Properties

Label 275.3.bk.c.82.14
Level $275$
Weight $3$
Character 275.82
Analytic conductor $7.493$
Analytic rank $0$
Dimension $128$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,3,Mod(82,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([5, 8])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.82"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 275.bk (of order \(20\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [128] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.49320726991\)
Analytic rank: \(0\)
Dimension: \(128\)
Relative dimension: \(16\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 82.14
Character \(\chi\) \(=\) 275.82
Dual form 275.3.bk.c.218.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.35668 - 2.66263i) q^{2} +(5.64189 - 0.893588i) q^{3} +(-2.89790 - 3.98862i) q^{4} +(5.27495 - 16.2346i) q^{6} +(-7.26024 - 1.14991i) q^{7} +(-2.74554 + 0.434852i) q^{8} +(22.4730 - 7.30190i) q^{9} +(5.78433 + 9.35637i) q^{11} +(-19.9138 - 19.9138i) q^{12} +(-0.739658 - 0.376875i) q^{13} +(-12.9116 + 17.7713i) q^{14} +(3.52709 - 10.8553i) q^{16} +(-23.0319 + 11.7354i) q^{17} +(11.0463 - 69.7436i) q^{18} +(-6.24455 + 8.59489i) q^{19} -41.9890 q^{21} +(32.7601 - 2.70795i) q^{22} +(-15.1940 + 15.1940i) q^{23} +(-15.1015 + 4.90677i) q^{24} +(-2.00696 + 1.45814i) q^{26} +(74.4585 - 37.9385i) q^{27} +(16.4529 + 32.2906i) q^{28} +(-1.59333 - 2.19303i) q^{29} +(-2.08632 - 6.42102i) q^{31} +(-31.9809 - 31.9809i) q^{32} +(40.9953 + 47.6188i) q^{33} +77.2468i q^{34} +(-94.2489 - 68.4758i) q^{36} +(29.9976 + 4.75115i) q^{37} +(14.4132 + 28.2875i) q^{38} +(-4.50984 - 1.46534i) q^{39} +(47.7749 + 34.7105i) q^{41} +(-56.9657 + 111.801i) q^{42} +(-19.6393 + 19.6393i) q^{43} +(20.5566 - 50.1853i) q^{44} +(19.8426 + 61.0694i) q^{46} +(-14.1984 - 89.6453i) q^{47} +(10.1993 - 64.3961i) q^{48} +(4.78700 + 1.55539i) q^{49} +(-119.457 + 86.7907i) q^{51} +(0.640247 + 4.04236i) q^{52} +(3.94931 + 2.01228i) q^{53} -249.726i q^{54} +20.4333 q^{56} +(-27.5508 + 54.0715i) q^{57} +(-8.00088 + 1.26721i) q^{58} +(34.3182 + 47.2349i) q^{59} +(6.01985 - 18.5272i) q^{61} +(-19.9273 - 3.15617i) q^{62} +(-171.556 + 27.1717i) q^{63} +(-85.1200 + 27.6572i) q^{64} +(182.409 - 44.5520i) q^{66} +(15.8915 + 15.8915i) q^{67} +(113.552 + 57.8577i) q^{68} +(-72.1457 + 99.3000i) q^{69} +(-19.5314 + 60.1116i) q^{71} +(-58.5252 + 29.8201i) q^{72} +(-2.76193 + 17.4381i) q^{73} +(53.3477 - 73.4268i) q^{74} +52.3778 q^{76} +(-31.2366 - 74.5809i) q^{77} +(-10.0201 + 10.0201i) q^{78} +(21.7530 - 7.06797i) q^{79} +(214.136 - 155.579i) q^{81} +(157.236 - 80.1160i) q^{82} +(-38.0294 - 74.6368i) q^{83} +(121.680 + 167.478i) q^{84} +(25.6481 + 78.9367i) q^{86} +(-10.9491 - 10.9491i) q^{87} +(-19.9498 - 23.1730i) q^{88} -64.7104i q^{89} +(4.93672 + 3.58674i) q^{91} +(104.634 + 16.5723i) q^{92} +(-17.5085 - 34.3624i) q^{93} +(-257.956 - 83.8148i) q^{94} +(-209.010 - 151.855i) q^{96} +(-17.7536 + 34.8433i) q^{97} +(10.6359 - 10.6359i) q^{98} +(198.310 + 168.029i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 128 q - 48 q^{6} + 32 q^{11} + 280 q^{16} - 8 q^{21} + 528 q^{26} - 16 q^{31} + 336 q^{36} - 604 q^{41} - 1152 q^{46} - 1024 q^{51} - 992 q^{56} - 320 q^{61} + 1624 q^{66} + 536 q^{71} + 1776 q^{76} + 3680 q^{81}+ \cdots - 6584 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.35668 2.66263i 0.678340 1.33132i −0.253106 0.967438i \(-0.581452\pi\)
0.931446 0.363879i \(-0.118548\pi\)
\(3\) 5.64189 0.893588i 1.88063 0.297863i 0.892449 0.451148i \(-0.148985\pi\)
0.988182 + 0.153285i \(0.0489854\pi\)
\(4\) −2.89790 3.98862i −0.724475 0.997155i
\(5\) 0 0
\(6\) 5.27495 16.2346i 0.879158 2.70577i
\(7\) −7.26024 1.14991i −1.03718 0.164273i −0.385452 0.922728i \(-0.625954\pi\)
−0.651725 + 0.758455i \(0.725954\pi\)
\(8\) −2.74554 + 0.434852i −0.343193 + 0.0543564i
\(9\) 22.4730 7.30190i 2.49699 0.811323i
\(10\) 0 0
\(11\) 5.78433 + 9.35637i 0.525848 + 0.850579i
\(12\) −19.9138 19.9138i −1.65949 1.65949i
\(13\) −0.739658 0.376875i −0.0568968 0.0289904i 0.425311 0.905047i \(-0.360165\pi\)
−0.482207 + 0.876057i \(0.660165\pi\)
\(14\) −12.9116 + 17.7713i −0.922258 + 1.26938i
\(15\) 0 0
\(16\) 3.52709 10.8553i 0.220443 0.678455i
\(17\) −23.0319 + 11.7354i −1.35482 + 0.690315i −0.972323 0.233641i \(-0.924936\pi\)
−0.382497 + 0.923957i \(0.624936\pi\)
\(18\) 11.0463 69.7436i 0.613683 3.87464i
\(19\) −6.24455 + 8.59489i −0.328661 + 0.452363i −0.941087 0.338165i \(-0.890194\pi\)
0.612426 + 0.790528i \(0.290194\pi\)
\(20\) 0 0
\(21\) −41.9890 −1.99948
\(22\) 32.7601 2.70795i 1.48909 0.123089i
\(23\) −15.1940 + 15.1940i −0.660608 + 0.660608i −0.955523 0.294915i \(-0.904709\pi\)
0.294915 + 0.955523i \(0.404709\pi\)
\(24\) −15.1015 + 4.90677i −0.629229 + 0.204449i
\(25\) 0 0
\(26\) −2.00696 + 1.45814i −0.0771907 + 0.0560823i
\(27\) 74.4585 37.9385i 2.75772 1.40513i
\(28\) 16.4529 + 32.2906i 0.587604 + 1.15324i
\(29\) −1.59333 2.19303i −0.0549424 0.0756218i 0.780662 0.624954i \(-0.214882\pi\)
−0.835604 + 0.549332i \(0.814882\pi\)
\(30\) 0 0
\(31\) −2.08632 6.42102i −0.0673005 0.207130i 0.911751 0.410744i \(-0.134731\pi\)
−0.979051 + 0.203614i \(0.934731\pi\)
\(32\) −31.9809 31.9809i −0.999402 0.999402i
\(33\) 40.9953 + 47.6188i 1.24228 + 1.44299i
\(34\) 77.2468i 2.27196i
\(35\) 0 0
\(36\) −94.2489 68.4758i −2.61802 1.90211i
\(37\) 29.9976 + 4.75115i 0.810745 + 0.128409i 0.548024 0.836462i \(-0.315380\pi\)
0.262721 + 0.964872i \(0.415380\pi\)
\(38\) 14.4132 + 28.2875i 0.379294 + 0.744407i
\(39\) −4.50984 1.46534i −0.115637 0.0375727i
\(40\) 0 0
\(41\) 47.7749 + 34.7105i 1.16524 + 0.846597i 0.990431 0.138006i \(-0.0440693\pi\)
0.174809 + 0.984602i \(0.444069\pi\)
\(42\) −56.9657 + 111.801i −1.35633 + 2.66194i
\(43\) −19.6393 + 19.6393i −0.456729 + 0.456729i −0.897580 0.440851i \(-0.854677\pi\)
0.440851 + 0.897580i \(0.354677\pi\)
\(44\) 20.5566 50.1853i 0.467195 1.14057i
\(45\) 0 0
\(46\) 19.8426 + 61.0694i 0.431362 + 1.32760i
\(47\) −14.1984 89.6453i −0.302094 1.90735i −0.408019 0.912974i \(-0.633780\pi\)
0.105924 0.994374i \(-0.466220\pi\)
\(48\) 10.1993 64.3961i 0.212486 1.34158i
\(49\) 4.78700 + 1.55539i 0.0976940 + 0.0317427i
\(50\) 0 0
\(51\) −119.457 + 86.7907i −2.34230 + 1.70178i
\(52\) 0.640247 + 4.04236i 0.0123124 + 0.0777377i
\(53\) 3.94931 + 2.01228i 0.0745153 + 0.0379675i 0.490851 0.871243i \(-0.336686\pi\)
−0.416336 + 0.909211i \(0.636686\pi\)
\(54\) 249.726i 4.62456i
\(55\) 0 0
\(56\) 20.4333 0.364881
\(57\) −27.5508 + 54.0715i −0.483347 + 0.948623i
\(58\) −8.00088 + 1.26721i −0.137946 + 0.0218485i
\(59\) 34.3182 + 47.2349i 0.581664 + 0.800592i 0.993877 0.110496i \(-0.0352439\pi\)
−0.412212 + 0.911088i \(0.635244\pi\)
\(60\) 0 0
\(61\) 6.01985 18.5272i 0.0986861 0.303725i −0.889511 0.456914i \(-0.848955\pi\)
0.988197 + 0.153190i \(0.0489546\pi\)
\(62\) −19.9273 3.15617i −0.321408 0.0509060i
\(63\) −171.556 + 27.1717i −2.72310 + 0.431297i
\(64\) −85.1200 + 27.6572i −1.33000 + 0.432143i
\(65\) 0 0
\(66\) 182.409 44.5520i 2.76377 0.675030i
\(67\) 15.8915 + 15.8915i 0.237186 + 0.237186i 0.815684 0.578498i \(-0.196361\pi\)
−0.578498 + 0.815684i \(0.696361\pi\)
\(68\) 113.552 + 57.8577i 1.66988 + 0.850849i
\(69\) −72.1457 + 99.3000i −1.04559 + 1.43913i
\(70\) 0 0
\(71\) −19.5314 + 60.1116i −0.275091 + 0.846642i 0.714105 + 0.700039i \(0.246834\pi\)
−0.989195 + 0.146603i \(0.953166\pi\)
\(72\) −58.5252 + 29.8201i −0.812851 + 0.414168i
\(73\) −2.76193 + 17.4381i −0.0378346 + 0.238878i −0.999357 0.0358472i \(-0.988587\pi\)
0.961523 + 0.274726i \(0.0885870\pi\)
\(74\) 53.3477 73.4268i 0.720915 0.992254i
\(75\) 0 0
\(76\) 52.3778 0.689182
\(77\) −31.2366 74.5809i −0.405670 0.968583i
\(78\) −10.0201 + 10.0201i −0.128462 + 0.128462i
\(79\) 21.7530 7.06797i 0.275354 0.0894680i −0.168085 0.985773i \(-0.553758\pi\)
0.443439 + 0.896305i \(0.353758\pi\)
\(80\) 0 0
\(81\) 214.136 155.579i 2.64365 1.92072i
\(82\) 157.236 80.1160i 1.91752 0.977024i
\(83\) −38.0294 74.6368i −0.458185 0.899239i −0.998336 0.0576706i \(-0.981633\pi\)
0.540151 0.841568i \(-0.318367\pi\)
\(84\) 121.680 + 167.478i 1.44857 + 1.99379i
\(85\) 0 0
\(86\) 25.6481 + 78.9367i 0.298234 + 0.917869i
\(87\) −10.9491 10.9491i −0.125851 0.125851i
\(88\) −19.9498 23.1730i −0.226702 0.263329i
\(89\) 64.7104i 0.727083i −0.931578 0.363542i \(-0.881567\pi\)
0.931578 0.363542i \(-0.118433\pi\)
\(90\) 0 0
\(91\) 4.93672 + 3.58674i 0.0542497 + 0.0394147i
\(92\) 104.634 + 16.5723i 1.13732 + 0.180134i
\(93\) −17.5085 34.3624i −0.188264 0.369488i
\(94\) −257.956 83.8148i −2.74421 0.891647i
\(95\) 0 0
\(96\) −209.010 151.855i −2.17719 1.58182i
\(97\) −17.7536 + 34.8433i −0.183026 + 0.359209i −0.964230 0.265067i \(-0.914606\pi\)
0.781204 + 0.624276i \(0.214606\pi\)
\(98\) 10.6359 10.6359i 0.108529 0.108529i
\(99\) 198.310 + 168.029i 2.00313 + 1.69726i
\(100\) 0 0
\(101\) 5.90720 + 18.1805i 0.0584872 + 0.180005i 0.976032 0.217628i \(-0.0698319\pi\)
−0.917545 + 0.397633i \(0.869832\pi\)
\(102\) 69.0268 + 435.818i 0.676733 + 4.27273i
\(103\) 21.3233 134.630i 0.207023 1.30709i −0.637034 0.770836i \(-0.719839\pi\)
0.844056 0.536254i \(-0.180161\pi\)
\(104\) 2.19465 + 0.713085i 0.0211024 + 0.00685658i
\(105\) 0 0
\(106\) 10.7159 7.78556i 0.101093 0.0734487i
\(107\) 5.97969 + 37.7543i 0.0558849 + 0.352844i 0.999747 + 0.0225031i \(0.00716357\pi\)
−0.943862 + 0.330340i \(0.892836\pi\)
\(108\) −367.095 187.044i −3.39903 1.73189i
\(109\) 1.36826i 0.0125529i −0.999980 0.00627643i \(-0.998002\pi\)
0.999980 0.00627643i \(-0.00199786\pi\)
\(110\) 0 0
\(111\) 173.489 1.56296
\(112\) −38.0901 + 74.7560i −0.340090 + 0.667465i
\(113\) 1.21875 0.193031i 0.0107854 0.00170824i −0.151039 0.988528i \(-0.548262\pi\)
0.161825 + 0.986820i \(0.448262\pi\)
\(114\) 106.595 + 146.715i 0.935044 + 1.28698i
\(115\) 0 0
\(116\) −4.12985 + 12.7104i −0.0356022 + 0.109572i
\(117\) −19.3742 3.06857i −0.165591 0.0262271i
\(118\) 172.328 27.2941i 1.46041 0.231306i
\(119\) 180.712 58.7169i 1.51859 0.493419i
\(120\) 0 0
\(121\) −54.0831 + 108.241i −0.446968 + 0.894550i
\(122\) −41.1642 41.1642i −0.337411 0.337411i
\(123\) 300.557 + 153.142i 2.44356 + 1.24505i
\(124\) −19.5651 + 26.9290i −0.157783 + 0.217169i
\(125\) 0 0
\(126\) −160.398 + 493.653i −1.27300 + 3.91788i
\(127\) −97.3404 + 49.5974i −0.766459 + 0.390531i −0.793082 0.609115i \(-0.791525\pi\)
0.0266225 + 0.999646i \(0.491525\pi\)
\(128\) −13.5390 + 85.4818i −0.105773 + 0.667826i
\(129\) −93.2536 + 128.353i −0.722896 + 0.994981i
\(130\) 0 0
\(131\) 120.049 0.916404 0.458202 0.888848i \(-0.348494\pi\)
0.458202 + 0.888848i \(0.348494\pi\)
\(132\) 71.1330 301.509i 0.538886 2.28416i
\(133\) 55.2203 55.2203i 0.415190 0.415190i
\(134\) 63.8728 20.7535i 0.476663 0.154877i
\(135\) 0 0
\(136\) 58.1321 42.2354i 0.427442 0.310555i
\(137\) −171.881 + 87.5779i −1.25461 + 0.639255i −0.949710 0.313130i \(-0.898622\pi\)
−0.304898 + 0.952385i \(0.598622\pi\)
\(138\) 166.521 + 326.816i 1.20667 + 2.36823i
\(139\) −33.6518 46.3178i −0.242100 0.333221i 0.670625 0.741796i \(-0.266026\pi\)
−0.912725 + 0.408575i \(0.866026\pi\)
\(140\) 0 0
\(141\) −160.212 493.082i −1.13626 3.49703i
\(142\) 133.557 + 133.557i 0.940545 + 0.940545i
\(143\) −0.752247 9.10048i −0.00526047 0.0636397i
\(144\) 269.704i 1.87295i
\(145\) 0 0
\(146\) 42.6843 + 31.0120i 0.292358 + 0.212411i
\(147\) 28.3976 + 4.49774i 0.193181 + 0.0305969i
\(148\) −67.9795 133.417i −0.459321 0.901468i
\(149\) −167.106 54.2961i −1.12152 0.364403i −0.311172 0.950354i \(-0.600721\pi\)
−0.810347 + 0.585950i \(0.800721\pi\)
\(150\) 0 0
\(151\) −158.170 114.917i −1.04748 0.761040i −0.0757502 0.997127i \(-0.524135\pi\)
−0.971732 + 0.236086i \(0.924135\pi\)
\(152\) 13.4072 26.3131i 0.0882052 0.173112i
\(153\) −431.905 + 431.905i −2.82291 + 2.82291i
\(154\) −240.960 18.0107i −1.56467 0.116953i
\(155\) 0 0
\(156\) 7.22441 + 22.2344i 0.0463103 + 0.142528i
\(157\) −17.8440 112.662i −0.113656 0.717595i −0.977041 0.213050i \(-0.931660\pi\)
0.863385 0.504545i \(-0.168340\pi\)
\(158\) 10.6924 67.5092i 0.0676735 0.427274i
\(159\) 24.0797 + 7.82398i 0.151445 + 0.0492074i
\(160\) 0 0
\(161\) 127.784 92.8402i 0.793687 0.576647i
\(162\) −123.736 781.235i −0.763800 4.82244i
\(163\) 20.4791 + 10.4346i 0.125639 + 0.0640162i 0.515680 0.856781i \(-0.327539\pi\)
−0.390041 + 0.920797i \(0.627539\pi\)
\(164\) 291.143i 1.77526i
\(165\) 0 0
\(166\) −250.324 −1.50798
\(167\) 100.631 197.500i 0.602584 1.18264i −0.365218 0.930922i \(-0.619005\pi\)
0.967801 0.251715i \(-0.0809945\pi\)
\(168\) 115.283 18.2590i 0.686207 0.108685i
\(169\) −98.9306 136.166i −0.585388 0.805718i
\(170\) 0 0
\(171\) −77.5745 + 238.750i −0.453652 + 1.39620i
\(172\) 135.247 + 21.4210i 0.786318 + 0.124541i
\(173\) 282.598 44.7592i 1.63352 0.258724i 0.728797 0.684730i \(-0.240080\pi\)
0.904720 + 0.426007i \(0.140080\pi\)
\(174\) −44.0077 + 14.2990i −0.252918 + 0.0821781i
\(175\) 0 0
\(176\) 121.968 29.7897i 0.692999 0.169260i
\(177\) 235.828 + 235.828i 1.33236 + 1.33236i
\(178\) −172.300 87.7913i −0.967979 0.493210i
\(179\) 107.048 147.338i 0.598032 0.823120i −0.397495 0.917604i \(-0.630120\pi\)
0.995526 + 0.0944845i \(0.0301203\pi\)
\(180\) 0 0
\(181\) −26.7698 + 82.3891i −0.147900 + 0.455188i −0.997372 0.0724441i \(-0.976920\pi\)
0.849473 + 0.527632i \(0.176920\pi\)
\(182\) 16.2477 8.27863i 0.0892732 0.0454870i
\(183\) 17.4077 109.908i 0.0951240 0.600589i
\(184\) 35.1086 48.3229i 0.190808 0.262624i
\(185\) 0 0
\(186\) −115.248 −0.619613
\(187\) −243.025 147.614i −1.29960 0.789380i
\(188\) −316.415 + 316.415i −1.68306 + 1.68306i
\(189\) −584.212 + 189.822i −3.09107 + 1.00435i
\(190\) 0 0
\(191\) −89.7767 + 65.2266i −0.470035 + 0.341501i −0.797455 0.603378i \(-0.793821\pi\)
0.327420 + 0.944879i \(0.393821\pi\)
\(192\) −455.524 + 232.101i −2.37252 + 1.20886i
\(193\) −141.689 278.079i −0.734138 1.44083i −0.891376 0.453265i \(-0.850259\pi\)
0.157238 0.987561i \(-0.449741\pi\)
\(194\) 68.6891 + 94.5425i 0.354068 + 0.487332i
\(195\) 0 0
\(196\) −7.66840 23.6009i −0.0391245 0.120413i
\(197\) −185.550 185.550i −0.941876 0.941876i 0.0565249 0.998401i \(-0.481998\pi\)
−0.998401 + 0.0565249i \(0.981998\pi\)
\(198\) 716.442 300.067i 3.61839 1.51549i
\(199\) 303.716i 1.52621i 0.646275 + 0.763105i \(0.276326\pi\)
−0.646275 + 0.763105i \(0.723674\pi\)
\(200\) 0 0
\(201\) 103.858 + 75.4576i 0.516709 + 0.375411i
\(202\) 56.4222 + 8.93640i 0.279318 + 0.0442396i
\(203\) 9.04617 + 17.7541i 0.0445624 + 0.0874587i
\(204\) 692.350 + 224.958i 3.39387 + 1.10274i
\(205\) 0 0
\(206\) −329.542 239.427i −1.59972 1.16226i
\(207\) −230.509 + 452.399i −1.11357 + 2.18550i
\(208\) −6.69992 + 6.69992i −0.0322111 + 0.0322111i
\(209\) −116.537 8.71067i −0.557595 0.0416778i
\(210\) 0 0
\(211\) 81.0630 + 249.486i 0.384185 + 1.18240i 0.937070 + 0.349142i \(0.113527\pi\)
−0.552885 + 0.833258i \(0.686473\pi\)
\(212\) −3.41852 21.5837i −0.0161251 0.101810i
\(213\) −56.4793 + 356.596i −0.265161 + 1.67416i
\(214\) 108.638 + 35.2987i 0.507656 + 0.164947i
\(215\) 0 0
\(216\) −187.931 + 136.540i −0.870053 + 0.632130i
\(217\) 7.76357 + 49.0172i 0.0357768 + 0.225886i
\(218\) −3.64318 1.85629i −0.0167119 0.00851511i
\(219\) 100.852i 0.460512i
\(220\) 0 0
\(221\) 21.4585 0.0970974
\(222\) 235.369 461.937i 1.06022 2.08080i
\(223\) −392.047 + 62.0942i −1.75806 + 0.278449i −0.950362 0.311148i \(-0.899287\pi\)
−0.807698 + 0.589597i \(0.799287\pi\)
\(224\) 195.414 + 268.964i 0.872382 + 1.20073i
\(225\) 0 0
\(226\) 1.13948 3.50696i 0.00504195 0.0155175i
\(227\) 168.118 + 26.6273i 0.740607 + 0.117301i 0.515327 0.856993i \(-0.327670\pi\)
0.225280 + 0.974294i \(0.427670\pi\)
\(228\) 295.510 46.8042i 1.29610 0.205282i
\(229\) 253.887 82.4930i 1.10868 0.360231i 0.303242 0.952914i \(-0.401931\pi\)
0.805436 + 0.592682i \(0.201931\pi\)
\(230\) 0 0
\(231\) −242.878 392.865i −1.05142 1.70071i
\(232\) 5.32820 + 5.32820i 0.0229664 + 0.0229664i
\(233\) 103.065 + 52.5144i 0.442340 + 0.225383i 0.660952 0.750428i \(-0.270153\pi\)
−0.218612 + 0.975812i \(0.570153\pi\)
\(234\) −34.4551 + 47.4233i −0.147244 + 0.202664i
\(235\) 0 0
\(236\) 88.9514 273.764i 0.376913 1.16002i
\(237\) 116.412 59.3150i 0.491191 0.250274i
\(238\) 88.8267 560.830i 0.373222 2.35643i
\(239\) 3.00227 4.13227i 0.0125618 0.0172898i −0.802690 0.596397i \(-0.796599\pi\)
0.815252 + 0.579107i \(0.196599\pi\)
\(240\) 0 0
\(241\) −12.7150 −0.0527594 −0.0263797 0.999652i \(-0.508398\pi\)
−0.0263797 + 0.999652i \(0.508398\pi\)
\(242\) 214.831 + 290.851i 0.887733 + 1.20187i
\(243\) 537.292 537.292i 2.21108 2.21108i
\(244\) −91.3429 + 29.6791i −0.374356 + 0.121636i
\(245\) 0 0
\(246\) 815.521 592.510i 3.31512 2.40858i
\(247\) 7.85803 4.00386i 0.0318139 0.0162100i
\(248\) 8.52027 + 16.7220i 0.0343559 + 0.0674273i
\(249\) −281.252 387.110i −1.12953 1.55466i
\(250\) 0 0
\(251\) 55.4542 + 170.671i 0.220933 + 0.679962i 0.998679 + 0.0513834i \(0.0163630\pi\)
−0.777746 + 0.628579i \(0.783637\pi\)
\(252\) 605.528 + 605.528i 2.40289 + 2.40289i
\(253\) −230.047 54.2735i −0.909278 0.214520i
\(254\) 326.470i 1.28531i
\(255\) 0 0
\(256\) −80.3911 58.4076i −0.314028 0.228155i
\(257\) 116.416 + 18.4385i 0.452980 + 0.0717450i 0.378756 0.925497i \(-0.376352\pi\)
0.0742243 + 0.997242i \(0.476352\pi\)
\(258\) 215.241 + 422.434i 0.834266 + 1.63734i
\(259\) −212.326 68.9889i −0.819792 0.266367i
\(260\) 0 0
\(261\) −51.8201 37.6495i −0.198545 0.144251i
\(262\) 162.868 319.646i 0.621634 1.22002i
\(263\) 45.2638 45.2638i 0.172106 0.172106i −0.615798 0.787904i \(-0.711166\pi\)
0.787904 + 0.615798i \(0.211166\pi\)
\(264\) −133.261 112.913i −0.504778 0.427700i
\(265\) 0 0
\(266\) −72.1152 221.948i −0.271110 0.834390i
\(267\) −57.8245 365.089i −0.216571 1.36738i
\(268\) 17.3331 109.437i 0.0646758 0.408347i
\(269\) 445.037 + 144.601i 1.65441 + 0.537551i 0.979690 0.200519i \(-0.0642629\pi\)
0.674723 + 0.738071i \(0.264263\pi\)
\(270\) 0 0
\(271\) −273.448 + 198.672i −1.00903 + 0.733107i −0.964006 0.265879i \(-0.914338\pi\)
−0.0450282 + 0.998986i \(0.514338\pi\)
\(272\) 46.1548 + 291.410i 0.169687 + 1.07136i
\(273\) 31.0575 + 15.8246i 0.113764 + 0.0579656i
\(274\) 576.472i 2.10391i
\(275\) 0 0
\(276\) 605.141 2.19254
\(277\) −2.53164 + 4.96863i −0.00913951 + 0.0179373i −0.895531 0.444999i \(-0.853204\pi\)
0.886392 + 0.462936i \(0.153204\pi\)
\(278\) −168.982 + 26.7641i −0.607849 + 0.0962739i
\(279\) −93.7714 129.065i −0.336098 0.462599i
\(280\) 0 0
\(281\) 42.3477 130.333i 0.150703 0.463817i −0.846997 0.531598i \(-0.821592\pi\)
0.997700 + 0.0677806i \(0.0215918\pi\)
\(282\) −1530.25 242.368i −5.42643 0.859462i
\(283\) −307.975 + 48.7785i −1.08825 + 0.172362i −0.674681 0.738110i \(-0.735719\pi\)
−0.413571 + 0.910472i \(0.635719\pi\)
\(284\) 296.362 96.2940i 1.04353 0.339063i
\(285\) 0 0
\(286\) −25.2518 10.3435i −0.0882930 0.0361660i
\(287\) −306.943 306.943i −1.06949 1.06949i
\(288\) −952.225 485.183i −3.30634 1.68466i
\(289\) 222.882 306.770i 0.771217 1.06149i
\(290\) 0 0
\(291\) −69.0281 + 212.447i −0.237210 + 0.730057i
\(292\) 77.5578 39.5177i 0.265609 0.135335i
\(293\) −38.6619 + 244.101i −0.131952 + 0.833111i 0.829574 + 0.558397i \(0.188583\pi\)
−0.961526 + 0.274714i \(0.911417\pi\)
\(294\) 50.5024 69.5105i 0.171777 0.236430i
\(295\) 0 0
\(296\) −84.4257 −0.285222
\(297\) 785.658 + 477.212i 2.64531 + 1.60677i
\(298\) −371.280 + 371.280i −1.24591 + 1.24591i
\(299\) 16.9646 5.51213i 0.0567377 0.0184352i
\(300\) 0 0
\(301\) 165.170 120.003i 0.548737 0.398681i
\(302\) −520.568 + 265.243i −1.72374 + 0.878287i
\(303\) 49.5737 + 97.2938i 0.163610 + 0.321102i
\(304\) 71.2747 + 98.1013i 0.234456 + 0.322702i
\(305\) 0 0
\(306\) 564.049 + 1735.96i 1.84330 + 5.67308i
\(307\) 117.293 + 117.293i 0.382063 + 0.382063i 0.871845 0.489782i \(-0.162924\pi\)
−0.489782 + 0.871845i \(0.662924\pi\)
\(308\) −206.954 + 340.719i −0.671929 + 1.10623i
\(309\) 778.624i 2.51982i
\(310\) 0 0
\(311\) −11.7045 8.50380i −0.0376350 0.0273434i 0.568809 0.822470i \(-0.307404\pi\)
−0.606444 + 0.795126i \(0.707404\pi\)
\(312\) 13.0192 + 2.06203i 0.0417281 + 0.00660909i
\(313\) 193.434 + 379.636i 0.618000 + 1.21289i 0.961775 + 0.273841i \(0.0882943\pi\)
−0.343775 + 0.939052i \(0.611706\pi\)
\(314\) −324.187 105.335i −1.03244 0.335461i
\(315\) 0 0
\(316\) −91.2295 66.2821i −0.288701 0.209753i
\(317\) −171.173 + 335.946i −0.539978 + 1.05977i 0.446333 + 0.894867i \(0.352730\pi\)
−0.986310 + 0.164899i \(0.947270\pi\)
\(318\) 53.5009 53.5009i 0.168242 0.168242i
\(319\) 11.3025 27.5930i 0.0354309 0.0864984i
\(320\) 0 0
\(321\) 67.4735 + 207.662i 0.210198 + 0.646923i
\(322\) −73.8381 466.196i −0.229311 1.44781i
\(323\) 42.9600 271.239i 0.133003 0.839749i
\(324\) −1241.09 403.254i −3.83052 1.24461i
\(325\) 0 0
\(326\) 55.5672 40.3720i 0.170452 0.123840i
\(327\) −1.22266 7.71959i −0.00373903 0.0236073i
\(328\) −146.262 74.5241i −0.445920 0.227208i
\(329\) 667.173i 2.02788i
\(330\) 0 0
\(331\) 177.839 0.537278 0.268639 0.963241i \(-0.413426\pi\)
0.268639 + 0.963241i \(0.413426\pi\)
\(332\) −187.493 + 367.975i −0.564736 + 1.10836i
\(333\) 708.826 112.267i 2.12861 0.337138i
\(334\) −389.347 535.890i −1.16571 1.60446i
\(335\) 0 0
\(336\) −148.099 + 455.802i −0.440771 + 1.35655i
\(337\) −176.531 27.9598i −0.523831 0.0829666i −0.111081 0.993811i \(-0.535431\pi\)
−0.412749 + 0.910845i \(0.635431\pi\)
\(338\) −496.778 + 78.6820i −1.46976 + 0.232787i
\(339\) 6.70356 2.17812i 0.0197745 0.00642513i
\(340\) 0 0
\(341\) 48.0095 56.6616i 0.140790 0.166163i
\(342\) 530.459 + 530.459i 1.55105 + 1.55105i
\(343\) 287.962 + 146.724i 0.839539 + 0.427767i
\(344\) 45.3805 62.4609i 0.131920 0.181572i
\(345\) 0 0
\(346\) 264.218 813.180i 0.763637 2.35023i
\(347\) 98.4313 50.1532i 0.283664 0.144534i −0.306370 0.951912i \(-0.599114\pi\)
0.590034 + 0.807379i \(0.299114\pi\)
\(348\) −11.9423 + 75.4010i −0.0343171 + 0.216669i
\(349\) 179.109 246.522i 0.513206 0.706368i −0.471250 0.882000i \(-0.656197\pi\)
0.984456 + 0.175632i \(0.0561969\pi\)
\(350\) 0 0
\(351\) −69.3719 −0.197641
\(352\) 114.237 484.212i 0.324537 1.37560i
\(353\) 275.060 275.060i 0.779207 0.779207i −0.200489 0.979696i \(-0.564253\pi\)
0.979696 + 0.200489i \(0.0642530\pi\)
\(354\) 947.867 307.981i 2.67759 0.870002i
\(355\) 0 0
\(356\) −258.105 + 187.524i −0.725015 + 0.526754i
\(357\) 967.089 492.756i 2.70893 1.38027i
\(358\) −247.079 484.920i −0.690165 1.35453i
\(359\) −325.640 448.205i −0.907075 1.24848i −0.968156 0.250349i \(-0.919455\pi\)
0.0610804 0.998133i \(-0.480545\pi\)
\(360\) 0 0
\(361\) 76.6775 + 235.989i 0.212403 + 0.653709i
\(362\) 183.054 + 183.054i 0.505674 + 0.505674i
\(363\) −208.409 + 659.010i −0.574129 + 1.81545i
\(364\) 30.0847i 0.0826503i
\(365\) 0 0
\(366\) −269.028 195.460i −0.735048 0.534044i
\(367\) 13.0718 + 2.07038i 0.0356181 + 0.00564135i 0.174218 0.984707i \(-0.444260\pi\)
−0.138600 + 0.990348i \(0.544260\pi\)
\(368\) 111.344 + 218.525i 0.302566 + 0.593819i
\(369\) 1327.09 + 431.199i 3.59646 + 1.16856i
\(370\) 0 0
\(371\) −26.3590 19.1509i −0.0710486 0.0516198i
\(372\) −86.3206 + 169.414i −0.232045 + 0.455413i
\(373\) −11.0292 + 11.0292i −0.0295689 + 0.0295689i −0.721737 0.692168i \(-0.756656\pi\)
0.692168 + 0.721737i \(0.256656\pi\)
\(374\) −722.749 + 446.821i −1.93248 + 1.19471i
\(375\) 0 0
\(376\) 77.9648 + 239.951i 0.207353 + 0.638168i
\(377\) 0.352022 + 2.22258i 0.000933745 + 0.00589543i
\(378\) −287.162 + 1813.07i −0.759688 + 4.79648i
\(379\) −162.869 52.9193i −0.429733 0.139629i 0.0861607 0.996281i \(-0.472540\pi\)
−0.515894 + 0.856652i \(0.672540\pi\)
\(380\) 0 0
\(381\) −504.864 + 366.805i −1.32510 + 0.962744i
\(382\) 51.8763 + 327.534i 0.135802 + 0.857420i
\(383\) −498.019 253.753i −1.30031 0.662541i −0.339725 0.940525i \(-0.610334\pi\)
−0.960586 + 0.277984i \(0.910334\pi\)
\(384\) 494.377i 1.28744i
\(385\) 0 0
\(386\) −932.650 −2.41619
\(387\) −297.949 + 584.759i −0.769895 + 1.51100i
\(388\) 190.425 30.1603i 0.490785 0.0777328i
\(389\) 183.509 + 252.578i 0.471744 + 0.649300i 0.976892 0.213733i \(-0.0685621\pi\)
−0.505148 + 0.863033i \(0.668562\pi\)
\(390\) 0 0
\(391\) 171.640 528.254i 0.438977 1.35103i
\(392\) −13.8193 2.18876i −0.0352533 0.00558358i
\(393\) 677.303 107.274i 1.72342 0.272963i
\(394\) −745.782 + 242.319i −1.89285 + 0.615024i
\(395\) 0 0
\(396\) 95.5185 1277.91i 0.241208 3.22705i
\(397\) 223.200 + 223.200i 0.562215 + 0.562215i 0.929936 0.367721i \(-0.119862\pi\)
−0.367721 + 0.929936i \(0.619862\pi\)
\(398\) 808.684 + 412.045i 2.03187 + 1.03529i
\(399\) 262.203 360.891i 0.657150 0.904489i
\(400\) 0 0
\(401\) 175.008 538.619i 0.436429 1.34319i −0.455186 0.890396i \(-0.650427\pi\)
0.891615 0.452794i \(-0.149573\pi\)
\(402\) 341.819 174.165i 0.850295 0.433247i
\(403\) −0.876759 + 5.53564i −0.00217558 + 0.0137361i
\(404\) 55.3966 76.2469i 0.137120 0.188730i
\(405\) 0 0
\(406\) 59.5455 0.146664
\(407\) 129.062 + 308.150i 0.317106 + 0.757126i
\(408\) 290.234 290.234i 0.711358 0.711358i
\(409\) 51.3176 16.6741i 0.125471 0.0407679i −0.245609 0.969369i \(-0.578988\pi\)
0.371079 + 0.928601i \(0.378988\pi\)
\(410\) 0 0
\(411\) −891.477 + 647.696i −2.16904 + 1.57590i
\(412\) −598.782 + 305.095i −1.45335 + 0.740521i
\(413\) −194.842 382.400i −0.471773 0.925907i
\(414\) 891.846 + 1227.52i 2.15422 + 2.96503i
\(415\) 0 0
\(416\) 11.6021 + 35.7077i 0.0278897 + 0.0858357i
\(417\) −231.249 231.249i −0.554554 0.554554i
\(418\) −181.297 + 298.479i −0.433726 + 0.714065i
\(419\) 571.037i 1.36286i 0.731885 + 0.681428i \(0.238641\pi\)
−0.731885 + 0.681428i \(0.761359\pi\)
\(420\) 0 0
\(421\) 537.862 + 390.780i 1.27758 + 0.928218i 0.999477 0.0323321i \(-0.0102934\pi\)
0.278106 + 0.960550i \(0.410293\pi\)
\(422\) 774.267 + 122.632i 1.83476 + 0.290597i
\(423\) −973.662 1910.92i −2.30180 4.51754i
\(424\) −11.7181 3.80743i −0.0276369 0.00897978i
\(425\) 0 0
\(426\) 872.861 + 634.171i 2.04897 + 1.48866i
\(427\) −65.0102 + 127.590i −0.152249 + 0.298805i
\(428\) 133.259 133.259i 0.311352 0.311352i
\(429\) −12.3762 50.6717i −0.0288489 0.118116i
\(430\) 0 0
\(431\) −111.781 344.025i −0.259352 0.798202i −0.992941 0.118609i \(-0.962156\pi\)
0.733589 0.679593i \(-0.237844\pi\)
\(432\) −149.211 942.079i −0.345395 2.18074i
\(433\) 58.2731 367.922i 0.134580 0.849705i −0.824354 0.566075i \(-0.808461\pi\)
0.958934 0.283630i \(-0.0915387\pi\)
\(434\) 141.048 + 45.8292i 0.324995 + 0.105597i
\(435\) 0 0
\(436\) −5.45748 + 3.96509i −0.0125172 + 0.00909424i
\(437\) −35.7110 225.470i −0.0817185 0.515950i
\(438\) 268.532 + 136.824i 0.613087 + 0.312384i
\(439\) 731.071i 1.66531i −0.553792 0.832655i \(-0.686820\pi\)
0.553792 0.832655i \(-0.313180\pi\)
\(440\) 0 0
\(441\) 118.935 0.269695
\(442\) 29.1123 57.1362i 0.0658650 0.129267i
\(443\) 674.027 106.755i 1.52151 0.240983i 0.660986 0.750398i \(-0.270138\pi\)
0.860521 + 0.509415i \(0.170138\pi\)
\(444\) −502.753 691.980i −1.13233 1.55851i
\(445\) 0 0
\(446\) −366.549 + 1128.12i −0.821858 + 2.52942i
\(447\) −991.314 157.009i −2.21770 0.351250i
\(448\) 649.795 102.917i 1.45044 0.229726i
\(449\) −172.805 + 56.1477i −0.384866 + 0.125051i −0.495058 0.868860i \(-0.664853\pi\)
0.110192 + 0.993910i \(0.464853\pi\)
\(450\) 0 0
\(451\) −48.4184 + 647.776i −0.107358 + 1.43631i
\(452\) −4.30174 4.30174i −0.00951712 0.00951712i
\(453\) −995.066 507.011i −2.19661 1.11923i
\(454\) 298.981 411.512i 0.658548 0.906413i
\(455\) 0 0
\(456\) 52.1289 160.436i 0.114318 0.351834i
\(457\) 734.574 374.284i 1.60738 0.819002i 0.607691 0.794174i \(-0.292096\pi\)
0.999692 0.0248284i \(-0.00790394\pi\)
\(458\) 124.795 787.926i 0.272479 1.72036i
\(459\) −1269.70 + 1747.59i −2.76623 + 3.80739i
\(460\) 0 0
\(461\) 719.958 1.56173 0.780866 0.624699i \(-0.214778\pi\)
0.780866 + 0.624699i \(0.214778\pi\)
\(462\) −1375.56 + 113.704i −2.97741 + 0.246113i
\(463\) −501.863 + 501.863i −1.08394 + 1.08394i −0.0877980 + 0.996138i \(0.527983\pi\)
−0.996138 + 0.0877980i \(0.972017\pi\)
\(464\) −29.4258 + 9.56101i −0.0634176 + 0.0206056i
\(465\) 0 0
\(466\) 279.653 203.180i 0.600114 0.436008i
\(467\) −45.4172 + 23.1412i −0.0972531 + 0.0495529i −0.501940 0.864902i \(-0.667380\pi\)
0.404687 + 0.914455i \(0.367380\pi\)
\(468\) 43.9051 + 86.1687i 0.0938144 + 0.184121i
\(469\) −97.1022 133.650i −0.207041 0.284967i
\(470\) 0 0
\(471\) −201.348 619.684i −0.427489 1.31568i
\(472\) −114.762 114.762i −0.243140 0.243140i
\(473\) −297.353 70.1525i −0.628654 0.148314i
\(474\) 390.435i 0.823702i
\(475\) 0 0
\(476\) −757.885 550.635i −1.59219 1.15680i
\(477\) 103.446 + 16.3843i 0.216868 + 0.0343486i
\(478\) −6.92960 13.6001i −0.0144971 0.0284521i
\(479\) −27.4370 8.91483i −0.0572798 0.0186113i 0.280237 0.959931i \(-0.409587\pi\)
−0.337517 + 0.941320i \(0.609587\pi\)
\(480\) 0 0
\(481\) −20.3974 14.8195i −0.0424061 0.0308099i
\(482\) −17.2502 + 33.8554i −0.0357888 + 0.0702395i
\(483\) 637.981 637.981i 1.32087 1.32087i
\(484\) 588.458 97.9533i 1.21582 0.202383i
\(485\) 0 0
\(486\) −701.679 2159.55i −1.44378 4.44351i
\(487\) 4.27107 + 26.9665i 0.00877017 + 0.0553727i 0.991685 0.128687i \(-0.0410761\pi\)
−0.982915 + 0.184059i \(0.941076\pi\)
\(488\) −8.47119 + 53.4850i −0.0173590 + 0.109600i
\(489\) 124.865 + 40.5712i 0.255348 + 0.0829677i
\(490\) 0 0
\(491\) 313.154 227.520i 0.637788 0.463380i −0.221301 0.975205i \(-0.571030\pi\)
0.859090 + 0.511825i \(0.171030\pi\)
\(492\) −260.162 1642.60i −0.528785 3.33861i
\(493\) 62.4335 + 31.8115i 0.126640 + 0.0645263i
\(494\) 26.3550i 0.0533502i
\(495\) 0 0
\(496\) −77.0606 −0.155364
\(497\) 210.926 413.965i 0.424398 0.832928i
\(498\) −1412.30 + 223.687i −2.83595 + 0.449170i
\(499\) −245.444 337.825i −0.491872 0.677003i 0.488860 0.872362i \(-0.337413\pi\)
−0.980732 + 0.195359i \(0.937413\pi\)
\(500\) 0 0
\(501\) 391.268 1204.20i 0.780974 2.40359i
\(502\) 529.667 + 83.8910i 1.05511 + 0.167114i
\(503\) 817.154 129.425i 1.62456 0.257305i 0.723285 0.690550i \(-0.242631\pi\)
0.901276 + 0.433245i \(0.142631\pi\)
\(504\) 459.198 149.202i 0.911106 0.296036i
\(505\) 0 0
\(506\) −456.611 + 538.900i −0.902394 + 1.06502i
\(507\) −679.833 679.833i −1.34089 1.34089i
\(508\) 479.908 + 244.525i 0.944700 + 0.481349i
\(509\) −316.476 + 435.592i −0.621760 + 0.855780i −0.997480 0.0709537i \(-0.977396\pi\)
0.375719 + 0.926734i \(0.377396\pi\)
\(510\) 0 0
\(511\) 40.1045 123.429i 0.0784824 0.241544i
\(512\) −573.040 + 291.978i −1.11922 + 0.570270i
\(513\) −138.883 + 876.871i −0.270727 + 1.70930i
\(514\) 207.034 284.958i 0.402790 0.554393i
\(515\) 0 0
\(516\) 782.189 1.51587
\(517\) 756.626 651.384i 1.46349 1.25993i
\(518\) −471.751 + 471.751i −0.910716 + 0.910716i
\(519\) 1554.39 505.053i 2.99498 0.973127i
\(520\) 0 0
\(521\) 236.468 171.804i 0.453874 0.329759i −0.337249 0.941415i \(-0.609497\pi\)
0.791123 + 0.611657i \(0.209497\pi\)
\(522\) −170.550 + 86.8997i −0.326725 + 0.166475i
\(523\) 393.098 + 771.497i 0.751621 + 1.47514i 0.875694 + 0.482866i \(0.160404\pi\)
−0.124074 + 0.992273i \(0.539596\pi\)
\(524\) −347.890 478.829i −0.663912 0.913797i
\(525\) 0 0
\(526\) −59.1125 181.930i −0.112381 0.345874i
\(527\) 123.405 + 123.405i 0.234165 + 0.234165i
\(528\) 661.509 277.059i 1.25286 0.524733i
\(529\) 67.2858i 0.127194i
\(530\) 0 0
\(531\) 1116.14 + 810.920i 2.10195 + 1.52716i
\(532\) −380.275 60.2297i −0.714803 0.113214i
\(533\) −22.2556 43.6790i −0.0417553 0.0819493i
\(534\) −1050.55 341.344i −1.96732 0.639221i
\(535\) 0 0
\(536\) −50.5412 36.7203i −0.0942933 0.0685081i
\(537\) 472.292 926.924i 0.879500 1.72612i
\(538\) 988.794 988.794i 1.83791 1.83791i
\(539\) 13.1368 + 53.7858i 0.0243725 + 0.0997882i
\(540\) 0 0
\(541\) 33.2984 + 102.482i 0.0615496 + 0.189430i 0.977103 0.212766i \(-0.0682471\pi\)
−0.915554 + 0.402196i \(0.868247\pi\)
\(542\) 158.009 + 997.627i 0.291529 + 1.84064i
\(543\) −77.4106 + 488.751i −0.142561 + 0.900095i
\(544\) 1111.89 + 361.274i 2.04391 + 0.664107i
\(545\) 0 0
\(546\) 84.2703 61.2259i 0.154341 0.112135i
\(547\) 50.9150 + 321.465i 0.0930805 + 0.587687i 0.989506 + 0.144492i \(0.0461549\pi\)
−0.896425 + 0.443195i \(0.853845\pi\)
\(548\) 847.410 + 431.777i 1.54637 + 0.787914i
\(549\) 460.317i 0.838465i
\(550\) 0 0
\(551\) 28.7985 0.0522659
\(552\) 154.898 304.005i 0.280613 0.550734i
\(553\) −166.059 + 26.3012i −0.300288 + 0.0475610i
\(554\) 9.79502 + 13.4817i 0.0176805 + 0.0243352i
\(555\) 0 0
\(556\) −87.2242 + 268.449i −0.156878 + 0.482821i
\(557\) 711.735 + 112.728i 1.27780 + 0.202384i 0.758198 0.652024i \(-0.226080\pi\)
0.519603 + 0.854408i \(0.326080\pi\)
\(558\) −470.871 + 74.5787i −0.843855 + 0.133654i
\(559\) 21.9280 7.12483i 0.0392271 0.0127457i
\(560\) 0 0
\(561\) −1503.02 615.659i −2.67919 1.09743i
\(562\) −289.576 289.576i −0.515260 0.515260i
\(563\) 590.171 + 300.707i 1.04826 + 0.534116i 0.891265 0.453484i \(-0.149819\pi\)
0.156996 + 0.987599i \(0.449819\pi\)
\(564\) −1502.44 + 2067.93i −2.66390 + 3.66654i
\(565\) 0 0
\(566\) −287.944 + 886.202i −0.508736 + 1.56573i
\(567\) −1733.58 + 883.302i −3.05746 + 1.55785i
\(568\) 27.4848 173.532i 0.0483888 0.305515i
\(569\) 298.438 410.765i 0.524496 0.721907i −0.461783 0.886993i \(-0.652790\pi\)
0.986279 + 0.165086i \(0.0527902\pi\)
\(570\) 0 0
\(571\) −447.072 −0.782963 −0.391482 0.920186i \(-0.628037\pi\)
−0.391482 + 0.920186i \(0.628037\pi\)
\(572\) −34.1184 + 29.3727i −0.0596475 + 0.0513509i
\(573\) −448.225 + 448.225i −0.782243 + 0.782243i
\(574\) −1233.70 + 400.854i −2.14930 + 0.698351i
\(575\) 0 0
\(576\) −1710.95 + 1243.08i −2.97040 + 2.15812i
\(577\) −488.958 + 249.136i −0.847414 + 0.431779i −0.823080 0.567925i \(-0.807746\pi\)
−0.0243334 + 0.999704i \(0.507746\pi\)
\(578\) −514.438 1009.64i −0.890031 1.74678i
\(579\) −1047.88 1442.28i −1.80981 2.49099i
\(580\) 0 0
\(581\) 190.277 + 585.612i 0.327499 + 1.00794i
\(582\) 472.019 + 472.019i 0.811029 + 0.811029i
\(583\) 4.01653 + 48.5909i 0.00688942 + 0.0833463i
\(584\) 49.0782i 0.0840380i
\(585\) 0 0
\(586\) 597.501 + 434.110i 1.01963 + 0.740802i
\(587\) 321.206 + 50.8740i 0.547199 + 0.0866678i 0.423912 0.905703i \(-0.360657\pi\)
0.123287 + 0.992371i \(0.460657\pi\)
\(588\) −64.3538 126.301i −0.109445 0.214798i
\(589\) 68.2161 + 22.1647i 0.115817 + 0.0376311i
\(590\) 0 0
\(591\) −1212.66 881.046i −2.05187 1.49077i
\(592\) 157.379 308.874i 0.265843 0.521747i
\(593\) −5.55830 + 5.55830i −0.00937318 + 0.00937318i −0.711778 0.702405i \(-0.752110\pi\)
0.702405 + 0.711778i \(0.252110\pi\)
\(594\) 2336.53 1444.50i 3.93355 2.43181i
\(595\) 0 0
\(596\) 267.691 + 823.868i 0.449146 + 1.38233i
\(597\) 271.397 + 1713.53i 0.454601 + 2.87024i
\(598\) 8.33873 52.6487i 0.0139444 0.0880412i
\(599\) 35.3715 + 11.4929i 0.0590509 + 0.0191868i 0.338393 0.941005i \(-0.390117\pi\)
−0.279343 + 0.960191i \(0.590117\pi\)
\(600\) 0 0
\(601\) −166.472 + 120.949i −0.276992 + 0.201247i −0.717604 0.696451i \(-0.754761\pi\)
0.440612 + 0.897698i \(0.354761\pi\)
\(602\) −95.4413 602.592i −0.158540 1.00098i
\(603\) 473.166 + 241.090i 0.784687 + 0.399818i
\(604\) 963.897i 1.59586i
\(605\) 0 0
\(606\) 326.314 0.538471
\(607\) −410.353 + 805.363i −0.676034 + 1.32679i 0.256793 + 0.966467i \(0.417334\pi\)
−0.932827 + 0.360325i \(0.882666\pi\)
\(608\) 474.578 75.1658i 0.780556 0.123628i
\(609\) 66.9024 + 92.0833i 0.109856 + 0.151204i
\(610\) 0 0
\(611\) −23.2831 + 71.6579i −0.0381065 + 0.117280i
\(612\) 2974.32 + 471.087i 4.86001 + 0.769749i
\(613\) −487.431 + 77.2015i −0.795156 + 0.125940i −0.540779 0.841165i \(-0.681870\pi\)
−0.254377 + 0.967105i \(0.581870\pi\)
\(614\) 471.439 153.180i 0.767815 0.249478i
\(615\) 0 0
\(616\) 118.193 + 191.182i 0.191872 + 0.310360i
\(617\) −614.016 614.016i −0.995164 0.995164i 0.00482401 0.999988i \(-0.498464\pi\)
−0.999988 + 0.00482401i \(0.998464\pi\)
\(618\) −2073.19 1056.34i −3.35468 1.70929i
\(619\) 138.286 190.335i 0.223403 0.307487i −0.682573 0.730818i \(-0.739139\pi\)
0.905975 + 0.423330i \(0.139139\pi\)
\(620\) 0 0
\(621\) −554.884 + 1707.76i −0.893533 + 2.75001i
\(622\) −38.5218 + 19.6278i −0.0619321 + 0.0315560i
\(623\) −74.4111 + 469.813i −0.119440 + 0.754114i
\(624\) −31.8133 + 43.7872i −0.0509828 + 0.0701718i
\(625\) 0 0
\(626\) 1273.26 2.03396
\(627\) −665.276 + 54.9918i −1.06105 + 0.0877062i
\(628\) −397.657 + 397.657i −0.633212 + 0.633212i
\(629\) −746.659 + 242.604i −1.18706 + 0.385698i
\(630\) 0 0
\(631\) −531.837 + 386.402i −0.842848 + 0.612365i −0.923165 0.384404i \(-0.874407\pi\)
0.0803166 + 0.996769i \(0.474407\pi\)
\(632\) −56.6503 + 28.8648i −0.0896365 + 0.0456721i
\(633\) 680.287 + 1335.14i 1.07470 + 2.10922i
\(634\) 662.274 + 911.542i 1.04460 + 1.43776i
\(635\) 0 0
\(636\) −38.5738 118.718i −0.0606507 0.186664i
\(637\) −2.95456 2.95456i −0.00463824 0.00463824i
\(638\) −58.1362 67.5292i −0.0911226 0.105845i
\(639\) 1493.50i 2.33725i
\(640\) 0 0
\(641\) −613.451 445.698i −0.957022 0.695317i −0.00456459 0.999990i \(-0.501453\pi\)
−0.952457 + 0.304673i \(0.901453\pi\)
\(642\) 644.468 + 102.074i 1.00384 + 0.158993i
\(643\) −129.076 253.326i −0.200740 0.393974i 0.768588 0.639744i \(-0.220959\pi\)
−0.969328 + 0.245769i \(0.920959\pi\)
\(644\) −740.609 240.638i −1.15001 0.373662i
\(645\) 0 0
\(646\) −663.927 482.371i −1.02775 0.746705i
\(647\) −162.807 + 319.527i −0.251634 + 0.493860i −0.981924 0.189278i \(-0.939385\pi\)
0.730289 + 0.683138i \(0.239385\pi\)
\(648\) −520.265 + 520.265i −0.802879 + 0.802879i
\(649\) −243.440 + 594.316i −0.375100 + 0.915741i
\(650\) 0 0
\(651\) 87.6024 + 269.613i 0.134566 + 0.414151i
\(652\) −17.7267 111.922i −0.0271882 0.171659i
\(653\) −6.13452 + 38.7318i −0.00939436 + 0.0593137i −0.991940 0.126707i \(-0.959559\pi\)
0.982546 + 0.186021i \(0.0595592\pi\)
\(654\) −22.2132 7.21751i −0.0339652 0.0110360i
\(655\) 0 0
\(656\) 545.298 396.182i 0.831247 0.603936i
\(657\) 65.2629 + 412.053i 0.0993346 + 0.627174i
\(658\) 1776.44 + 905.141i 2.69976 + 1.37559i
\(659\) 693.150i 1.05182i −0.850540 0.525911i \(-0.823725\pi\)
0.850540 0.525911i \(-0.176275\pi\)
\(660\) 0 0
\(661\) 1020.90 1.54448 0.772238 0.635334i \(-0.219137\pi\)
0.772238 + 0.635334i \(0.219137\pi\)
\(662\) 241.270 473.520i 0.364457 0.715287i
\(663\) 121.067 19.1751i 0.182604 0.0289217i
\(664\) 136.867 + 188.382i 0.206125 + 0.283707i
\(665\) 0 0
\(666\) 662.724 2039.66i 0.995082 3.06255i
\(667\) 57.5299 + 9.11184i 0.0862517 + 0.0136609i
\(668\) −1079.37 + 170.956i −1.61583 + 0.255922i
\(669\) −2156.40 + 700.658i −3.22332 + 1.04732i
\(670\) 0 0
\(671\) 208.168 50.8434i 0.310236 0.0757727i
\(672\) 1342.85 + 1342.85i 1.99828 + 1.99828i
\(673\) 553.128 + 281.833i 0.821885 + 0.418771i 0.813764 0.581196i \(-0.197415\pi\)
0.00812090 + 0.999967i \(0.497415\pi\)
\(674\) −313.943 + 432.105i −0.465790 + 0.641105i
\(675\) 0 0
\(676\) −256.424 + 789.193i −0.379326 + 1.16745i
\(677\) 368.236 187.626i 0.543923 0.277143i −0.160364 0.987058i \(-0.551267\pi\)
0.704287 + 0.709915i \(0.251267\pi\)
\(678\) 3.29505 20.8041i 0.00485996 0.0306846i
\(679\) 168.962 232.556i 0.248839 0.342498i
\(680\) 0 0
\(681\) 972.297 1.42775
\(682\) −85.7357 204.703i −0.125712 0.300152i
\(683\) −862.593 + 862.593i −1.26295 + 1.26295i −0.313289 + 0.949658i \(0.601431\pi\)
−0.949658 + 0.313289i \(0.898569\pi\)
\(684\) 1177.08 382.458i 1.72088 0.559149i
\(685\) 0 0
\(686\) 781.345 567.680i 1.13899 0.827522i
\(687\) 1358.69 692.288i 1.97772 1.00770i
\(688\) 143.921 + 282.460i 0.209187 + 0.410553i
\(689\) −2.16277 2.97679i −0.00313899 0.00432045i
\(690\) 0 0
\(691\) −189.856 584.318i −0.274756 0.845612i −0.989284 0.146005i \(-0.953358\pi\)
0.714528 0.699607i \(-0.246642\pi\)
\(692\) −997.469 997.469i −1.44143 1.44143i
\(693\) −1246.56 1447.97i −1.79879 2.08942i
\(694\) 330.128i 0.475689i
\(695\) 0 0
\(696\) 34.8224 + 25.2999i 0.0500321 + 0.0363505i
\(697\) −1507.69 238.794i −2.16311 0.342603i
\(698\) −413.405 811.354i −0.592271 1.16240i
\(699\) 628.409 + 204.183i 0.899012 + 0.292107i
\(700\) 0 0
\(701\) 675.948 + 491.105i 0.964262 + 0.700578i 0.954137 0.299371i \(-0.0967769\pi\)
0.0101256 + 0.999949i \(0.496777\pi\)
\(702\) −94.1154 + 184.712i −0.134068 + 0.263122i
\(703\) −228.157 + 228.157i −0.324548 + 0.324548i
\(704\) −751.133 636.436i −1.06695 0.904028i
\(705\) 0 0
\(706\) −359.216 1105.55i −0.508805 1.56594i
\(707\) −21.9818 138.788i −0.0310916 0.196305i
\(708\) 257.222 1624.03i 0.363308 2.29383i
\(709\) 913.184 + 296.711i 1.28799 + 0.418493i 0.871387 0.490597i \(-0.163221\pi\)
0.416601 + 0.909089i \(0.363221\pi\)
\(710\) 0 0
\(711\) 437.244 317.676i 0.614971 0.446802i
\(712\) 28.1394 + 177.665i 0.0395217 + 0.249530i
\(713\) 129.260 + 65.8614i 0.181291 + 0.0923723i
\(714\) 3243.52i 4.54274i
\(715\) 0 0
\(716\) −897.890 −1.25404
\(717\) 13.2459 25.9966i 0.0184741 0.0362575i
\(718\) −1635.20 + 258.990i −2.27743 + 0.360710i
\(719\) 72.4505 + 99.7196i 0.100766 + 0.138692i 0.856422 0.516276i \(-0.172682\pi\)
−0.755657 + 0.654968i \(0.772682\pi\)
\(720\) 0 0
\(721\) −309.625 + 952.928i −0.429439 + 1.32168i
\(722\) 732.379 + 115.997i 1.01438 + 0.160661i
\(723\) −71.7368 + 11.3620i −0.0992210 + 0.0157151i
\(724\) 406.195 131.981i 0.561043 0.182294i
\(725\) 0 0
\(726\) 1471.96 + 1448.98i 2.02749 + 1.99584i
\(727\) 595.052 + 595.052i 0.818504 + 0.818504i 0.985891 0.167388i \(-0.0535331\pi\)
−0.167388 + 0.985891i \(0.553533\pi\)
\(728\) −15.1137 7.70081i −0.0207606 0.0105780i
\(729\) 1151.02 1584.24i 1.57890 2.17317i
\(730\) 0 0
\(731\) 221.857 682.807i 0.303499 0.934073i
\(732\) −488.826 + 249.069i −0.667795 + 0.340259i
\(733\) 94.5709 597.097i 0.129019 0.814594i −0.835289 0.549811i \(-0.814700\pi\)
0.964308 0.264783i \(-0.0853003\pi\)
\(734\) 23.2470 31.9967i 0.0316716 0.0435922i
\(735\) 0 0
\(736\) 971.833 1.32043
\(737\) −56.7650 + 240.608i −0.0770217 + 0.326469i
\(738\) 2948.57 2948.57i 3.99535 3.99535i
\(739\) −1039.94 + 337.898i −1.40723 + 0.457237i −0.911522 0.411251i \(-0.865092\pi\)
−0.495710 + 0.868488i \(0.665092\pi\)
\(740\) 0 0
\(741\) 40.7563 29.6112i 0.0550018 0.0399612i
\(742\) −86.7527 + 44.2027i −0.116917 + 0.0595724i
\(743\) −145.464 285.489i −0.195779 0.384238i 0.772158 0.635431i \(-0.219177\pi\)
−0.967937 + 0.251192i \(0.919177\pi\)
\(744\) 63.0130 + 86.7299i 0.0846949 + 0.116572i
\(745\) 0 0
\(746\) 14.4036 + 44.3298i 0.0193078 + 0.0594234i
\(747\) −1399.62 1399.62i −1.87366 1.87366i
\(748\) 115.485 + 1397.10i 0.154391 + 1.86779i
\(749\) 280.981i 0.375142i
\(750\) 0 0
\(751\) −377.847 274.522i −0.503125 0.365542i 0.307084 0.951682i \(-0.400647\pi\)
−0.810209 + 0.586141i \(0.800647\pi\)
\(752\) −1023.20 162.060i −1.36064 0.215505i
\(753\) 465.376 + 913.352i 0.618029 + 1.21295i
\(754\) 6.39550 + 2.07802i 0.00848209 + 0.00275600i
\(755\) 0 0
\(756\) 2450.12 + 1780.11i 3.24089 + 2.35465i
\(757\) −643.359 + 1262.66i −0.849880 + 1.66798i −0.111330 + 0.993783i \(0.535511\pi\)
−0.738549 + 0.674199i \(0.764489\pi\)
\(758\) −361.866 + 361.866i −0.477396 + 0.477396i
\(759\) −1346.40 100.638i −1.77391 0.132592i
\(760\) 0 0
\(761\) −46.2283 142.276i −0.0607468 0.186959i 0.916078 0.401000i \(-0.131337\pi\)
−0.976825 + 0.214041i \(0.931337\pi\)
\(762\) 291.729 + 1841.91i 0.382847 + 2.41720i
\(763\) −1.57338 + 9.93391i −0.00206209 + 0.0130195i
\(764\) 520.328 + 169.065i 0.681058 + 0.221289i
\(765\) 0 0
\(766\) −1351.30 + 981.780i −1.76411 + 1.28170i
\(767\) −7.58208 47.8713i −0.00988537 0.0624137i
\(768\) −505.750 257.693i −0.658529 0.335537i
\(769\) 866.331i 1.12657i 0.826263 + 0.563284i \(0.190462\pi\)
−0.826263 + 0.563284i \(0.809538\pi\)
\(770\) 0 0
\(771\) 673.283 0.873259
\(772\) −698.553 + 1370.99i −0.904862 + 1.77589i
\(773\) 236.050 37.3867i 0.305369 0.0483657i −0.00186958 0.999998i \(-0.500595\pi\)
0.307238 + 0.951633i \(0.400595\pi\)
\(774\) 1152.78 + 1586.66i 1.48938 + 2.04995i
\(775\) 0 0
\(776\) 33.5915 103.384i 0.0432880 0.133227i
\(777\) −1259.57 199.496i −1.62107 0.256752i
\(778\) 921.485 145.949i 1.18443 0.187595i
\(779\) −596.665 + 193.868i −0.765937 + 0.248868i
\(780\) 0 0
\(781\) −675.402 + 164.962i −0.864792 + 0.211219i
\(782\) −1173.69 1173.69i −1.50088 1.50088i
\(783\) −201.837 102.841i −0.257774 0.131343i
\(784\) 33.7684 46.4782i 0.0430719 0.0592834i
\(785\) 0 0
\(786\) 633.252 1948.95i 0.805664 2.47958i
\(787\) −958.967 + 488.618i −1.21851 + 0.620862i −0.940525 0.339724i \(-0.889666\pi\)
−0.277984 + 0.960586i \(0.589666\pi\)
\(788\) −202.382 + 1277.79i −0.256830 + 1.62156i
\(789\) 214.926 295.821i 0.272404 0.374931i
\(790\) 0 0
\(791\) −9.07037 −0.0114670
\(792\) −617.537 375.094i −0.779718 0.473604i
\(793\) −11.4351 + 11.4351i −0.0144200 + 0.0144200i
\(794\) 897.109 291.488i 1.12986 0.367114i
\(795\) 0 0
\(796\) 1211.41 880.138i 1.52187 1.10570i
\(797\) 1166.61 594.417i 1.46375 0.745817i 0.472941 0.881094i \(-0.343192\pi\)
0.990808 + 0.135276i \(0.0431922\pi\)
\(798\) −605.196 1187.76i −0.758391 1.48843i
\(799\) 1379.04 + 1898.08i 1.72595 + 2.37557i
\(800\) 0 0
\(801\) −472.509 1454.23i −0.589899 1.81552i
\(802\) −1196.72 1196.72i −1.49217 1.49217i
\(803\) −179.133 + 75.0262i −0.223080 + 0.0934324i
\(804\) 632.920i 0.787214i
\(805\) 0 0
\(806\) 13.5499 + 9.84458i 0.0168113 + 0.0122141i
\(807\) 2640.07 + 418.145i 3.27146 + 0.518148i
\(808\) −24.1243 47.3466i −0.0298568 0.0585973i
\(809\) 938.088 + 304.803i 1.15956 + 0.376765i 0.824738 0.565514i \(-0.191322\pi\)
0.334826 + 0.942280i \(0.391322\pi\)
\(810\) 0 0
\(811\) 1031.12 + 749.155i 1.27142 + 0.923742i 0.999258 0.0385091i \(-0.0122609\pi\)
0.272163 + 0.962251i \(0.412261\pi\)
\(812\) 44.5995 87.5314i 0.0549255 0.107797i
\(813\) −1365.24 + 1365.24i −1.67926 + 1.67926i
\(814\) 995.588 + 74.4159i 1.22308 + 0.0914200i
\(815\) 0 0
\(816\) 520.800 + 1602.86i 0.638236 + 1.96429i
\(817\) −46.1591 291.437i −0.0564983 0.356716i
\(818\) 25.2245 159.261i 0.0308368 0.194696i
\(819\) 137.133 + 44.5571i 0.167439 + 0.0544043i
\(820\) 0 0
\(821\) 1061.13 770.954i 1.29248 0.939043i 0.292629 0.956226i \(-0.405470\pi\)
0.999852 + 0.0171835i \(0.00546994\pi\)
\(822\) 515.129 + 3252.40i 0.626677 + 3.95669i
\(823\) −1416.42 721.703i −1.72105 0.876918i −0.978258 0.207393i \(-0.933502\pi\)
−0.742790 0.669524i \(-0.766498\pi\)
\(824\) 378.906i 0.459837i
\(825\) 0 0
\(826\) −1282.53 −1.55270
\(827\) 531.696 1043.51i 0.642921 1.26180i −0.307710 0.951480i \(-0.599563\pi\)
0.950631 0.310324i \(-0.100437\pi\)
\(828\) 2472.44 391.595i 2.98603 0.472941i
\(829\) −570.758 785.581i −0.688490 0.947625i 0.311507 0.950244i \(-0.399166\pi\)
−0.999997 + 0.00261906i \(0.999166\pi\)
\(830\) 0 0
\(831\) −9.84336 + 30.2947i −0.0118452 + 0.0364558i
\(832\) 73.3830 + 11.6227i 0.0882007 + 0.0139696i
\(833\) −128.507 + 20.3535i −0.154270 + 0.0244340i
\(834\) −929.463 + 302.001i −1.11446 + 0.362111i
\(835\) 0 0
\(836\) 302.970 + 490.066i 0.362405 + 0.586203i
\(837\) −398.948 398.948i −0.476640 0.476640i
\(838\) 1520.46 + 774.714i 1.81439 + 0.924480i
\(839\) 282.214 388.434i 0.336369 0.462973i −0.607007 0.794696i \(-0.707630\pi\)
0.943377 + 0.331724i \(0.107630\pi\)
\(840\) 0 0
\(841\) 257.613 792.850i 0.306317 0.942747i
\(842\) 1770.21 901.968i 2.10239 1.07122i
\(843\) 122.457 773.164i 0.145264 0.917158i
\(844\) 760.193 1046.32i 0.900703 1.23971i
\(845\) 0 0
\(846\) −6409.03 −7.57569
\(847\) 517.123 723.661i 0.610535 0.854382i
\(848\) 35.7734 35.7734i 0.0421856 0.0421856i
\(849\) −1693.98 + 550.406i −1.99526 + 0.648299i
\(850\) 0 0
\(851\) −527.971 + 383.594i −0.620413 + 0.450756i
\(852\) 1586.00 808.106i 1.86150 0.948482i
\(853\) 112.057 + 219.925i 0.131369 + 0.257825i 0.947316 0.320301i \(-0.103784\pi\)
−0.815947 + 0.578126i \(0.803784\pi\)
\(854\) 251.527 + 346.197i 0.294528 + 0.405383i
\(855\) 0 0
\(856\) −32.8350 101.056i −0.0383586 0.118056i
\(857\) 93.0660 + 93.0660i 0.108595 + 0.108595i 0.759317 0.650721i \(-0.225533\pi\)
−0.650721 + 0.759317i \(0.725533\pi\)
\(858\) −151.711 35.7921i −0.176819 0.0417157i
\(859\) 265.184i 0.308713i 0.988015 + 0.154356i \(0.0493304\pi\)
−0.988015 + 0.154356i \(0.950670\pi\)
\(860\) 0 0
\(861\) −2006.02 1457.46i −2.32987 1.69275i
\(862\) −1067.66 169.101i −1.23859 0.196173i
\(863\) −350.143 687.194i −0.405727 0.796285i 0.594241 0.804287i \(-0.297453\pi\)
−0.999968 + 0.00800259i \(0.997453\pi\)
\(864\) −3594.55 1167.94i −4.16036 1.35178i
\(865\) 0 0
\(866\) −900.584 654.313i −1.03994 0.755557i
\(867\) 983.348 1929.93i 1.13420 2.22599i
\(868\) 173.013 173.013i 0.199324 0.199324i
\(869\) 191.957 + 162.645i 0.220894 + 0.187164i
\(870\) 0 0
\(871\) −5.76516 17.7434i −0.00661902 0.0203712i
\(872\) 0.594991 + 3.75663i 0.000682329 + 0.00430806i
\(873\) −144.552 + 912.667i −0.165581 + 1.04544i
\(874\) −648.793 210.806i −0.742326 0.241196i
\(875\) 0 0
\(876\) 402.260 292.259i 0.459201 0.333629i
\(877\) 156.734 + 989.583i 0.178717 + 1.12837i 0.900051 + 0.435785i \(0.143529\pi\)
−0.721334 + 0.692587i \(0.756471\pi\)
\(878\) −1946.58 991.830i −2.21706 1.12965i
\(879\) 1411.74i 1.60608i
\(880\) 0 0
\(881\) −629.188 −0.714175 −0.357087 0.934071i \(-0.616230\pi\)
−0.357087 + 0.934071i \(0.616230\pi\)
\(882\) 161.357 316.682i 0.182945 0.359049i
\(883\) 643.428 101.909i 0.728685 0.115412i 0.218940 0.975738i \(-0.429740\pi\)
0.509744 + 0.860326i \(0.329740\pi\)
\(884\) −62.1847 85.5898i −0.0703446 0.0968211i
\(885\) 0 0
\(886\) 630.189 1939.52i 0.711274 2.18908i
\(887\) −812.165 128.634i −0.915632 0.145022i −0.319202 0.947687i \(-0.603415\pi\)
−0.596430 + 0.802665i \(0.703415\pi\)
\(888\) −476.321 + 75.4418i −0.536397 + 0.0849570i
\(889\) 763.747 248.156i 0.859108 0.279141i
\(890\) 0 0
\(891\) 2694.28 + 1103.61i 3.02388 + 1.23862i
\(892\) 1383.78 + 1383.78i 1.55133 + 1.55133i
\(893\) 859.155 + 437.761i 0.962099 + 0.490214i
\(894\) −1762.95 + 2426.50i −1.97198 + 2.71420i
\(895\) 0 0
\(896\) 196.592 605.049i 0.219411 0.675278i
\(897\) 90.7868 46.2582i 0.101212 0.0515699i
\(898\) −84.9401 + 536.290i −0.0945880 + 0.597205i
\(899\) −10.7573 + 14.8062i −0.0119659 + 0.0164696i
\(900\) 0 0
\(901\) −114.575 −0.127164
\(902\) 1659.10 + 1007.74i 1.83936 + 1.11723i
\(903\) 824.637 824.637i 0.913220 0.913220i
\(904\) −3.26219 + 1.05995i −0.00360862 + 0.00117251i
\(905\) 0 0
\(906\) −2699.97 + 1961.64i −2.98010 + 2.16517i
\(907\) −175.306 + 89.3227i −0.193281 + 0.0984815i −0.547953 0.836509i \(-0.684593\pi\)
0.354672 + 0.934991i \(0.384593\pi\)
\(908\) −380.983 747.721i −0.419585 0.823481i
\(909\) 265.505 + 365.436i 0.292084 + 0.402019i
\(910\) 0 0
\(911\) 474.334 + 1459.85i 0.520674 + 1.60247i 0.772715 + 0.634754i \(0.218898\pi\)
−0.252040 + 0.967717i \(0.581102\pi\)
\(912\) 489.787 + 489.787i 0.537047 + 0.537047i
\(913\) 478.355 787.540i 0.523938 0.862585i
\(914\) 2463.69i 2.69550i
\(915\) 0 0
\(916\) −1064.77 773.603i −1.16242 0.844545i
\(917\) −871.584 138.045i −0.950473 0.150540i
\(918\) 2930.63 + 5751.68i 3.19240 + 6.26544i
\(919\) −525.464 170.734i −0.571778 0.185782i 0.00883567 0.999961i \(-0.497187\pi\)
−0.580614 + 0.814179i \(0.697187\pi\)
\(920\) 0 0
\(921\) 766.568 + 556.944i 0.832322 + 0.604717i
\(922\) 976.753 1916.99i 1.05938 2.07916i
\(923\) 37.1011 37.1011i 0.0401962 0.0401962i
\(924\) −863.150 + 2107.23i −0.934145 + 2.28055i
\(925\) 0 0
\(926\) 655.410 + 2017.14i 0.707786 + 2.17834i
\(927\) −503.859 3181.24i −0.543537 3.43176i
\(928\) −19.1789 + 121.091i −0.0206670 + 0.130486i
\(929\) −408.527 132.739i −0.439749 0.142883i 0.0807706 0.996733i \(-0.474262\pi\)
−0.520520 + 0.853849i \(0.674262\pi\)
\(930\) 0 0
\(931\) −43.2611 + 31.4310i −0.0464674 + 0.0337605i
\(932\) −89.2131 563.269i −0.0957222 0.604366i
\(933\) −73.6343 37.5186i −0.0789221 0.0402128i
\(934\) 152.325i 0.163088i
\(935\) 0 0
\(936\) 54.5271 0.0582555
\(937\) −337.934 + 663.233i −0.360655 + 0.707826i −0.998031 0.0627275i \(-0.980020\pi\)
0.637375 + 0.770554i \(0.280020\pi\)
\(938\) −487.597 + 77.2277i −0.519826 + 0.0823323i
\(939\) 1430.57 + 1969.01i 1.52351 + 2.09693i
\(940\) 0 0
\(941\) −240.721 + 740.864i −0.255814 + 0.787315i 0.737854 + 0.674960i \(0.235839\pi\)
−0.993668 + 0.112355i \(0.964161\pi\)
\(942\) −1923.16 304.598i −2.04157 0.323352i
\(943\) −1253.28 + 198.500i −1.32904 + 0.210499i
\(944\) 633.791 205.931i 0.671389 0.218148i
\(945\) 0 0
\(946\) −590.204 + 696.569i −0.623894 + 0.736331i
\(947\) −358.441 358.441i −0.378502 0.378502i 0.492060 0.870561i \(-0.336244\pi\)
−0.870561 + 0.492060i \(0.836244\pi\)
\(948\) −573.936 292.435i −0.605417 0.308476i
\(949\) 8.61487 11.8573i 0.00907784 0.0124946i
\(950\) 0 0
\(951\) −665.542 + 2048.33i −0.699834 + 2.15387i
\(952\) −470.620 + 239.793i −0.494348 + 0.251883i
\(953\) 195.205 1232.48i 0.204832 1.29326i −0.644174 0.764879i \(-0.722799\pi\)
0.849006 0.528382i \(-0.177201\pi\)
\(954\) 183.969 253.211i 0.192839 0.265420i
\(955\) 0 0
\(956\) −25.1823 −0.0263413
\(957\) 39.1105 165.776i 0.0408678 0.173225i
\(958\) −60.9602 + 60.9602i −0.0636327 + 0.0636327i
\(959\) 1348.61 438.189i 1.40626 0.456922i
\(960\) 0 0
\(961\) 740.589 538.069i 0.770644 0.559905i
\(962\) −67.1317 + 34.2053i −0.0697835 + 0.0355565i
\(963\) 410.059 + 804.787i 0.425814 + 0.835708i
\(964\) 36.8468 + 50.7153i 0.0382229 + 0.0526093i
\(965\) 0 0
\(966\) −833.174 2564.25i −0.862499 2.65450i
\(967\) 996.526 + 996.526i 1.03053 + 1.03053i 0.999519 + 0.0310143i \(0.00987374\pi\)
0.0310143 + 0.999519i \(0.490126\pi\)
\(968\) 101.419 320.697i 0.104772 0.331299i
\(969\) 1568.69i 1.61888i
\(970\) 0 0
\(971\) −907.621 659.425i −0.934728 0.679120i 0.0124175 0.999923i \(-0.496047\pi\)
−0.947146 + 0.320803i \(0.896047\pi\)
\(972\) −3700.07 586.034i −3.80666 0.602915i
\(973\) 191.059 + 374.975i 0.196361 + 0.385380i
\(974\) 77.5964 + 25.2126i 0.0796678 + 0.0258856i
\(975\) 0 0
\(976\) −179.885 130.694i −0.184309 0.133908i
\(977\) −635.126 + 1246.51i −0.650078 + 1.27585i 0.297009 + 0.954875i \(0.404011\pi\)
−0.947087 + 0.320976i \(0.895989\pi\)
\(978\) 277.428 277.428i 0.283669 0.283669i
\(979\) 605.454 374.306i 0.618442 0.382335i
\(980\) 0 0
\(981\) −9.99092 30.7489i −0.0101844 0.0313444i
\(982\) −180.952 1142.49i −0.184269 1.16343i
\(983\) 66.9091 422.448i 0.0680663 0.429754i −0.929998 0.367564i \(-0.880192\pi\)
0.998064 0.0621892i \(-0.0198082\pi\)
\(984\) −891.788 289.759i −0.906288 0.294471i
\(985\) 0 0
\(986\) 169.405 123.080i 0.171810 0.124827i
\(987\) 596.178 + 3764.12i 0.604031 + 3.81370i
\(988\) −38.7417 19.7399i −0.0392122 0.0199796i
\(989\) 596.800i 0.603438i
\(990\) 0 0
\(991\) −1760.99 −1.77699 −0.888493 0.458890i \(-0.848247\pi\)
−0.888493 + 0.458890i \(0.848247\pi\)
\(992\) −138.628 + 272.072i −0.139746 + 0.274266i
\(993\) 1003.35 158.915i 1.01042 0.160035i
\(994\) −816.079 1123.24i −0.821005 1.13002i
\(995\) 0 0
\(996\) −728.995 + 2243.62i −0.731923 + 2.25263i
\(997\) 116.575 + 18.4636i 0.116925 + 0.0185191i 0.214623 0.976697i \(-0.431148\pi\)
−0.0976975 + 0.995216i \(0.531148\pi\)
\(998\) −1232.49 + 195.208i −1.23496 + 0.195599i
\(999\) 2413.82 784.299i 2.41624 0.785084i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.3.bk.c.82.14 yes 128
5.2 odd 4 inner 275.3.bk.c.93.14 yes 128
5.3 odd 4 inner 275.3.bk.c.93.3 yes 128
5.4 even 2 inner 275.3.bk.c.82.3 128
11.9 even 5 inner 275.3.bk.c.207.3 yes 128
55.9 even 10 inner 275.3.bk.c.207.14 yes 128
55.42 odd 20 inner 275.3.bk.c.218.3 yes 128
55.53 odd 20 inner 275.3.bk.c.218.14 yes 128
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
275.3.bk.c.82.3 128 5.4 even 2 inner
275.3.bk.c.82.14 yes 128 1.1 even 1 trivial
275.3.bk.c.93.3 yes 128 5.3 odd 4 inner
275.3.bk.c.93.14 yes 128 5.2 odd 4 inner
275.3.bk.c.207.3 yes 128 11.9 even 5 inner
275.3.bk.c.207.14 yes 128 55.9 even 10 inner
275.3.bk.c.218.3 yes 128 55.42 odd 20 inner
275.3.bk.c.218.14 yes 128 55.53 odd 20 inner