Properties

Label 275.3.bk.c.82.15
Level $275$
Weight $3$
Character 275.82
Analytic conductor $7.493$
Analytic rank $0$
Dimension $128$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,3,Mod(82,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([5, 8])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.82"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 275.bk (of order \(20\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [128] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.49320726991\)
Analytic rank: \(0\)
Dimension: \(128\)
Relative dimension: \(16\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 82.15
Character \(\chi\) \(=\) 275.82
Dual form 275.3.bk.c.218.15

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.54871 - 3.03951i) q^{2} +(-2.39044 + 0.378609i) q^{3} +(-4.48900 - 6.17857i) q^{4} +(-2.55131 + 7.85213i) q^{6} +(-2.23278 - 0.353637i) q^{7} +(-12.2547 + 1.94095i) q^{8} +(-2.98864 + 0.971069i) q^{9} +(-5.01119 + 9.79224i) q^{11} +(13.0699 + 13.0699i) q^{12} +(-12.2913 - 6.26272i) q^{13} +(-4.53281 + 6.23888i) q^{14} +(-3.63939 + 11.2009i) q^{16} +(3.55582 - 1.81178i) q^{17} +(-1.67696 + 10.5879i) q^{18} +(-21.1737 + 29.1430i) q^{19} +5.47122 q^{21} +(22.0028 + 30.3969i) q^{22} +(21.0138 - 21.0138i) q^{23} +(28.5593 - 9.27947i) q^{24} +(-38.0712 + 27.6604i) q^{26} +(26.1846 - 13.3417i) q^{27} +(7.83796 + 15.3829i) q^{28} +(9.94209 + 13.6841i) q^{29} +(-6.10743 - 18.7967i) q^{31} +(-6.68470 - 6.68470i) q^{32} +(8.27153 - 25.3051i) q^{33} -13.6139i q^{34} +(19.4158 + 14.1064i) q^{36} +(-30.5946 - 4.84571i) q^{37} +(55.7888 + 109.492i) q^{38} +(31.7527 + 10.3171i) q^{39} +(-24.0598 - 17.4804i) q^{41} +(8.47332 - 16.6298i) q^{42} +(-57.6762 + 57.6762i) q^{43} +(82.9973 - 12.9953i) q^{44} +(-31.3274 - 96.4159i) q^{46} +(-7.38384 - 46.6198i) q^{47} +(4.45899 - 28.1530i) q^{48} +(-41.7415 - 13.5626i) q^{49} +(-7.81403 + 5.67722i) q^{51} +(16.4808 + 104.056i) q^{52} +(-41.9192 - 21.3589i) q^{53} -100.251i q^{54} +28.0484 q^{56} +(39.5806 - 77.6813i) q^{57} +(56.9904 - 9.02639i) q^{58} +(-13.9926 - 19.2592i) q^{59} +(14.5657 - 44.8286i) q^{61} +(-66.5915 - 10.5471i) q^{62} +(7.01639 - 1.11129i) q^{63} +(-75.4744 + 24.5231i) q^{64} +(-64.1048 - 64.3316i) q^{66} +(25.4370 + 25.4370i) q^{67} +(-27.1563 - 13.8368i) q^{68} +(-42.2762 + 58.1882i) q^{69} +(-5.18827 + 15.9679i) q^{71} +(34.7401 - 17.7010i) q^{72} +(9.30355 - 58.7403i) q^{73} +(-62.1107 + 85.4881i) q^{74} +275.111 q^{76} +(14.6518 - 20.0918i) q^{77} +(80.5345 - 80.5345i) q^{78} +(134.820 - 43.8055i) q^{79} +(-34.6607 + 25.1825i) q^{81} +(-90.3936 + 46.0578i) q^{82} +(-27.5653 - 54.0999i) q^{83} +(-24.5603 - 33.8043i) q^{84} +(85.9839 + 264.631i) q^{86} +(-28.9469 - 28.9469i) q^{87} +(42.4043 - 129.727i) q^{88} +168.321i q^{89} +(25.2290 + 18.3299i) q^{91} +(-224.166 - 35.5044i) q^{92} +(21.7161 + 42.6202i) q^{93} +(-153.137 - 49.7572i) q^{94} +(18.5103 + 13.4485i) q^{96} +(-24.6643 + 48.4063i) q^{97} +(-105.869 + 105.869i) q^{98} +(5.46772 - 34.1317i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 128 q - 48 q^{6} + 32 q^{11} + 280 q^{16} - 8 q^{21} + 528 q^{26} - 16 q^{31} + 336 q^{36} - 604 q^{41} - 1152 q^{46} - 1024 q^{51} - 992 q^{56} - 320 q^{61} + 1624 q^{66} + 536 q^{71} + 1776 q^{76} + 3680 q^{81}+ \cdots - 6584 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.54871 3.03951i 0.774355 1.51976i −0.0780945 0.996946i \(-0.524884\pi\)
0.852449 0.522810i \(-0.175116\pi\)
\(3\) −2.39044 + 0.378609i −0.796814 + 0.126203i −0.541550 0.840669i \(-0.682162\pi\)
−0.255264 + 0.966871i \(0.582162\pi\)
\(4\) −4.48900 6.17857i −1.12225 1.54464i
\(5\) 0 0
\(6\) −2.55131 + 7.85213i −0.425219 + 1.30869i
\(7\) −2.23278 0.353637i −0.318968 0.0505196i −0.00510261 0.999987i \(-0.501624\pi\)
−0.313866 + 0.949467i \(0.601624\pi\)
\(8\) −12.2547 + 1.94095i −1.53184 + 0.242619i
\(9\) −2.98864 + 0.971069i −0.332072 + 0.107897i
\(10\) 0 0
\(11\) −5.01119 + 9.79224i −0.455563 + 0.890204i
\(12\) 13.0699 + 13.0699i 1.08916 + 1.08916i
\(13\) −12.2913 6.26272i −0.945483 0.481747i −0.0879203 0.996128i \(-0.528022\pi\)
−0.857562 + 0.514380i \(0.828022\pi\)
\(14\) −4.53281 + 6.23888i −0.323772 + 0.445634i
\(15\) 0 0
\(16\) −3.63939 + 11.2009i −0.227462 + 0.700055i
\(17\) 3.55582 1.81178i 0.209166 0.106575i −0.346269 0.938135i \(-0.612552\pi\)
0.555435 + 0.831560i \(0.312552\pi\)
\(18\) −1.67696 + 10.5879i −0.0931646 + 0.588218i
\(19\) −21.1737 + 29.1430i −1.11440 + 1.53384i −0.299638 + 0.954053i \(0.596866\pi\)
−0.814765 + 0.579792i \(0.803134\pi\)
\(20\) 0 0
\(21\) 5.47122 0.260534
\(22\) 22.0028 + 30.3969i 1.00013 + 1.38168i
\(23\) 21.0138 21.0138i 0.913643 0.913643i −0.0829138 0.996557i \(-0.526423\pi\)
0.996557 + 0.0829138i \(0.0264226\pi\)
\(24\) 28.5593 9.27947i 1.18997 0.386645i
\(25\) 0 0
\(26\) −38.0712 + 27.6604i −1.46428 + 1.06386i
\(27\) 26.1846 13.3417i 0.969798 0.494137i
\(28\) 7.83796 + 15.3829i 0.279927 + 0.549388i
\(29\) 9.94209 + 13.6841i 0.342831 + 0.471866i 0.945265 0.326302i \(-0.105803\pi\)
−0.602435 + 0.798168i \(0.705803\pi\)
\(30\) 0 0
\(31\) −6.10743 18.7967i −0.197014 0.606346i −0.999947 0.0102774i \(-0.996729\pi\)
0.802933 0.596069i \(-0.203271\pi\)
\(32\) −6.68470 6.68470i −0.208897 0.208897i
\(33\) 8.27153 25.3051i 0.250652 0.766820i
\(34\) 13.6139i 0.400408i
\(35\) 0 0
\(36\) 19.4158 + 14.1064i 0.539329 + 0.391845i
\(37\) −30.5946 4.84571i −0.826881 0.130965i −0.271371 0.962475i \(-0.587477\pi\)
−0.555510 + 0.831510i \(0.687477\pi\)
\(38\) 55.7888 + 109.492i 1.46813 + 2.88136i
\(39\) 31.7527 + 10.3171i 0.814171 + 0.264540i
\(40\) 0 0
\(41\) −24.0598 17.4804i −0.586823 0.426352i 0.254354 0.967111i \(-0.418137\pi\)
−0.841178 + 0.540759i \(0.818137\pi\)
\(42\) 8.47332 16.6298i 0.201746 0.395948i
\(43\) −57.6762 + 57.6762i −1.34131 + 1.34131i −0.446546 + 0.894761i \(0.647346\pi\)
−0.894761 + 0.446546i \(0.852654\pi\)
\(44\) 82.9973 12.9953i 1.88630 0.295348i
\(45\) 0 0
\(46\) −31.3274 96.4159i −0.681031 2.09600i
\(47\) −7.38384 46.6198i −0.157103 0.991910i −0.932693 0.360672i \(-0.882547\pi\)
0.775590 0.631238i \(-0.217453\pi\)
\(48\) 4.45899 28.1530i 0.0928957 0.586520i
\(49\) −41.7415 13.5626i −0.851868 0.276789i
\(50\) 0 0
\(51\) −7.81403 + 5.67722i −0.153216 + 0.111318i
\(52\) 16.4808 + 104.056i 0.316939 + 2.00107i
\(53\) −41.9192 21.3589i −0.790927 0.402998i 0.0113601 0.999935i \(-0.496384\pi\)
−0.802288 + 0.596938i \(0.796384\pi\)
\(54\) 100.251i 1.85649i
\(55\) 0 0
\(56\) 28.0484 0.500865
\(57\) 39.5806 77.6813i 0.694396 1.36283i
\(58\) 56.9904 9.02639i 0.982593 0.155627i
\(59\) −13.9926 19.2592i −0.237163 0.326427i 0.673801 0.738913i \(-0.264661\pi\)
−0.910964 + 0.412486i \(0.864661\pi\)
\(60\) 0 0
\(61\) 14.5657 44.8286i 0.238782 0.734896i −0.757815 0.652469i \(-0.773733\pi\)
0.996597 0.0824262i \(-0.0262669\pi\)
\(62\) −66.5915 10.5471i −1.07406 0.170114i
\(63\) 7.01639 1.11129i 0.111371 0.0176395i
\(64\) −75.4744 + 24.5231i −1.17929 + 0.383174i
\(65\) 0 0
\(66\) −64.1048 64.3316i −0.971286 0.974721i
\(67\) 25.4370 + 25.4370i 0.379656 + 0.379656i 0.870978 0.491322i \(-0.163486\pi\)
−0.491322 + 0.870978i \(0.663486\pi\)
\(68\) −27.1563 13.8368i −0.399357 0.203483i
\(69\) −42.2762 + 58.1882i −0.612699 + 0.843308i
\(70\) 0 0
\(71\) −5.18827 + 15.9679i −0.0730743 + 0.224899i −0.980922 0.194400i \(-0.937724\pi\)
0.907848 + 0.419299i \(0.137724\pi\)
\(72\) 34.7401 17.7010i 0.482502 0.245847i
\(73\) 9.30355 58.7403i 0.127446 0.804661i −0.838307 0.545198i \(-0.816454\pi\)
0.965753 0.259463i \(-0.0835456\pi\)
\(74\) −62.1107 + 85.4881i −0.839334 + 1.15524i
\(75\) 0 0
\(76\) 275.111 3.61988
\(77\) 14.6518 20.0918i 0.190283 0.260932i
\(78\) 80.5345 80.5345i 1.03249 1.03249i
\(79\) 134.820 43.8055i 1.70658 0.554500i 0.716819 0.697259i \(-0.245597\pi\)
0.989758 + 0.142759i \(0.0455973\pi\)
\(80\) 0 0
\(81\) −34.6607 + 25.1825i −0.427910 + 0.310895i
\(82\) −90.3936 + 46.0578i −1.10236 + 0.561681i
\(83\) −27.5653 54.0999i −0.332112 0.651806i 0.663209 0.748435i \(-0.269194\pi\)
−0.995321 + 0.0966282i \(0.969194\pi\)
\(84\) −24.5603 33.8043i −0.292384 0.402432i
\(85\) 0 0
\(86\) 85.9839 + 264.631i 0.999812 + 3.07711i
\(87\) −28.9469 28.9469i −0.332723 0.332723i
\(88\) 42.4043 129.727i 0.481867 1.47418i
\(89\) 168.321i 1.89125i 0.325257 + 0.945626i \(0.394549\pi\)
−0.325257 + 0.945626i \(0.605451\pi\)
\(90\) 0 0
\(91\) 25.2290 + 18.3299i 0.277241 + 0.201428i
\(92\) −224.166 35.5044i −2.43659 0.385918i
\(93\) 21.7161 + 42.6202i 0.233506 + 0.458281i
\(94\) −153.137 49.7572i −1.62911 0.529331i
\(95\) 0 0
\(96\) 18.5103 + 13.4485i 0.192815 + 0.140088i
\(97\) −24.6643 + 48.4063i −0.254271 + 0.499034i −0.982491 0.186308i \(-0.940348\pi\)
0.728221 + 0.685343i \(0.240348\pi\)
\(98\) −105.869 + 105.869i −1.08030 + 1.08030i
\(99\) 5.46772 34.1317i 0.0552295 0.344765i
\(100\) 0 0
\(101\) −25.2615 77.7469i −0.250114 0.769772i −0.994753 0.102304i \(-0.967378\pi\)
0.744639 0.667467i \(-0.232622\pi\)
\(102\) 5.15434 + 32.5432i 0.0505327 + 0.319051i
\(103\) 19.4219 122.625i 0.188563 1.19054i −0.693871 0.720100i \(-0.744096\pi\)
0.882433 0.470438i \(-0.155904\pi\)
\(104\) 162.781 + 52.8909i 1.56521 + 0.508566i
\(105\) 0 0
\(106\) −129.841 + 94.3351i −1.22492 + 0.889954i
\(107\) 12.3426 + 77.9279i 0.115351 + 0.728299i 0.975784 + 0.218735i \(0.0701931\pi\)
−0.860433 + 0.509563i \(0.829807\pi\)
\(108\) −199.975 101.892i −1.85162 0.943448i
\(109\) 9.65784i 0.0886040i 0.999018 + 0.0443020i \(0.0141064\pi\)
−0.999018 + 0.0443020i \(0.985894\pi\)
\(110\) 0 0
\(111\) 74.9692 0.675398
\(112\) 12.0870 23.7221i 0.107920 0.211804i
\(113\) −111.365 + 17.6385i −0.985531 + 0.156093i −0.628340 0.777939i \(-0.716265\pi\)
−0.357191 + 0.934032i \(0.616265\pi\)
\(114\) −174.814 240.611i −1.53346 2.11063i
\(115\) 0 0
\(116\) 39.9183 122.856i 0.344123 1.05910i
\(117\) 42.8158 + 6.78135i 0.365947 + 0.0579603i
\(118\) −80.2091 + 12.7039i −0.679738 + 0.107660i
\(119\) −8.58008 + 2.78784i −0.0721015 + 0.0234272i
\(120\) 0 0
\(121\) −70.7759 98.1416i −0.584925 0.811087i
\(122\) −113.699 113.699i −0.931960 0.931960i
\(123\) 64.1317 + 32.6767i 0.521396 + 0.265664i
\(124\) −88.7208 + 122.114i −0.715490 + 0.984788i
\(125\) 0 0
\(126\) 7.48857 23.0475i 0.0594331 0.182916i
\(127\) 148.368 75.5971i 1.16825 0.595252i 0.241304 0.970450i \(-0.422425\pi\)
0.926945 + 0.375197i \(0.122425\pi\)
\(128\) −36.4341 + 230.036i −0.284641 + 1.79716i
\(129\) 116.035 159.708i 0.899495 1.23805i
\(130\) 0 0
\(131\) 16.7516 0.127875 0.0639373 0.997954i \(-0.479634\pi\)
0.0639373 + 0.997954i \(0.479634\pi\)
\(132\) −193.480 + 62.4881i −1.46576 + 0.473394i
\(133\) 57.5822 57.5822i 0.432949 0.432949i
\(134\) 116.710 37.9215i 0.870973 0.282996i
\(135\) 0 0
\(136\) −40.0589 + 29.1045i −0.294551 + 0.214004i
\(137\) −79.9952 + 40.7596i −0.583907 + 0.297515i −0.720880 0.693059i \(-0.756262\pi\)
0.136974 + 0.990575i \(0.456262\pi\)
\(138\) 111.390 + 218.616i 0.807176 + 1.58417i
\(139\) 27.4367 + 37.7633i 0.197386 + 0.271679i 0.896224 0.443601i \(-0.146299\pi\)
−0.698838 + 0.715280i \(0.746299\pi\)
\(140\) 0 0
\(141\) 35.3013 + 108.646i 0.250364 + 0.770540i
\(142\) 40.4994 + 40.4994i 0.285207 + 0.285207i
\(143\) 122.920 88.9754i 0.859580 0.622206i
\(144\) 37.0096i 0.257011i
\(145\) 0 0
\(146\) −164.133 119.250i −1.12420 0.816780i
\(147\) 104.916 + 16.6170i 0.713712 + 0.113041i
\(148\) 107.399 + 210.783i 0.725672 + 1.42421i
\(149\) 157.950 + 51.3210i 1.06007 + 0.344437i 0.786612 0.617448i \(-0.211833\pi\)
0.273455 + 0.961885i \(0.411833\pi\)
\(150\) 0 0
\(151\) 173.632 + 126.151i 1.14988 + 0.835435i 0.988465 0.151452i \(-0.0483949\pi\)
0.161413 + 0.986887i \(0.448395\pi\)
\(152\) 202.912 398.236i 1.33494 2.61998i
\(153\) −8.86772 + 8.86772i −0.0579589 + 0.0579589i
\(154\) −38.3778 75.6506i −0.249207 0.491238i
\(155\) 0 0
\(156\) −78.7929 242.500i −0.505083 1.55448i
\(157\) −3.18010 20.0784i −0.0202554 0.127888i 0.975489 0.220050i \(-0.0706221\pi\)
−0.995744 + 0.0921624i \(0.970622\pi\)
\(158\) 75.6488 477.628i 0.478790 3.02296i
\(159\) 108.292 + 35.1862i 0.681081 + 0.221297i
\(160\) 0 0
\(161\) −54.3504 + 39.4879i −0.337580 + 0.245266i
\(162\) 22.8631 + 144.352i 0.141130 + 0.891062i
\(163\) 208.659 + 106.317i 1.28011 + 0.652251i 0.955889 0.293729i \(-0.0948962\pi\)
0.324226 + 0.945980i \(0.394896\pi\)
\(164\) 227.125i 1.38491i
\(165\) 0 0
\(166\) −207.128 −1.24776
\(167\) −85.1951 + 167.205i −0.510151 + 1.00123i 0.481999 + 0.876172i \(0.339911\pi\)
−0.992150 + 0.125055i \(0.960089\pi\)
\(168\) −67.0481 + 10.6194i −0.399096 + 0.0632106i
\(169\) 12.5181 + 17.2297i 0.0740715 + 0.101951i
\(170\) 0 0
\(171\) 34.9806 107.659i 0.204565 0.629586i
\(172\) 615.265 + 97.4484i 3.57712 + 0.566560i
\(173\) −141.805 + 22.4597i −0.819684 + 0.129825i −0.552173 0.833730i \(-0.686201\pi\)
−0.267511 + 0.963555i \(0.586201\pi\)
\(174\) −132.815 + 43.1541i −0.763303 + 0.248012i
\(175\) 0 0
\(176\) −91.4441 91.7675i −0.519569 0.521406i
\(177\) 40.7402 + 40.7402i 0.230171 + 0.230171i
\(178\) 511.615 + 260.681i 2.87424 + 1.46450i
\(179\) 97.6266 134.372i 0.545400 0.750679i −0.443979 0.896037i \(-0.646434\pi\)
0.989379 + 0.145358i \(0.0464335\pi\)
\(180\) 0 0
\(181\) 95.3179 293.358i 0.526618 1.62076i −0.234475 0.972122i \(-0.575337\pi\)
0.761093 0.648643i \(-0.224663\pi\)
\(182\) 94.7864 48.2961i 0.520804 0.265363i
\(183\) −17.8460 + 112.675i −0.0975189 + 0.615710i
\(184\) −216.731 + 298.304i −1.17788 + 1.62122i
\(185\) 0 0
\(186\) 163.176 0.877292
\(187\) −0.0774976 + 43.8986i −0.000414426 + 0.234752i
\(188\) −254.898 + 254.898i −1.35584 + 1.35584i
\(189\) −63.1825 + 20.5292i −0.334299 + 0.108620i
\(190\) 0 0
\(191\) −159.522 + 115.900i −0.835196 + 0.606805i −0.921024 0.389505i \(-0.872646\pi\)
0.0858287 + 0.996310i \(0.472646\pi\)
\(192\) 171.133 87.1964i 0.891315 0.454148i
\(193\) −61.3806 120.466i −0.318034 0.624177i 0.675545 0.737319i \(-0.263908\pi\)
−0.993579 + 0.113142i \(0.963908\pi\)
\(194\) 108.934 + 149.935i 0.561515 + 0.772859i
\(195\) 0 0
\(196\) 103.580 + 318.786i 0.528468 + 1.62646i
\(197\) 59.7822 + 59.7822i 0.303463 + 0.303463i 0.842367 0.538904i \(-0.181161\pi\)
−0.538904 + 0.842367i \(0.681161\pi\)
\(198\) −95.2759 69.4793i −0.481192 0.350906i
\(199\) 245.076i 1.23154i −0.787927 0.615769i \(-0.788845\pi\)
0.787927 0.615769i \(-0.211155\pi\)
\(200\) 0 0
\(201\) −70.4362 51.1749i −0.350429 0.254602i
\(202\) −275.435 43.6247i −1.36354 0.215964i
\(203\) −17.3593 34.0695i −0.0855136 0.167830i
\(204\) 70.1543 + 22.7945i 0.343893 + 0.111738i
\(205\) 0 0
\(206\) −342.642 248.944i −1.66331 1.20847i
\(207\) −42.3969 + 83.2086i −0.204816 + 0.401974i
\(208\) 114.881 114.881i 0.552311 0.552311i
\(209\) −179.270 353.379i −0.857753 1.69081i
\(210\) 0 0
\(211\) 94.8835 + 292.021i 0.449685 + 1.38399i 0.877263 + 0.480009i \(0.159367\pi\)
−0.427578 + 0.903978i \(0.640633\pi\)
\(212\) 56.2075 + 354.880i 0.265130 + 1.67396i
\(213\) 6.35669 40.1346i 0.0298436 0.188425i
\(214\) 255.978 + 83.1723i 1.19616 + 0.388656i
\(215\) 0 0
\(216\) −294.988 + 214.321i −1.36569 + 0.992229i
\(217\) 6.98931 + 44.1288i 0.0322088 + 0.203358i
\(218\) 29.3551 + 14.9572i 0.134656 + 0.0686109i
\(219\) 143.938i 0.657249i
\(220\) 0 0
\(221\) −55.0523 −0.249105
\(222\) 116.105 227.870i 0.522998 1.02644i
\(223\) −229.685 + 36.3786i −1.02998 + 0.163133i −0.648476 0.761235i \(-0.724593\pi\)
−0.381503 + 0.924368i \(0.624593\pi\)
\(224\) 12.5615 + 17.2894i 0.0560781 + 0.0771849i
\(225\) 0 0
\(226\) −118.860 + 365.812i −0.525927 + 1.61864i
\(227\) −204.785 32.4348i −0.902138 0.142885i −0.311901 0.950115i \(-0.600966\pi\)
−0.590237 + 0.807230i \(0.700966\pi\)
\(228\) −657.636 + 104.159i −2.88437 + 0.456839i
\(229\) 8.32217 2.70404i 0.0363413 0.0118080i −0.290790 0.956787i \(-0.593918\pi\)
0.327131 + 0.944979i \(0.393918\pi\)
\(230\) 0 0
\(231\) −27.4173 + 53.5755i −0.118690 + 0.231928i
\(232\) −148.397 148.397i −0.639644 0.639644i
\(233\) −88.8247 45.2584i −0.381222 0.194242i 0.252870 0.967500i \(-0.418626\pi\)
−0.634091 + 0.773258i \(0.718626\pi\)
\(234\) 86.9212 119.637i 0.371458 0.511268i
\(235\) 0 0
\(236\) −56.1815 + 172.909i −0.238057 + 0.732665i
\(237\) −305.693 + 155.758i −1.28984 + 0.657208i
\(238\) −4.81438 + 30.3968i −0.0202285 + 0.127718i
\(239\) 32.4101 44.6086i 0.135607 0.186647i −0.735813 0.677185i \(-0.763200\pi\)
0.871420 + 0.490538i \(0.163200\pi\)
\(240\) 0 0
\(241\) 225.159 0.934271 0.467135 0.884186i \(-0.345286\pi\)
0.467135 + 0.884186i \(0.345286\pi\)
\(242\) −407.914 + 63.1317i −1.68559 + 0.260875i
\(243\) −113.702 + 113.702i −0.467907 + 0.467907i
\(244\) −342.362 + 111.240i −1.40312 + 0.455903i
\(245\) 0 0
\(246\) 198.643 144.322i 0.807490 0.586676i
\(247\) 442.766 225.600i 1.79257 0.913362i
\(248\) 111.328 + 218.494i 0.448904 + 0.881024i
\(249\) 86.3759 + 118.886i 0.346891 + 0.477455i
\(250\) 0 0
\(251\) 125.864 + 387.371i 0.501452 + 1.54331i 0.806655 + 0.591023i \(0.201276\pi\)
−0.305203 + 0.952287i \(0.598724\pi\)
\(252\) −38.3627 38.3627i −0.152233 0.152233i
\(253\) 100.468 + 311.076i 0.397107 + 1.22955i
\(254\) 568.043i 2.23639i
\(255\) 0 0
\(256\) 385.962 + 280.417i 1.50766 + 1.09538i
\(257\) −5.89609 0.933850i −0.0229420 0.00363366i 0.144953 0.989439i \(-0.453697\pi\)
−0.167895 + 0.985805i \(0.553697\pi\)
\(258\) −305.731 600.031i −1.18500 2.32570i
\(259\) 66.5973 + 21.6388i 0.257133 + 0.0835474i
\(260\) 0 0
\(261\) −43.0016 31.2425i −0.164757 0.119703i
\(262\) 25.9433 50.9166i 0.0990203 0.194338i
\(263\) 115.406 115.406i 0.438806 0.438806i −0.452804 0.891610i \(-0.649576\pi\)
0.891610 + 0.452804i \(0.149576\pi\)
\(264\) −52.2491 + 326.160i −0.197913 + 1.23546i
\(265\) 0 0
\(266\) −85.8437 264.200i −0.322721 0.993232i
\(267\) −63.7279 402.362i −0.238681 1.50698i
\(268\) 42.9777 271.351i 0.160365 1.01250i
\(269\) −399.783 129.897i −1.48618 0.482890i −0.550229 0.835014i \(-0.685459\pi\)
−0.935953 + 0.352124i \(0.885459\pi\)
\(270\) 0 0
\(271\) −235.240 + 170.912i −0.868043 + 0.630670i −0.930061 0.367405i \(-0.880246\pi\)
0.0620182 + 0.998075i \(0.480246\pi\)
\(272\) 7.35254 + 46.4221i 0.0270314 + 0.170670i
\(273\) −67.2482 34.2647i −0.246331 0.125512i
\(274\) 306.271i 1.11778i
\(275\) 0 0
\(276\) 549.298 1.99021
\(277\) −155.743 + 305.663i −0.562250 + 1.10348i 0.418501 + 0.908216i \(0.362556\pi\)
−0.980751 + 0.195262i \(0.937444\pi\)
\(278\) 157.273 24.9097i 0.565732 0.0896031i
\(279\) 36.5059 + 50.2460i 0.130845 + 0.180093i
\(280\) 0 0
\(281\) −29.5550 + 90.9610i −0.105178 + 0.323705i −0.989772 0.142657i \(-0.954435\pi\)
0.884594 + 0.466362i \(0.154435\pi\)
\(282\) 384.903 + 60.9626i 1.36490 + 0.216180i
\(283\) 48.4877 7.67970i 0.171335 0.0271368i −0.0701775 0.997535i \(-0.522357\pi\)
0.241512 + 0.970398i \(0.422357\pi\)
\(284\) 121.949 39.6235i 0.429397 0.139520i
\(285\) 0 0
\(286\) −80.0748 511.414i −0.279982 1.78816i
\(287\) 47.5384 + 47.5384i 0.165639 + 0.165639i
\(288\) 26.4695 + 13.4869i 0.0919079 + 0.0468294i
\(289\) −160.509 + 220.921i −0.555393 + 0.764433i
\(290\) 0 0
\(291\) 40.6314 125.051i 0.139627 0.429727i
\(292\) −404.695 + 206.202i −1.38594 + 0.706172i
\(293\) 72.0074 454.637i 0.245759 1.55166i −0.488361 0.872642i \(-0.662405\pi\)
0.734120 0.679020i \(-0.237595\pi\)
\(294\) 212.991 293.157i 0.724460 0.997134i
\(295\) 0 0
\(296\) 384.333 1.29842
\(297\) −0.570681 + 323.263i −0.00192148 + 1.08843i
\(298\) 400.609 400.609i 1.34433 1.34433i
\(299\) −389.890 + 126.683i −1.30398 + 0.423688i
\(300\) 0 0
\(301\) 149.175 108.382i 0.495597 0.360072i
\(302\) 652.341 332.385i 2.16007 1.10061i
\(303\) 89.8218 + 176.285i 0.296442 + 0.581799i
\(304\) −249.369 343.227i −0.820292 1.12903i
\(305\) 0 0
\(306\) 13.2200 + 40.6871i 0.0432027 + 0.132964i
\(307\) −170.036 170.036i −0.553862 0.553862i 0.373691 0.927553i \(-0.378092\pi\)
−0.927553 + 0.373691i \(0.878092\pi\)
\(308\) −189.910 0.335263i −0.616592 0.00108852i
\(309\) 300.482i 0.972434i
\(310\) 0 0
\(311\) −173.513 126.064i −0.557919 0.405352i 0.272778 0.962077i \(-0.412058\pi\)
−0.830697 + 0.556725i \(0.812058\pi\)
\(312\) −409.145 64.8021i −1.31136 0.207699i
\(313\) 72.2129 + 141.726i 0.230712 + 0.452798i 0.977119 0.212691i \(-0.0682229\pi\)
−0.746407 + 0.665489i \(0.768223\pi\)
\(314\) −65.9536 21.4296i −0.210043 0.0682472i
\(315\) 0 0
\(316\) −875.860 636.350i −2.77171 2.01376i
\(317\) −12.8910 + 25.3001i −0.0406657 + 0.0798109i −0.910445 0.413629i \(-0.864261\pi\)
0.869780 + 0.493440i \(0.164261\pi\)
\(318\) 274.662 274.662i 0.863716 0.863716i
\(319\) −183.820 + 28.7816i −0.576237 + 0.0902245i
\(320\) 0 0
\(321\) −59.0084 181.609i −0.183827 0.565761i
\(322\) 35.8509 + 226.354i 0.111338 + 0.702963i
\(323\) −22.4889 + 141.990i −0.0696252 + 0.439596i
\(324\) 311.184 + 101.110i 0.960444 + 0.312067i
\(325\) 0 0
\(326\) 646.303 469.567i 1.98253 1.44039i
\(327\) −3.65654 23.0865i −0.0111821 0.0706009i
\(328\) 328.774 + 167.519i 1.00236 + 0.510727i
\(329\) 106.703i 0.324325i
\(330\) 0 0
\(331\) 151.309 0.457126 0.228563 0.973529i \(-0.426597\pi\)
0.228563 + 0.973529i \(0.426597\pi\)
\(332\) −210.520 + 413.169i −0.634096 + 1.24448i
\(333\) 96.1419 15.2274i 0.288714 0.0457279i
\(334\) 376.279 + 517.903i 1.12658 + 1.55061i
\(335\) 0 0
\(336\) −19.9119 + 61.2825i −0.0592616 + 0.182388i
\(337\) −368.438 58.3548i −1.09329 0.173160i −0.416353 0.909203i \(-0.636692\pi\)
−0.676934 + 0.736043i \(0.736692\pi\)
\(338\) 71.7567 11.3651i 0.212298 0.0336247i
\(339\) 259.533 84.3275i 0.765585 0.248754i
\(340\) 0 0
\(341\) 214.668 + 34.3886i 0.629524 + 0.100846i
\(342\) −273.057 273.057i −0.798412 0.798412i
\(343\) 187.100 + 95.3323i 0.545481 + 0.277937i
\(344\) 594.857 818.751i 1.72924 2.38009i
\(345\) 0 0
\(346\) −151.348 + 465.803i −0.437423 + 1.34625i
\(347\) 604.240 307.876i 1.74133 0.887250i 0.774203 0.632937i \(-0.218151\pi\)
0.967122 0.254313i \(-0.0818492\pi\)
\(348\) −48.9080 + 308.793i −0.140540 + 0.887336i
\(349\) 24.7765 34.1019i 0.0709927 0.0977131i −0.772044 0.635569i \(-0.780766\pi\)
0.843037 + 0.537856i \(0.180766\pi\)
\(350\) 0 0
\(351\) −405.397 −1.15498
\(352\) 98.9565 31.9599i 0.281126 0.0907951i
\(353\) −292.066 + 292.066i −0.827382 + 0.827382i −0.987154 0.159772i \(-0.948924\pi\)
0.159772 + 0.987154i \(0.448924\pi\)
\(354\) 186.925 60.7357i 0.528038 0.171570i
\(355\) 0 0
\(356\) 1039.99 755.594i 2.92131 2.12246i
\(357\) 19.4547 9.91265i 0.0544949 0.0277665i
\(358\) −257.229 504.840i −0.718516 1.41017i
\(359\) −86.9687 119.702i −0.242253 0.333432i 0.670526 0.741886i \(-0.266068\pi\)
−0.912779 + 0.408453i \(0.866068\pi\)
\(360\) 0 0
\(361\) −289.438 890.798i −0.801767 2.46759i
\(362\) −744.047 744.047i −2.05538 2.05538i
\(363\) 206.343 + 207.805i 0.568438 + 0.572466i
\(364\) 238.162i 0.654291i
\(365\) 0 0
\(366\) 314.839 + 228.744i 0.860215 + 0.624983i
\(367\) −349.255 55.3166i −0.951649 0.150726i −0.338740 0.940880i \(-0.610001\pi\)
−0.612909 + 0.790154i \(0.710001\pi\)
\(368\) 158.896 + 311.850i 0.431782 + 0.847419i
\(369\) 88.8808 + 28.8791i 0.240869 + 0.0782632i
\(370\) 0 0
\(371\) 86.0429 + 62.5138i 0.231922 + 0.168501i
\(372\) 165.848 325.496i 0.445829 0.874989i
\(373\) 67.3093 67.3093i 0.180454 0.180454i −0.611100 0.791554i \(-0.709273\pi\)
0.791554 + 0.611100i \(0.209273\pi\)
\(374\) 133.310 + 68.2218i 0.356445 + 0.182411i
\(375\) 0 0
\(376\) 180.974 + 556.979i 0.481313 + 1.48133i
\(377\) −36.5012 230.460i −0.0968202 0.611299i
\(378\) −35.4524 + 223.838i −0.0937894 + 0.592163i
\(379\) −518.993 168.631i −1.36937 0.444937i −0.470212 0.882553i \(-0.655823\pi\)
−0.899162 + 0.437617i \(0.855823\pi\)
\(380\) 0 0
\(381\) −326.042 + 236.884i −0.855754 + 0.621742i
\(382\) 105.225 + 664.365i 0.275458 + 1.73918i
\(383\) 301.699 + 153.723i 0.787726 + 0.401366i 0.801090 0.598544i \(-0.204254\pi\)
−0.0133638 + 0.999911i \(0.504254\pi\)
\(384\) 563.681i 1.46792i
\(385\) 0 0
\(386\) −461.219 −1.19487
\(387\) 116.366 228.381i 0.300687 0.590132i
\(388\) 409.800 64.9059i 1.05619 0.167283i
\(389\) −333.318 458.773i −0.856859 1.17937i −0.982309 0.187265i \(-0.940038\pi\)
0.125450 0.992100i \(-0.459962\pi\)
\(390\) 0 0
\(391\) 36.6489 112.794i 0.0937312 0.288475i
\(392\) 537.854 + 85.1877i 1.37208 + 0.217316i
\(393\) −40.0437 + 6.34229i −0.101892 + 0.0161382i
\(394\) 274.294 89.1236i 0.696178 0.226202i
\(395\) 0 0
\(396\) −235.430 + 119.435i −0.594520 + 0.301602i
\(397\) −363.354 363.354i −0.915249 0.915249i 0.0814297 0.996679i \(-0.474051\pi\)
−0.996679 + 0.0814297i \(0.974051\pi\)
\(398\) −744.912 379.551i −1.87164 0.953647i
\(399\) −115.846 + 159.448i −0.290340 + 0.399619i
\(400\) 0 0
\(401\) −63.8238 + 196.429i −0.159162 + 0.489849i −0.998559 0.0536695i \(-0.982908\pi\)
0.839397 + 0.543519i \(0.182908\pi\)
\(402\) −264.632 + 134.837i −0.658289 + 0.335415i
\(403\) −42.6505 + 269.285i −0.105833 + 0.668201i
\(404\) −366.966 + 505.086i −0.908332 + 1.25021i
\(405\) 0 0
\(406\) −130.439 −0.321279
\(407\) 200.766 275.307i 0.493282 0.676430i
\(408\) 84.7393 84.7393i 0.207694 0.207694i
\(409\) 320.829 104.244i 0.784423 0.254875i 0.110696 0.993854i \(-0.464692\pi\)
0.673728 + 0.738980i \(0.264692\pi\)
\(410\) 0 0
\(411\) 175.792 127.720i 0.427717 0.310755i
\(412\) −844.835 + 430.465i −2.05057 + 1.04482i
\(413\) 24.4317 + 47.9498i 0.0591566 + 0.116101i
\(414\) 187.253 + 257.732i 0.452302 + 0.622540i
\(415\) 0 0
\(416\) 40.2991 + 124.028i 0.0968728 + 0.298144i
\(417\) −79.8832 79.8832i −0.191567 0.191567i
\(418\) −1351.74 2.38632i −3.23382 0.00570891i
\(419\) 523.431i 1.24924i 0.780930 + 0.624619i \(0.214746\pi\)
−0.780930 + 0.624619i \(0.785254\pi\)
\(420\) 0 0
\(421\) −264.208 191.959i −0.627574 0.455959i 0.227985 0.973665i \(-0.426786\pi\)
−0.855559 + 0.517706i \(0.826786\pi\)
\(422\) 1034.55 + 163.857i 2.45154 + 0.388286i
\(423\) 67.3387 + 132.160i 0.159193 + 0.312434i
\(424\) 555.163 + 180.383i 1.30935 + 0.425433i
\(425\) 0 0
\(426\) −112.145 81.4780i −0.263251 0.191263i
\(427\) −48.3751 + 94.9415i −0.113291 + 0.222345i
\(428\) 426.078 426.078i 0.995509 0.995509i
\(429\) −260.146 + 259.229i −0.606401 + 0.604264i
\(430\) 0 0
\(431\) 141.996 + 437.020i 0.329458 + 1.01397i 0.969388 + 0.245534i \(0.0789632\pi\)
−0.639930 + 0.768433i \(0.721037\pi\)
\(432\) 54.1431 + 341.846i 0.125331 + 0.791310i
\(433\) −45.7255 + 288.700i −0.105602 + 0.666743i 0.876926 + 0.480626i \(0.159590\pi\)
−0.982528 + 0.186117i \(0.940410\pi\)
\(434\) 144.954 + 47.0985i 0.333996 + 0.108522i
\(435\) 0 0
\(436\) 59.6717 43.3540i 0.136862 0.0994358i
\(437\) 167.467 + 1057.34i 0.383219 + 2.41955i
\(438\) 437.500 + 222.917i 0.998859 + 0.508944i
\(439\) 286.451i 0.652507i 0.945282 + 0.326253i \(0.105786\pi\)
−0.945282 + 0.326253i \(0.894214\pi\)
\(440\) 0 0
\(441\) 137.921 0.312746
\(442\) −85.2599 + 167.332i −0.192896 + 0.378579i
\(443\) −304.198 + 48.1802i −0.686676 + 0.108759i −0.490017 0.871713i \(-0.663009\pi\)
−0.196660 + 0.980472i \(0.563009\pi\)
\(444\) −336.536 463.203i −0.757965 1.04325i
\(445\) 0 0
\(446\) −245.142 + 754.471i −0.549647 + 1.69164i
\(447\) −397.001 62.8787i −0.888145 0.140668i
\(448\) 177.190 28.0641i 0.395513 0.0626432i
\(449\) 267.659 86.9677i 0.596123 0.193692i 0.00461218 0.999989i \(-0.498532\pi\)
0.591510 + 0.806297i \(0.298532\pi\)
\(450\) 0 0
\(451\) 291.741 148.001i 0.646875 0.328162i
\(452\) 608.898 + 608.898i 1.34712 + 1.34712i
\(453\) −462.818 235.817i −1.02167 0.520568i
\(454\) −415.739 + 572.215i −0.915724 + 1.26039i
\(455\) 0 0
\(456\) −334.272 + 1028.78i −0.733053 + 2.25611i
\(457\) −22.2989 + 11.3619i −0.0487941 + 0.0248618i −0.478217 0.878242i \(-0.658717\pi\)
0.429423 + 0.903103i \(0.358717\pi\)
\(458\) 4.66966 29.4831i 0.0101958 0.0643736i
\(459\) 68.9354 94.8814i 0.150186 0.206713i
\(460\) 0 0
\(461\) −786.245 −1.70552 −0.852761 0.522302i \(-0.825073\pi\)
−0.852761 + 0.522302i \(0.825073\pi\)
\(462\) 120.382 + 166.308i 0.260567 + 0.359974i
\(463\) 216.315 216.315i 0.467203 0.467203i −0.433804 0.901007i \(-0.642829\pi\)
0.901007 + 0.433804i \(0.142829\pi\)
\(464\) −189.457 + 61.5584i −0.408313 + 0.132669i
\(465\) 0 0
\(466\) −275.127 + 199.892i −0.590402 + 0.428952i
\(467\) 157.211 80.1031i 0.336641 0.171527i −0.277496 0.960727i \(-0.589504\pi\)
0.614137 + 0.789200i \(0.289504\pi\)
\(468\) −150.301 294.982i −0.321155 0.630303i
\(469\) −47.7997 65.7906i −0.101918 0.140278i
\(470\) 0 0
\(471\) 15.2037 + 46.7922i 0.0322796 + 0.0993465i
\(472\) 208.857 + 208.857i 0.442493 + 0.442493i
\(473\) −275.753 853.805i −0.582987 1.80509i
\(474\) 1170.38i 2.46916i
\(475\) 0 0
\(476\) 55.7408 + 40.4981i 0.117102 + 0.0850799i
\(477\) 146.022 + 23.1277i 0.306127 + 0.0484857i
\(478\) −85.3948 167.597i −0.178650 0.350621i
\(479\) −565.936 183.884i −1.18149 0.383891i −0.348573 0.937282i \(-0.613334\pi\)
−0.832922 + 0.553391i \(0.813334\pi\)
\(480\) 0 0
\(481\) 345.699 + 251.165i 0.718709 + 0.522173i
\(482\) 348.706 684.374i 0.723457 1.41986i
\(483\) 114.971 114.971i 0.238035 0.238035i
\(484\) −288.662 + 877.851i −0.596409 + 1.81374i
\(485\) 0 0
\(486\) 169.507 + 521.688i 0.348779 + 1.07343i
\(487\) −72.9801 460.778i −0.149856 0.946156i −0.941949 0.335755i \(-0.891008\pi\)
0.792093 0.610401i \(-0.208992\pi\)
\(488\) −91.4880 + 577.633i −0.187475 + 1.18367i
\(489\) −539.039 175.144i −1.10233 0.358168i
\(490\) 0 0
\(491\) −93.6260 + 68.0233i −0.190684 + 0.138540i −0.679031 0.734109i \(-0.737600\pi\)
0.488347 + 0.872649i \(0.337600\pi\)
\(492\) −85.9913 542.928i −0.174779 1.10351i
\(493\) 60.1449 + 30.6454i 0.121998 + 0.0621610i
\(494\) 1695.18i 3.43154i
\(495\) 0 0
\(496\) 232.767 0.469289
\(497\) 17.2311 33.8179i 0.0346702 0.0680441i
\(498\) 495.127 78.4205i 0.994232 0.157471i
\(499\) 141.813 + 195.189i 0.284195 + 0.391161i 0.927118 0.374770i \(-0.122278\pi\)
−0.642923 + 0.765931i \(0.722278\pi\)
\(500\) 0 0
\(501\) 140.349 431.949i 0.280137 0.862174i
\(502\) 1372.35 + 217.358i 2.73376 + 0.432984i
\(503\) 428.067 67.7992i 0.851028 0.134790i 0.284342 0.958723i \(-0.408225\pi\)
0.566687 + 0.823933i \(0.308225\pi\)
\(504\) −83.8268 + 27.2370i −0.166323 + 0.0540416i
\(505\) 0 0
\(506\) 1101.12 + 176.393i 2.17612 + 0.348602i
\(507\) −36.4471 36.4471i −0.0718877 0.0718877i
\(508\) −1133.10 577.345i −2.23052 1.13651i
\(509\) −160.580 + 221.019i −0.315481 + 0.434223i −0.937081 0.349112i \(-0.886483\pi\)
0.621600 + 0.783335i \(0.286483\pi\)
\(510\) 0 0
\(511\) −41.5455 + 127.864i −0.0813024 + 0.250223i
\(512\) 620.001 315.906i 1.21094 0.617005i
\(513\) −165.605 + 1045.59i −0.322817 + 2.03819i
\(514\) −11.9698 + 16.4750i −0.0232875 + 0.0320525i
\(515\) 0 0
\(516\) −1507.65 −2.92180
\(517\) 493.514 + 161.316i 0.954572 + 0.312023i
\(518\) 168.911 168.911i 0.326084 0.326084i
\(519\) 330.474 107.377i 0.636751 0.206893i
\(520\) 0 0
\(521\) 407.039 295.731i 0.781264 0.567622i −0.124094 0.992270i \(-0.539602\pi\)
0.905358 + 0.424649i \(0.139602\pi\)
\(522\) −161.559 + 82.3183i −0.309500 + 0.157698i
\(523\) −20.4357 40.1074i −0.0390741 0.0766871i 0.870644 0.491913i \(-0.163702\pi\)
−0.909718 + 0.415226i \(0.863702\pi\)
\(524\) −75.1978 103.501i −0.143507 0.197521i
\(525\) 0 0
\(526\) −172.048 529.508i −0.327087 1.00667i
\(527\) −55.7725 55.7725i −0.105830 0.105830i
\(528\) 253.336 + 184.743i 0.479803 + 0.349893i
\(529\) 354.158i 0.669487i
\(530\) 0 0
\(531\) 60.5210 + 43.9711i 0.113975 + 0.0828080i
\(532\) −614.262 97.2895i −1.15463 0.182875i
\(533\) 186.250 + 365.536i 0.349437 + 0.685809i
\(534\) −1321.68 429.440i −2.47506 0.804195i
\(535\) 0 0
\(536\) −361.094 262.350i −0.673683 0.489460i
\(537\) −182.496 + 358.169i −0.339844 + 0.666982i
\(538\) −1013.97 + 1013.97i −1.88471 + 1.88471i
\(539\) 341.983 340.778i 0.634478 0.632241i
\(540\) 0 0
\(541\) 204.616 + 629.743i 0.378218 + 1.16404i 0.941282 + 0.337622i \(0.109623\pi\)
−0.563064 + 0.826414i \(0.690377\pi\)
\(542\) 155.170 + 979.706i 0.286292 + 1.80758i
\(543\) −116.784 + 737.344i −0.215072 + 1.35791i
\(544\) −35.8808 11.6584i −0.0659574 0.0214308i
\(545\) 0 0
\(546\) −208.296 + 151.336i −0.381494 + 0.277172i
\(547\) −51.2339 323.478i −0.0936635 0.591368i −0.989222 0.146424i \(-0.953224\pi\)
0.895558 0.444944i \(-0.146776\pi\)
\(548\) 610.934 + 311.287i 1.11484 + 0.568041i
\(549\) 148.121i 0.269802i
\(550\) 0 0
\(551\) −609.307 −1.10582
\(552\) 405.142 795.135i 0.733952 1.44046i
\(553\) −316.514 + 50.1308i −0.572357 + 0.0906525i
\(554\) 687.867 + 946.767i 1.24164 + 1.70897i
\(555\) 0 0
\(556\) 110.160 339.039i 0.198130 0.609782i
\(557\) −828.504 131.222i −1.48744 0.235587i −0.640782 0.767723i \(-0.721390\pi\)
−0.846659 + 0.532136i \(0.821390\pi\)
\(558\) 209.260 33.1436i 0.375018 0.0593971i
\(559\) 1070.12 347.704i 1.91435 0.622011i
\(560\) 0 0
\(561\) −16.4352 104.966i −0.0292962 0.187106i
\(562\) 230.705 + 230.705i 0.410507 + 0.410507i
\(563\) −708.172 360.832i −1.25785 0.640909i −0.307343 0.951599i \(-0.599440\pi\)
−0.950511 + 0.310690i \(0.899440\pi\)
\(564\) 512.811 705.824i 0.909240 1.25146i
\(565\) 0 0
\(566\) 51.7509 159.273i 0.0914326 0.281401i
\(567\) 86.2952 43.9696i 0.152196 0.0775478i
\(568\) 32.5878 205.752i 0.0573730 0.362239i
\(569\) 543.704 748.344i 0.955543 1.31519i 0.00652189 0.999979i \(-0.497924\pi\)
0.949021 0.315213i \(-0.102076\pi\)
\(570\) 0 0
\(571\) 290.179 0.508194 0.254097 0.967179i \(-0.418222\pi\)
0.254097 + 0.967179i \(0.418222\pi\)
\(572\) −1101.53 360.059i −1.92575 0.629475i
\(573\) 337.448 337.448i 0.588915 0.588915i
\(574\) 218.117 70.8704i 0.379994 0.123468i
\(575\) 0 0
\(576\) 201.753 146.582i 0.350265 0.254482i
\(577\) −207.415 + 105.683i −0.359471 + 0.183159i −0.624393 0.781110i \(-0.714654\pi\)
0.264922 + 0.964270i \(0.414654\pi\)
\(578\) 422.912 + 830.011i 0.731681 + 1.43600i
\(579\) 192.336 + 264.728i 0.332187 + 0.457216i
\(580\) 0 0
\(581\) 42.4154 + 130.541i 0.0730042 + 0.224684i
\(582\) −317.167 317.167i −0.544960 0.544960i
\(583\) 419.216 303.449i 0.719067 0.520496i
\(584\) 737.902i 1.26353i
\(585\) 0 0
\(586\) −1270.36 922.968i −2.16784 1.57503i
\(587\) 87.7179 + 13.8932i 0.149434 + 0.0236681i 0.230703 0.973024i \(-0.425897\pi\)
−0.0812691 + 0.996692i \(0.525897\pi\)
\(588\) −368.296 722.822i −0.626354 1.22929i
\(589\) 677.111 + 220.007i 1.14959 + 0.373526i
\(590\) 0 0
\(591\) −165.540 120.272i −0.280102 0.203506i
\(592\) 165.622 325.051i 0.279767 0.549073i
\(593\) 282.278 282.278i 0.476016 0.476016i −0.427839 0.903855i \(-0.640725\pi\)
0.903855 + 0.427839i \(0.140725\pi\)
\(594\) 981.679 + 502.375i 1.65266 + 0.845750i
\(595\) 0 0
\(596\) −391.946 1206.29i −0.657627 2.02397i
\(597\) 92.7879 + 585.840i 0.155424 + 0.981306i
\(598\) −218.772 + 1381.27i −0.365839 + 2.30981i
\(599\) −835.221 271.380i −1.39436 0.453055i −0.486997 0.873404i \(-0.661908\pi\)
−0.907363 + 0.420349i \(0.861908\pi\)
\(600\) 0 0
\(601\) −352.495 + 256.103i −0.586515 + 0.426128i −0.841067 0.540931i \(-0.818072\pi\)
0.254552 + 0.967059i \(0.418072\pi\)
\(602\) −98.3995 621.270i −0.163454 1.03201i
\(603\) −100.723 51.3210i −0.167037 0.0851094i
\(604\) 1639.09i 2.71372i
\(605\) 0 0
\(606\) 674.929 1.11374
\(607\) 98.3567 193.036i 0.162037 0.318016i −0.795685 0.605711i \(-0.792889\pi\)
0.957722 + 0.287695i \(0.0928888\pi\)
\(608\) 336.352 53.2729i 0.553211 0.0876199i
\(609\) 54.3953 + 74.8687i 0.0893191 + 0.122937i
\(610\) 0 0
\(611\) −201.209 + 619.259i −0.329312 + 1.01352i
\(612\) 94.5970 + 14.9827i 0.154570 + 0.0244815i
\(613\) 1090.78 172.763i 1.77942 0.281832i 0.821779 0.569806i \(-0.192982\pi\)
0.957638 + 0.287974i \(0.0929816\pi\)
\(614\) −780.161 + 253.490i −1.27062 + 0.412850i
\(615\) 0 0
\(616\) −140.556 + 274.657i −0.228175 + 0.445872i
\(617\) 652.925 + 652.925i 1.05823 + 1.05823i 0.998197 + 0.0600293i \(0.0191194\pi\)
0.0600293 + 0.998197i \(0.480881\pi\)
\(618\) 913.319 + 465.359i 1.47786 + 0.753008i
\(619\) −325.696 + 448.282i −0.526165 + 0.724203i −0.986540 0.163521i \(-0.947715\pi\)
0.460375 + 0.887724i \(0.347715\pi\)
\(620\) 0 0
\(621\) 269.877 830.596i 0.434585 1.33751i
\(622\) −651.895 + 332.157i −1.04806 + 0.534015i
\(623\) 59.5247 375.824i 0.0955453 0.603250i
\(624\) −231.121 + 318.110i −0.370386 + 0.509792i
\(625\) 0 0
\(626\) 542.614 0.866795
\(627\) 562.328 + 776.858i 0.896855 + 1.23901i
\(628\) −109.780 + 109.780i −0.174809 + 0.174809i
\(629\) −117.568 + 38.2002i −0.186913 + 0.0607317i
\(630\) 0 0
\(631\) 346.983 252.098i 0.549894 0.399522i −0.277852 0.960624i \(-0.589623\pi\)
0.827747 + 0.561102i \(0.189623\pi\)
\(632\) −1567.15 + 798.502i −2.47967 + 1.26345i
\(633\) −337.375 662.136i −0.532978 1.04603i
\(634\) 56.9354 + 78.3649i 0.0898035 + 0.123604i
\(635\) 0 0
\(636\) −268.722 827.040i −0.422518 1.30038i
\(637\) 428.118 + 428.118i 0.672084 + 0.672084i
\(638\) −197.201 + 603.297i −0.309093 + 0.945606i
\(639\) 52.7604i 0.0825672i
\(640\) 0 0
\(641\) −51.5449 37.4495i −0.0804132 0.0584236i 0.546852 0.837229i \(-0.315826\pi\)
−0.627266 + 0.778805i \(0.715826\pi\)
\(642\) −643.390 101.903i −1.00217 0.158727i
\(643\) −30.5733 60.0035i −0.0475479 0.0933180i 0.866010 0.500027i \(-0.166676\pi\)
−0.913558 + 0.406709i \(0.866676\pi\)
\(644\) 487.958 + 158.547i 0.757698 + 0.246191i
\(645\) 0 0
\(646\) 396.750 + 288.256i 0.614164 + 0.446216i
\(647\) 210.857 413.830i 0.325900 0.639614i −0.668685 0.743546i \(-0.733142\pi\)
0.994584 + 0.103932i \(0.0331424\pi\)
\(648\) 375.879 375.879i 0.580060 0.580060i
\(649\) 258.710 40.5077i 0.398629 0.0624155i
\(650\) 0 0
\(651\) −33.4151 102.841i −0.0513288 0.157974i
\(652\) −279.781 1766.47i −0.429112 2.70931i
\(653\) 84.4407 533.137i 0.129312 0.816443i −0.834724 0.550669i \(-0.814373\pi\)
0.964035 0.265774i \(-0.0856274\pi\)
\(654\) −75.8346 24.6402i −0.115955 0.0376761i
\(655\) 0 0
\(656\) 283.359 205.872i 0.431950 0.313830i
\(657\) 29.2359 + 184.588i 0.0444991 + 0.280956i
\(658\) 324.325 + 165.252i 0.492895 + 0.251142i
\(659\) 1001.07i 1.51907i 0.650465 + 0.759536i \(0.274574\pi\)
−0.650465 + 0.759536i \(0.725426\pi\)
\(660\) 0 0
\(661\) 1225.83 1.85451 0.927254 0.374432i \(-0.122162\pi\)
0.927254 + 0.374432i \(0.122162\pi\)
\(662\) 234.333 459.905i 0.353978 0.694721i
\(663\) 131.599 20.8433i 0.198490 0.0314378i
\(664\) 442.810 + 609.475i 0.666882 + 0.917885i
\(665\) 0 0
\(666\) 102.612 315.807i 0.154072 0.474185i
\(667\) 496.476 + 78.6340i 0.744341 + 0.117892i
\(668\) 1415.53 224.198i 2.11905 0.335625i
\(669\) 535.276 173.922i 0.800113 0.259973i
\(670\) 0 0
\(671\) 365.981 + 367.276i 0.545427 + 0.547356i
\(672\) −36.5734 36.5734i −0.0544248 0.0544248i
\(673\) −249.622 127.189i −0.370910 0.188988i 0.258593 0.965986i \(-0.416741\pi\)
−0.629502 + 0.776999i \(0.716741\pi\)
\(674\) −747.973 + 1029.50i −1.10975 + 1.52744i
\(675\) 0 0
\(676\) 50.2611 154.688i 0.0743508 0.228828i
\(677\) −428.152 + 218.154i −0.632426 + 0.322237i −0.740652 0.671889i \(-0.765483\pi\)
0.108226 + 0.994126i \(0.465483\pi\)
\(678\) 145.627 919.454i 0.214789 1.35613i
\(679\) 72.1881 99.3584i 0.106315 0.146331i
\(680\) 0 0
\(681\) 501.807 0.736868
\(682\) 436.982 599.227i 0.640736 0.878632i
\(683\) −555.821 + 555.821i −0.813794 + 0.813794i −0.985200 0.171406i \(-0.945169\pi\)
0.171406 + 0.985200i \(0.445169\pi\)
\(684\) −822.209 + 267.152i −1.20206 + 0.390573i
\(685\) 0 0
\(686\) 579.527 421.051i 0.844792 0.613777i
\(687\) −18.8699 + 9.61469i −0.0274671 + 0.0139952i
\(688\) −436.118 855.930i −0.633893 1.24408i
\(689\) 381.475 + 525.056i 0.553665 + 0.762055i
\(690\) 0 0
\(691\) 131.998 + 406.247i 0.191024 + 0.587911i 1.00000 6.96426e-5i \(2.21679e-5\pi\)
−0.808976 + 0.587842i \(0.799978\pi\)
\(692\) 775.333 + 775.333i 1.12042 + 1.12042i
\(693\) −24.2785 + 74.2750i −0.0350339 + 0.107179i
\(694\) 2313.40i 3.33344i
\(695\) 0 0
\(696\) 410.920 + 298.551i 0.590402 + 0.428952i
\(697\) −117.223 18.5663i −0.168182 0.0266374i
\(698\) −65.2816 128.122i −0.0935266 0.183556i
\(699\) 229.465 + 74.5578i 0.328277 + 0.106664i
\(700\) 0 0
\(701\) 162.449 + 118.026i 0.231738 + 0.168368i 0.697595 0.716493i \(-0.254254\pi\)
−0.465856 + 0.884860i \(0.654254\pi\)
\(702\) −627.842 + 1232.21i −0.894361 + 1.75528i
\(703\) 789.018 789.018i 1.12236 1.12236i
\(704\) 138.080 861.954i 0.196137 1.22437i
\(705\) 0 0
\(706\) 435.413 + 1340.06i 0.616732 + 1.89811i
\(707\) 28.9091 + 182.525i 0.0408899 + 0.258168i
\(708\) 68.8338 434.599i 0.0972229 0.613841i
\(709\) −618.635 201.007i −0.872546 0.283507i −0.161687 0.986842i \(-0.551694\pi\)
−0.710859 + 0.703335i \(0.751694\pi\)
\(710\) 0 0
\(711\) −360.389 + 261.838i −0.506877 + 0.368268i
\(712\) −326.704 2062.73i −0.458854 2.89709i
\(713\) −523.331 266.650i −0.733984 0.373984i
\(714\) 74.4845i 0.104320i
\(715\) 0 0
\(716\) −1268.47 −1.77161
\(717\) −60.5852 + 118.905i −0.0844981 + 0.165837i
\(718\) −498.526 + 78.9587i −0.694325 + 0.109970i
\(719\) −81.5254 112.210i −0.113387 0.156064i 0.748551 0.663077i \(-0.230750\pi\)
−0.861939 + 0.507013i \(0.830750\pi\)
\(720\) 0 0
\(721\) −86.7298 + 266.927i −0.120291 + 0.370218i
\(722\) −3155.85 499.837i −4.37098 0.692295i
\(723\) −538.230 + 85.2472i −0.744440 + 0.117908i
\(724\) −2240.42 + 727.956i −3.09450 + 1.00546i
\(725\) 0 0
\(726\) 951.192 305.352i 1.31018 0.420595i
\(727\) −416.697 416.697i −0.573173 0.573173i 0.359840 0.933014i \(-0.382831\pi\)
−0.933014 + 0.359840i \(0.882831\pi\)
\(728\) −344.751 175.659i −0.473559 0.241290i
\(729\) 455.391 626.792i 0.624679 0.859797i
\(730\) 0 0
\(731\) −100.590 + 309.583i −0.137605 + 0.423506i
\(732\) 776.281 395.535i 1.06049 0.540348i
\(733\) −99.4688 + 628.021i −0.135701 + 0.856782i 0.822099 + 0.569345i \(0.192803\pi\)
−0.957800 + 0.287437i \(0.907197\pi\)
\(734\) −709.030 + 975.896i −0.965981 + 1.32956i
\(735\) 0 0
\(736\) −280.942 −0.381714
\(737\) −376.554 + 121.615i −0.510929 + 0.165014i
\(738\) 225.429 225.429i 0.305459 0.305459i
\(739\) 627.722 203.959i 0.849421 0.275994i 0.148217 0.988955i \(-0.452646\pi\)
0.701203 + 0.712961i \(0.252646\pi\)
\(740\) 0 0
\(741\) −972.992 + 706.920i −1.31308 + 0.954008i
\(742\) 323.267 164.713i 0.435670 0.221985i
\(743\) −128.574 252.340i −0.173047 0.339623i 0.788152 0.615481i \(-0.211038\pi\)
−0.961198 + 0.275858i \(0.911038\pi\)
\(744\) −348.847 480.147i −0.468881 0.645359i
\(745\) 0 0
\(746\) −100.345 308.830i −0.134511 0.413981i
\(747\) 134.918 + 134.918i 0.180613 + 0.180613i
\(748\) 271.579 196.582i 0.363073 0.262810i
\(749\) 178.361i 0.238132i
\(750\) 0 0
\(751\) 233.376 + 169.558i 0.310754 + 0.225776i 0.732220 0.681068i \(-0.238484\pi\)
−0.421466 + 0.906844i \(0.638484\pi\)
\(752\) 549.055 + 86.9618i 0.730127 + 0.115641i
\(753\) −447.533 878.334i −0.594334 1.16645i
\(754\) −757.015 245.969i −1.00400 0.326219i
\(755\) 0 0
\(756\) 410.467 + 298.222i 0.542946 + 0.394473i
\(757\) 73.3139 143.887i 0.0968480 0.190075i −0.837500 0.546438i \(-0.815983\pi\)
0.934348 + 0.356363i \(0.115983\pi\)
\(758\) −1316.32 + 1316.32i −1.73658 + 1.73658i
\(759\) −357.939 705.571i −0.471593 0.929606i
\(760\) 0 0
\(761\) −178.166 548.339i −0.234121 0.720551i −0.997237 0.0742887i \(-0.976331\pi\)
0.763116 0.646262i \(-0.223669\pi\)
\(762\) 215.066 + 1357.87i 0.282239 + 1.78199i
\(763\) 3.41537 21.5638i 0.00447624 0.0282619i
\(764\) 1432.19 + 465.347i 1.87460 + 0.609093i
\(765\) 0 0
\(766\) 934.488 678.945i 1.21996 0.886352i
\(767\) 51.3723 + 324.352i 0.0669782 + 0.422884i
\(768\) −1028.79 524.193i −1.33957 0.682543i
\(769\) 23.8117i 0.0309646i −0.999880 0.0154823i \(-0.995072\pi\)
0.999880 0.0154823i \(-0.00492836\pi\)
\(770\) 0 0
\(771\) 14.4478 0.0187391
\(772\) −468.772 + 920.016i −0.607217 + 1.19173i
\(773\) −1299.24 + 205.779i −1.68078 + 0.266209i −0.922577 0.385813i \(-0.873921\pi\)
−0.758200 + 0.652022i \(0.773921\pi\)
\(774\) −513.950 707.392i −0.664018 0.913943i
\(775\) 0 0
\(776\) 208.299 641.077i 0.268426 0.826130i
\(777\) −167.390 26.5119i −0.215431 0.0341209i
\(778\) −1910.66 + 302.619i −2.45586 + 0.388970i
\(779\) 1018.87 331.050i 1.30792 0.424968i
\(780\) 0 0
\(781\) −130.362 130.823i −0.166916 0.167507i
\(782\) −286.079 286.079i −0.365830 0.365830i
\(783\) 442.898 + 225.668i 0.565643 + 0.288209i
\(784\) 303.827 418.182i 0.387535 0.533396i
\(785\) 0 0
\(786\) −42.7385 + 131.536i −0.0543747 + 0.167348i
\(787\) −58.7876 + 29.9538i −0.0746984 + 0.0380607i −0.490941 0.871193i \(-0.663347\pi\)
0.416242 + 0.909254i \(0.363347\pi\)
\(788\) 101.007 637.731i 0.128181 0.809304i
\(789\) −232.177 + 319.565i −0.294268 + 0.405025i
\(790\) 0 0
\(791\) 254.891 0.322239
\(792\) −0.757146 + 428.887i −0.000955992 + 0.541524i
\(793\) −459.780 + 459.780i −0.579798 + 0.579798i
\(794\) −1667.15 + 541.689i −2.09968 + 0.682229i
\(795\) 0 0
\(796\) −1514.22 + 1100.15i −1.90229 + 1.38209i
\(797\) 979.455 499.057i 1.22893 0.626169i 0.285700 0.958319i \(-0.407774\pi\)
0.943227 + 0.332150i \(0.107774\pi\)
\(798\) 305.233 + 599.053i 0.382497 + 0.750693i
\(799\) −110.720 152.394i −0.138574 0.190730i
\(800\) 0 0
\(801\) −163.452 503.053i −0.204060 0.628031i
\(802\) 498.205 + 498.205i 0.621204 + 0.621204i
\(803\) 528.577 + 385.461i 0.658253 + 0.480027i
\(804\) 664.919i 0.827014i
\(805\) 0 0
\(806\) 752.442 + 546.681i 0.933550 + 0.678264i
\(807\) 1004.84 + 159.151i 1.24515 + 0.197213i
\(808\) 460.475 + 903.734i 0.569895 + 1.11848i
\(809\) −253.667 82.4213i −0.313556 0.101881i 0.148011 0.988986i \(-0.452713\pi\)
−0.461567 + 0.887105i \(0.652713\pi\)
\(810\) 0 0
\(811\) 338.287 + 245.780i 0.417123 + 0.303057i 0.776479 0.630143i \(-0.217004\pi\)
−0.359356 + 0.933200i \(0.617004\pi\)
\(812\) −132.575 + 260.193i −0.163270 + 0.320435i
\(813\) 497.618 497.618i 0.612076 0.612076i
\(814\) −525.871 1036.60i −0.646033 1.27346i
\(815\) 0 0
\(816\) −35.1516 108.186i −0.0430780 0.132580i
\(817\) −459.644 2902.08i −0.562599 3.55211i
\(818\) 180.021 1136.61i 0.220074 1.38950i
\(819\) −93.2000 30.2825i −0.113797 0.0369750i
\(820\) 0 0
\(821\) 208.285 151.328i 0.253697 0.184321i −0.453667 0.891171i \(-0.649884\pi\)
0.707363 + 0.706850i \(0.249884\pi\)
\(822\) −115.957 732.123i −0.141067 0.890661i
\(823\) −1112.28 566.734i −1.35149 0.688619i −0.379843 0.925051i \(-0.624022\pi\)
−0.971648 + 0.236432i \(0.924022\pi\)
\(824\) 1540.43i 1.86946i
\(825\) 0 0
\(826\) 183.582 0.222254
\(827\) −638.541 + 1253.21i −0.772117 + 1.51536i 0.0827808 + 0.996568i \(0.473620\pi\)
−0.854898 + 0.518797i \(0.826380\pi\)
\(828\) 704.430 111.571i 0.850760 0.134747i
\(829\) −12.8668 17.7097i −0.0155209 0.0213627i 0.801186 0.598415i \(-0.204203\pi\)
−0.816707 + 0.577053i \(0.804203\pi\)
\(830\) 0 0
\(831\) 256.568 789.636i 0.308747 0.950224i
\(832\) 1081.26 + 171.254i 1.29959 + 0.205835i
\(833\) −172.998 + 27.4002i −0.207681 + 0.0328934i
\(834\) −366.522 + 119.090i −0.439475 + 0.142794i
\(835\) 0 0
\(836\) −1378.63 + 2693.95i −1.64908 + 3.22243i
\(837\) −410.701 410.701i −0.490682 0.490682i
\(838\) 1590.97 + 810.642i 1.89854 + 0.967353i
\(839\) 230.999 317.943i 0.275327 0.378955i −0.648852 0.760915i \(-0.724751\pi\)
0.924179 + 0.381959i \(0.124751\pi\)
\(840\) 0 0
\(841\) 171.474 527.741i 0.203892 0.627517i
\(842\) −992.643 + 505.777i −1.17891 + 0.600685i
\(843\) 36.2109 228.627i 0.0429548 0.271206i
\(844\) 1378.34 1897.13i 1.63311 2.24778i
\(845\) 0 0
\(846\) 505.989 0.598096
\(847\) 123.321 + 244.157i 0.145597 + 0.288261i
\(848\) 391.798 391.798i 0.462026 0.462026i
\(849\) −113.000 + 36.7158i −0.133097 + 0.0432459i
\(850\) 0 0
\(851\) −744.735 + 541.082i −0.875129 + 0.635819i
\(852\) −276.509 + 140.889i −0.324542 + 0.165362i
\(853\) −6.26065 12.2872i −0.00733957 0.0144047i 0.887308 0.461178i \(-0.152573\pi\)
−0.894647 + 0.446773i \(0.852573\pi\)
\(854\) 213.657 + 294.073i 0.250184 + 0.344348i
\(855\) 0 0
\(856\) −302.509 931.027i −0.353398 1.08765i
\(857\) −100.441 100.441i −0.117201 0.117201i 0.646074 0.763275i \(-0.276410\pi\)
−0.763275 + 0.646074i \(0.776410\pi\)
\(858\) 385.040 + 1192.19i 0.448764 + 1.38950i
\(859\) 57.6453i 0.0671075i 0.999437 + 0.0335537i \(0.0106825\pi\)
−0.999437 + 0.0335537i \(0.989318\pi\)
\(860\) 0 0
\(861\) −131.636 95.6393i −0.152888 0.111079i
\(862\) 1548.24 + 245.217i 1.79610 + 0.284474i
\(863\) 25.4744 + 49.9964i 0.0295185 + 0.0579332i 0.905295 0.424784i \(-0.139650\pi\)
−0.875776 + 0.482717i \(0.839650\pi\)
\(864\) −264.221 85.8506i −0.305811 0.0993642i
\(865\) 0 0
\(866\) 806.691 + 586.095i 0.931513 + 0.676784i
\(867\) 300.044 588.869i 0.346071 0.679203i
\(868\) 241.278 241.278i 0.277970 0.277970i
\(869\) −246.652 + 1539.70i −0.283834 + 1.77181i
\(870\) 0 0
\(871\) −153.348 471.957i −0.176060 0.541857i
\(872\) −18.7454 118.354i −0.0214970 0.135727i
\(873\) 26.7068 168.620i 0.0305920 0.193150i
\(874\) 3473.17 + 1128.50i 3.97388 + 1.29119i
\(875\) 0 0
\(876\) 889.329 646.135i 1.01522 0.737597i
\(877\) 124.784 + 787.853i 0.142285 + 0.898350i 0.950784 + 0.309854i \(0.100280\pi\)
−0.808500 + 0.588497i \(0.799720\pi\)
\(878\) 870.670 + 443.629i 0.991651 + 0.505272i
\(879\) 1114.05i 1.26740i
\(880\) 0 0
\(881\) −1510.53 −1.71456 −0.857279 0.514852i \(-0.827847\pi\)
−0.857279 + 0.514852i \(0.827847\pi\)
\(882\) 213.599 419.212i 0.242176 0.475297i
\(883\) 984.685 155.959i 1.11516 0.176624i 0.428456 0.903563i \(-0.359058\pi\)
0.686702 + 0.726939i \(0.259058\pi\)
\(884\) 247.129 + 340.144i 0.279558 + 0.384779i
\(885\) 0 0
\(886\) −324.669 + 999.230i −0.366444 + 1.12780i
\(887\) −1206.89 191.152i −1.36064 0.215504i −0.566913 0.823778i \(-0.691862\pi\)
−0.793727 + 0.608274i \(0.791862\pi\)
\(888\) −918.725 + 145.512i −1.03460 + 0.163865i
\(889\) −358.006 + 116.323i −0.402706 + 0.130847i
\(890\) 0 0
\(891\) −72.9015 465.600i −0.0818199 0.522559i
\(892\) 1255.82 + 1255.82i 1.40787 + 1.40787i
\(893\) 1514.98 + 771.923i 1.69651 + 0.864416i
\(894\) −805.959 + 1109.31i −0.901520 + 1.24084i
\(895\) 0 0
\(896\) 162.699 500.735i 0.181583 0.558856i
\(897\) 884.045 450.443i 0.985557 0.502167i
\(898\) 150.187 948.241i 0.167246 1.05595i
\(899\) 196.496 270.453i 0.218572 0.300838i
\(900\) 0 0
\(901\) −187.755 −0.208385
\(902\) 1.97009 1115.96i 0.00218413 1.23721i
\(903\) −315.559 + 315.559i −0.349456 + 0.349456i
\(904\) 1330.51 432.308i 1.47180 0.478217i
\(905\) 0 0
\(906\) −1433.54 + 1041.53i −1.58227 + 1.14959i
\(907\) 218.751 111.459i 0.241181 0.122888i −0.329223 0.944252i \(-0.606787\pi\)
0.570404 + 0.821365i \(0.306787\pi\)
\(908\) 718.879 + 1410.88i 0.791717 + 1.55383i
\(909\) 150.995 + 207.827i 0.166111 + 0.228633i
\(910\) 0 0
\(911\) 11.4615 + 35.2749i 0.0125813 + 0.0387211i 0.957150 0.289592i \(-0.0935198\pi\)
−0.944569 + 0.328314i \(0.893520\pi\)
\(912\) 726.050 + 726.050i 0.796107 + 0.796107i
\(913\) 667.894 + 1.17908i 0.731538 + 0.00129144i
\(914\) 85.3740i 0.0934070i
\(915\) 0 0
\(916\) −54.0653 39.2807i −0.0590232 0.0428829i
\(917\) −37.4026 5.92399i −0.0407880 0.00646018i
\(918\) −181.632 356.474i −0.197857 0.388315i
\(919\) 1089.63 + 354.042i 1.18567 + 0.385247i 0.834469 0.551054i \(-0.185774\pi\)
0.351198 + 0.936301i \(0.385774\pi\)
\(920\) 0 0
\(921\) 470.837 + 342.083i 0.511224 + 0.371426i
\(922\) −1217.67 + 2389.80i −1.32068 + 2.59198i
\(923\) 163.773 163.773i 0.177435 0.177435i
\(924\) 454.096 71.1002i 0.491446 0.0769483i
\(925\) 0 0
\(926\) −322.483 992.501i −0.348254 1.07182i
\(927\) 61.0324 + 385.344i 0.0658386 + 0.415689i
\(928\) 25.0143 157.934i 0.0269550 0.170187i
\(929\) 1213.61 + 394.326i 1.30636 + 0.424462i 0.877790 0.479046i \(-0.159017\pi\)
0.428571 + 0.903508i \(0.359017\pi\)
\(930\) 0 0
\(931\) 1279.08 929.304i 1.37388 0.998179i
\(932\) 119.101 + 751.975i 0.127791 + 0.806840i
\(933\) 462.501 + 235.656i 0.495714 + 0.252579i
\(934\) 601.902i 0.644435i
\(935\) 0 0
\(936\) −537.857 −0.574633
\(937\) 369.838 725.847i 0.394704 0.774650i −0.605064 0.796177i \(-0.706853\pi\)
0.999768 + 0.0215265i \(0.00685264\pi\)
\(938\) −273.999 + 43.3972i −0.292110 + 0.0462657i
\(939\) −226.279 311.447i −0.240979 0.331679i
\(940\) 0 0
\(941\) 232.814 716.527i 0.247411 0.761452i −0.747820 0.663902i \(-0.768899\pi\)
0.995231 0.0975506i \(-0.0311008\pi\)
\(942\) 165.772 + 26.2556i 0.175978 + 0.0278722i
\(943\) −872.917 + 138.256i −0.925680 + 0.146613i
\(944\) 266.645 86.6381i 0.282463 0.0917777i
\(945\) 0 0
\(946\) −3022.21 484.142i −3.19473 0.511778i
\(947\) −378.420 378.420i −0.399598 0.399598i 0.478493 0.878091i \(-0.341183\pi\)
−0.878091 + 0.478493i \(0.841183\pi\)
\(948\) 2334.62 + 1189.55i 2.46268 + 1.25480i
\(949\) −482.226 + 663.727i −0.508141 + 0.699397i
\(950\) 0 0
\(951\) 21.2364 65.3590i 0.0223306 0.0687266i
\(952\) 99.7352 50.8176i 0.104764 0.0533799i
\(953\) −63.3081 + 399.711i −0.0664303 + 0.419424i 0.931953 + 0.362580i \(0.118104\pi\)
−0.998383 + 0.0568446i \(0.981896\pi\)
\(954\) 296.443 408.019i 0.310737 0.427693i
\(955\) 0 0
\(956\) −421.107 −0.440488
\(957\) 428.513 138.397i 0.447767 0.144615i
\(958\) −1435.39 + 1435.39i −1.49832 + 1.49832i
\(959\) 193.026 62.7179i 0.201278 0.0653992i
\(960\) 0 0
\(961\) 461.449 335.262i 0.480176 0.348868i
\(962\) 1298.81 661.775i 1.35011 0.687916i
\(963\) −112.561 220.913i −0.116886 0.229401i
\(964\) −1010.74 1391.16i −1.04848 1.44311i
\(965\) 0 0
\(966\) −171.399 527.512i −0.177432 0.546079i
\(967\) 502.098 + 502.098i 0.519233 + 0.519233i 0.917339 0.398107i \(-0.130333\pi\)
−0.398107 + 0.917339i \(0.630333\pi\)
\(968\) 1057.83 + 1065.32i 1.09280 + 1.10054i
\(969\) 347.932i 0.359063i
\(970\) 0 0
\(971\) −1026.37 745.702i −1.05702 0.767973i −0.0834887 0.996509i \(-0.526606\pi\)
−0.973536 + 0.228536i \(0.926606\pi\)
\(972\) 1212.92 + 192.107i 1.24786 + 0.197641i
\(973\) −47.9055 94.0198i −0.0492348 0.0966288i
\(974\) −1513.57 491.787i −1.55397 0.504915i
\(975\) 0 0
\(976\) 449.110 + 326.298i 0.460154 + 0.334321i
\(977\) −121.475 + 238.408i −0.124335 + 0.244020i −0.944781 0.327704i \(-0.893725\pi\)
0.820446 + 0.571724i \(0.193725\pi\)
\(978\) −1367.17 + 1367.17i −1.39792 + 1.39792i
\(979\) −1648.24 843.490i −1.68360 0.861584i
\(980\) 0 0
\(981\) −9.37843 28.8638i −0.00956007 0.0294229i
\(982\) 61.7581 + 389.926i 0.0628902 + 0.397073i
\(983\) 86.1250 543.772i 0.0876144 0.553176i −0.904363 0.426763i \(-0.859654\pi\)
0.991978 0.126412i \(-0.0403462\pi\)
\(984\) −849.338 275.967i −0.863149 0.280454i
\(985\) 0 0
\(986\) 186.294 135.350i 0.188939 0.137272i
\(987\) −40.3986 255.067i −0.0409307 0.258426i
\(988\) −3381.46 1722.94i −3.42253 1.74387i
\(989\) 2423.99i 2.45095i
\(990\) 0 0
\(991\) −1331.21 −1.34330 −0.671650 0.740869i \(-0.734414\pi\)
−0.671650 + 0.740869i \(0.734414\pi\)
\(992\) −84.8242 + 166.477i −0.0855082 + 0.167819i
\(993\) −361.695 + 57.2868i −0.364245 + 0.0576907i
\(994\) −76.1041 104.748i −0.0765635 0.105381i
\(995\) 0 0
\(996\) 346.806 1067.36i 0.348199 1.07165i
\(997\) 306.698 + 48.5762i 0.307621 + 0.0487224i 0.308336 0.951277i \(-0.400228\pi\)
−0.000715499 1.00000i \(0.500228\pi\)
\(998\) 812.909 128.752i 0.814538 0.129010i
\(999\) −865.756 + 281.301i −0.866622 + 0.281583i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.3.bk.c.82.15 yes 128
5.2 odd 4 inner 275.3.bk.c.93.15 yes 128
5.3 odd 4 inner 275.3.bk.c.93.2 yes 128
5.4 even 2 inner 275.3.bk.c.82.2 128
11.9 even 5 inner 275.3.bk.c.207.2 yes 128
55.9 even 10 inner 275.3.bk.c.207.15 yes 128
55.42 odd 20 inner 275.3.bk.c.218.2 yes 128
55.53 odd 20 inner 275.3.bk.c.218.15 yes 128
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
275.3.bk.c.82.2 128 5.4 even 2 inner
275.3.bk.c.82.15 yes 128 1.1 even 1 trivial
275.3.bk.c.93.2 yes 128 5.3 odd 4 inner
275.3.bk.c.93.15 yes 128 5.2 odd 4 inner
275.3.bk.c.207.2 yes 128 11.9 even 5 inner
275.3.bk.c.207.15 yes 128 55.9 even 10 inner
275.3.bk.c.218.2 yes 128 55.42 odd 20 inner
275.3.bk.c.218.15 yes 128 55.53 odd 20 inner