
\(200\) 0 0
\(201\) −0.177015 0.128609i −0.000880673 0.000639846i
\(202\) 308.797 + 48.9087i 1.52870 + 0.242122i
\(203\) 17.3492 + 34.0498i 0.0854642 + 0.167733i
\(204\) −2.06192 0.669958i −0.0101075 0.00328411i
\(205\) 0 0
\(206\) −183.393 133.243i −0.890259 0.646811i
\(207\) −12.7310 + 24.9859i −0.0615022 + 0.120705i
\(208\) 95.5750 95.5750i 0.459495 0.459495i
\(209\) −38.1735 + 116.006i −0.182648 + 0.555052i
\(210\) 0 0
\(211\) −46.9412 144.470i −0.222470 0.684693i −0.998539 0.0540442i \(-0.982789\pi\)
0.776068 0.630649i \(-0.217211\pi\)
\(212\) −10.7251 67.7156i −0.0505901 0.319413i
\(213\) 1.65944 10.4773i 0.00779082 0.0491893i
\(214\) −280.927 91.2787i −1.31274 0.426536i
\(215\) 0 0
\(216\) 12.3521 8.97432i 0.0571856 0.0415478i
\(217\) −8.99808 56.8116i −0.0414658 0.261805i
\(218\) −151.419 77.1518i −0.694582 0.353907i
\(219\) 7.94513i 0.0362791i
\(220\) 0 0
\(221\) 296.716 1.34260
\(222\) −1.77725 + 3.48805i −0.00800563 + 0.0157119i
\(223\) 304.194 48.1796i 1.36410 0.216052i 0.568903 0.822405i \(-0.307368\pi\)
0.795196 + 0.606353i \(0.207368\pi\)
\(224\) 17.9501 + 24.7062i 0.0801343 + 0.110295i
\(225\) 0 0
\(226\) −64.3800 + 198.141i −0.284867 + 0.876731i
\(227\) −370.529 58.6861i −1.63229 0.258529i −0.728040 0.685535i \(-0.759568\pi\)
−0.904249 + 0.427006i \(0.859568\pi\)
\(228\) 0.906616 0.143594i 0.00397639 0.000629798i
\(229\) 118.770 38.5907i 0.518646 0.168518i −0.0379849 0.999278i \(-0.512094\pi\)
0.556631 + 0.830760i \(0.312094\pi\)
\(230\) 0 0
\(231\) −2.39574 + 0.768516i −0.0103712 + 0.00332691i
\(232\) 100.265 + 100.265i 0.432175 + 0.432175i
\(233\) 227.137 + 115.732i 0.974837 + 0.496704i 0.867456 0.497514i \(-0.165754\pi\)
0.107381 + 0.994218i \(0.465754\pi\)
\(234\) −106.324 + 146.343i −0.454376 + 0.625395i
\(235\) 0 0
\(236\) −12.1658 + 37.4425i −0.0515500 + 0.158655i
\(237\) 7.43795 3.78982i 0.0313837 0.0159908i
\(238\) 16.9122 106.780i 0.0710598 0.448654i
\(239\) −146.021 + 200.980i −0.610965 + 0.840921i −0.996656 0.0817069i \(-0.973963\pi\)
0.385692 + 0.922628i \(0.373963\pi\)
\(240\) 0 0
\(241\) 287.218 1.19177 0.595887 0.803068i \(-0.296800\pi\)
0.595887 + 0.803068i \(0.296800\pi\)
\(242\) −32.0656 212.756i −0.132502 0.879158i
\(243\) −16.9263 + 16.9263i −0.0696554 + 0.0696554i
\(244\) −40.8334 + 13.2676i −0.167350 + 0.0543753i
\(245\) 0 0
\(246\) 7.36848 5.35352i 0.0299532 0.0217623i
\(247\) −111.933 + 57.0329i −0.453171 + 0.230902i
\(248\) −96.8932 190.164i −0.390698 0.766788i
\(249\) −0.793310 1.09190i −0.00318598 0.00438513i
\(250\) 0 0
\(251\) 64.7604 + 199.312i 0.258010 + 0.794072i 0.993222 + 0.116235i \(0.0370825\pi\)
−0.735212 + 0.677837i \(0.762917\pi\)
\(252\) −12.3530 12.3530i −0.0490198 0.0490198i
\(253\) 15.6913 30.5129i 0.0620209 0.120604i
\(254\) 9.60854i 0.0378289i
\(255\) 0 0
\(256\) 124.069 + 90.1411i 0.484643 + 0.352114i
\(257\) 331.611 + 52.5220i 1.29031 + 0.204366i 0.763607 0.645681i \(-0.223426\pi\)
0.526707 + 0.850047i \(0.323426\pi\)
\(258\) −2.51693 4.93976i −0.00975555 0.0191464i
\(259\) 49.2105 + 15.9895i 0.190002 + 0.0617354i
\(260\) 0 0
\(261\) −119.879 87.0974i −0.459307 0.333706i
\(262\) −70.1048 + 137.588i −0.267576 + 0.525147i
\(263\) −191.280 + 191.280i −0.727299 + 0.727299i −0.970081 0.242782i \(-0.921940\pi\)
0.242782 + 0.970081i \(0.421940\pi\)
\(264\) −7.57308 + 5.45895i −0.0286859 + 0.0206778i
\(265\) 0 0
\(266\) 14.1445 + 43.5324i 0.0531750 + 0.163656i
\(267\) −1.42029 8.96734i −0.00531943 0.0335855i
\(268\) −0.290793 + 1.83600i −0.00108505 + 0.00685073i
\(269\) 19.6590 + 6.38760i 0.0730818 + 0.0237457i 0.345330 0.938481i \(-0.387767\pi\)
−0.272248 + 0.962227i \(0.587767\pi\)
\(270\) 0 0
\(271\) −371.981 + 270.260i −1.37262 + 0.997269i −0.375096 + 0.926986i \(0.622390\pi\)
−0.997527 + 0.0702831i \(0.977610\pi\)
\(272\) −49.0005 309.377i −0.180149 1.13741i
\(273\) −2.30602 1.17498i −0.00844696 0.00430394i
\(274\) 162.160i 0.591824i
\(275\) 0 0
\(276\) −0.257889 −0.000934381
\(277\) −174.111 + 341.712i −0.628559 + 1.23362i 0.328713 + 0.944430i \(0.393385\pi\)
−0.957273 + 0.289187i \(0.906615\pi\)
\(278\) −170.074 + 26.9371i −0.611778 + 0.0968961i
\(279\) 131.096 + 180.438i 0.469877 + 0.646731i
\(280\) 0 0
\(281\) −58.9055 + 181.292i −0.209628 + 0.645169i 0.789863 + 0.613283i \(0.210151\pi\)
−0.999492 + 0.0318861i \(0.989849\pi\)
\(282\) 0.479404 + 0.0759302i 0.00170002 + 0.000269256i
\(283\) 548.838 86.9274i 1.93936 0.307164i 0.939941 0.341337i \(-0.110880\pi\)
0.999416 + 0.0341733i \(0.0108798\pi\)
\(284\) −85.7107 + 27.8491i −0.301798 + 0.0980602i
\(285\) 0 0
\(286\) 130.762 178.568i 0.457210 0.624364i
\(287\) −85.1245 85.1245i −0.296601 0.296601i
\(288\) −105.507 53.7585i −0.366344 0.186662i
\(289\) 234.303 322.491i 0.810738 1.11588i
\(290\) 0 0
\(291\) 4.69123 14.4381i 0.0161211 0.0496155i
\(292\) 60.1424 30.6441i 0.205967 0.104945i
\(293\) 24.4572 154.417i 0.0834718 0.527020i −0.910152 0.414274i \(-0.864035\pi\)
0.993624 0.112746i \(-0.0359646\pi\)
\(294\) 4.49797 6.19093i 0.0152992 0.0210576i
\(295\) 0 0
\(296\) 191.991 0.648618
\(297\) 13.8558 13.7524i 0.0466526 0.0463044i
\(298\) −61.3145 + 61.3145i −0.205753 + 0.205753i
\(299\) 33.5671 10.9066i 0.112265 0.0364770i
\(300\) 0 0
\(301\) −59.2832 + 43.0718i −0.196954 + 0.143096i
\(302\) −458.136 + 233.432i −1.51701 + 0.772953i
\(303\) −7.87449 15.4546i −0.0259884 0.0510051i
\(304\) 77.9515 + 107.291i 0.256419 + 0.352931i
\(305\) 0 0
\(306\) 129.540 + 398.683i 0.423333 + 1.30289i
\(307\) −23.5348 23.5348i −0.0766605 0.0766605i 0.667737 0.744397i \(-0.267263\pi\)
−0.744397 + 0.667737i \(0.767263\pi\)
\(308\) 15.0577 + 15.1710i 0.0488888 + 0.0492563i
\(309\) 12.5762i 0.0406995i
\(310\) 0 0
\(311\) −134.134 97.4541i −0.431299 0.313357i 0.350869 0.936425i \(-0.385886\pi\)
−0.782168 + 0.623067i \(0.785886\pi\)
\(312\) −9.48486 1.50225i −0.0304002 0.00481492i
\(313\) −233.885 459.024i −0.747235 1.46653i −0.879794 0.475356i \(-0.842319\pi\)
0.132559 0.991175i \(-0.457681\pi\)
\(314\) −10.6990 3.47631i −0.0340732 0.0110711i
\(315\) 0 0
\(316\) −57.3758 41.6859i −0.181569 0.131918i
\(317\) −263.414 + 516.979i −0.830958 + 1.63085i −0.0563462 + 0.998411i \(0.517945\pi\)
−0.774612 + 0.632436i \(0.782055\pi\)
\(318\) 10.1468 10.1468i 0.0319082 0.0319082i
\(319\) 146.278 + 107.116i 0.458550 + 0.335787i
\(320\) 0 0
\(321\) 5.06397 + 15.5853i 0.0157756 + 0.0485523i
\(322\) −2.01172 12.7015i −0.00624759 0.0394457i
\(323\) −45.5428 + 287.546i −0.140999 + 0.890234i
\(324\) 64.3540 + 20.9099i 0.198623 + 0.0645367i
\(325\) 0 0
\(326\) −329.693 + 239.536i −1.01133 + 0.734773i
\(327\) 1.47487 + 9.31196i 0.00451031 + 0.0284770i
\(328\) −397.997 202.790i −1.21341 0.618261i
\(329\) 6.41551i 0.0195000i
\(330\) 0 0
\(331\) −337.154 −1.01859 −0.509296 0.860592i \(-0.670094\pi\)
−0.509296 + 0.860592i \(0.670094\pi\)
\(332\) −5.20559 + 10.2165i −0.0156795 + 0.0307727i
\(333\) −198.164 + 31.3861i −0.595086 + 0.0942524i
\(334\) −164.576 226.519i −0.492742 0.678202i
\(335\) 0 0
\(336\) −0.844290 + 2.59846i −0.00251277 + 0.00773351i
\(337\) −139.008 22.0167i −0.412487 0.0653315i −0.0532574 0.998581i \(-0.516960\pi\)
−0.359229 + 0.933249i \(0.616960\pi\)
\(338\) −71.9443 + 11.3949i −0.212853 + 0.0337126i
\(339\) 10.9925 3.57168i 0.0324263 0.0105359i
\(340\) 0 0
\(341\) −159.574 221.373i −0.467958 0.649188i
\(342\) −125.500 125.500i −0.366960 0.366960i
\(343\) −191.349 97.4970i −0.557868 0.284248i
\(344\) −159.817 + 219.969i −0.464583 + 0.639444i
\(345\) 0 0
\(346\) −6.01638 + 18.5165i −0.0173884 + 0.0535159i
\(347\) −315.980 + 161.000i −0.910606 + 0.463977i −0.845545 0.533905i \(-0.820724\pi\)
−0.0650608 + 0.997881i \(0.520724\pi\)
\(348\) 0.213175 1.34594i 0.000612573 0.00386763i
\(349\) −48.1418 + 66.2614i −0.137942 + 0.189861i −0.872399 0.488794i \(-0.837437\pi\)
0.734457 + 0.678655i \(0.237437\pi\)
\(350\) 0 0
\(351\) 20.0817 0.0572127
\(352\) 128.845 + 66.2590i 0.366038 + 0.188236i
\(353\) −197.329 + 197.329i −0.559006 + 0.559006i −0.929025 0.370018i \(-0.879351\pi\)
0.370018 + 0.929025i \(0.379351\pi\)
\(354\) −7.83683 + 2.54634i −0.0221379 + 0.00719305i
\(355\) 0 0
\(356\) −62.4022 + 45.3379i −0.175287 + 0.127354i
\(357\) −5.34406 + 2.72293i −0.0149694 + 0.00762727i
\(358\) −11.9044 23.3638i −0.0332526 0.0652619i
\(359\) −183.112 252.032i −0.510060 0.702038i 0.473869 0.880595i \(-0.342857\pi\)
−0.983930 + 0.178557i \(0.942857\pi\)
\(360\) 0 0
\(361\) 73.4655 + 226.103i 0.203505 + 0.626325i
\(362\) 213.727 + 213.727i 0.590405 + 0.590405i
\(363\) −8.50345 + 8.37701i −0.0234255 + 0.0230772i
\(364\) 21.9877i 0.0604059i
\(365\) 0 0
\(366\) −7.27013 5.28206i −0.0198638 0.0144319i
\(367\) 100.232 + 15.8753i 0.273113 + 0.0432568i 0.291489 0.956574i \(-0.405849\pi\)
−0.0183757 + 0.999831i \(0.505849\pi\)
\(368\) −16.9154 33.1983i −0.0459657 0.0902128i
\(369\) 443.945 + 144.246i 1.20310 + 0.390912i
\(370\) 0 0
\(371\) −153.445 111.484i −0.413597 0.300496i
\(372\) −0.931184 + 1.82755i −0.00250318 + 0.00491277i
\(373\) 212.910 212.910i 0.570803 0.570803i −0.361550 0.932353i \(-0.617752\pi\)
0.932353 + 0.361550i \(0.117752\pi\)
\(374\) −156.670 488.397i −0.418904 1.30587i
\(375\) 0 0
\(376\) −7.35602 22.6395i −0.0195639 0.0602114i
\(377\) 29.1751 + 184.204i 0.0773875 + 0.488605i
\(378\) 1.14462 7.22683i 0.00302809 0.0191186i
\(379\) 570.872 + 185.487i 1.50626 + 0.489413i 0.941836 0.336073i \(-0.109099\pi\)
0.564422 + 0.825486i \(0.309099\pi\)
\(380\) 0 0
\(381\) 0.431258 0.313327i 0.00113191 0.000822381i
\(382\) −97.9324 618.321i −0.256367 1.61864i
\(383\) 543.751 + 277.055i 1.41972 + 0.723381i 0.984243 0.176821i \(-0.0565813\pi\)
0.435473 + 0.900202i \(0.356581\pi\)
\(384\) 7.29256i 0.0189910i
\(385\) 0 0
\(386\) 194.842 0.504772
\(387\) 128.995 253.168i 0.333321 0.654180i
\(388\) −127.386 + 20.1760i −0.328315 + 0.0520000i
\(389\) −230.163 316.792i −0.591679 0.814376i 0.403236 0.915096i \(-0.367885\pi\)
−0.994915 + 0.100720i \(0.967885\pi\)
\(390\) 0 0
\(391\) 25.2754 77.7898i 0.0646430 0.198951i
\(392\) −370.678 58.7096i −0.945607 0.149769i
\(393\) 8.46142 1.34016i 0.0215303 0.00341007i
\(394\) 282.049 91.6433i 0.715861 0.232597i
\(395\) 0 0
\(396\) −78.7290 25.9070i −0.198811 0.0654217i
\(397\) 437.032 + 437.032i 1.10084 + 1.10084i 0.994310 + 0.106526i \(0.0339727\pi\)
0.106526 + 0.994310i \(0.466027\pi\)
\(398\) −473.769 241.397i −1.19037 0.606526i
\(399\) 1.49261 2.05440i 0.00374088 0.00514888i
\(400\) 0 0
\(401\) −67.2375 + 206.936i −0.167675 + 0.516049i −0.999223 0.0394025i \(-0.987455\pi\)
0.831549 + 0.555452i \(0.187455\pi\)
\(402\) −0.346663 + 0.176634i −0.000862347 + 0.000439388i
\(403\) 43.9133 277.258i 0.108966 0.687984i
\(404\) −86.6150 + 119.215i −0.214393 + 0.295087i
\(405\) 0 0
\(406\) 67.9529 0.167372
\(407\) 242.604 37.4939i 0.596080 0.0921227i
\(408\) −15.7364 + 15.7364i −0.0385695 + 0.0385695i
\(409\) 158.994 51.6604i 0.388739 0.126309i −0.108125 0.994137i \(-0.534485\pi\)
0.496864 + 0.867828i \(0.334485\pi\)
\(410\) 0 0
\(411\) −7.27818 + 5.28791i −0.0177085 + 0.0128660i
\(412\) 95.1979 48.5058i 0.231063 0.117732i
\(413\) 49.4459 + 97.0430i 0.119724 + 0.234971i
\(414\) 29.3094 + 40.3410i 0.0707957 + 0.0974420i
\(415\) 0 0
\(416\) 46.0549 + 141.743i 0.110709 + 0.340727i
\(417\) 6.75500 + 6.75500i 0.0161990 + 0.0161990i
\(418\) 152.979 + 154.129i 0.365978 + 0.368730i
\(419\) 187.271i 0.446948i 0.974710 + 0.223474i \(0.0717398\pi\)
−0.974710 + 0.223474i \(0.928260\pi\)
\(420\) 0 0
\(421\) 215.858 + 156.830i 0.512726 + 0.372517i 0.813857 0.581066i \(-0.197364\pi\)
−0.301131 + 0.953583i \(0.597364\pi\)
\(422\) −266.788 42.2551i −0.632199 0.100130i
\(423\) 11.2936 + 22.1649i 0.0266987 + 0.0523992i
\(424\) −669.313 217.473i −1.57857 0.512908i
\(425\) 0 0
\(426\) −15.2603 11.0872i −0.0358222 0.0260264i
\(427\) −53.9239 + 105.832i −0.126285 + 0.247849i
\(428\) 98.4448 98.4448i 0.230011 0.230011i
\(429\) −12.2787 0.0459859i −0.0286216 0.000107193i
\(430\) 0 0
\(431\) −133.538 410.989i −0.309834 0.953570i −0.977829 0.209404i \(-0.932847\pi\)
0.667996 0.744165i \(-0.267153\pi\)
\(432\) −3.31634 20.9386i −0.00767672 0.0484689i
\(433\) −107.820 + 680.747i −0.249006 + 1.57216i 0.473497 + 0.880795i \(0.342991\pi\)
−0.722503 + 0.691368i \(0.757009\pi\)
\(434\) −97.2742 31.6063i −0.224134 0.0728256i
\(435\) 0 0
\(436\) 64.8004 47.0802i 0.148625 0.107982i
\(437\) 5.41735 + 34.2038i 0.0123967 + 0.0782695i
\(438\) 12.5880 + 6.41390i 0.0287397 + 0.0146436i
\(439\) 620.821i 1.41417i 0.707129 + 0.707085i \(0.249990\pi\)
−0.707129 + 0.707085i \(0.750010\pi\)
\(440\) 0 0
\(441\) 392.194 0.889328
\(442\) 239.531 470.106i 0.541925 1.06359i
\(443\) 700.851 111.004i 1.58206 0.250573i 0.697353 0.716728i \(-0.254361\pi\)
0.884703 + 0.466154i \(0.154361\pi\)
\(444\) −1.08453 1.49273i −0.00244263 0.00336200i
\(445\) 0 0
\(446\) 169.234 520.848i 0.379448 1.16782i
\(447\) 4.75138 + 0.752545i 0.0106295 + 0.00168355i
\(448\) 163.053 25.8251i 0.363958 0.0576453i
\(449\) −346.705 + 112.651i −0.772173 + 0.250894i −0.668495 0.743717i \(-0.733061\pi\)
−0.103678 + 0.994611i \(0.533061\pi\)
\(450\) 0 0
\(451\) −542.522 178.525i −1.20293 0.395843i
\(452\) −69.4343 69.4343i −0.153616 0.153616i
\(453\) 25.4165 + 12.9504i 0.0561071 + 0.0285880i
\(454\) −392.099 + 539.678i −0.863654 + 1.18872i
\(455\) 0 0
\(456\) 2.91165 8.96115i 0.00638521 0.0196516i
\(457\) −382.378 + 194.831i −0.836713 + 0.426327i −0.819192 0.573520i \(-0.805578\pi\)
−0.0175216 + 0.999846i \(0.505578\pi\)
\(458\) 34.7381 219.328i 0.0758475 0.478882i
\(459\) 27.3544 37.6501i 0.0595956 0.0820263i
\(460\) 0 0
\(461\) 721.637 1.56537 0.782687 0.622416i \(-0.213849\pi\)
0.782687 + 0.622416i \(0.213849\pi\)
\(462\) −0.716411 + 4.41613i −0.00155067 + 0.00955873i
\(463\) 180.799 180.799i 0.390494 0.390494i −0.484370 0.874863i \(-0.660951\pi\)
0.874863 + 0.484370i \(0.160951\pi\)
\(464\) 187.246 60.8400i 0.403548 0.131121i
\(465\) 0 0
\(466\) 366.724 266.440i 0.786961 0.571760i
\(467\) 513.866 261.828i 1.10036 0.560659i 0.193075 0.981184i \(-0.438154\pi\)
0.907281 + 0.420525i \(0.138154\pi\)
\(468\) −38.7062 75.9652i −0.0827055 0.162319i
\(469\) 3.02270 + 4.16039i 0.00644499 + 0.00887077i
\(470\) 0 0
\(471\) 0.192859 + 0.593560i 0.000409468 + 0.00126021i
\(472\) 285.757 + 285.757i 0.605418 + 0.605418i
\(473\) −158.991 + 309.169i −0.336132 + 0.653634i
\(474\) 14.8438i 0.0313161i
\(475\) 0 0
\(476\) 41.2237 + 29.9508i 0.0866044 + 0.0629218i
\(477\) 726.385 + 115.048i 1.52282 + 0.241191i
\(478\) 200.547 + 393.596i 0.419555 + 0.823422i
\(479\) 232.826 + 75.6499i 0.486068 + 0.157933i 0.541791 0.840513i \(-0.317746\pi\)
−0.0557233 + 0.998446i \(0.517746\pi\)
\(480\) 0 0
\(481\) 204.294 + 148.428i 0.424727 + 0.308582i
\(482\) 231.863 455.058i 0.481044 0.944103i
\(483\) −0.504479 + 0.504479i −0.00104447 + 0.00104447i
\(484\) 96.2091 + 32.0589i 0.198779 + 0.0662374i
\(485\) 0 0
\(486\) 13.1532 + 40.4815i 0.0270643 + 0.0832953i
\(487\) −133.328 841.801i −0.273775 1.72855i −0.614968 0.788552i \(-0.710831\pi\)
0.341193 0.939993i \(-0.389169\pi\)
\(488\) −68.9439 + 435.295i −0.141278 + 0.891997i
\(489\) 21.5021 + 6.98645i 0.0439715 + 0.0142872i
\(490\) 0 0
\(491\) 349.478 253.910i 0.711767 0.517129i −0.171976 0.985101i \(-0.555015\pi\)
0.883743 + 0.467972i \(0.155015\pi\)
\(492\) 0.671542 + 4.23995i 0.00136492 + 0.00861779i
\(493\) 385.096 + 196.216i 0.781128 + 0.398004i
\(494\) 223.384i 0.452195i
\(495\) 0 0
\(496\) −296.340 −0.597460
\(497\) −113.188 + 222.144i −0.227743 + 0.446970i
\(498\) −2.37038 + 0.375432i −0.00475980 + 0.000753879i
\(499\) −464.030 638.682i −0.929919 1.27992i −0.959891 0.280373i \(-0.909542\pi\)
0.0299719 0.999551i \(-0.490458\pi\)
\(500\) 0 0
\(501\) −4.80012 + 14.7733i −0.00958108 + 0.0294875i
\(502\) 368.062 + 58.2953i 0.733192 + 0.116126i
\(503\) 213.537 33.8209i 0.424527 0.0672385i 0.0594843 0.998229i \(-0.481054\pi\)
0.365043 + 0.930991i \(0.381054\pi\)
\(504\) −170.548 + 55.4145i −0.338390 + 0.109949i
\(505\) 0 0
\(506\) −35.6763 49.4930i −0.0705065 0.0978122i
\(507\) 2.85748 + 2.85748i 0.00563606 + 0.00563606i
\(508\) −4.03515 2.05601i −0.00794320 0.00404726i
\(509\) 342.653 471.621i 0.673188 0.926564i −0.326639 0.945149i \(-0.605916\pi\)
0.999827 + 0.0185853i \(0.00591622\pi\)
\(510\) 0 0
\(511\) 57.7042 177.595i 0.112924 0.347544i
\(512\) 506.440 258.044i 0.989140 0.503992i
\(513\) −3.08233 + 19.4610i −0.00600843 + 0.0379358i
\(514\) 350.915 482.993i 0.682713 0.939674i
\(515\) 0 0
\(516\) 2.61304 0.00506402
\(517\) −13.7165 27.1713i −0.0265310 0.0525557i
\(518\) 65.0595 65.0595i 0.125597 0.125597i
\(519\) 1.02726 0.333778i 0.00197931 0.000643117i
\(520\) 0 0
\(521\) −212.021 + 154.042i −0.406950 + 0.295666i −0.772366 0.635178i \(-0.780927\pi\)
0.365416 + 0.930844i \(0.380927\pi\)
\(522\) −234.769 + 119.621i −0.449750 + 0.229159i
\(523\) 49.0341 + 96.2349i 0.0937555 + 0.184006i 0.933122 0.359561i \(-0.117074\pi\)
−0.839366 + 0.543567i \(0.817074\pi\)
\(524\) −42.7800 58.8816i −0.0816412 0.112369i
\(525\) 0 0
\(526\) 148.642 + 457.472i 0.282588 + 0.869718i
\(527\) −459.999 459.999i −0.872863 0.872863i
\(528\) 1.97979 + 12.8102i 0.00374960 + 0.0242618i
\(529\) 519.271i 0.981608i
\(530\) 0 0
\(531\) −341.660 248.230i −0.643427 0.467477i
\(532\) −21.3082 3.37489i −0.0400530 0.00634378i
\(533\) −266.724 523.476i −0.500421 0.982132i
\(534\) −15.3541 4.98885i −0.0287530 0.00934241i
\(535\) 0 0
\(536\) 15.4370 + 11.2156i 0.0288004 + 0.0209247i
\(537\) −0.660436 + 1.29618i −0.00122986 + 0.00241374i
\(538\) 25.9905 25.9905i 0.0483095 0.0483095i
\(539\) −479.863 1.79718i −0.890284 0.00333428i
\(540\) 0 0
\(541\) −202.598 623.533i −0.374488 1.15256i −0.943823 0.330450i \(-0.892799\pi\)
0.569335 0.822105i \(-0.307201\pi\)
\(542\) 127.900 + 807.527i 0.235977 + 1.48990i
\(543\) 2.62318 16.5621i 0.00483090 0.0305011i
\(544\) 328.480 + 106.730i 0.603823 + 0.196194i
\(545\) 0 0
\(546\) −3.72318 + 2.70505i −0.00681901 + 0.00495430i
\(547\) −30.6938 193.793i −0.0561130 0.354283i −0.999730 0.0232437i \(-0.992601\pi\)
0.943617 0.331040i \(-0.107399\pi\)
\(548\) 68.0996 + 34.6985i 0.124269 + 0.0633184i
\(549\) 460.561i 0.838909i
\(550\) 0 0
\(551\) −182.989 −0.332104
\(552\) −1.20180 + 2.35867i −0.00217718 + 0.00427296i
\(553\) −193.783 + 30.6922i −0.350421 + 0.0555013i
\(554\) 400.841 + 551.710i 0.723540 + 0.995867i
\(555\) 0 0
\(556\) 25.0797 77.1872i 0.0451073 0.138826i
\(557\) 22.3245 + 3.53585i 0.0400799 + 0.00634803i 0.176442 0.984311i \(-0.443541\pi\)
−0.136362 + 0.990659i \(0.543541\pi\)
\(558\) 391.710 62.0407i 0.701989 0.111184i
\(559\) −340.116 + 110.510i −0.608436 + 0.197693i
\(560\) 0 0
\(561\) −16.8117 + 22.9580i −0.0299674 + 0.0409234i
\(562\) 239.680 + 239.680i 0.426478 + 0.426478i
\(563\) 67.0356 + 34.1564i 0.119069 + 0.0606685i 0.512510 0.858681i \(-0.328716\pi\)
−0.393442 + 0.919350i \(0.628716\pi\)
\(564\) −0.134469 + 0.185080i −0.000238420 + 0.000328157i
\(565\) 0 0
\(566\) 305.338 939.734i 0.539466 1.66031i
\(567\) 166.792 84.9847i 0.294166 0.149885i
\(568\) −144.716 + 913.698i −0.254781 + 1.60862i
\(569\) −322.832 + 444.341i −0.567368 + 0.780915i −0.992240 0.124338i \(-0.960319\pi\)
0.424872 + 0.905253i \(0.360319\pi\)
\(570\) 0 0
\(571\) 451.066 0.789957 0.394979 0.918690i \(-0.370752\pi\)
0.394979 + 0.918690i \(0.370752\pi\)
\(572\) 47.0103 + 93.1235i 0.0821859 + 0.162803i
\(573\) −24.5584 + 24.5584i −0.0428594 + 0.0428594i
\(574\) −203.587 + 66.1495i −0.354681 + 0.115243i
\(575\) 0 0
\(576\) −517.869 + 376.254i −0.899079 + 0.653219i
\(577\) 36.5804 18.6386i 0.0633975 0.0323026i −0.422004 0.906594i \(-0.638673\pi\)
0.485402 + 0.874291i \(0.338673\pi\)
\(578\) −321.796 631.560i −0.556740 1.09266i
\(579\) −6.35364 8.74504i −0.0109735 0.0151037i
\(580\) 0 0
\(581\) 9.80235 + 30.1685i 0.0168715 + 0.0519252i
\(582\) −19.0881 19.0881i −0.0327975 0.0327975i
\(583\) −888.231 144.094i −1.52355 0.247160i
\(584\) 692.873i 1.18643i
\(585\) 0 0
\(586\) −224.909 163.406i −0.383804 0.278850i
\(587\) 9.99314 + 1.58276i 0.0170241 + 0.00269635i 0.164941 0.986303i \(-0.447257\pi\)
−0.147917 + 0.989000i \(0.547257\pi\)
\(588\) 1.63744 + 3.21366i 0.00278476 + 0.00546541i
\(589\) 261.949 + 85.1123i 0.444735 + 0.144503i
\(590\) 0 0
\(591\) −13.3106 9.67073i −0.0225222 0.0163633i
\(592\) 121.024 237.523i 0.204433 0.401221i
\(593\) −239.814 + 239.814i −0.404408 + 0.404408i −0.879783 0.475375i \(-0.842312\pi\)
0.475375 + 0.879783i \(0.342312\pi\)
\(594\) −10.6034 33.0546i −0.0178508 0.0556475i
\(595\) 0 0
\(596\) −12.6294 38.8692i −0.0211902 0.0652167i
\(597\) 4.61466 + 29.1358i 0.00772976 + 0.0488038i
\(598\) 9.81781 61.9872i 0.0164177 0.103658i
\(599\) −336.022 109.180i −0.560971 0.182271i 0.0147869 0.999891i \(-0.495293\pi\)
−0.575758 + 0.817620i \(0.695293\pi\)
\(600\) 0 0
\(601\) −276.836 + 201.133i −0.460626 + 0.334664i −0.793777 0.608209i \(-0.791888\pi\)
0.333151 + 0.942873i \(0.391888\pi\)
\(602\) 20.3836 + 128.697i 0.0338598 + 0.213782i
\(603\) −17.7668 9.05266i −0.0294641 0.0150127i
\(604\) 242.345i 0.401233i
\(605\) 0 0
\(606\) −30.8425 −0.0508952
\(607\) −227.460 + 446.416i −0.374728 + 0.735446i −0.998951 0.0458010i \(-0.985416\pi\)
0.624222 + 0.781247i \(0.285416\pi\)
\(608\) −144.431 + 22.8756i −0.237551 + 0.0376244i
\(609\) −2.21589 3.04991i −0.00363857 0.00500807i
\(610\) 0 0
\(611\) 9.67520 29.7772i 0.0158350 0.0487352i
\(612\) −195.147 30.9082i −0.318868 0.0505037i
\(613\) −527.169 + 83.4954i −0.859983 + 0.136208i −0.570823 0.821073i \(-0.693376\pi\)
−0.289160 + 0.957281i \(0.593376\pi\)
\(614\) −56.2866 + 18.2886i −0.0916720 + 0.0297861i
\(615\) 0 0
\(616\) 208.926 67.0202i 0.339166 0.108799i
\(617\) −194.972 194.972i −0.316001 0.316001i 0.531228 0.847229i \(-0.321731\pi\)
−0.847229 + 0.531228i \(0.821731\pi\)
\(618\) 19.9252 + 10.1524i 0.0322414 + 0.0164278i
\(619\) 483.351 665.276i 0.780858 1.07476i −0.214329 0.976762i \(-0.568756\pi\)
0.995187 0.0979970i \(-0.0312436\pi\)
\(620\) 0 0
\(621\) 1.71064 5.26480i 0.00275465 0.00847794i
\(622\) −262.686 + 133.845i −0.422324 + 0.215185i
\(623\) −33.3810 + 210.760i −0.0535811 + 0.338298i
\(624\) −7.83744 + 10.7873i −0.0125600 + 0.0172874i
\(625\) 0 0
\(626\) −916.071 −1.46337
\(627\) 1.92921 11.8922i 0.00307690 0.0189668i
\(628\) 3.74923 3.74923i 0.00597011 0.00597011i
\(629\) 556.560 180.837i 0.884834 0.287500i
\(630\) 0 0
\(631\) −645.846 + 469.235i −1.02353 + 0.743637i −0.967003 0.254764i \(-0.918002\pi\)
−0.0565250 + 0.998401i \(0.518002\pi\)
\(632\) −648.643 + 330.500i −1.02633 + 0.522943i
\(633\) 6.80323 + 13.3521i 0.0107476 + 0.0210933i
\(634\) 606.436 + 834.687i 0.956523 + 1.31654i
\(635\) 0 0
\(636\) 2.09001 + 6.43238i 0.00328617 + 0.0101138i
\(637\) −349.043 349.043i −0.547948 0.547948i
\(638\) 287.797 145.285i 0.451093 0.227719i
\(639\) 966.733i 1.51288i
\(640\) 0 0
\(641\) 534.242 + 388.150i 0.833451 + 0.605538i 0.920534 0.390663i \(-0.127754\pi\)
−0.0870824 + 0.996201i \(0.527754\pi\)
\(642\) 28.7808 + 4.55843i 0.0448299 + 0.00710036i
\(643\) −186.876 366.766i −0.290632 0.570398i 0.698813 0.715304i \(-0.253712\pi\)
−0.989445 + 0.144907i \(0.953712\pi\)
\(644\) 5.76452 + 1.87300i 0.00895111 + 0.00290839i
\(645\) 0 0
\(646\) 418.812 + 304.284i 0.648315 + 0.471028i
\(647\) 16.7738 32.9204i 0.0259255 0.0508816i −0.877681 0.479246i \(-0.840910\pi\)
0.903606 + 0.428365i \(0.140910\pi\)
\(648\) 491.143 491.143i 0.757937 0.757937i
\(649\) 416.896 + 305.285i 0.642366 + 0.470392i
\(650\) 0 0
\(651\) 1.75346 + 5.39659i 0.00269349 + 0.00828970i
\(652\) −30.0473 189.711i −0.0460848 0.290968i
\(653\) 73.3615 463.186i 0.112345 0.709320i −0.865643 0.500661i \(-0.833090\pi\)
0.977988 0.208659i \(-0.0669098\pi\)
\(654\) 15.9442 + 5.18057i 0.0243795 + 0.00792137i
\(655\) 0 0
\(656\) −501.766 + 364.554i −0.764887 + 0.555723i
\(657\) 113.269 + 715.151i 0.172403 + 1.08851i
\(658\) −10.1645 5.17908i −0.0154476 0.00787094i
\(659\) 476.130i 0.722504i 0.932468 + 0.361252i \(0.117651\pi\)
−0.932468 + 0.361252i \(0.882349\pi\)
\(660\) 0 0
\(661\) −23.2329 −0.0351481 −0.0175740 0.999846i \(-0.505594\pi\)
−0.0175740 + 0.999846i \(0.505594\pi\)
\(662\) −272.175 + 534.174i −0.411141 + 0.806910i
\(663\) −28.9106 + 4.57898i −0.0436057 + 0.00690646i
\(664\) 69.1824 + 95.2214i 0.104190 + 0.143406i
\(665\) 0 0
\(666\) −110.245 + 339.301i −0.165534 + 0.509461i
\(667\) 50.7780 + 8.04244i 0.0761289 + 0.0120576i
\(668\) 130.343 20.6443i 0.195125 0.0309047i
\(669\) −28.8957 + 9.38878i −0.0431924 + 0.0140341i
\(670\) 0 0
\(671\) −2.11046 + 563.513i −0.00314525 + 0.839811i
\(672\) −2.13024 2.13024i −0.00317000 0.00317000i
\(673\) −566.940 288.871i −0.842408 0.429228i −0.0211437 0.999776i \(-0.506731\pi\)
−0.821264 + 0.570548i \(0.806731\pi\)
\(674\) −147.100 + 202.466i −0.218249 + 0.300394i
\(675\) 0 0
\(676\) 10.6091 32.6515i 0.0156940 0.0483011i
\(677\) 470.522 239.743i 0.695010 0.354125i −0.0705336 0.997509i \(-0.522470\pi\)
0.765543 + 0.643384i \(0.222470\pi\)
\(678\) 3.21512 20.2995i 0.00474206 0.0299402i
\(679\) −209.723 + 288.659i −0.308871 + 0.425124i
\(680\) 0 0
\(681\) 37.0083 0.0543440
\(682\) −479.555 + 74.1141i −0.703160 + 0.108672i
\(683\) 18.9735 18.9735i 0.0277797 0.0277797i −0.693081 0.720860i \(-0.743747\pi\)
0.720860 + 0.693081i \(0.243747\pi\)
\(684\) 79.5584 25.8501i 0.116314 0.0377926i
\(685\) 0 0
\(686\) −308.942 + 224.459i −0.450352 + 0.327200i
\(687\) −10.9768 + 5.59298i −0.0159779 + 0.00814116i
\(688\) 171.394 + 336.379i 0.249119 + 0.488923i
\(689\) −544.075 748.855i −0.789659 1.08687i
\(690\) 0 0
\(691\) 26.2414 + 80.7627i 0.0379759 + 0.116878i 0.968247 0.249994i \(-0.0804287\pi\)
−0.930271 + 0.366872i \(0.880429\pi\)
\(692\) −6.48871 6.48871i −0.00937675 0.00937675i
\(693\) −204.687 + 103.330i −0.295364 + 0.149105i
\(694\) 630.599i 0.908644i
\(695\) 0 0
\(696\) −11.3166 8.22200i −0.0162595 0.0118132i
\(697\) −1344.76 212.989i −1.92935 0.305579i
\(698\) 66.1187 + 129.765i 0.0947259 + 0.185910i
\(699\) −23.9172 7.77116i −0.0342162 0.0111175i
\(700\) 0 0
\(701\) 300.312 + 218.189i 0.428405 + 0.311254i 0.781011 0.624517i \(-0.214704\pi\)
−0.352606 + 0.935772i \(0.614704\pi\)
\(702\) 16.2114 31.8167i 0.0230932 0.0453229i
\(703\) −175.198 + 175.198i −0.249215 + 0.249215i
\(704\) 635.356 457.988i 0.902495 0.650551i
\(705\) 0 0
\(706\) 153.343 + 471.940i 0.217199 + 0.668471i
\(707\) 63.7722 + 402.642i 0.0902012 + 0.569508i
\(708\) 0.607557 3.83596i 0.000858131 0.00541803i
\(709\) −613.715 199.408i −0.865607 0.281253i −0.157639 0.987497i \(-0.550388\pi\)
−0.707968 + 0.706244i \(0.750388\pi\)
\(710\) 0 0
\(711\) 615.469 447.165i 0.865639 0.628923i
\(712\) 123.859 + 782.017i 0.173960 + 1.09834i
\(713\) −68.9478 35.1306i −0.0967009 0.0492716i
\(714\) 10.6651i 0.0149371i
\(715\) 0 0
\(716\) 12.3590 0.0172612
\(717\) 11.1260 21.8360i 0.0155174 0.0304546i
\(718\) −547.131 + 86.6571i −0.762021 + 0.120692i
\(719\) 409.022 + 562.970i 0.568876 + 0.782991i 0.992421 0.122885i \(-0.0392145\pi\)
−0.423545 + 0.905875i \(0.639214\pi\)
\(720\) 0 0
\(721\) 91.3385 281.111i 0.126683 0.389890i
\(722\) 417.537 + 66.1314i 0.578306 + 0.0915947i
\(723\) −27.9851 + 4.43241i −0.0387070 + 0.00613058i
\(724\) −135.488 + 44.0227i −0.187138 + 0.0608048i
\(725\) 0 0
\(726\) 6.40762 + 20.2351i 0.00882592 + 0.0278721i
\(727\) −840.761 840.761i −1.15648 1.15648i −0.985227 0.171254i \(-0.945218\pi\)
−0.171254 0.985227i \(-0.554782\pi\)
\(728\) 201.102 + 102.466i 0.276239 + 0.140751i
\(729\) −425.718 + 585.950i −0.583975 + 0.803773i
\(730\) 0 0
\(731\) −256.101 + 788.198i −0.350343 + 1.07825i
\(732\) 3.77386 1.92288i 0.00515555 0.00262689i
\(733\) 85.4375 539.431i 0.116559 0.735922i −0.858308 0.513134i \(-0.828484\pi\)
0.974867 0.222788i \(-0.0715157\pi\)
\(734\) 106.067 145.989i 0.144506 0.198895i
\(735\) 0 0
\(736\) 41.0837 0.0558203
\(737\) 21.6969 + 11.1577i 0.0294395 + 0.0151393i
\(738\) 586.924 586.924i 0.795290 0.795290i
\(739\) −1133.64 + 368.342i −1.53402 + 0.498433i −0.949719 0.313105i \(-0.898631\pi\)
−0.584300 + 0.811538i \(0.698631\pi\)
\(740\) 0 0
\(741\) 10.0261 7.28439i 0.0135305 0.00983049i
\(742\) −300.503 + 153.114i −0.404991 + 0.206353i
\(743\) −125.677 246.656i −0.169149 0.331973i 0.790835 0.612030i \(-0.209647\pi\)
−0.959983 + 0.280057i \(0.909647\pi\)
\(744\) 12.3755 + 17.0334i 0.0166337 + 0.0228943i
\(745\) 0 0
\(746\) −165.450 509.203i −0.221783 0.682578i
\(747\) −86.9733 86.9733i −0.116430 0.116430i
\(748\) 238.628 + 38.7116i 0.319021 + 0.0517535i
\(749\) 385.152i 0.514222i
\(750\) 0 0
\(751\) 579.889 + 421.314i 0.772156 + 0.561004i 0.902615 0.430450i \(-0.141645\pi\)
−0.130459 + 0.991454i \(0.541645\pi\)
\(752\) −32.6456 5.17056i −0.0434117 0.00687574i
\(753\) −9.38578 18.4206i −0.0124645 0.0244630i
\(754\) 315.399 + 102.479i 0.418301 + 0.135914i
\(755\) 0 0
\(756\) 2.79001 + 2.02706i 0.00369049 + 0.00268130i
\(757\) 149.714 293.829i 0.197772 0.388150i −0.770727 0.637165i \(-0.780107\pi\)
0.968500 + 0.249015i \(0.0801070\pi\)
\(758\) 754.730 754.730i 0.995686 0.995686i
\(759\) −1.05800 + 3.21518i −0.00139394 + 0.00423607i
\(760\) 0 0
\(761\) 157.983 + 486.220i 0.207599 + 0.638923i 0.999597 + 0.0283993i \(0.00904099\pi\)
−0.791998 + 0.610524i \(0.790959\pi\)
\(762\) −0.148281 0.936211i −0.000194595 0.00122862i
\(763\) 34.6639 218.859i 0.0454311 0.286840i
\(764\) 280.621 + 91.1794i 0.367306 + 0.119345i
\(765\) 0 0
\(766\) 877.912 637.841i 1.14610 0.832690i
\(767\) 83.1500 + 524.988i 0.108409 + 0.684470i
\(768\) −13.4797 6.86827i −0.0175517 0.00894306i
\(769\) 1149.32i 1.49456i 0.664507 + 0.747282i \(0.268642\pi\)
−0.664507 + 0.747282i \(0.731358\pi\)
\(770\) 0 0
\(771\) −33.1211 −0.0429586
\(772\) −41.6917 + 81.8246i −0.0540048 + 0.105990i
\(773\) 1425.52 225.780i 1.84413 0.292082i 0.865998 0.500047i \(-0.166684\pi\)
0.978136 + 0.207965i \(0.0666840\pi\)
\(774\) −296.975 408.751i −0.383689 0.528102i
\(775\) 0 0
\(776\) −409.109 + 1259.11i −0.527202 + 1.62256i
\(777\) −5.04159 0.798509i −0.00648853 0.00102768i
\(778\) −687.719 + 108.924i −0.883958 + 0.140005i
\(779\) 548.237 178.133i 0.703771 0.228669i
\(780\) 0 0
\(781\) −4.42993 + 1182.83i −0.00567212 + 1.51451i
\(782\) −102.843 102.843i −0.131513 0.131513i
\(783\) 26.0632 + 13.2799i 0.0332864 + 0.0169603i
\(784\) −306.295 + 421.579i −0.390682 + 0.537728i
\(785\) 0 0
\(786\) 4.70739 14.4878i 0.00598904 0.0184324i
\(787\) −686.578 + 349.829i −0.872399 + 0.444510i −0.832066 0.554677i \(-0.812842\pi\)
−0.0403333 + 0.999186i \(0.512842\pi\)
\(788\) −21.8661 + 138.057i −0.0277489 + 0.175199i
\(789\) 15.6855 21.5892i 0.0198802 0.0273628i
\(790\) 0 0
\(791\) −271.653 −0.343430
\(792\) −603.837 + 599.331i −0.762420 + 0.756731i
\(793\) −409.888 + 409.888i −0.516883 + 0.516883i
\(794\) 1045.22 339.613i 1.31640 0.427725i
\(795\) 0 0
\(796\) 202.751 147.308i 0.254713 0.185060i
\(797\) 1366.39 696.209i 1.71441 0.873537i 0.733350 0.679851i \(-0.237956\pi\)
0.981064 0.193686i \(-0.0620444\pi\)
\(798\) −2.04998 4.02331i −0.00256890 0.00504174i
\(799\) −42.6486 58.7008i −0.0533775 0.0734678i
\(800\) 0 0
\(801\) −255.683 786.913i −0.319205 0.982413i
\(802\) 273.582 + 273.582i 0.341125 + 0.341125i
\(803\) −135.311 875.532i −0.168507 1.09033i
\(804\) 0.183378i 0.000228082i
\(805\) 0 0
\(806\) −403.827 293.397i −0.501026 0.364017i
\(807\) −2.01406 0.318995i −0.00249573 0.000395285i
\(808\) 686.713 + 1347.75i 0.849892 + 1.66801i
\(809\) −408.675 132.787i −0.505161 0.164137i 0.0453394 0.998972i \(-0.485563\pi\)
−0.550500 + 0.834835i \(0.685563\pi\)
\(810\) 0 0
\(811\) −66.5901 48.3805i −0.0821086 0.0596554i 0.545974 0.837802i \(-0.316160\pi\)
−0.628082 + 0.778147i \(0.716160\pi\)
\(812\) −14.5404 + 28.5371i −0.0179068 + 0.0351442i
\(813\) 32.0733 32.0733i 0.0394506 0.0394506i
\(814\) 136.444 414.642i 0.167622 0.509388i
\(815\) 0 0
\(816\) 9.54875 + 29.3880i 0.0117019 + 0.0360147i
\(817\) −54.8908 346.567i −0.0671858 0.424194i
\(818\) 46.5031 293.609i 0.0568497 0.358935i
\(819\) −224.318 72.8855i −0.273893 0.0889932i
\(820\) 0 0
\(821\) 231.122 167.920i 0.281513 0.204531i −0.438064 0.898944i \(-0.644336\pi\)
0.719577 + 0.694412i \(0.244336\pi\)
\(822\) 2.50249 + 15.8001i 0.00304439 + 0.0192215i
\(823\) 67.9203 + 34.6071i 0.0825277 + 0.0420500i 0.494767 0.869026i \(-0.335253\pi\)
−0.412240 + 0.911076i \(0.635253\pi\)
\(824\) 1096.73i 1.33099i
\(825\) 0 0
\(826\) 193.668 0.234465
\(827\) 469.154 920.766i 0.567296 1.11338i −0.412044 0.911164i \(-0.635185\pi\)
0.979341 0.202218i \(-0.0648148\pi\)
\(828\) −23.2129 + 3.67656i −0.0280349 + 0.00444029i
\(829\) −181.436 249.725i −0.218861 0.301237i 0.685442 0.728127i \(-0.259609\pi\)
−0.904303 + 0.426890i \(0.859609\pi\)
\(830\) 0 0
\(831\) 11.6912 35.9817i 0.0140688 0.0432993i
\(832\) 795.748 + 126.034i 0.956428 + 0.151483i
\(833\) −1129.85 + 178.951i −1.35637 + 0.214827i
\(834\) 16.1555 5.24925i 0.0193711 0.00629406i
\(835\) 0 0
\(836\) −97.4611 + 31.2640i −0.116580 + 0.0373971i
\(837\) −31.1327 31.1327i −0.0371955 0.0371955i
\(838\) 296.706 + 151.179i 0.354065 + 0.180405i
\(839\) 206.489 284.207i 0.246113 0.338745i −0.668032 0.744132i \(-0.732863\pi\)
0.914145 + 0.405387i \(0.132863\pi\)
\(840\) 0 0
\(841\) 175.935 541.473i 0.209198 0.643845i
\(842\) 422.732 215.392i 0.502057 0.255811i
\(843\) 2.94172 18.5733i 0.00348959 0.0220324i
\(844\) 74.8317 102.997i 0.0886632 0.122034i
\(845\) 0 0
\(846\) 44.2342 0.0522863
\(847\) 250.916 125.490i 0.296241 0.148158i
\(848\) −690.959 + 690.959i −0.814810 + 0.814810i
\(849\) −52.1347 + 16.9396i −0.0614072 + 0.0199524i
\(850\) 0 0
\(851\) 56.3159 40.9159i 0.0661762 0.0480798i
\(852\) 7.92147 4.03619i 0.00929750 0.00473731i
\(853\) 529.736 + 1039.67i 0.621027 + 1.21883i 0.960516 + 0.278224i \(0.0897459\pi\)
−0.339489 + 0.940610i \(0.610254\pi\)
\(854\) 124.144 + 170.870i 0.145368 + 0.200082i
\(855\) 0 0
\(856\) −441.615 1359.15i −0.515906 1.58779i
\(857\) −242.005 242.005i −0.282387 0.282387i 0.551673 0.834060i \(-0.313989\pi\)
−0.834060 + 0.551673i \(0.813989\pi\)
\(858\) −9.98512 + 19.4168i −0.0116377 + 0.0226303i
\(859\) 1371.72i 1.59688i 0.602076 + 0.798439i \(0.294340\pi\)
−0.602076 + 0.798439i \(0.705660\pi\)
\(860\) 0 0
\(861\) 9.60779 + 6.98047i 0.0111589 + 0.00810740i
\(862\) −758.958 120.207i −0.880461 0.139451i
\(863\) 62.2624 + 122.197i 0.0721465 + 0.141595i 0.924263 0.381757i \(-0.124681\pi\)
−0.852116 + 0.523353i \(0.824681\pi\)
\(864\) 22.2315 + 7.22344i 0.0257309 + 0.00836046i
\(865\) 0 0
\(866\) 991.511 + 720.375i 1.14493 + 0.831841i
\(867\) −17.8526 + 35.0378i −0.0205913 + 0.0404127i
\(868\) 34.0877 34.0877i 0.0392715 0.0392715i
\(869\) −755.098 + 544.302i −0.868928 + 0.626354i
\(870\) 0 0
\(871\) 7.75542 + 23.8687i 0.00890404 + 0.0274038i
\(872\) −128.619 812.071i −0.147499 0.931274i
\(873\) 216.428 1366.47i 0.247913 1.56526i
\(874\) 58.5645 + 19.0288i 0.0670075 + 0.0217721i
\(875\) 0 0
\(876\) −5.38708 + 3.91394i −0.00614964 + 0.00446797i
\(877\) 89.6933 + 566.301i 0.102273 + 0.645726i 0.984564 + 0.175022i \(0.0559998\pi\)
−0.882292 + 0.470703i \(0.844000\pi\)
\(878\) 983.606 + 501.172i 1.12028 + 0.570811i
\(879\) 15.4231i 0.0175462i
\(880\) 0 0
\(881\) −340.367 −0.386341 −0.193171 0.981165i \(-0.561877\pi\)
−0.193171 + 0.981165i \(0.561877\pi\)
\(882\) 316.608 621.378i 0.358966 0.704510i
\(883\) −1480.77 + 234.531i −1.67698 + 0.265607i −0.921162 0.389180i \(-0.872758\pi\)
−0.755814 + 0.654787i \(0.772758\pi\)
\(884\) 146.169 + 201.184i 0.165349 + 0.227583i
\(885\) 0 0
\(886\) 389.908 1200.01i 0.440077 1.35442i
\(887\) 1427.16 + 226.040i 1.60898 + 0.254837i 0.895242 0.445581i \(-0.147003\pi\)
0.713734 + 0.700417i \(0.247003\pi\)
\(888\) −18.7067 + 2.96285i −0.0210661 + 0.00333654i
\(889\) −11.9154 + 3.87156i −0.0134032 + 0.00435496i
\(890\) 0 0
\(891\) 524.706 716.537i 0.588895 0.804194i
\(892\) 182.520 + 182.520i 0.204619 + 0.204619i
\(893\) 27.3719 + 13.9467i 0.0306516 + 0.0156178i
\(894\) 5.02797 6.92041i 0.00562413 0.00774095i
\(895\) 0 0
\(896\) 52.9646 163.008i 0.0591123 0.181929i
\(897\) −3.10231 + 1.58070i −0.00345854 + 0.00176221i
\(898\) −101.405 + 640.248i −0.112924 + 0.712972i
\(899\) 240.342 330.803i 0.267344 0.367967i
\(900\) 0 0
\(901\) −2145.10 −2.38080
\(902\) −720.812 + 715.433i −0.799127 + 0.793164i
\(903\) 5.11158 5.11158i 0.00566067 0.00566067i
\(904\) −958.627 + 311.477i −1.06043 + 0.344554i
\(905\) 0 0
\(906\) 41.0362 29.8145i 0.0452938 0.0329079i
\(907\) 556.910 283.760i 0.614013 0.312855i −0.119183 0.992872i \(-0.538028\pi\)
0.733196 + 0.680017i \(0.238028\pi\)
\(908\) −142.740 280.142i −0.157202 0.308527i
\(909\) −929.118 1278.82i −1.02213 1.40684i
\(910\) 0 0
\(911\) −430.867 1326.07i −0.472961 1.45562i −0.848688 0.528894i \(-0.822607\pi\)
0.375727 0.926730i \(-0.377393\pi\)
\(912\) −9.25096 9.25096i −0.0101436 0.0101436i
\(913\) 106.016 + 106.814i 0.116119 + 0.116992i
\(914\) 763.108i 0.834911i
\(915\) 0 0
\(916\) 84.6745 + 61.5196i 0.0924394 + 0.0671611i
\(917\) −198.869 31.4977i −0.216869 0.0343487i
\(918\) −37.5690 73.7332i −0.0409248 0.0803194i
\(919\) 526.505 + 171.072i 0.572911 + 0.186150i 0.581122 0.813816i \(-0.302614\pi\)
−0.00821145 + 0.999966i \(0.502614\pi\)
\(920\) 0 0
\(921\) 2.65631 + 1.92992i 0.00288416 + 0.00209546i
\(922\) 582.559 1143.34i 0.631843 1.24006i
\(923\) −860.369 + 860.369i −0.932145 + 0.932145i
\(924\) −1.70128 1.24581i −0.00184121 0.00134828i
\(925\) 0 0
\(926\) −140.497 432.405i −0.151724 0.466960i
\(927\) 179.290 + 1131.99i 0.193409 + 1.22114i
\(928\) −33.9605 + 214.418i −0.0365954 + 0.231054i
\(929\) 409.865 + 133.173i 0.441190 + 0.143351i 0.521184 0.853444i \(-0.325490\pi\)
−0.0799947 + 0.996795i \(0.525490\pi\)
\(930\) 0 0
\(931\) 391.830 284.681i 0.420870 0.305780i
\(932\) 33.4221 + 211.019i 0.0358607 + 0.226415i
\(933\) 14.5733 + 7.42548i 0.0156198 + 0.00795871i
\(934\) 1025.52i 1.09798i
\(935\) 0 0
\(936\) −875.160 −0.935000
\(937\) −376.319 + 738.568i −0.401622 + 0.788227i −0.999915 0.0130505i \(-0.995846\pi\)
0.598293 + 0.801277i \(0.295846\pi\)
\(938\) 9.03172 1.43048i 0.00962870 0.00152504i
\(939\) 29.8724 + 41.1158i 0.0318130 + 0.0437868i
\(940\) 0 0
\(941\) 275.334 847.390i 0.292597 0.900520i −0.691421 0.722452i \(-0.743015\pi\)
0.984018 0.178069i \(-0.0569849\pi\)
\(942\) 1.09611 + 0.173606i 0.00116359 + 0.000184295i
\(943\) −159.960 + 25.3352i −0.169629 + 0.0268666i
\(944\) 533.658 173.396i 0.565316 0.183682i
\(945\) 0 0
\(946\) 361.487 + 501.483i 0.382121 + 0.530109i
\(947\) 604.866 + 604.866i 0.638718 + 0.638718i 0.950239 0.311521i \(-0.100838\pi\)
−0.311521 + 0.950239i \(0.600838\pi\)
\(948\) 6.23373 + 3.17624i 0.00657566 + 0.00335047i
\(949\) 535.661 737.273i 0.564447 0.776895i
\(950\) 0 0
\(951\) 17.6877 54.4370i 0.0185990 0.0572419i
\(952\) 466.041 237.460i 0.489539 0.249432i
\(953\) −90.1909 + 569.443i −0.0946389 + 0.597527i 0.894099 + 0.447869i \(0.147817\pi\)
−0.988738 + 0.149657i \(0.952183\pi\)
\(954\) 768.669 1057.98i 0.805733 1.10900i
\(955\) 0 0
\(956\) −208.205 −0.217787
\(957\) −15.9056 8.17950i −0.0166203 0.00854702i
\(958\) 307.812 307.812i 0.321306 0.321306i
\(959\) 201.092 65.3388i 0.209689 0.0681322i
\(960\) 0 0
\(961\) 279.553 203.107i 0.290898 0.211350i
\(962\) 400.085 203.854i 0.415889 0.211906i
\(963\) 678.004 + 1330.66i 0.704054 + 1.38178i
\(964\) 141.490 + 194.744i 0.146774 + 0.202016i
\(965\) 0 0
\(966\) 0.392026 + 1.20653i 0.000405824 + 0.00124900i
\(967\) −792.160 792.160i −0.819193 0.819193i 0.166798 0.985991i \(-0.446657\pi\)
−0.985991 + 0.166798i \(0.946657\pi\)
\(968\) 741.563 730.536i 0.766077 0.754686i
\(969\) 28.7199i 0.0296387i
\(970\) 0 0
\(971\) −924.936 672.005i −0.952560 0.692075i −0.00114909 0.999999i \(-0.500366\pi\)
−0.951411 + 0.307924i \(0.900366\pi\)
\(972\) −19.8149 3.13836i −0.0203856 0.00322877i
\(973\) −101.932 200.053i −0.104761 0.205604i
\(974\) −1441.35 468.324i −1.47983 0.480825i
\(975\) 0 0
\(976\) 495.069 + 359.688i 0.507242 + 0.368533i
\(977\) 607.003 1191.31i 0.621293 1.21936i −0.339112 0.940746i \(-0.610126\pi\)
0.960404 0.278610i \(-0.0898735\pi\)
\(978\) 28.4271 28.4271i 0.0290666 0.0290666i
\(979\) 309.232 + 963.988i 0.315865 + 0.984666i
\(980\) 0 0
\(981\) 265.510 + 817.154i 0.270652 + 0.832981i
\(982\) −120.162 758.675i −0.122365 0.772582i
\(983\) 131.614 830.976i 0.133890 0.845346i −0.825734 0.564060i \(-0.809239\pi\)
0.959624 0.281287i \(-0.0907612\pi\)
\(984\) 41.9084 + 13.6169i 0.0425899 + 0.0138383i
\(985\) 0 0
\(986\) 621.756 451.732i 0.630584 0.458146i
\(987\) 0.0990057 + 0.625097i 0.000100310 + 0.000633330i
\(988\) −93.8111 47.7991i −0.0949505 0.0483797i
\(989\) 98.5817i 0.0996782i
\(990\) 0 0
\(991\) −190.257 −0.191985 −0.0959925 0.995382i \(-0.530602\pi\)
−0.0959925 + 0.995382i \(0.530602\pi\)
\(992\) 148.345 291.143i 0.149541 0.293491i
\(993\) 32.8507 5.20303i 0.0330822 0.00523971i
\(994\) 260.583 + 358.662i 0.262156 + 0.360827i
\(995\) 0 0
\(996\) 0.349544 1.07578i 0.000350947 0.00108011i
\(997\) 1063.21 + 168.395i 1.06641 + 0.168902i 0.664883 0.746947i \(-0.268481\pi\)
0.401522 + 0.915849i \(0.368481\pi\)
\(998\) −1386.50 + 219.601i −1.38928 + 0.220041i
\(999\) 37.6679 12.2391i 0.0377056 0.0122513i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.3.bk.c.82.12 yes 128
5.2 odd 4 inner 275.3.bk.c.93.12 yes 128
5.3 odd 4 inner 275.3.bk.c.93.5 yes 128
5.4 even 2 inner 275.3.bk.c.82.5 128
11.9 even 5 inner 275.3.bk.c.207.5 yes 128
55.9 even 10 inner 275.3.bk.c.207.12 yes 128
55.42 odd 20 inner 275.3.bk.c.218.5 yes 128
55.53 odd 20 inner 275.3.bk.c.218.12 yes 128
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
275.3.bk.c.82.5 128 5.4 even 2 inner
275.3.bk.c.82.12 yes 128 1.1 even 1 trivial
275.3.bk.c.93.5 yes 128 5.3 odd 4 inner
275.3.bk.c.93.12 yes 128 5.2 odd 4 inner
275.3.bk.c.207.5 yes 128 11.9 even 5 inner
275.3.bk.c.207.12 yes 128 55.9 even 10 inner
275.3.bk.c.218.5 yes 128 55.42 odd 20 inner
275.3.bk.c.218.12 yes 128 55.53 odd 20 inner