Properties

Label 275.3.bk.c.218.15
Level $275$
Weight $3$
Character 275.218
Analytic conductor $7.493$
Analytic rank $0$
Dimension $128$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,3,Mod(82,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([5, 8])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.82"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 275.bk (of order \(20\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [128] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.49320726991\)
Analytic rank: \(0\)
Dimension: \(128\)
Relative dimension: \(16\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 218.15
Character \(\chi\) \(=\) 275.218
Dual form 275.3.bk.c.82.15

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.54871 + 3.03951i) q^{2} +(-2.39044 - 0.378609i) q^{3} +(-4.48900 + 6.17857i) q^{4} +(-2.55131 - 7.85213i) q^{6} +(-2.23278 + 0.353637i) q^{7} +(-12.2547 - 1.94095i) q^{8} +(-2.98864 - 0.971069i) q^{9} +(-5.01119 - 9.79224i) q^{11} +(13.0699 - 13.0699i) q^{12} +(-12.2913 + 6.26272i) q^{13} +(-4.53281 - 6.23888i) q^{14} +(-3.63939 - 11.2009i) q^{16} +(3.55582 + 1.81178i) q^{17} +(-1.67696 - 10.5879i) q^{18} +(-21.1737 - 29.1430i) q^{19} +5.47122 q^{21} +(22.0028 - 30.3969i) q^{22} +(21.0138 + 21.0138i) q^{23} +(28.5593 + 9.27947i) q^{24} +(-38.0712 - 27.6604i) q^{26} +(26.1846 + 13.3417i) q^{27} +(7.83796 - 15.3829i) q^{28} +(9.94209 - 13.6841i) q^{29} +(-6.10743 + 18.7967i) q^{31} +(-6.68470 + 6.68470i) q^{32} +(8.27153 + 25.3051i) q^{33} +13.6139i q^{34} +(19.4158 - 14.1064i) q^{36} +(-30.5946 + 4.84571i) q^{37} +(55.7888 - 109.492i) q^{38} +(31.7527 - 10.3171i) q^{39} +(-24.0598 + 17.4804i) q^{41} +(8.47332 + 16.6298i) q^{42} +(-57.6762 - 57.6762i) q^{43} +(82.9973 + 12.9953i) q^{44} +(-31.3274 + 96.4159i) q^{46} +(-7.38384 + 46.6198i) q^{47} +(4.45899 + 28.1530i) q^{48} +(-41.7415 + 13.5626i) q^{49} +(-7.81403 - 5.67722i) q^{51} +(16.4808 - 104.056i) q^{52} +(-41.9192 + 21.3589i) q^{53} +100.251i q^{54} +28.0484 q^{56} +(39.5806 + 77.6813i) q^{57} +(56.9904 + 9.02639i) q^{58} +(-13.9926 + 19.2592i) q^{59} +(14.5657 + 44.8286i) q^{61} +(-66.5915 + 10.5471i) q^{62} +(7.01639 + 1.11129i) q^{63} +(-75.4744 - 24.5231i) q^{64} +(-64.1048 + 64.3316i) q^{66} +(25.4370 - 25.4370i) q^{67} +(-27.1563 + 13.8368i) q^{68} +(-42.2762 - 58.1882i) q^{69} +(-5.18827 - 15.9679i) q^{71} +(34.7401 + 17.7010i) q^{72} +(9.30355 + 58.7403i) q^{73} +(-62.1107 - 85.4881i) q^{74} +275.111 q^{76} +(14.6518 + 20.0918i) q^{77} +(80.5345 + 80.5345i) q^{78} +(134.820 + 43.8055i) q^{79} +(-34.6607 - 25.1825i) q^{81} +(-90.3936 - 46.0578i) q^{82} +(-27.5653 + 54.0999i) q^{83} +(-24.5603 + 33.8043i) q^{84} +(85.9839 - 264.631i) q^{86} +(-28.9469 + 28.9469i) q^{87} +(42.4043 + 129.727i) q^{88} -168.321i q^{89} +(25.2290 - 18.3299i) q^{91} +(-224.166 + 35.5044i) q^{92} +(21.7161 - 42.6202i) q^{93} +(-153.137 + 49.7572i) q^{94} +(18.5103 - 13.4485i) q^{96} +(-24.6643 - 48.4063i) q^{97} +(-105.869 - 105.869i) q^{98} +(5.46772 + 34.1317i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 128 q - 48 q^{6} + 32 q^{11} + 280 q^{16} - 8 q^{21} + 528 q^{26} - 16 q^{31} + 336 q^{36} - 604 q^{41} - 1152 q^{46} - 1024 q^{51} - 992 q^{56} - 320 q^{61} + 1624 q^{66} + 536 q^{71} + 1776 q^{76} + 3680 q^{81}+ \cdots - 6584 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.54871 + 3.03951i 0.774355 + 1.51976i 0.852449 + 0.522810i \(0.175116\pi\)
−0.0780945 + 0.996946i \(0.524884\pi\)
\(3\) −2.39044 0.378609i −0.796814 0.126203i −0.255264 0.966871i \(-0.582162\pi\)
−0.541550 + 0.840669i \(0.682162\pi\)
\(4\) −4.48900 + 6.17857i −1.12225 + 1.54464i
\(5\) 0 0
\(6\) −2.55131 7.85213i −0.425219 1.30869i
\(7\) −2.23278 + 0.353637i −0.318968 + 0.0505196i −0.313866 0.949467i \(-0.601624\pi\)
−0.00510261 + 0.999987i \(0.501624\pi\)
\(8\) −12.2547 1.94095i −1.53184 0.242619i
\(9\) −2.98864 0.971069i −0.332072 0.107897i
\(10\) 0 0
\(11\) −5.01119 9.79224i −0.455563 0.890204i
\(12\) 13.0699 13.0699i 1.08916 1.08916i
\(13\) −12.2913 + 6.26272i −0.945483 + 0.481747i −0.857562 0.514380i \(-0.828022\pi\)
−0.0879203 + 0.996128i \(0.528022\pi\)
\(14\) −4.53281 6.23888i −0.323772 0.445634i
\(15\) 0 0
\(16\) −3.63939 11.2009i −0.227462 0.700055i
\(17\) 3.55582 + 1.81178i 0.209166 + 0.106575i 0.555435 0.831560i \(-0.312552\pi\)
−0.346269 + 0.938135i \(0.612552\pi\)
\(18\) −1.67696 10.5879i −0.0931646 0.588218i
\(19\) −21.1737 29.1430i −1.11440 1.53384i −0.814765 0.579792i \(-0.803134\pi\)
−0.299638 0.954053i \(-0.596866\pi\)
\(20\) 0 0
\(21\) 5.47122 0.260534
\(22\) 22.0028 30.3969i 1.00013 1.38168i
\(23\) 21.0138 + 21.0138i 0.913643 + 0.913643i 0.996557 0.0829138i \(-0.0264226\pi\)
−0.0829138 + 0.996557i \(0.526423\pi\)
\(24\) 28.5593 + 9.27947i 1.18997 + 0.386645i
\(25\) 0 0
\(26\) −38.0712 27.6604i −1.46428 1.06386i
\(27\) 26.1846 + 13.3417i 0.969798 + 0.494137i
\(28\) 7.83796 15.3829i 0.279927 0.549388i
\(29\) 9.94209 13.6841i 0.342831 0.471866i −0.602435 0.798168i \(-0.705803\pi\)
0.945265 + 0.326302i \(0.105803\pi\)
\(30\) 0 0
\(31\) −6.10743 + 18.7967i −0.197014 + 0.606346i 0.802933 + 0.596069i \(0.203271\pi\)
−0.999947 + 0.0102774i \(0.996729\pi\)
\(32\) −6.68470 + 6.68470i −0.208897 + 0.208897i
\(33\) 8.27153 + 25.3051i 0.250652 + 0.766820i
\(34\) 13.6139i 0.400408i
\(35\) 0 0
\(36\) 19.4158 14.1064i 0.539329 0.391845i
\(37\) −30.5946 + 4.84571i −0.826881 + 0.130965i −0.555510 0.831510i \(-0.687477\pi\)
−0.271371 + 0.962475i \(0.587477\pi\)
\(38\) 55.7888 109.492i 1.46813 2.88136i
\(39\) 31.7527 10.3171i 0.814171 0.264540i
\(40\) 0 0
\(41\) −24.0598 + 17.4804i −0.586823 + 0.426352i −0.841178 0.540759i \(-0.818137\pi\)
0.254354 + 0.967111i \(0.418137\pi\)
\(42\) 8.47332 + 16.6298i 0.201746 + 0.395948i
\(43\) −57.6762 57.6762i −1.34131 1.34131i −0.894761 0.446546i \(-0.852654\pi\)
−0.446546 0.894761i \(-0.647346\pi\)
\(44\) 82.9973 + 12.9953i 1.88630 + 0.295348i
\(45\) 0 0
\(46\) −31.3274 + 96.4159i −0.681031 + 2.09600i
\(47\) −7.38384 + 46.6198i −0.157103 + 0.991910i 0.775590 + 0.631238i \(0.217453\pi\)
−0.932693 + 0.360672i \(0.882547\pi\)
\(48\) 4.45899 + 28.1530i 0.0928957 + 0.586520i
\(49\) −41.7415 + 13.5626i −0.851868 + 0.276789i
\(50\) 0 0
\(51\) −7.81403 5.67722i −0.153216 0.111318i
\(52\) 16.4808 104.056i 0.316939 2.00107i
\(53\) −41.9192 + 21.3589i −0.790927 + 0.402998i −0.802288 0.596938i \(-0.796384\pi\)
0.0113601 + 0.999935i \(0.496384\pi\)
\(54\) 100.251i 1.85649i
\(55\) 0 0
\(56\) 28.0484 0.500865
\(57\) 39.5806 + 77.6813i 0.694396 + 1.36283i
\(58\) 56.9904 + 9.02639i 0.982593 + 0.155627i
\(59\) −13.9926 + 19.2592i −0.237163 + 0.326427i −0.910964 0.412486i \(-0.864661\pi\)
0.673801 + 0.738913i \(0.264661\pi\)
\(60\) 0 0
\(61\) 14.5657 + 44.8286i 0.238782 + 0.734896i 0.996597 + 0.0824262i \(0.0262669\pi\)
−0.757815 + 0.652469i \(0.773733\pi\)
\(62\) −66.5915 + 10.5471i −1.07406 + 0.170114i
\(63\) 7.01639 + 1.11129i 0.111371 + 0.0176395i
\(64\) −75.4744 24.5231i −1.17929 0.383174i
\(65\) 0 0
\(66\) −64.1048 + 64.3316i −0.971286 + 0.974721i
\(67\) 25.4370 25.4370i 0.379656 0.379656i −0.491322 0.870978i \(-0.663486\pi\)
0.870978 + 0.491322i \(0.163486\pi\)
\(68\) −27.1563 + 13.8368i −0.399357 + 0.203483i
\(69\) −42.2762 58.1882i −0.612699 0.843308i
\(70\) 0 0
\(71\) −5.18827 15.9679i −0.0730743 0.224899i 0.907848 0.419299i \(-0.137724\pi\)
−0.980922 + 0.194400i \(0.937724\pi\)
\(72\) 34.7401 + 17.7010i 0.482502 + 0.245847i
\(73\) 9.30355 + 58.7403i 0.127446 + 0.804661i 0.965753 + 0.259463i \(0.0835456\pi\)
−0.838307 + 0.545198i \(0.816454\pi\)
\(74\) −62.1107 85.4881i −0.839334 1.15524i
\(75\) 0 0
\(76\) 275.111 3.61988
\(77\) 14.6518 + 20.0918i 0.190283 + 0.260932i
\(78\) 80.5345 + 80.5345i 1.03249 + 1.03249i
\(79\) 134.820 + 43.8055i 1.70658 + 0.554500i 0.989758 0.142759i \(-0.0455973\pi\)
0.716819 + 0.697259i \(0.245597\pi\)
\(80\) 0 0
\(81\) −34.6607 25.1825i −0.427910 0.310895i
\(82\) −90.3936 46.0578i −1.10236 0.561681i
\(83\) −27.5653 + 54.0999i −0.332112 + 0.651806i −0.995321 0.0966282i \(-0.969194\pi\)
0.663209 + 0.748435i \(0.269194\pi\)
\(84\) −24.5603 + 33.8043i −0.292384 + 0.402432i
\(85\) 0 0
\(86\) 85.9839 264.631i 0.999812 3.07711i
\(87\) −28.9469 + 28.9469i −0.332723 + 0.332723i
\(88\) 42.4043 + 129.727i 0.481867 + 1.47418i
\(89\) 168.321i 1.89125i −0.325257 0.945626i \(-0.605451\pi\)
0.325257 0.945626i \(-0.394549\pi\)
\(90\) 0 0
\(91\) 25.2290 18.3299i 0.277241 0.201428i
\(92\) −224.166 + 35.5044i −2.43659 + 0.385918i
\(93\) 21.7161 42.6202i 0.233506 0.458281i
\(94\) −153.137 + 49.7572i −1.62911 + 0.529331i
\(95\) 0 0
\(96\) 18.5103 13.4485i 0.192815 0.140088i
\(97\) −24.6643 48.4063i −0.254271 0.499034i 0.728221 0.685343i \(-0.240348\pi\)
−0.982491 + 0.186308i \(0.940348\pi\)
\(98\) −105.869 105.869i −1.08030 1.08030i
\(99\) 5.46772 + 34.1317i 0.0552295 + 0.344765i
\(100\) 0 0
\(101\) −25.2615 + 77.7469i −0.250114 + 0.769772i 0.744639 + 0.667467i \(0.232622\pi\)
−0.994753 + 0.102304i \(0.967378\pi\)
\(102\) 5.15434 32.5432i 0.0505327 0.319051i
\(103\) 19.4219 + 122.625i 0.188563 + 1.19054i 0.882433 + 0.470438i \(0.155904\pi\)
−0.693871 + 0.720100i \(0.744096\pi\)
\(104\) 162.781 52.8909i 1.56521 0.508566i
\(105\) 0 0
\(106\) −129.841 94.3351i −1.22492 0.889954i
\(107\) 12.3426 77.9279i 0.115351 0.728299i −0.860433 0.509563i \(-0.829807\pi\)
0.975784 0.218735i \(-0.0701931\pi\)
\(108\) −199.975 + 101.892i −1.85162 + 0.943448i
\(109\) 9.65784i 0.0886040i −0.999018 0.0443020i \(-0.985894\pi\)
0.999018 0.0443020i \(-0.0141064\pi\)
\(110\) 0 0
\(111\) 74.9692 0.675398
\(112\) 12.0870 + 23.7221i 0.107920 + 0.211804i
\(113\) −111.365 17.6385i −0.985531 0.156093i −0.357191 0.934032i \(-0.616265\pi\)
−0.628340 + 0.777939i \(0.716265\pi\)
\(114\) −174.814 + 240.611i −1.53346 + 2.11063i
\(115\) 0 0
\(116\) 39.9183 + 122.856i 0.344123 + 1.05910i
\(117\) 42.8158 6.78135i 0.365947 0.0579603i
\(118\) −80.2091 12.7039i −0.679738 0.107660i
\(119\) −8.58008 2.78784i −0.0721015 0.0234272i
\(120\) 0 0
\(121\) −70.7759 + 98.1416i −0.584925 + 0.811087i
\(122\) −113.699 + 113.699i −0.931960 + 0.931960i
\(123\) 64.1317 32.6767i 0.521396 0.265664i
\(124\) −88.7208 122.114i −0.715490 0.984788i
\(125\) 0 0
\(126\) 7.48857 + 23.0475i 0.0594331 + 0.182916i
\(127\) 148.368 + 75.5971i 1.16825 + 0.595252i 0.926945 0.375197i \(-0.122425\pi\)
0.241304 + 0.970450i \(0.422425\pi\)
\(128\) −36.4341 230.036i −0.284641 1.79716i
\(129\) 116.035 + 159.708i 0.899495 + 1.23805i
\(130\) 0 0
\(131\) 16.7516 0.127875 0.0639373 0.997954i \(-0.479634\pi\)
0.0639373 + 0.997954i \(0.479634\pi\)
\(132\) −193.480 62.4881i −1.46576 0.473394i
\(133\) 57.5822 + 57.5822i 0.432949 + 0.432949i
\(134\) 116.710 + 37.9215i 0.870973 + 0.282996i
\(135\) 0 0
\(136\) −40.0589 29.1045i −0.294551 0.214004i
\(137\) −79.9952 40.7596i −0.583907 0.297515i 0.136974 0.990575i \(-0.456262\pi\)
−0.720880 + 0.693059i \(0.756262\pi\)
\(138\) 111.390 218.616i 0.807176 1.58417i
\(139\) 27.4367 37.7633i 0.197386 0.271679i −0.698838 0.715280i \(-0.746299\pi\)
0.896224 + 0.443601i \(0.146299\pi\)
\(140\) 0 0
\(141\) 35.3013 108.646i 0.250364 0.770540i
\(142\) 40.4994 40.4994i 0.285207 0.285207i
\(143\) 122.920 + 88.9754i 0.859580 + 0.622206i
\(144\) 37.0096i 0.257011i
\(145\) 0 0
\(146\) −164.133 + 119.250i −1.12420 + 0.816780i
\(147\) 104.916 16.6170i 0.713712 0.113041i
\(148\) 107.399 210.783i 0.725672 1.42421i
\(149\) 157.950 51.3210i 1.06007 0.344437i 0.273455 0.961885i \(-0.411833\pi\)
0.786612 + 0.617448i \(0.211833\pi\)
\(150\) 0 0
\(151\) 173.632 126.151i 1.14988 0.835435i 0.161413 0.986887i \(-0.448395\pi\)
0.988465 + 0.151452i \(0.0483949\pi\)
\(152\) 202.912 + 398.236i 1.33494 + 2.61998i
\(153\) −8.86772 8.86772i −0.0579589 0.0579589i
\(154\) −38.3778 + 75.6506i −0.249207 + 0.491238i
\(155\) 0 0
\(156\) −78.7929 + 242.500i −0.505083 + 1.55448i
\(157\) −3.18010 + 20.0784i −0.0202554 + 0.127888i −0.995744 0.0921624i \(-0.970622\pi\)
0.975489 + 0.220050i \(0.0706221\pi\)
\(158\) 75.6488 + 477.628i 0.478790 + 3.02296i
\(159\) 108.292 35.1862i 0.681081 0.221297i
\(160\) 0 0
\(161\) −54.3504 39.4879i −0.337580 0.245266i
\(162\) 22.8631 144.352i 0.141130 0.891062i
\(163\) 208.659 106.317i 1.28011 0.652251i 0.324226 0.945980i \(-0.394896\pi\)
0.955889 + 0.293729i \(0.0948962\pi\)
\(164\) 227.125i 1.38491i
\(165\) 0 0
\(166\) −207.128 −1.24776
\(167\) −85.1951 167.205i −0.510151 1.00123i −0.992150 0.125055i \(-0.960089\pi\)
0.481999 0.876172i \(-0.339911\pi\)
\(168\) −67.0481 10.6194i −0.399096 0.0632106i
\(169\) 12.5181 17.2297i 0.0740715 0.101951i
\(170\) 0 0
\(171\) 34.9806 + 107.659i 0.204565 + 0.629586i
\(172\) 615.265 97.4484i 3.57712 0.566560i
\(173\) −141.805 22.4597i −0.819684 0.129825i −0.267511 0.963555i \(-0.586201\pi\)
−0.552173 + 0.833730i \(0.686201\pi\)
\(174\) −132.815 43.1541i −0.763303 0.248012i
\(175\) 0 0
\(176\) −91.4441 + 91.7675i −0.519569 + 0.521406i
\(177\) 40.7402 40.7402i 0.230171 0.230171i
\(178\) 511.615 260.681i 2.87424 1.46450i
\(179\) 97.6266 + 134.372i 0.545400 + 0.750679i 0.989379 0.145358i \(-0.0464335\pi\)
−0.443979 + 0.896037i \(0.646434\pi\)
\(180\) 0 0
\(181\) 95.3179 + 293.358i 0.526618 + 1.62076i 0.761093 + 0.648643i \(0.224663\pi\)
−0.234475 + 0.972122i \(0.575337\pi\)
\(182\) 94.7864 + 48.2961i 0.520804 + 0.265363i
\(183\) −17.8460 112.675i −0.0975189 0.615710i
\(184\) −216.731 298.304i −1.17788 1.62122i
\(185\) 0 0
\(186\) 163.176 0.877292
\(187\) −0.0774976 43.8986i −0.000414426 0.234752i
\(188\) −254.898 254.898i −1.35584 1.35584i
\(189\) −63.1825 20.5292i −0.334299 0.108620i
\(190\) 0 0
\(191\) −159.522 115.900i −0.835196 0.606805i 0.0858287 0.996310i \(-0.472646\pi\)
−0.921024 + 0.389505i \(0.872646\pi\)
\(192\) 171.133 + 87.1964i 0.891315 + 0.454148i
\(193\) −61.3806 + 120.466i −0.318034 + 0.624177i −0.993579 0.113142i \(-0.963908\pi\)
0.675545 + 0.737319i \(0.263908\pi\)
\(194\) 108.934 149.935i 0.561515 0.772859i
\(195\) 0 0
\(196\) 103.580 318.786i 0.528468 1.62646i
\(197\) 59.7822 59.7822i 0.303463 0.303463i −0.538904 0.842367i \(-0.681161\pi\)
0.842367 + 0.538904i \(0.181161\pi\)
\(198\) −95.2759 + 69.4793i −0.481192 + 0.350906i
\(199\) 245.076i 1.23154i 0.787927 + 0.615769i \(0.211155\pi\)
−0.787927 + 0.615769i \(0.788845\pi\)
\(200\) 0 0
\(201\) −70.4362 + 51.1749i −0.350429 + 0.254602i
\(202\) −275.435 + 43.6247i −1.36354 + 0.215964i
\(203\) −17.3593 + 34.0695i −0.0855136 + 0.167830i
\(204\) 70.1543 22.7945i 0.343893 0.111738i
\(205\) 0 0
\(206\) −342.642 + 248.944i −1.66331 + 1.20847i
\(207\) −42.3969 83.2086i −0.204816 0.401974i
\(208\) 114.881 + 114.881i 0.552311 + 0.552311i
\(209\) −179.270 + 353.379i −0.857753 + 1.69081i
\(210\) 0 0
\(211\) 94.8835 292.021i 0.449685 1.38399i −0.427578 0.903978i \(-0.640633\pi\)
0.877263 0.480009i \(-0.159367\pi\)
\(212\) 56.2075 354.880i 0.265130 1.67396i
\(213\) 6.35669 + 40.1346i 0.0298436 + 0.188425i
\(214\) 255.978 83.1723i 1.19616 0.388656i
\(215\) 0 0
\(216\) −294.988 214.321i −1.36569 0.992229i
\(217\) 6.98931 44.1288i 0.0322088 0.203358i
\(218\) 29.3551 14.9572i 0.134656 0.0686109i
\(219\) 143.938i 0.657249i
\(220\) 0 0
\(221\) −55.0523 −0.249105
\(222\) 116.105 + 227.870i 0.522998 + 1.02644i
\(223\) −229.685 36.3786i −1.02998 0.163133i −0.381503 0.924368i \(-0.624593\pi\)
−0.648476 + 0.761235i \(0.724593\pi\)
\(224\) 12.5615 17.2894i 0.0560781 0.0771849i
\(225\) 0 0
\(226\) −118.860 365.812i −0.525927 1.61864i
\(227\) −204.785 + 32.4348i −0.902138 + 0.142885i −0.590237 0.807230i \(-0.700966\pi\)
−0.311901 + 0.950115i \(0.600966\pi\)
\(228\) −657.636 104.159i −2.88437 0.456839i
\(229\) 8.32217 + 2.70404i 0.0363413 + 0.0118080i 0.327131 0.944979i \(-0.393918\pi\)
−0.290790 + 0.956787i \(0.593918\pi\)
\(230\) 0 0
\(231\) −27.4173 53.5755i −0.118690 0.231928i
\(232\) −148.397 + 148.397i −0.639644 + 0.639644i
\(233\) −88.8247 + 45.2584i −0.381222 + 0.194242i −0.634091 0.773258i \(-0.718626\pi\)
0.252870 + 0.967500i \(0.418626\pi\)
\(234\) 86.9212 + 119.637i 0.371458 + 0.511268i
\(235\) 0 0
\(236\) −56.1815 172.909i −0.238057 0.732665i
\(237\) −305.693 155.758i −1.28984 0.657208i
\(238\) −4.81438 30.3968i −0.0202285 0.127718i
\(239\) 32.4101 + 44.6086i 0.135607 + 0.186647i 0.871420 0.490538i \(-0.163200\pi\)
−0.735813 + 0.677185i \(0.763200\pi\)
\(240\) 0 0
\(241\) 225.159 0.934271 0.467135 0.884186i \(-0.345286\pi\)
0.467135 + 0.884186i \(0.345286\pi\)
\(242\) −407.914 63.1317i −1.68559 0.260875i
\(243\) −113.702 113.702i −0.467907 0.467907i
\(244\) −342.362 111.240i −1.40312 0.455903i
\(245\) 0 0
\(246\) 198.643 + 144.322i 0.807490 + 0.586676i
\(247\) 442.766 + 225.600i 1.79257 + 0.913362i
\(248\) 111.328 218.494i 0.448904 0.881024i
\(249\) 86.3759 118.886i 0.346891 0.477455i
\(250\) 0 0
\(251\) 125.864 387.371i 0.501452 1.54331i −0.305203 0.952287i \(-0.598724\pi\)
0.806655 0.591023i \(-0.201276\pi\)
\(252\) −38.3627 + 38.3627i −0.152233 + 0.152233i
\(253\) 100.468 311.076i 0.397107 1.22955i
\(254\) 568.043i 2.23639i
\(255\) 0 0
\(256\) 385.962 280.417i 1.50766 1.09538i
\(257\) −5.89609 + 0.933850i −0.0229420 + 0.00363366i −0.167895 0.985805i \(-0.553697\pi\)
0.144953 + 0.989439i \(0.453697\pi\)
\(258\) −305.731 + 600.031i −1.18500 + 2.32570i
\(259\) 66.5973 21.6388i 0.257133 0.0835474i
\(260\) 0 0
\(261\) −43.0016 + 31.2425i −0.164757 + 0.119703i
\(262\) 25.9433 + 50.9166i 0.0990203 + 0.194338i
\(263\) 115.406 + 115.406i 0.438806 + 0.438806i 0.891610 0.452804i \(-0.149576\pi\)
−0.452804 + 0.891610i \(0.649576\pi\)
\(264\) −52.2491 326.160i −0.197913 1.23546i
\(265\) 0 0
\(266\) −85.8437 + 264.200i −0.322721 + 0.993232i
\(267\) −63.7279 + 402.362i −0.238681 + 1.50698i
\(268\) 42.9777 + 271.351i 0.160365 + 1.01250i
\(269\) −399.783 + 129.897i −1.48618 + 0.482890i −0.935953 0.352124i \(-0.885459\pi\)
−0.550229 + 0.835014i \(0.685459\pi\)
\(270\) 0 0
\(271\) −235.240 170.912i −0.868043 0.630670i 0.0620182 0.998075i \(-0.480246\pi\)
−0.930061 + 0.367405i \(0.880246\pi\)
\(272\) 7.35254 46.4221i 0.0270314 0.170670i
\(273\) −67.2482 + 34.2647i −0.246331 + 0.125512i
\(274\) 306.271i 1.11778i
\(275\) 0 0
\(276\) 549.298 1.99021
\(277\) −155.743 305.663i −0.562250 1.10348i −0.980751 0.195262i \(-0.937444\pi\)
0.418501 0.908216i \(-0.362556\pi\)
\(278\) 157.273 + 24.9097i 0.565732 + 0.0896031i
\(279\) 36.5059 50.2460i 0.130845 0.180093i
\(280\) 0 0
\(281\) −29.5550 90.9610i −0.105178 0.323705i 0.884594 0.466362i \(-0.154435\pi\)
−0.989772 + 0.142657i \(0.954435\pi\)
\(282\) 384.903 60.9626i 1.36490 0.216180i
\(283\) 48.4877 + 7.67970i 0.171335 + 0.0271368i 0.241512 0.970398i \(-0.422357\pi\)
−0.0701775 + 0.997535i \(0.522357\pi\)
\(284\) 121.949 + 39.6235i 0.429397 + 0.139520i
\(285\) 0 0
\(286\) −80.0748 + 511.414i −0.279982 + 1.78816i
\(287\) 47.5384 47.5384i 0.165639 0.165639i
\(288\) 26.4695 13.4869i 0.0919079 0.0468294i
\(289\) −160.509 220.921i −0.555393 0.764433i
\(290\) 0 0
\(291\) 40.6314 + 125.051i 0.139627 + 0.429727i
\(292\) −404.695 206.202i −1.38594 0.706172i
\(293\) 72.0074 + 454.637i 0.245759 + 1.55166i 0.734120 + 0.679020i \(0.237595\pi\)
−0.488361 + 0.872642i \(0.662405\pi\)
\(294\) 212.991 + 293.157i 0.724460 + 0.997134i
\(295\) 0 0
\(296\) 384.333 1.29842
\(297\) −0.570681 323.263i −0.00192148 1.08843i
\(298\) 400.609 + 400.609i 1.34433 + 1.34433i
\(299\) −389.890 126.683i −1.30398 0.423688i
\(300\) 0 0
\(301\) 149.175 + 108.382i 0.495597 + 0.360072i
\(302\) 652.341 + 332.385i 2.16007 + 1.10061i
\(303\) 89.8218 176.285i 0.296442 0.581799i
\(304\) −249.369 + 343.227i −0.820292 + 1.12903i
\(305\) 0 0
\(306\) 13.2200 40.6871i 0.0432027 0.132964i
\(307\) −170.036 + 170.036i −0.553862 + 0.553862i −0.927553 0.373691i \(-0.878092\pi\)
0.373691 + 0.927553i \(0.378092\pi\)
\(308\) −189.910 + 0.335263i −0.616592 + 0.00108852i
\(309\) 300.482i 0.972434i
\(310\) 0 0
\(311\) −173.513 + 126.064i −0.557919 + 0.405352i −0.830697 0.556725i \(-0.812058\pi\)
0.272778 + 0.962077i \(0.412058\pi\)
\(312\) −409.145 + 64.8021i −1.31136 + 0.207699i
\(313\) 72.2129 141.726i 0.230712 0.452798i −0.746407 0.665489i \(-0.768223\pi\)
0.977119 + 0.212691i \(0.0682229\pi\)
\(314\) −65.9536 + 21.4296i −0.210043 + 0.0682472i
\(315\) 0 0
\(316\) −875.860 + 636.350i −2.77171 + 2.01376i
\(317\) −12.8910 25.3001i −0.0406657 0.0798109i 0.869780 0.493440i \(-0.164261\pi\)
−0.910445 + 0.413629i \(0.864261\pi\)
\(318\) 274.662 + 274.662i 0.863716 + 0.863716i
\(319\) −183.820 28.7816i −0.576237 0.0902245i
\(320\) 0 0
\(321\) −59.0084 + 181.609i −0.183827 + 0.565761i
\(322\) 35.8509 226.354i 0.111338 0.702963i
\(323\) −22.4889 141.990i −0.0696252 0.439596i
\(324\) 311.184 101.110i 0.960444 0.312067i
\(325\) 0 0
\(326\) 646.303 + 469.567i 1.98253 + 1.44039i
\(327\) −3.65654 + 23.0865i −0.0111821 + 0.0706009i
\(328\) 328.774 167.519i 1.00236 0.510727i
\(329\) 106.703i 0.324325i
\(330\) 0 0
\(331\) 151.309 0.457126 0.228563 0.973529i \(-0.426597\pi\)
0.228563 + 0.973529i \(0.426597\pi\)
\(332\) −210.520 413.169i −0.634096 1.24448i
\(333\) 96.1419 + 15.2274i 0.288714 + 0.0457279i
\(334\) 376.279 517.903i 1.12658 1.55061i
\(335\) 0 0
\(336\) −19.9119 61.2825i −0.0592616 0.182388i
\(337\) −368.438 + 58.3548i −1.09329 + 0.173160i −0.676934 0.736043i \(-0.736692\pi\)
−0.416353 + 0.909203i \(0.636692\pi\)
\(338\) 71.7567 + 11.3651i 0.212298 + 0.0336247i
\(339\) 259.533 + 84.3275i 0.765585 + 0.248754i
\(340\) 0 0
\(341\) 214.668 34.3886i 0.629524 0.100846i
\(342\) −273.057 + 273.057i −0.798412 + 0.798412i
\(343\) 187.100 95.3323i 0.545481 0.277937i
\(344\) 594.857 + 818.751i 1.72924 + 2.38009i
\(345\) 0 0
\(346\) −151.348 465.803i −0.437423 1.34625i
\(347\) 604.240 + 307.876i 1.74133 + 0.887250i 0.967122 + 0.254313i \(0.0818492\pi\)
0.774203 + 0.632937i \(0.218151\pi\)
\(348\) −48.9080 308.793i −0.140540 0.887336i
\(349\) 24.7765 + 34.1019i 0.0709927 + 0.0977131i 0.843037 0.537856i \(-0.180766\pi\)
−0.772044 + 0.635569i \(0.780766\pi\)
\(350\) 0 0
\(351\) −405.397 −1.15498
\(352\) 98.9565 + 31.9599i 0.281126 + 0.0907951i
\(353\) −292.066 292.066i −0.827382 0.827382i 0.159772 0.987154i \(-0.448924\pi\)
−0.987154 + 0.159772i \(0.948924\pi\)
\(354\) 186.925 + 60.7357i 0.528038 + 0.171570i
\(355\) 0 0
\(356\) 1039.99 + 755.594i 2.92131 + 2.12246i
\(357\) 19.4547 + 9.91265i 0.0544949 + 0.0277665i
\(358\) −257.229 + 504.840i −0.718516 + 1.41017i
\(359\) −86.9687 + 119.702i −0.242253 + 0.333432i −0.912779 0.408453i \(-0.866068\pi\)
0.670526 + 0.741886i \(0.266068\pi\)
\(360\) 0 0
\(361\) −289.438 + 890.798i −0.801767 + 2.46759i
\(362\) −744.047 + 744.047i −2.05538 + 2.05538i
\(363\) 206.343 207.805i 0.568438 0.572466i
\(364\) 238.162i 0.654291i
\(365\) 0 0
\(366\) 314.839 228.744i 0.860215 0.624983i
\(367\) −349.255 + 55.3166i −0.951649 + 0.150726i −0.612909 0.790154i \(-0.710001\pi\)
−0.338740 + 0.940880i \(0.610001\pi\)
\(368\) 158.896 311.850i 0.431782 0.847419i
\(369\) 88.8808 28.8791i 0.240869 0.0782632i
\(370\) 0 0
\(371\) 86.0429 62.5138i 0.231922 0.168501i
\(372\) 165.848 + 325.496i 0.445829 + 0.874989i
\(373\) 67.3093 + 67.3093i 0.180454 + 0.180454i 0.791554 0.611100i \(-0.209273\pi\)
−0.611100 + 0.791554i \(0.709273\pi\)
\(374\) 133.310 68.2218i 0.356445 0.182411i
\(375\) 0 0
\(376\) 180.974 556.979i 0.481313 1.48133i
\(377\) −36.5012 + 230.460i −0.0968202 + 0.611299i
\(378\) −35.4524 223.838i −0.0937894 0.592163i
\(379\) −518.993 + 168.631i −1.36937 + 0.444937i −0.899162 0.437617i \(-0.855823\pi\)
−0.470212 + 0.882553i \(0.655823\pi\)
\(380\) 0 0
\(381\) −326.042 236.884i −0.855754 0.621742i
\(382\) 105.225 664.365i 0.275458 1.73918i
\(383\) 301.699 153.723i 0.787726 0.401366i −0.0133638 0.999911i \(-0.504254\pi\)
0.801090 + 0.598544i \(0.204254\pi\)
\(384\) 563.681i 1.46792i
\(385\) 0 0
\(386\) −461.219 −1.19487
\(387\) 116.366 + 228.381i 0.300687 + 0.590132i
\(388\) 409.800 + 64.9059i 1.05619 + 0.167283i
\(389\) −333.318 + 458.773i −0.856859 + 1.17937i 0.125450 + 0.992100i \(0.459962\pi\)
−0.982309 + 0.187265i \(0.940038\pi\)
\(390\) 0 0
\(391\) 36.6489 + 112.794i 0.0937312 + 0.288475i
\(392\) 537.854 85.1877i 1.37208 0.217316i
\(393\) −40.0437 6.34229i −0.101892 0.0161382i
\(394\) 274.294 + 89.1236i 0.696178 + 0.226202i
\(395\) 0 0
\(396\) −235.430 119.435i −0.594520 0.301602i
\(397\) −363.354 + 363.354i −0.915249 + 0.915249i −0.996679 0.0814297i \(-0.974051\pi\)
0.0814297 + 0.996679i \(0.474051\pi\)
\(398\) −744.912 + 379.551i −1.87164 + 0.953647i
\(399\) −115.846 159.448i −0.290340 0.399619i
\(400\) 0 0
\(401\) −63.8238 196.429i −0.159162 0.489849i 0.839397 0.543519i \(-0.182908\pi\)
−0.998559 + 0.0536695i \(0.982908\pi\)
\(402\) −264.632 134.837i −0.658289 0.335415i
\(403\) −42.6505 269.285i −0.105833 0.668201i
\(404\) −366.966 505.086i −0.908332 1.25021i
\(405\) 0 0
\(406\) −130.439 −0.321279
\(407\) 200.766 + 275.307i 0.493282 + 0.676430i
\(408\) 84.7393 + 84.7393i 0.207694 + 0.207694i
\(409\) 320.829 + 104.244i 0.784423 + 0.254875i 0.673728 0.738980i \(-0.264692\pi\)
0.110696 + 0.993854i \(0.464692\pi\)
\(410\) 0 0
\(411\) 175.792 + 127.720i 0.427717 + 0.310755i
\(412\) −844.835 430.465i −2.05057 1.04482i
\(413\) 24.4317 47.9498i 0.0591566 0.116101i
\(414\) 187.253 257.732i 0.452302 0.622540i
\(415\) 0 0
\(416\) 40.2991 124.028i 0.0968728 0.298144i
\(417\) −79.8832 + 79.8832i −0.191567 + 0.191567i
\(418\) −1351.74 + 2.38632i −3.23382 + 0.00570891i
\(419\) 523.431i 1.24924i −0.780930 0.624619i \(-0.785254\pi\)
0.780930 0.624619i \(-0.214746\pi\)
\(420\) 0 0
\(421\) −264.208 + 191.959i −0.627574 + 0.455959i −0.855559 0.517706i \(-0.826786\pi\)
0.227985 + 0.973665i \(0.426786\pi\)
\(422\) 1034.55 163.857i 2.45154 0.388286i
\(423\) 67.3387 132.160i 0.159193 0.312434i
\(424\) 555.163 180.383i 1.30935 0.425433i
\(425\) 0 0
\(426\) −112.145 + 81.4780i −0.263251 + 0.191263i
\(427\) −48.3751 94.9415i −0.113291 0.222345i
\(428\) 426.078 + 426.078i 0.995509 + 0.995509i
\(429\) −260.146 259.229i −0.606401 0.604264i
\(430\) 0 0
\(431\) 141.996 437.020i 0.329458 1.01397i −0.639930 0.768433i \(-0.721037\pi\)
0.969388 0.245534i \(-0.0789632\pi\)
\(432\) 54.1431 341.846i 0.125331 0.791310i
\(433\) −45.7255 288.700i −0.105602 0.666743i −0.982528 0.186117i \(-0.940410\pi\)
0.876926 0.480626i \(-0.159590\pi\)
\(434\) 144.954 47.0985i 0.333996 0.108522i
\(435\) 0 0
\(436\) 59.6717 + 43.3540i 0.136862 + 0.0994358i
\(437\) 167.467 1057.34i 0.383219 2.41955i
\(438\) 437.500 222.917i 0.998859 0.508944i
\(439\) 286.451i 0.652507i −0.945282 0.326253i \(-0.894214\pi\)
0.945282 0.326253i \(-0.105786\pi\)
\(440\) 0 0
\(441\) 137.921 0.312746
\(442\) −85.2599 167.332i −0.192896 0.378579i
\(443\) −304.198 48.1802i −0.686676 0.108759i −0.196660 0.980472i \(-0.563009\pi\)
−0.490017 + 0.871713i \(0.663009\pi\)
\(444\) −336.536 + 463.203i −0.757965 + 1.04325i
\(445\) 0 0
\(446\) −245.142 754.471i −0.549647 1.69164i
\(447\) −397.001 + 62.8787i −0.888145 + 0.140668i
\(448\) 177.190 + 28.0641i 0.395513 + 0.0626432i
\(449\) 267.659 + 86.9677i 0.596123 + 0.193692i 0.591510 0.806297i \(-0.298532\pi\)
0.00461218 + 0.999989i \(0.498532\pi\)
\(450\) 0 0
\(451\) 291.741 + 148.001i 0.646875 + 0.328162i
\(452\) 608.898 608.898i 1.34712 1.34712i
\(453\) −462.818 + 235.817i −1.02167 + 0.520568i
\(454\) −415.739 572.215i −0.915724 1.26039i
\(455\) 0 0
\(456\) −334.272 1028.78i −0.733053 2.25611i
\(457\) −22.2989 11.3619i −0.0487941 0.0248618i 0.429423 0.903103i \(-0.358717\pi\)
−0.478217 + 0.878242i \(0.658717\pi\)
\(458\) 4.66966 + 29.4831i 0.0101958 + 0.0643736i
\(459\) 68.9354 + 94.8814i 0.150186 + 0.206713i
\(460\) 0 0
\(461\) −786.245 −1.70552 −0.852761 0.522302i \(-0.825073\pi\)
−0.852761 + 0.522302i \(0.825073\pi\)
\(462\) 120.382 166.308i 0.260567 0.359974i
\(463\) 216.315 + 216.315i 0.467203 + 0.467203i 0.901007 0.433804i \(-0.142829\pi\)
−0.433804 + 0.901007i \(0.642829\pi\)
\(464\) −189.457 61.5584i −0.408313 0.132669i
\(465\) 0 0
\(466\) −275.127 199.892i −0.590402 0.428952i
\(467\) 157.211 + 80.1031i 0.336641 + 0.171527i 0.614137 0.789200i \(-0.289504\pi\)
−0.277496 + 0.960727i \(0.589504\pi\)
\(468\) −150.301 + 294.982i −0.321155 + 0.630303i
\(469\) −47.7997 + 65.7906i −0.101918 + 0.140278i
\(470\) 0 0
\(471\) 15.2037 46.7922i 0.0322796 0.0993465i
\(472\) 208.857 208.857i 0.442493 0.442493i
\(473\) −275.753 + 853.805i −0.582987 + 1.80509i
\(474\) 1170.38i 2.46916i
\(475\) 0 0
\(476\) 55.7408 40.4981i 0.117102 0.0850799i
\(477\) 146.022 23.1277i 0.306127 0.0484857i
\(478\) −85.3948 + 167.597i −0.178650 + 0.350621i
\(479\) −565.936 + 183.884i −1.18149 + 0.383891i −0.832922 0.553391i \(-0.813334\pi\)
−0.348573 + 0.937282i \(0.613334\pi\)
\(480\) 0 0
\(481\) 345.699 251.165i 0.718709 0.522173i
\(482\) 348.706 + 684.374i 0.723457 + 1.41986i
\(483\) 114.971 + 114.971i 0.238035 + 0.238035i
\(484\) −288.662 877.851i −0.596409 1.81374i
\(485\) 0 0
\(486\) 169.507 521.688i 0.348779 1.07343i
\(487\) −72.9801 + 460.778i −0.149856 + 0.946156i 0.792093 + 0.610401i \(0.208992\pi\)
−0.941949 + 0.335755i \(0.891008\pi\)
\(488\) −91.4880 577.633i −0.187475 1.18367i
\(489\) −539.039 + 175.144i −1.10233 + 0.358168i
\(490\) 0 0
\(491\) −93.6260 68.0233i −0.190684 0.138540i 0.488347 0.872649i \(-0.337600\pi\)
−0.679031 + 0.734109i \(0.737600\pi\)
\(492\) −85.9913 + 542.928i −0.174779 + 1.10351i
\(493\) 60.1449 30.6454i 0.121998 0.0621610i
\(494\) 1695.18i 3.43154i
\(495\) 0 0
\(496\) 232.767 0.469289
\(497\) 17.2311 + 33.8179i 0.0346702 + 0.0680441i
\(498\) 495.127 + 78.4205i 0.994232 + 0.157471i
\(499\) 141.813 195.189i 0.284195 0.391161i −0.642923 0.765931i \(-0.722278\pi\)
0.927118 + 0.374770i \(0.122278\pi\)
\(500\) 0 0
\(501\) 140.349 + 431.949i 0.280137 + 0.862174i
\(502\) 1372.35 217.358i 2.73376 0.432984i
\(503\) 428.067 + 67.7992i 0.851028 + 0.134790i 0.566687 0.823933i \(-0.308225\pi\)
0.284342 + 0.958723i \(0.408225\pi\)
\(504\) −83.8268 27.2370i −0.166323 0.0540416i
\(505\) 0 0
\(506\) 1101.12 176.393i 2.17612 0.348602i
\(507\) −36.4471 + 36.4471i −0.0718877 + 0.0718877i
\(508\) −1133.10 + 577.345i −2.23052 + 1.13651i
\(509\) −160.580 221.019i −0.315481 0.434223i 0.621600 0.783335i \(-0.286483\pi\)
−0.937081 + 0.349112i \(0.886483\pi\)
\(510\) 0 0
\(511\) −41.5455 127.864i −0.0813024 0.250223i
\(512\) 620.001 + 315.906i 1.21094 + 0.617005i
\(513\) −165.605 1045.59i −0.322817 2.03819i
\(514\) −11.9698 16.4750i −0.0232875 0.0320525i
\(515\) 0 0
\(516\) −1507.65 −2.92180
\(517\) 493.514 161.316i 0.954572 0.312023i
\(518\) 168.911 + 168.911i 0.326084 + 0.326084i
\(519\) 330.474 + 107.377i 0.636751 + 0.206893i
\(520\) 0 0
\(521\) 407.039 + 295.731i 0.781264 + 0.567622i 0.905358 0.424649i \(-0.139602\pi\)
−0.124094 + 0.992270i \(0.539602\pi\)
\(522\) −161.559 82.3183i −0.309500 0.157698i
\(523\) −20.4357 + 40.1074i −0.0390741 + 0.0766871i −0.909718 0.415226i \(-0.863702\pi\)
0.870644 + 0.491913i \(0.163702\pi\)
\(524\) −75.1978 + 103.501i −0.143507 + 0.197521i
\(525\) 0 0
\(526\) −172.048 + 529.508i −0.327087 + 1.00667i
\(527\) −55.7725 + 55.7725i −0.105830 + 0.105830i
\(528\) 253.336 184.743i 0.479803 0.349893i
\(529\) 354.158i 0.669487i
\(530\) 0 0
\(531\) 60.5210 43.9711i 0.113975 0.0828080i
\(532\) −614.262 + 97.2895i −1.15463 + 0.182875i
\(533\) 186.250 365.536i 0.349437 0.685809i
\(534\) −1321.68 + 429.440i −2.47506 + 0.804195i
\(535\) 0 0
\(536\) −361.094 + 262.350i −0.673683 + 0.489460i
\(537\) −182.496 358.169i −0.339844 0.666982i
\(538\) −1013.97 1013.97i −1.88471 1.88471i
\(539\) 341.983 + 340.778i 0.634478 + 0.632241i
\(540\) 0 0
\(541\) 204.616 629.743i 0.378218 1.16404i −0.563064 0.826414i \(-0.690377\pi\)
0.941282 0.337622i \(-0.109623\pi\)
\(542\) 155.170 979.706i 0.286292 1.80758i
\(543\) −116.784 737.344i −0.215072 1.35791i
\(544\) −35.8808 + 11.6584i −0.0659574 + 0.0214308i
\(545\) 0 0
\(546\) −208.296 151.336i −0.381494 0.277172i
\(547\) −51.2339 + 323.478i −0.0936635 + 0.591368i 0.895558 + 0.444944i \(0.146776\pi\)
−0.989222 + 0.146424i \(0.953224\pi\)
\(548\) 610.934 311.287i 1.11484 0.568041i
\(549\) 148.121i 0.269802i
\(550\) 0 0
\(551\) −609.307 −1.10582
\(552\) 405.142 + 795.135i 0.733952 + 1.44046i
\(553\) −316.514 50.1308i −0.572357 0.0906525i
\(554\) 687.867 946.767i 1.24164 1.70897i
\(555\) 0 0
\(556\) 110.160 + 339.039i 0.198130 + 0.609782i
\(557\) −828.504 + 131.222i −1.48744 + 0.235587i −0.846659 0.532136i \(-0.821390\pi\)
−0.640782 + 0.767723i \(0.721390\pi\)
\(558\) 209.260 + 33.1436i 0.375018 + 0.0593971i
\(559\) 1070.12 + 347.704i 1.91435 + 0.622011i
\(560\) 0 0
\(561\) −16.4352 + 104.966i −0.0292962 + 0.187106i
\(562\) 230.705 230.705i 0.410507 0.410507i
\(563\) −708.172 + 360.832i −1.25785 + 0.640909i −0.950511 0.310690i \(-0.899440\pi\)
−0.307343 + 0.951599i \(0.599440\pi\)
\(564\) 512.811 + 705.824i 0.909240 + 1.25146i
\(565\) 0 0
\(566\) 51.7509 + 159.273i 0.0914326 + 0.281401i
\(567\) 86.2952 + 43.9696i 0.152196 + 0.0775478i
\(568\) 32.5878 + 205.752i 0.0573730 + 0.362239i
\(569\) 543.704 + 748.344i 0.955543 + 1.31519i 0.949021 + 0.315213i \(0.102076\pi\)
0.00652189 + 0.999979i \(0.497924\pi\)
\(570\) 0 0
\(571\) 290.179 0.508194 0.254097 0.967179i \(-0.418222\pi\)
0.254097 + 0.967179i \(0.418222\pi\)
\(572\) −1101.53 + 360.059i −1.92575 + 0.629475i
\(573\) 337.448 + 337.448i 0.588915 + 0.588915i
\(574\) 218.117 + 70.8704i 0.379994 + 0.123468i
\(575\) 0 0
\(576\) 201.753 + 146.582i 0.350265 + 0.254482i
\(577\) −207.415 105.683i −0.359471 0.183159i 0.264922 0.964270i \(-0.414654\pi\)
−0.624393 + 0.781110i \(0.714654\pi\)
\(578\) 422.912 830.011i 0.731681 1.43600i
\(579\) 192.336 264.728i 0.332187 0.457216i
\(580\) 0 0
\(581\) 42.4154 130.541i 0.0730042 0.224684i
\(582\) −317.167 + 317.167i −0.544960 + 0.544960i
\(583\) 419.216 + 303.449i 0.719067 + 0.520496i
\(584\) 737.902i 1.26353i
\(585\) 0 0
\(586\) −1270.36 + 922.968i −2.16784 + 1.57503i
\(587\) 87.7179 13.8932i 0.149434 0.0236681i −0.0812691 0.996692i \(-0.525897\pi\)
0.230703 + 0.973024i \(0.425897\pi\)
\(588\) −368.296 + 722.822i −0.626354 + 1.22929i
\(589\) 677.111 220.007i 1.14959 0.373526i
\(590\) 0 0
\(591\) −165.540 + 120.272i −0.280102 + 0.203506i
\(592\) 165.622 + 325.051i 0.279767 + 0.549073i
\(593\) 282.278 + 282.278i 0.476016 + 0.476016i 0.903855 0.427839i \(-0.140725\pi\)
−0.427839 + 0.903855i \(0.640725\pi\)
\(594\) 981.679 502.375i 1.65266 0.845750i
\(595\) 0 0
\(596\) −391.946 + 1206.29i −0.657627 + 2.02397i
\(597\) 92.7879 585.840i 0.155424 0.981306i
\(598\) −218.772 1381.27i −0.365839 2.30981i
\(599\) −835.221 + 271.380i −1.39436 + 0.453055i −0.907363 0.420349i \(-0.861908\pi\)
−0.486997 + 0.873404i \(0.661908\pi\)
\(600\) 0 0
\(601\) −352.495 256.103i −0.586515 0.426128i 0.254552 0.967059i \(-0.418072\pi\)
−0.841067 + 0.540931i \(0.818072\pi\)
\(602\) −98.3995 + 621.270i −0.163454 + 1.03201i
\(603\) −100.723 + 51.3210i −0.167037 + 0.0851094i
\(604\) 1639.09i 2.71372i
\(605\) 0 0
\(606\) 674.929 1.11374
\(607\) 98.3567 + 193.036i 0.162037 + 0.318016i 0.957722 0.287695i \(-0.0928888\pi\)
−0.795685 + 0.605711i \(0.792889\pi\)
\(608\) 336.352 + 53.2729i 0.553211 + 0.0876199i
\(609\) 54.3953 74.8687i 0.0893191 0.122937i
\(610\) 0 0
\(611\) −201.209 619.259i −0.329312 1.01352i
\(612\) 94.5970 14.9827i 0.154570 0.0244815i
\(613\) 1090.78 + 172.763i 1.77942 + 0.281832i 0.957638 0.287974i \(-0.0929816\pi\)
0.821779 + 0.569806i \(0.192982\pi\)
\(614\) −780.161 253.490i −1.27062 0.412850i
\(615\) 0 0
\(616\) −140.556 274.657i −0.228175 0.445872i
\(617\) 652.925 652.925i 1.05823 1.05823i 0.0600293 0.998197i \(-0.480881\pi\)
0.998197 0.0600293i \(-0.0191194\pi\)
\(618\) 913.319 465.359i 1.47786 0.753008i
\(619\) −325.696 448.282i −0.526165 0.724203i 0.460375 0.887724i \(-0.347715\pi\)
−0.986540 + 0.163521i \(0.947715\pi\)
\(620\) 0 0
\(621\) 269.877 + 830.596i 0.434585 + 1.33751i
\(622\) −651.895 332.157i −1.04806 0.534015i
\(623\) 59.5247 + 375.824i 0.0955453 + 0.603250i
\(624\) −231.121 318.110i −0.370386 0.509792i
\(625\) 0 0
\(626\) 542.614 0.866795
\(627\) 562.328 776.858i 0.896855 1.23901i
\(628\) −109.780 109.780i −0.174809 0.174809i
\(629\) −117.568 38.2002i −0.186913 0.0607317i
\(630\) 0 0
\(631\) 346.983 + 252.098i 0.549894 + 0.399522i 0.827747 0.561102i \(-0.189623\pi\)
−0.277852 + 0.960624i \(0.589623\pi\)
\(632\) −1567.15 798.502i −2.47967 1.26345i
\(633\) −337.375 + 662.136i −0.532978 + 1.04603i
\(634\) 56.9354 78.3649i 0.0898035 0.123604i
\(635\) 0 0
\(636\) −268.722 + 827.040i −0.422518 + 1.30038i
\(637\) 428.118 428.118i 0.672084 0.672084i
\(638\) −197.201 603.297i −0.309093 0.945606i
\(639\) 52.7604i 0.0825672i
\(640\) 0 0
\(641\) −51.5449 + 37.4495i −0.0804132 + 0.0584236i −0.627266 0.778805i \(-0.715826\pi\)
0.546852 + 0.837229i \(0.315826\pi\)
\(642\) −643.390 + 101.903i −1.00217 + 0.158727i
\(643\) −30.5733 + 60.0035i −0.0475479 + 0.0933180i −0.913558 0.406709i \(-0.866676\pi\)
0.866010 + 0.500027i \(0.166676\pi\)
\(644\) 487.958 158.547i 0.757698 0.246191i
\(645\) 0 0
\(646\) 396.750 288.256i 0.614164 0.446216i
\(647\) 210.857 + 413.830i 0.325900 + 0.639614i 0.994584 0.103932i \(-0.0331424\pi\)
−0.668685 + 0.743546i \(0.733142\pi\)
\(648\) 375.879 + 375.879i 0.580060 + 0.580060i
\(649\) 258.710 + 40.5077i 0.398629 + 0.0624155i
\(650\) 0 0
\(651\) −33.4151 + 102.841i −0.0513288 + 0.157974i
\(652\) −279.781 + 1766.47i −0.429112 + 2.70931i
\(653\) 84.4407 + 533.137i 0.129312 + 0.816443i 0.964035 + 0.265774i \(0.0856274\pi\)
−0.834724 + 0.550669i \(0.814373\pi\)
\(654\) −75.8346 + 24.6402i −0.115955 + 0.0376761i
\(655\) 0 0
\(656\) 283.359 + 205.872i 0.431950 + 0.313830i
\(657\) 29.2359 184.588i 0.0444991 0.280956i
\(658\) 324.325 165.252i 0.492895 0.251142i
\(659\) 1001.07i 1.51907i −0.650465 0.759536i \(-0.725426\pi\)
0.650465 0.759536i \(-0.274574\pi\)
\(660\) 0 0
\(661\) 1225.83 1.85451 0.927254 0.374432i \(-0.122162\pi\)
0.927254 + 0.374432i \(0.122162\pi\)
\(662\) 234.333 + 459.905i 0.353978 + 0.694721i
\(663\) 131.599 + 20.8433i 0.198490 + 0.0314378i
\(664\) 442.810 609.475i 0.666882 0.917885i
\(665\) 0 0
\(666\) 102.612 + 315.807i 0.154072 + 0.474185i
\(667\) 496.476 78.6340i 0.744341 0.117892i
\(668\) 1415.53 + 224.198i 2.11905 + 0.335625i
\(669\) 535.276 + 173.922i 0.800113 + 0.259973i
\(670\) 0 0
\(671\) 365.981 367.276i 0.545427 0.547356i
\(672\) −36.5734 + 36.5734i −0.0544248 + 0.0544248i
\(673\) −249.622 + 127.189i −0.370910 + 0.188988i −0.629502 0.776999i \(-0.716741\pi\)
0.258593 + 0.965986i \(0.416741\pi\)
\(674\) −747.973 1029.50i −1.10975 1.52744i
\(675\) 0 0
\(676\) 50.2611 + 154.688i 0.0743508 + 0.228828i
\(677\) −428.152 218.154i −0.632426 0.322237i 0.108226 0.994126i \(-0.465483\pi\)
−0.740652 + 0.671889i \(0.765483\pi\)
\(678\) 145.627 + 919.454i 0.214789 + 1.35613i
\(679\) 72.1881 + 99.3584i 0.106315 + 0.146331i
\(680\) 0 0
\(681\) 501.807 0.736868
\(682\) 436.982 + 599.227i 0.640736 + 0.878632i
\(683\) −555.821 555.821i −0.813794 0.813794i 0.171406 0.985200i \(-0.445169\pi\)
−0.985200 + 0.171406i \(0.945169\pi\)
\(684\) −822.209 267.152i −1.20206 0.390573i
\(685\) 0 0
\(686\) 579.527 + 421.051i 0.844792 + 0.613777i
\(687\) −18.8699 9.61469i −0.0274671 0.0139952i
\(688\) −436.118 + 855.930i −0.633893 + 1.24408i
\(689\) 381.475 525.056i 0.553665 0.762055i
\(690\) 0 0
\(691\) 131.998 406.247i 0.191024 0.587911i −0.808976 0.587842i \(-0.799978\pi\)
1.00000 6.96426e-5i \(-2.21679e-5\pi\)
\(692\) 775.333 775.333i 1.12042 1.12042i
\(693\) −24.2785 74.2750i −0.0350339 0.107179i
\(694\) 2313.40i 3.33344i
\(695\) 0 0
\(696\) 410.920 298.551i 0.590402 0.428952i
\(697\) −117.223 + 18.5663i −0.168182 + 0.0266374i
\(698\) −65.2816 + 128.122i −0.0935266 + 0.183556i
\(699\) 229.465 74.5578i 0.328277 0.106664i
\(700\) 0 0
\(701\) 162.449 118.026i 0.231738 0.168368i −0.465856 0.884860i \(-0.654254\pi\)
0.697595 + 0.716493i \(0.254254\pi\)
\(702\) −627.842 1232.21i −0.894361 1.75528i
\(703\) 789.018 + 789.018i 1.12236 + 1.12236i
\(704\) 138.080 + 861.954i 0.196137 + 1.22437i
\(705\) 0 0
\(706\) 435.413 1340.06i 0.616732 1.89811i
\(707\) 28.9091 182.525i 0.0408899 0.258168i
\(708\) 68.8338 + 434.599i 0.0972229 + 0.613841i
\(709\) −618.635 + 201.007i −0.872546 + 0.283507i −0.710859 0.703335i \(-0.751694\pi\)
−0.161687 + 0.986842i \(0.551694\pi\)
\(710\) 0 0
\(711\) −360.389 261.838i −0.506877 0.368268i
\(712\) −326.704 + 2062.73i −0.458854 + 2.89709i
\(713\) −523.331 + 266.650i −0.733984 + 0.373984i
\(714\) 74.4845i 0.104320i
\(715\) 0 0
\(716\) −1268.47 −1.77161
\(717\) −60.5852 118.905i −0.0844981 0.165837i
\(718\) −498.526 78.9587i −0.694325 0.109970i
\(719\) −81.5254 + 112.210i −0.113387 + 0.156064i −0.861939 0.507013i \(-0.830750\pi\)
0.748551 + 0.663077i \(0.230750\pi\)
\(720\) 0 0
\(721\) −86.7298 266.927i −0.120291 0.370218i
\(722\) −3155.85 + 499.837i −4.37098 + 0.692295i
\(723\) −538.230 85.2472i −0.744440 0.117908i
\(724\) −2240.42 727.956i −3.09450 1.00546i
\(725\) 0 0
\(726\) 951.192 + 305.352i 1.31018 + 0.420595i
\(727\) −416.697 + 416.697i −0.573173 + 0.573173i −0.933014 0.359840i \(-0.882831\pi\)
0.359840 + 0.933014i \(0.382831\pi\)
\(728\) −344.751 + 175.659i −0.473559 + 0.241290i
\(729\) 455.391 + 626.792i 0.624679 + 0.859797i
\(730\) 0 0
\(731\) −100.590 309.583i −0.137605 0.423506i
\(732\) 776.281 + 395.535i 1.06049 + 0.540348i
\(733\) −99.4688 628.021i −0.135701 0.856782i −0.957800 0.287437i \(-0.907197\pi\)
0.822099 0.569345i \(-0.192803\pi\)
\(734\) −709.030 975.896i −0.965981 1.32956i
\(735\) 0 0
\(736\) −280.942 −0.381714
\(737\) −376.554 121.615i −0.510929 0.165014i
\(738\) 225.429 + 225.429i 0.305459 + 0.305459i
\(739\) 627.722 + 203.959i 0.849421 + 0.275994i 0.701203 0.712961i \(-0.252646\pi\)
0.148217 + 0.988955i \(0.452646\pi\)
\(740\) 0 0
\(741\) −972.992 706.920i −1.31308 0.954008i
\(742\) 323.267 + 164.713i 0.435670 + 0.221985i
\(743\) −128.574 + 252.340i −0.173047 + 0.339623i −0.961198 0.275858i \(-0.911038\pi\)
0.788152 + 0.615481i \(0.211038\pi\)
\(744\) −348.847 + 480.147i −0.468881 + 0.645359i
\(745\) 0 0
\(746\) −100.345 + 308.830i −0.134511 + 0.413981i
\(747\) 134.918 134.918i 0.180613 0.180613i
\(748\) 271.579 + 196.582i 0.363073 + 0.262810i
\(749\) 178.361i 0.238132i
\(750\) 0 0
\(751\) 233.376 169.558i 0.310754 0.225776i −0.421466 0.906844i \(-0.638484\pi\)
0.732220 + 0.681068i \(0.238484\pi\)
\(752\) 549.055 86.9618i 0.730127 0.115641i
\(753\) −447.533 + 878.334i −0.594334 + 1.16645i
\(754\) −757.015 + 245.969i −1.00400 + 0.326219i
\(755\) 0 0
\(756\) 410.467 298.222i 0.542946 0.394473i
\(757\) 73.3139 + 143.887i 0.0968480 + 0.190075i 0.934348 0.356363i \(-0.115983\pi\)
−0.837500 + 0.546438i \(0.815983\pi\)
\(758\) −1316.32 1316.32i −1.73658 1.73658i
\(759\) −357.939 + 705.571i −0.471593 + 0.929606i
\(760\) 0 0
\(761\) −178.166 + 548.339i −0.234121 + 0.720551i 0.763116 + 0.646262i \(0.223669\pi\)
−0.997237 + 0.0742887i \(0.976331\pi\)
\(762\) 215.066 1357.87i 0.282239 1.78199i
\(763\) 3.41537 + 21.5638i 0.00447624 + 0.0282619i
\(764\) 1432.19 465.347i 1.87460 0.609093i
\(765\) 0 0
\(766\) 934.488 + 678.945i 1.21996 + 0.886352i
\(767\) 51.3723 324.352i 0.0669782 0.422884i
\(768\) −1028.79 + 524.193i −1.33957 + 0.682543i
\(769\) 23.8117i 0.0309646i 0.999880 + 0.0154823i \(0.00492836\pi\)
−0.999880 + 0.0154823i \(0.995072\pi\)
\(770\) 0 0
\(771\) 14.4478 0.0187391
\(772\) −468.772 920.016i −0.607217 1.19173i
\(773\) −1299.24 205.779i −1.68078 0.266209i −0.758200 0.652022i \(-0.773921\pi\)
−0.922577 + 0.385813i \(0.873921\pi\)
\(774\) −513.950 + 707.392i −0.664018 + 0.913943i
\(775\) 0 0
\(776\) 208.299 + 641.077i 0.268426 + 0.826130i
\(777\) −167.390 + 26.5119i −0.215431 + 0.0341209i
\(778\) −1910.66 302.619i −2.45586 0.388970i
\(779\) 1018.87 + 331.050i 1.30792 + 0.424968i
\(780\) 0 0
\(781\) −130.362 + 130.823i −0.166916 + 0.167507i
\(782\) −286.079 + 286.079i −0.365830 + 0.365830i
\(783\) 442.898 225.668i 0.565643 0.288209i
\(784\) 303.827 + 418.182i 0.387535 + 0.533396i
\(785\) 0 0
\(786\) −42.7385 131.536i −0.0543747 0.167348i
\(787\) −58.7876 29.9538i −0.0746984 0.0380607i 0.416242 0.909254i \(-0.363347\pi\)
−0.490941 + 0.871193i \(0.663347\pi\)
\(788\) 101.007 + 637.731i 0.128181 + 0.809304i
\(789\) −232.177 319.565i −0.294268 0.405025i
\(790\) 0 0
\(791\) 254.891 0.322239
\(792\) −0.757146 428.887i −0.000955992 0.541524i
\(793\) −459.780 459.780i −0.579798 0.579798i
\(794\) −1667.15 541.689i −2.09968 0.682229i
\(795\) 0 0
\(796\) −1514.22 1100.15i −1.90229 1.38209i
\(797\) 979.455 + 499.057i 1.22893 + 0.626169i 0.943227 0.332150i \(-0.107774\pi\)
0.285700 + 0.958319i \(0.407774\pi\)
\(798\) 305.233 599.053i 0.382497 0.750693i
\(799\) −110.720 + 152.394i −0.138574 + 0.190730i
\(800\) 0 0
\(801\) −163.452 + 503.053i −0.204060 + 0.628031i
\(802\) 498.205 498.205i 0.621204 0.621204i
\(803\) 528.577 385.461i 0.658253 0.480027i
\(804\) 664.919i 0.827014i
\(805\) 0 0
\(806\) 752.442 546.681i 0.933550 0.678264i
\(807\) 1004.84 159.151i 1.24515 0.197213i
\(808\) 460.475 903.734i 0.569895 1.11848i
\(809\) −253.667 + 82.4213i −0.313556 + 0.101881i −0.461567 0.887105i \(-0.652713\pi\)
0.148011 + 0.988986i \(0.452713\pi\)
\(810\) 0 0
\(811\) 338.287 245.780i 0.417123 0.303057i −0.359356 0.933200i \(-0.617004\pi\)
0.776479 + 0.630143i \(0.217004\pi\)
\(812\) −132.575 260.193i −0.163270 0.320435i
\(813\) 497.618 + 497.618i 0.612076 + 0.612076i
\(814\) −525.871 + 1036.60i −0.646033 + 1.27346i
\(815\) 0 0
\(816\) −35.1516 + 108.186i −0.0430780 + 0.132580i
\(817\) −459.644 + 2902.08i −0.562599 + 3.55211i
\(818\) 180.021 + 1136.61i 0.220074 + 1.38950i
\(819\) −93.2000 + 30.2825i −0.113797 + 0.0369750i
\(820\) 0 0
\(821\) 208.285 + 151.328i 0.253697 + 0.184321i 0.707363 0.706850i \(-0.249884\pi\)
−0.453667 + 0.891171i \(0.649884\pi\)
\(822\) −115.957 + 732.123i −0.141067 + 0.890661i
\(823\) −1112.28 + 566.734i −1.35149 + 0.688619i −0.971648 0.236432i \(-0.924022\pi\)
−0.379843 + 0.925051i \(0.624022\pi\)
\(824\) 1540.43i 1.86946i
\(825\) 0 0
\(826\) 183.582 0.222254
\(827\) −638.541 1253.21i −0.772117 1.51536i −0.854898 0.518797i \(-0.826380\pi\)
0.0827808 0.996568i \(-0.473620\pi\)
\(828\) 704.430 + 111.571i 0.850760 + 0.134747i
\(829\) −12.8668 + 17.7097i −0.0155209 + 0.0213627i −0.816707 0.577053i \(-0.804203\pi\)
0.801186 + 0.598415i \(0.204203\pi\)
\(830\) 0 0
\(831\) 256.568 + 789.636i 0.308747 + 0.950224i
\(832\) 1081.26 171.254i 1.29959 0.205835i
\(833\) −172.998 27.4002i −0.207681 0.0328934i
\(834\) −366.522 119.090i −0.439475 0.142794i
\(835\) 0 0
\(836\) −1378.63 2693.95i −1.64908 3.22243i
\(837\) −410.701 + 410.701i −0.490682 + 0.490682i
\(838\) 1590.97 810.642i 1.89854 0.967353i
\(839\) 230.999 + 317.943i 0.275327 + 0.378955i 0.924179 0.381959i \(-0.124751\pi\)
−0.648852 + 0.760915i \(0.724751\pi\)
\(840\) 0 0
\(841\) 171.474 + 527.741i 0.203892 + 0.627517i
\(842\) −992.643 505.777i −1.17891 0.600685i
\(843\) 36.2109 + 228.627i 0.0429548 + 0.271206i
\(844\) 1378.34 + 1897.13i 1.63311 + 2.24778i
\(845\) 0 0
\(846\) 505.989 0.598096
\(847\) 123.321 244.157i 0.145597 0.288261i
\(848\) 391.798 + 391.798i 0.462026 + 0.462026i
\(849\) −113.000 36.7158i −0.133097 0.0432459i
\(850\) 0 0
\(851\) −744.735 541.082i −0.875129 0.635819i
\(852\) −276.509 140.889i −0.324542 0.165362i
\(853\) −6.26065 + 12.2872i −0.00733957 + 0.0144047i −0.894647 0.446773i \(-0.852573\pi\)
0.887308 + 0.461178i \(0.152573\pi\)
\(854\) 213.657 294.073i 0.250184 0.344348i
\(855\) 0 0
\(856\) −302.509 + 931.027i −0.353398 + 1.08765i
\(857\) −100.441 + 100.441i −0.117201 + 0.117201i −0.763275 0.646074i \(-0.776410\pi\)
0.646074 + 0.763275i \(0.276410\pi\)
\(858\) 385.040 1192.19i 0.448764 1.38950i
\(859\) 57.6453i 0.0671075i −0.999437 0.0335537i \(-0.989318\pi\)
0.999437 0.0335537i \(-0.0106825\pi\)
\(860\) 0 0
\(861\) −131.636 + 95.6393i −0.152888 + 0.111079i
\(862\) 1548.24 245.217i 1.79610 0.284474i
\(863\) 25.4744 49.9964i 0.0295185 0.0579332i −0.875776 0.482717i \(-0.839650\pi\)
0.905295 + 0.424784i \(0.139650\pi\)
\(864\) −264.221 + 85.8506i −0.305811 + 0.0993642i
\(865\) 0 0
\(866\) 806.691 586.095i 0.931513 0.676784i
\(867\) 300.044 + 588.869i 0.346071 + 0.679203i
\(868\) 241.278 + 241.278i 0.277970 + 0.277970i
\(869\) −246.652 1539.70i −0.283834 1.77181i
\(870\) 0 0
\(871\) −153.348 + 471.957i −0.176060 + 0.541857i
\(872\) −18.7454 + 118.354i −0.0214970 + 0.135727i
\(873\) 26.7068 + 168.620i 0.0305920 + 0.193150i
\(874\) 3473.17 1128.50i 3.97388 1.29119i
\(875\) 0 0
\(876\) 889.329 + 646.135i 1.01522 + 0.737597i
\(877\) 124.784 787.853i 0.142285 0.898350i −0.808500 0.588497i \(-0.799720\pi\)
0.950784 0.309854i \(-0.100280\pi\)
\(878\) 870.670 443.629i 0.991651 0.505272i
\(879\) 1114.05i 1.26740i
\(880\) 0 0
\(881\) −1510.53 −1.71456 −0.857279 0.514852i \(-0.827847\pi\)
−0.857279 + 0.514852i \(0.827847\pi\)
\(882\) 213.599 + 419.212i 0.242176 + 0.475297i
\(883\) 984.685 + 155.959i 1.11516 + 0.176624i 0.686702 0.726939i \(-0.259058\pi\)
0.428456 + 0.903563i \(0.359058\pi\)
\(884\) 247.129 340.144i 0.279558 0.384779i
\(885\) 0 0
\(886\) −324.669 999.230i −0.366444 1.12780i
\(887\) −1206.89 + 191.152i −1.36064 + 0.215504i −0.793727 0.608274i \(-0.791862\pi\)
−0.566913 + 0.823778i \(0.691862\pi\)
\(888\) −918.725 145.512i −1.03460 0.163865i
\(889\) −358.006 116.323i −0.402706 0.130847i
\(890\) 0 0
\(891\) −72.9015 + 465.600i −0.0818199 + 0.522559i
\(892\) 1255.82 1255.82i 1.40787 1.40787i
\(893\) 1514.98 771.923i 1.69651 0.864416i
\(894\) −805.959 1109.31i −0.901520 1.24084i
\(895\) 0 0
\(896\) 162.699 + 500.735i 0.181583 + 0.558856i
\(897\) 884.045 + 450.443i 0.985557 + 0.502167i
\(898\) 150.187 + 948.241i 0.167246 + 1.05595i
\(899\) 196.496 + 270.453i 0.218572 + 0.300838i
\(900\) 0 0
\(901\) −187.755 −0.208385
\(902\) 1.97009 + 1115.96i 0.00218413 + 1.23721i
\(903\) −315.559 315.559i −0.349456 0.349456i
\(904\) 1330.51 + 432.308i 1.47180 + 0.478217i
\(905\) 0 0
\(906\) −1433.54 1041.53i −1.58227 1.14959i
\(907\) 218.751 + 111.459i 0.241181 + 0.122888i 0.570404 0.821365i \(-0.306787\pi\)
−0.329223 + 0.944252i \(0.606787\pi\)
\(908\) 718.879 1410.88i 0.791717 1.55383i
\(909\) 150.995 207.827i 0.166111 0.228633i
\(910\) 0 0
\(911\) 11.4615 35.2749i 0.0125813 0.0387211i −0.944569 0.328314i \(-0.893520\pi\)
0.957150 + 0.289592i \(0.0935198\pi\)
\(912\) 726.050 726.050i 0.796107 0.796107i
\(913\) 667.894 1.17908i 0.731538 0.00129144i
\(914\) 85.3740i 0.0934070i
\(915\) 0 0
\(916\) −54.0653 + 39.2807i −0.0590232 + 0.0428829i
\(917\) −37.4026 + 5.92399i −0.0407880 + 0.00646018i
\(918\) −181.632 + 356.474i −0.197857 + 0.388315i
\(919\) 1089.63 354.042i 1.18567 0.385247i 0.351198 0.936301i \(-0.385774\pi\)
0.834469 + 0.551054i \(0.185774\pi\)
\(920\) 0 0
\(921\) 470.837 342.083i 0.511224 0.371426i
\(922\) −1217.67 2389.80i −1.32068 2.59198i
\(923\) 163.773 + 163.773i 0.177435 + 0.177435i
\(924\) 454.096 + 71.1002i 0.491446 + 0.0769483i
\(925\) 0 0
\(926\) −322.483 + 992.501i −0.348254 + 1.07182i
\(927\) 61.0324 385.344i 0.0658386 0.415689i
\(928\) 25.0143 + 157.934i 0.0269550 + 0.170187i
\(929\) 1213.61 394.326i 1.30636 0.424462i 0.428571 0.903508i \(-0.359017\pi\)
0.877790 + 0.479046i \(0.159017\pi\)
\(930\) 0 0
\(931\) 1279.08 + 929.304i 1.37388 + 0.998179i
\(932\) 119.101 751.975i 0.127791 0.806840i
\(933\) 462.501 235.656i 0.495714 0.252579i
\(934\) 601.902i 0.644435i
\(935\) 0 0
\(936\) −537.857 −0.574633
\(937\) 369.838 + 725.847i 0.394704 + 0.774650i 0.999768 0.0215265i \(-0.00685264\pi\)
−0.605064 + 0.796177i \(0.706853\pi\)
\(938\) −273.999 43.3972i −0.292110 0.0462657i
\(939\) −226.279 + 311.447i −0.240979 + 0.331679i
\(940\) 0 0
\(941\) 232.814 + 716.527i 0.247411 + 0.761452i 0.995231 + 0.0975506i \(0.0311008\pi\)
−0.747820 + 0.663902i \(0.768899\pi\)
\(942\) 165.772 26.2556i 0.175978 0.0278722i
\(943\) −872.917 138.256i −0.925680 0.146613i
\(944\) 266.645 + 86.6381i 0.282463 + 0.0917777i
\(945\) 0 0
\(946\) −3022.21 + 484.142i −3.19473 + 0.511778i
\(947\) −378.420 + 378.420i −0.399598 + 0.399598i −0.878091 0.478493i \(-0.841183\pi\)
0.478493 + 0.878091i \(0.341183\pi\)
\(948\) 2334.62 1189.55i 2.46268 1.25480i
\(949\) −482.226 663.727i −0.508141 0.699397i
\(950\) 0 0
\(951\) 21.2364 + 65.3590i 0.0223306 + 0.0687266i
\(952\) 99.7352 + 50.8176i 0.104764 + 0.0533799i
\(953\) −63.3081 399.711i −0.0664303 0.419424i −0.998383 0.0568446i \(-0.981896\pi\)
0.931953 0.362580i \(-0.118104\pi\)
\(954\) 296.443 + 408.019i 0.310737 + 0.427693i
\(955\) 0 0
\(956\) −421.107 −0.440488
\(957\) 428.513 + 138.397i 0.447767 + 0.144615i
\(958\) −1435.39 1435.39i −1.49832 1.49832i
\(959\) 193.026 + 62.7179i 0.201278 + 0.0653992i
\(960\) 0 0
\(961\) 461.449 + 335.262i 0.480176 + 0.348868i
\(962\) 1298.81 + 661.775i 1.35011 + 0.687916i
\(963\) −112.561 + 220.913i −0.116886 + 0.229401i
\(964\) −1010.74 + 1391.16i −1.04848 + 1.44311i
\(965\) 0 0
\(966\) −171.399 + 527.512i −0.177432 + 0.546079i
\(967\) 502.098 502.098i 0.519233 0.519233i −0.398107 0.917339i \(-0.630333\pi\)
0.917339 + 0.398107i \(0.130333\pi\)
\(968\) 1057.83 1065.32i 1.09280 1.10054i
\(969\) 347.932i 0.359063i
\(970\) 0 0
\(971\) −1026.37 + 745.702i −1.05702 + 0.767973i −0.973536 0.228536i \(-0.926606\pi\)
−0.0834887 + 0.996509i \(0.526606\pi\)
\(972\) 1212.92 192.107i 1.24786 0.197641i
\(973\) −47.9055 + 94.0198i −0.0492348 + 0.0966288i
\(974\) −1513.57 + 491.787i −1.55397 + 0.504915i
\(975\) 0 0
\(976\) 449.110 326.298i 0.460154 0.334321i
\(977\) −121.475 238.408i −0.124335 0.244020i 0.820446 0.571724i \(-0.193725\pi\)
−0.944781 + 0.327704i \(0.893725\pi\)
\(978\) −1367.17 1367.17i −1.39792 1.39792i
\(979\) −1648.24 + 843.490i −1.68360 + 0.861584i
\(980\) 0 0
\(981\) −9.37843 + 28.8638i −0.00956007 + 0.0294229i
\(982\) 61.7581 389.926i 0.0628902 0.397073i
\(983\) 86.1250 + 543.772i 0.0876144 + 0.553176i 0.991978 + 0.126412i \(0.0403462\pi\)
−0.904363 + 0.426763i \(0.859654\pi\)
\(984\) −849.338 + 275.967i −0.863149 + 0.280454i
\(985\) 0 0
\(986\) 186.294 + 135.350i 0.188939 + 0.137272i
\(987\) −40.3986 + 255.067i −0.0409307 + 0.258426i
\(988\) −3381.46 + 1722.94i −3.42253 + 1.74387i
\(989\) 2423.99i 2.45095i
\(990\) 0 0
\(991\) −1331.21 −1.34330 −0.671650 0.740869i \(-0.734414\pi\)
−0.671650 + 0.740869i \(0.734414\pi\)
\(992\) −84.8242 166.477i −0.0855082 0.167819i
\(993\) −361.695 57.2868i −0.364245 0.0576907i
\(994\) −76.1041 + 104.748i −0.0765635 + 0.105381i
\(995\) 0 0
\(996\) 346.806 + 1067.36i 0.348199 + 1.07165i
\(997\) 306.698 48.5762i 0.307621 0.0487224i −0.000715499 1.00000i \(-0.500228\pi\)
0.308336 + 0.951277i \(0.400228\pi\)
\(998\) 812.909 + 128.752i 0.814538 + 0.129010i
\(999\) −865.756 281.301i −0.866622 0.281583i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.3.bk.c.218.15 yes 128
5.2 odd 4 inner 275.3.bk.c.207.2 yes 128
5.3 odd 4 inner 275.3.bk.c.207.15 yes 128
5.4 even 2 inner 275.3.bk.c.218.2 yes 128
11.5 even 5 inner 275.3.bk.c.93.2 yes 128
55.27 odd 20 inner 275.3.bk.c.82.15 yes 128
55.38 odd 20 inner 275.3.bk.c.82.2 128
55.49 even 10 inner 275.3.bk.c.93.15 yes 128
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
275.3.bk.c.82.2 128 55.38 odd 20 inner
275.3.bk.c.82.15 yes 128 55.27 odd 20 inner
275.3.bk.c.93.2 yes 128 11.5 even 5 inner
275.3.bk.c.93.15 yes 128 55.49 even 10 inner
275.3.bk.c.207.2 yes 128 5.2 odd 4 inner
275.3.bk.c.207.15 yes 128 5.3 odd 4 inner
275.3.bk.c.218.2 yes 128 5.4 even 2 inner
275.3.bk.c.218.15 yes 128 1.1 even 1 trivial