Properties

Label 275.3.bk.c.218.14
Level $275$
Weight $3$
Character 275.218
Analytic conductor $7.493$
Analytic rank $0$
Dimension $128$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,3,Mod(82,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.82"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([5, 8])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 275.bk (of order \(20\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [128] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.49320726991\)
Analytic rank: \(0\)
Dimension: \(128\)
Relative dimension: \(16\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 218.14
Character \(\chi\) \(=\) 275.218
Dual form 275.3.bk.c.82.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.35668 + 2.66263i) q^{2} +(5.64189 + 0.893588i) q^{3} +(-2.89790 + 3.98862i) q^{4} +(5.27495 + 16.2346i) q^{6} +(-7.26024 + 1.14991i) q^{7} +(-2.74554 - 0.434852i) q^{8} +(22.4730 + 7.30190i) q^{9} +(5.78433 - 9.35637i) q^{11} +(-19.9138 + 19.9138i) q^{12} +(-0.739658 + 0.376875i) q^{13} +(-12.9116 - 17.7713i) q^{14} +(3.52709 + 10.8553i) q^{16} +(-23.0319 - 11.7354i) q^{17} +(11.0463 + 69.7436i) q^{18} +(-6.24455 - 8.59489i) q^{19} -41.9890 q^{21} +(32.7601 + 2.70795i) q^{22} +(-15.1940 - 15.1940i) q^{23} +(-15.1015 - 4.90677i) q^{24} +(-2.00696 - 1.45814i) q^{26} +(74.4585 + 37.9385i) q^{27} +(16.4529 - 32.2906i) q^{28} +(-1.59333 + 2.19303i) q^{29} +(-2.08632 + 6.42102i) q^{31} +(-31.9809 + 31.9809i) q^{32} +(40.9953 - 47.6188i) q^{33} -77.2468i q^{34} +(-94.2489 + 68.4758i) q^{36} +(29.9976 - 4.75115i) q^{37} +(14.4132 - 28.2875i) q^{38} +(-4.50984 + 1.46534i) q^{39} +(47.7749 - 34.7105i) q^{41} +(-56.9657 - 111.801i) q^{42} +(-19.6393 - 19.6393i) q^{43} +(20.5566 + 50.1853i) q^{44} +(19.8426 - 61.0694i) q^{46} +(-14.1984 + 89.6453i) q^{47} +(10.1993 + 64.3961i) q^{48} +(4.78700 - 1.55539i) q^{49} +(-119.457 - 86.7907i) q^{51} +(0.640247 - 4.04236i) q^{52} +(3.94931 - 2.01228i) q^{53} +249.726i q^{54} +20.4333 q^{56} +(-27.5508 - 54.0715i) q^{57} +(-8.00088 - 1.26721i) q^{58} +(34.3182 - 47.2349i) q^{59} +(6.01985 + 18.5272i) q^{61} +(-19.9273 + 3.15617i) q^{62} +(-171.556 - 27.1717i) q^{63} +(-85.1200 - 27.6572i) q^{64} +(182.409 + 44.5520i) q^{66} +(15.8915 - 15.8915i) q^{67} +(113.552 - 57.8577i) q^{68} +(-72.1457 - 99.3000i) q^{69} +(-19.5314 - 60.1116i) q^{71} +(-58.5252 - 29.8201i) q^{72} +(-2.76193 - 17.4381i) q^{73} +(53.3477 + 73.4268i) q^{74} +52.3778 q^{76} +(-31.2366 + 74.5809i) q^{77} +(-10.0201 - 10.0201i) q^{78} +(21.7530 + 7.06797i) q^{79} +(214.136 + 155.579i) q^{81} +(157.236 + 80.1160i) q^{82} +(-38.0294 + 74.6368i) q^{83} +(121.680 - 167.478i) q^{84} +(25.6481 - 78.9367i) q^{86} +(-10.9491 + 10.9491i) q^{87} +(-19.9498 + 23.1730i) q^{88} +64.7104i q^{89} +(4.93672 - 3.58674i) q^{91} +(104.634 - 16.5723i) q^{92} +(-17.5085 + 34.3624i) q^{93} +(-257.956 + 83.8148i) q^{94} +(-209.010 + 151.855i) q^{96} +(-17.7536 - 34.8433i) q^{97} +(10.6359 + 10.6359i) q^{98} +(198.310 - 168.029i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 128 q - 48 q^{6} + 32 q^{11} + 280 q^{16} - 8 q^{21} + 528 q^{26} - 16 q^{31} + 336 q^{36} - 604 q^{41} - 1152 q^{46} - 1024 q^{51} - 992 q^{56} - 320 q^{61} + 1624 q^{66} + 536 q^{71} + 1776 q^{76} + 3680 q^{81}+ \cdots - 6584 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.35668 + 2.66263i 0.678340 + 1.33132i 0.931446 + 0.363879i \(0.118548\pi\)
−0.253106 + 0.967438i \(0.581452\pi\)
\(3\) 5.64189 + 0.893588i 1.88063 + 0.297863i 0.988182 0.153285i \(-0.0489854\pi\)
0.892449 + 0.451148i \(0.148985\pi\)
\(4\) −2.89790 + 3.98862i −0.724475 + 0.997155i
\(5\) 0 0
\(6\) 5.27495 + 16.2346i 0.879158 + 2.70577i
\(7\) −7.26024 + 1.14991i −1.03718 + 0.164273i −0.651725 0.758455i \(-0.725954\pi\)
−0.385452 + 0.922728i \(0.625954\pi\)
\(8\) −2.74554 0.434852i −0.343193 0.0543564i
\(9\) 22.4730 + 7.30190i 2.49699 + 0.811323i
\(10\) 0 0
\(11\) 5.78433 9.35637i 0.525848 0.850579i
\(12\) −19.9138 + 19.9138i −1.65949 + 1.65949i
\(13\) −0.739658 + 0.376875i −0.0568968 + 0.0289904i −0.482207 0.876057i \(-0.660165\pi\)
0.425311 + 0.905047i \(0.360165\pi\)
\(14\) −12.9116 17.7713i −0.922258 1.26938i
\(15\) 0 0
\(16\) 3.52709 + 10.8553i 0.220443 + 0.678455i
\(17\) −23.0319 11.7354i −1.35482 0.690315i −0.382497 0.923957i \(-0.624936\pi\)
−0.972323 + 0.233641i \(0.924936\pi\)
\(18\) 11.0463 + 69.7436i 0.613683 + 3.87464i
\(19\) −6.24455 8.59489i −0.328661 0.452363i 0.612426 0.790528i \(-0.290194\pi\)
−0.941087 + 0.338165i \(0.890194\pi\)
\(20\) 0 0
\(21\) −41.9890 −1.99948
\(22\) 32.7601 + 2.70795i 1.48909 + 0.123089i
\(23\) −15.1940 15.1940i −0.660608 0.660608i 0.294915 0.955523i \(-0.404709\pi\)
−0.955523 + 0.294915i \(0.904709\pi\)
\(24\) −15.1015 4.90677i −0.629229 0.204449i
\(25\) 0 0
\(26\) −2.00696 1.45814i −0.0771907 0.0560823i
\(27\) 74.4585 + 37.9385i 2.75772 + 1.40513i
\(28\) 16.4529 32.2906i 0.587604 1.15324i
\(29\) −1.59333 + 2.19303i −0.0549424 + 0.0756218i −0.835604 0.549332i \(-0.814882\pi\)
0.780662 + 0.624954i \(0.214882\pi\)
\(30\) 0 0
\(31\) −2.08632 + 6.42102i −0.0673005 + 0.207130i −0.979051 0.203614i \(-0.934731\pi\)
0.911751 + 0.410744i \(0.134731\pi\)
\(32\) −31.9809 + 31.9809i −0.999402 + 0.999402i
\(33\) 40.9953 47.6188i 1.24228 1.44299i
\(34\) 77.2468i 2.27196i
\(35\) 0 0
\(36\) −94.2489 + 68.4758i −2.61802 + 1.90211i
\(37\) 29.9976 4.75115i 0.810745 0.128409i 0.262721 0.964872i \(-0.415380\pi\)
0.548024 + 0.836462i \(0.315380\pi\)
\(38\) 14.4132 28.2875i 0.379294 0.744407i
\(39\) −4.50984 + 1.46534i −0.115637 + 0.0375727i
\(40\) 0 0
\(41\) 47.7749 34.7105i 1.16524 0.846597i 0.174809 0.984602i \(-0.444069\pi\)
0.990431 + 0.138006i \(0.0440693\pi\)
\(42\) −56.9657 111.801i −1.35633 2.66194i
\(43\) −19.6393 19.6393i −0.456729 0.456729i 0.440851 0.897580i \(-0.354677\pi\)
−0.897580 + 0.440851i \(0.854677\pi\)
\(44\) 20.5566 + 50.1853i 0.467195 + 1.14057i
\(45\) 0 0
\(46\) 19.8426 61.0694i 0.431362 1.32760i
\(47\) −14.1984 + 89.6453i −0.302094 + 1.90735i 0.105924 + 0.994374i \(0.466220\pi\)
−0.408019 + 0.912974i \(0.633780\pi\)
\(48\) 10.1993 + 64.3961i 0.212486 + 1.34158i
\(49\) 4.78700 1.55539i 0.0976940 0.0317427i
\(50\) 0 0
\(51\) −119.457 86.7907i −2.34230 1.70178i
\(52\) 0.640247 4.04236i 0.0123124 0.0777377i
\(53\) 3.94931 2.01228i 0.0745153 0.0379675i −0.416336 0.909211i \(-0.636686\pi\)
0.490851 + 0.871243i \(0.336686\pi\)
\(54\) 249.726i 4.62456i
\(55\) 0 0
\(56\) 20.4333 0.364881
\(57\) −27.5508 54.0715i −0.483347 0.948623i
\(58\) −8.00088 1.26721i −0.137946 0.0218485i
\(59\) 34.3182 47.2349i 0.581664 0.800592i −0.412212 0.911088i \(-0.635244\pi\)
0.993877 + 0.110496i \(0.0352439\pi\)
\(60\) 0 0
\(61\) 6.01985 + 18.5272i 0.0986861 + 0.303725i 0.988197 0.153190i \(-0.0489546\pi\)
−0.889511 + 0.456914i \(0.848955\pi\)
\(62\) −19.9273 + 3.15617i −0.321408 + 0.0509060i
\(63\) −171.556 27.1717i −2.72310 0.431297i
\(64\) −85.1200 27.6572i −1.33000 0.432143i
\(65\) 0 0
\(66\) 182.409 + 44.5520i 2.76377 + 0.675030i
\(67\) 15.8915 15.8915i 0.237186 0.237186i −0.578498 0.815684i \(-0.696361\pi\)
0.815684 + 0.578498i \(0.196361\pi\)
\(68\) 113.552 57.8577i 1.66988 0.850849i
\(69\) −72.1457 99.3000i −1.04559 1.43913i
\(70\) 0 0
\(71\) −19.5314 60.1116i −0.275091 0.846642i −0.989195 0.146603i \(-0.953166\pi\)
0.714105 0.700039i \(-0.246834\pi\)
\(72\) −58.5252 29.8201i −0.812851 0.414168i
\(73\) −2.76193 17.4381i −0.0378346 0.238878i 0.961523 0.274726i \(-0.0885870\pi\)
−0.999357 + 0.0358472i \(0.988587\pi\)
\(74\) 53.3477 + 73.4268i 0.720915 + 0.992254i
\(75\) 0 0
\(76\) 52.3778 0.689182
\(77\) −31.2366 + 74.5809i −0.405670 + 0.968583i
\(78\) −10.0201 10.0201i −0.128462 0.128462i
\(79\) 21.7530 + 7.06797i 0.275354 + 0.0894680i 0.443439 0.896305i \(-0.353758\pi\)
−0.168085 + 0.985773i \(0.553758\pi\)
\(80\) 0 0
\(81\) 214.136 + 155.579i 2.64365 + 1.92072i
\(82\) 157.236 + 80.1160i 1.91752 + 0.977024i
\(83\) −38.0294 + 74.6368i −0.458185 + 0.899239i 0.540151 + 0.841568i \(0.318367\pi\)
−0.998336 + 0.0576706i \(0.981633\pi\)
\(84\) 121.680 167.478i 1.44857 1.99379i
\(85\) 0 0
\(86\) 25.6481 78.9367i 0.298234 0.917869i
\(87\) −10.9491 + 10.9491i −0.125851 + 0.125851i
\(88\) −19.9498 + 23.1730i −0.226702 + 0.263329i
\(89\) 64.7104i 0.727083i 0.931578 + 0.363542i \(0.118433\pi\)
−0.931578 + 0.363542i \(0.881567\pi\)
\(90\) 0 0
\(91\) 4.93672 3.58674i 0.0542497 0.0394147i
\(92\) 104.634 16.5723i 1.13732 0.180134i
\(93\) −17.5085 + 34.3624i −0.188264 + 0.369488i
\(94\) −257.956 + 83.8148i −2.74421 + 0.891647i
\(95\) 0 0
\(96\) −209.010 + 151.855i −2.17719 + 1.58182i
\(97\) −17.7536 34.8433i −0.183026 0.359209i 0.781204 0.624276i \(-0.214606\pi\)
−0.964230 + 0.265067i \(0.914606\pi\)
\(98\) 10.6359 + 10.6359i 0.108529 + 0.108529i
\(99\) 198.310 168.029i 2.00313 1.69726i
\(100\) 0 0
\(101\) 5.90720 18.1805i 0.0584872 0.180005i −0.917545 0.397633i \(-0.869832\pi\)
0.976032 + 0.217628i \(0.0698319\pi\)
\(102\) 69.0268 435.818i 0.676733 4.27273i
\(103\) 21.3233 + 134.630i 0.207023 + 1.30709i 0.844056 + 0.536254i \(0.180161\pi\)
−0.637034 + 0.770836i \(0.719839\pi\)
\(104\) 2.19465 0.713085i 0.0211024 0.00685658i
\(105\) 0 0
\(106\) 10.7159 + 7.78556i 0.101093 + 0.0734487i
\(107\) 5.97969 37.7543i 0.0558849 0.352844i −0.943862 0.330340i \(-0.892836\pi\)
0.999747 0.0225031i \(-0.00716357\pi\)
\(108\) −367.095 + 187.044i −3.39903 + 1.73189i
\(109\) 1.36826i 0.0125529i 0.999980 + 0.00627643i \(0.00199786\pi\)
−0.999980 + 0.00627643i \(0.998002\pi\)
\(110\) 0 0
\(111\) 173.489 1.56296
\(112\) −38.0901 74.7560i −0.340090 0.667465i
\(113\) 1.21875 + 0.193031i 0.0107854 + 0.00170824i 0.161825 0.986820i \(-0.448262\pi\)
−0.151039 + 0.988528i \(0.548262\pi\)
\(114\) 106.595 146.715i 0.935044 1.28698i
\(115\) 0 0
\(116\) −4.12985 12.7104i −0.0356022 0.109572i
\(117\) −19.3742 + 3.06857i −0.165591 + 0.0262271i
\(118\) 172.328 + 27.2941i 1.46041 + 0.231306i
\(119\) 180.712 + 58.7169i 1.51859 + 0.493419i
\(120\) 0 0
\(121\) −54.0831 108.241i −0.446968 0.894550i
\(122\) −41.1642 + 41.1642i −0.337411 + 0.337411i
\(123\) 300.557 153.142i 2.44356 1.24505i
\(124\) −19.5651 26.9290i −0.157783 0.217169i
\(125\) 0 0
\(126\) −160.398 493.653i −1.27300 3.91788i
\(127\) −97.3404 49.5974i −0.766459 0.390531i 0.0266225 0.999646i \(-0.491525\pi\)
−0.793082 + 0.609115i \(0.791525\pi\)
\(128\) −13.5390 85.4818i −0.105773 0.667826i
\(129\) −93.2536 128.353i −0.722896 0.994981i
\(130\) 0 0
\(131\) 120.049 0.916404 0.458202 0.888848i \(-0.348494\pi\)
0.458202 + 0.888848i \(0.348494\pi\)
\(132\) 71.1330 + 301.509i 0.538886 + 2.28416i
\(133\) 55.2203 + 55.2203i 0.415190 + 0.415190i
\(134\) 63.8728 + 20.7535i 0.476663 + 0.154877i
\(135\) 0 0
\(136\) 58.1321 + 42.2354i 0.427442 + 0.310555i
\(137\) −171.881 87.5779i −1.25461 0.639255i −0.304898 0.952385i \(-0.598622\pi\)
−0.949710 + 0.313130i \(0.898622\pi\)
\(138\) 166.521 326.816i 1.20667 2.36823i
\(139\) −33.6518 + 46.3178i −0.242100 + 0.333221i −0.912725 0.408575i \(-0.866026\pi\)
0.670625 + 0.741796i \(0.266026\pi\)
\(140\) 0 0
\(141\) −160.212 + 493.082i −1.13626 + 3.49703i
\(142\) 133.557 133.557i 0.940545 0.940545i
\(143\) −0.752247 + 9.10048i −0.00526047 + 0.0636397i
\(144\) 269.704i 1.87295i
\(145\) 0 0
\(146\) 42.6843 31.0120i 0.292358 0.212411i
\(147\) 28.3976 4.49774i 0.193181 0.0305969i
\(148\) −67.9795 + 133.417i −0.459321 + 0.901468i
\(149\) −167.106 + 54.2961i −1.12152 + 0.364403i −0.810347 0.585950i \(-0.800721\pi\)
−0.311172 + 0.950354i \(0.600721\pi\)
\(150\) 0 0
\(151\) −158.170 + 114.917i −1.04748 + 0.761040i −0.971732 0.236086i \(-0.924135\pi\)
−0.0757502 + 0.997127i \(0.524135\pi\)
\(152\) 13.4072 + 26.3131i 0.0882052 + 0.173112i
\(153\) −431.905 431.905i −2.82291 2.82291i
\(154\) −240.960 + 18.0107i −1.56467 + 0.116953i
\(155\) 0 0
\(156\) 7.22441 22.2344i 0.0463103 0.142528i
\(157\) −17.8440 + 112.662i −0.113656 + 0.717595i 0.863385 + 0.504545i \(0.168340\pi\)
−0.977041 + 0.213050i \(0.931660\pi\)
\(158\) 10.6924 + 67.5092i 0.0676735 + 0.427274i
\(159\) 24.0797 7.82398i 0.151445 0.0492074i
\(160\) 0 0
\(161\) 127.784 + 92.8402i 0.793687 + 0.576647i
\(162\) −123.736 + 781.235i −0.763800 + 4.82244i
\(163\) 20.4791 10.4346i 0.125639 0.0640162i −0.390041 0.920797i \(-0.627539\pi\)
0.515680 + 0.856781i \(0.327539\pi\)
\(164\) 291.143i 1.77526i
\(165\) 0 0
\(166\) −250.324 −1.50798
\(167\) 100.631 + 197.500i 0.602584 + 1.18264i 0.967801 + 0.251715i \(0.0809945\pi\)
−0.365218 + 0.930922i \(0.619005\pi\)
\(168\) 115.283 + 18.2590i 0.686207 + 0.108685i
\(169\) −98.9306 + 136.166i −0.585388 + 0.805718i
\(170\) 0 0
\(171\) −77.5745 238.750i −0.453652 1.39620i
\(172\) 135.247 21.4210i 0.786318 0.124541i
\(173\) 282.598 + 44.7592i 1.63352 + 0.258724i 0.904720 0.426007i \(-0.140080\pi\)
0.728797 + 0.684730i \(0.240080\pi\)
\(174\) −44.0077 14.2990i −0.252918 0.0821781i
\(175\) 0 0
\(176\) 121.968 + 29.7897i 0.692999 + 0.169260i
\(177\) 235.828 235.828i 1.33236 1.33236i
\(178\) −172.300 + 87.7913i −0.967979 + 0.493210i
\(179\) 107.048 + 147.338i 0.598032 + 0.823120i 0.995526 0.0944845i \(-0.0301203\pi\)
−0.397495 + 0.917604i \(0.630120\pi\)
\(180\) 0 0
\(181\) −26.7698 82.3891i −0.147900 0.455188i 0.849473 0.527632i \(-0.176920\pi\)
−0.997372 + 0.0724441i \(0.976920\pi\)
\(182\) 16.2477 + 8.27863i 0.0892732 + 0.0454870i
\(183\) 17.4077 + 109.908i 0.0951240 + 0.600589i
\(184\) 35.1086 + 48.3229i 0.190808 + 0.262624i
\(185\) 0 0
\(186\) −115.248 −0.619613
\(187\) −243.025 + 147.614i −1.29960 + 0.789380i
\(188\) −316.415 316.415i −1.68306 1.68306i
\(189\) −584.212 189.822i −3.09107 1.00435i
\(190\) 0 0
\(191\) −89.7767 65.2266i −0.470035 0.341501i 0.327420 0.944879i \(-0.393821\pi\)
−0.797455 + 0.603378i \(0.793821\pi\)
\(192\) −455.524 232.101i −2.37252 1.20886i
\(193\) −141.689 + 278.079i −0.734138 + 1.44083i 0.157238 + 0.987561i \(0.449741\pi\)
−0.891376 + 0.453265i \(0.850259\pi\)
\(194\) 68.6891 94.5425i 0.354068 0.487332i
\(195\) 0 0
\(196\) −7.66840 + 23.6009i −0.0391245 + 0.120413i
\(197\) −185.550 + 185.550i −0.941876 + 0.941876i −0.998401 0.0565249i \(-0.981998\pi\)
0.0565249 + 0.998401i \(0.481998\pi\)
\(198\) 716.442 + 300.067i 3.61839 + 1.51549i
\(199\) 303.716i 1.52621i −0.646275 0.763105i \(-0.723674\pi\)
0.646275 0.763105i \(-0.276326\pi\)
\(200\) 0 0
\(201\) 103.858 75.4576i 0.516709 0.375411i
\(202\) 56.4222 8.93640i 0.279318 0.0442396i
\(203\) 9.04617 17.7541i 0.0445624 0.0874587i
\(204\) 692.350 224.958i 3.39387 1.10274i
\(205\) 0 0
\(206\) −329.542 + 239.427i −1.59972 + 1.16226i
\(207\) −230.509 452.399i −1.11357 2.18550i
\(208\) −6.69992 6.69992i −0.0322111 0.0322111i
\(209\) −116.537 + 8.71067i −0.557595 + 0.0416778i
\(210\) 0 0
\(211\) 81.0630 249.486i 0.384185 1.18240i −0.552885 0.833258i \(-0.686473\pi\)
0.937070 0.349142i \(-0.113527\pi\)
\(212\) −3.41852 + 21.5837i −0.0161251 + 0.101810i
\(213\) −56.4793 356.596i −0.265161 1.67416i
\(214\) 108.638 35.2987i 0.507656 0.164947i
\(215\) 0 0
\(216\) −187.931 136.540i −0.870053 0.632130i
\(217\) 7.76357 49.0172i 0.0357768 0.225886i
\(218\) −3.64318 + 1.85629i −0.0167119 + 0.00851511i
\(219\) 100.852i 0.460512i
\(220\) 0 0
\(221\) 21.4585 0.0970974
\(222\) 235.369 + 461.937i 1.06022 + 2.08080i
\(223\) −392.047 62.0942i −1.75806 0.278449i −0.807698 0.589597i \(-0.799287\pi\)
−0.950362 + 0.311148i \(0.899287\pi\)
\(224\) 195.414 268.964i 0.872382 1.20073i
\(225\) 0 0
\(226\) 1.13948 + 3.50696i 0.00504195 + 0.0155175i
\(227\) 168.118 26.6273i 0.740607 0.117301i 0.225280 0.974294i \(-0.427670\pi\)
0.515327 + 0.856993i \(0.327670\pi\)
\(228\) 295.510 + 46.8042i 1.29610 + 0.205282i
\(229\) 253.887 + 82.4930i 1.10868 + 0.360231i 0.805436 0.592682i \(-0.201931\pi\)
0.303242 + 0.952914i \(0.401931\pi\)
\(230\) 0 0
\(231\) −242.878 + 392.865i −1.05142 + 1.70071i
\(232\) 5.32820 5.32820i 0.0229664 0.0229664i
\(233\) 103.065 52.5144i 0.442340 0.225383i −0.218612 0.975812i \(-0.570153\pi\)
0.660952 + 0.750428i \(0.270153\pi\)
\(234\) −34.4551 47.4233i −0.147244 0.202664i
\(235\) 0 0
\(236\) 88.9514 + 273.764i 0.376913 + 1.16002i
\(237\) 116.412 + 59.3150i 0.491191 + 0.250274i
\(238\) 88.8267 + 560.830i 0.373222 + 2.35643i
\(239\) 3.00227 + 4.13227i 0.0125618 + 0.0172898i 0.815252 0.579107i \(-0.196599\pi\)
−0.802690 + 0.596397i \(0.796599\pi\)
\(240\) 0 0
\(241\) −12.7150 −0.0527594 −0.0263797 0.999652i \(-0.508398\pi\)
−0.0263797 + 0.999652i \(0.508398\pi\)
\(242\) 214.831 290.851i 0.887733 1.20187i
\(243\) 537.292 + 537.292i 2.21108 + 2.21108i
\(244\) −91.3429 29.6791i −0.374356 0.121636i
\(245\) 0 0
\(246\) 815.521 + 592.510i 3.31512 + 2.40858i
\(247\) 7.85803 + 4.00386i 0.0318139 + 0.0162100i
\(248\) 8.52027 16.7220i 0.0343559 0.0674273i
\(249\) −281.252 + 387.110i −1.12953 + 1.55466i
\(250\) 0 0
\(251\) 55.4542 170.671i 0.220933 0.679962i −0.777746 0.628579i \(-0.783637\pi\)
0.998679 0.0513834i \(-0.0163630\pi\)
\(252\) 605.528 605.528i 2.40289 2.40289i
\(253\) −230.047 + 54.2735i −0.909278 + 0.214520i
\(254\) 326.470i 1.28531i
\(255\) 0 0
\(256\) −80.3911 + 58.4076i −0.314028 + 0.228155i
\(257\) 116.416 18.4385i 0.452980 0.0717450i 0.0742243 0.997242i \(-0.476352\pi\)
0.378756 + 0.925497i \(0.376352\pi\)
\(258\) 215.241 422.434i 0.834266 1.63734i
\(259\) −212.326 + 68.9889i −0.819792 + 0.266367i
\(260\) 0 0
\(261\) −51.8201 + 37.6495i −0.198545 + 0.144251i
\(262\) 162.868 + 319.646i 0.621634 + 1.22002i
\(263\) 45.2638 + 45.2638i 0.172106 + 0.172106i 0.787904 0.615798i \(-0.211166\pi\)
−0.615798 + 0.787904i \(0.711166\pi\)
\(264\) −133.261 + 112.913i −0.504778 + 0.427700i
\(265\) 0 0
\(266\) −72.1152 + 221.948i −0.271110 + 0.834390i
\(267\) −57.8245 + 365.089i −0.216571 + 1.36738i
\(268\) 17.3331 + 109.437i 0.0646758 + 0.408347i
\(269\) 445.037 144.601i 1.65441 0.537551i 0.674723 0.738071i \(-0.264263\pi\)
0.979690 + 0.200519i \(0.0642629\pi\)
\(270\) 0 0
\(271\) −273.448 198.672i −1.00903 0.733107i −0.0450282 0.998986i \(-0.514338\pi\)
−0.964006 + 0.265879i \(0.914338\pi\)
\(272\) 46.1548 291.410i 0.169687 1.07136i
\(273\) 31.0575 15.8246i 0.113764 0.0579656i
\(274\) 576.472i 2.10391i
\(275\) 0 0
\(276\) 605.141 2.19254
\(277\) −2.53164 4.96863i −0.00913951 0.0179373i 0.886392 0.462936i \(-0.153204\pi\)
−0.895531 + 0.444999i \(0.853204\pi\)
\(278\) −168.982 26.7641i −0.607849 0.0962739i
\(279\) −93.7714 + 129.065i −0.336098 + 0.462599i
\(280\) 0 0
\(281\) 42.3477 + 130.333i 0.150703 + 0.463817i 0.997700 0.0677806i \(-0.0215918\pi\)
−0.846997 + 0.531598i \(0.821592\pi\)
\(282\) −1530.25 + 242.368i −5.42643 + 0.859462i
\(283\) −307.975 48.7785i −1.08825 0.172362i −0.413571 0.910472i \(-0.635719\pi\)
−0.674681 + 0.738110i \(0.735719\pi\)
\(284\) 296.362 + 96.2940i 1.04353 + 0.339063i
\(285\) 0 0
\(286\) −25.2518 + 10.3435i −0.0882930 + 0.0361660i
\(287\) −306.943 + 306.943i −1.06949 + 1.06949i
\(288\) −952.225 + 485.183i −3.30634 + 1.68466i
\(289\) 222.882 + 306.770i 0.771217 + 1.06149i
\(290\) 0 0
\(291\) −69.0281 212.447i −0.237210 0.730057i
\(292\) 77.5578 + 39.5177i 0.265609 + 0.135335i
\(293\) −38.6619 244.101i −0.131952 0.833111i −0.961526 0.274714i \(-0.911417\pi\)
0.829574 0.558397i \(-0.188583\pi\)
\(294\) 50.5024 + 69.5105i 0.171777 + 0.236430i
\(295\) 0 0
\(296\) −84.4257 −0.285222
\(297\) 785.658 477.212i 2.64531 1.60677i
\(298\) −371.280 371.280i −1.24591 1.24591i
\(299\) 16.9646 + 5.51213i 0.0567377 + 0.0184352i
\(300\) 0 0
\(301\) 165.170 + 120.003i 0.548737 + 0.398681i
\(302\) −520.568 265.243i −1.72374 0.878287i
\(303\) 49.5737 97.2938i 0.163610 0.321102i
\(304\) 71.2747 98.1013i 0.234456 0.322702i
\(305\) 0 0
\(306\) 564.049 1735.96i 1.84330 5.67308i
\(307\) 117.293 117.293i 0.382063 0.382063i −0.489782 0.871845i \(-0.662924\pi\)
0.871845 + 0.489782i \(0.162924\pi\)
\(308\) −206.954 340.719i −0.671929 1.10623i
\(309\) 778.624i 2.51982i
\(310\) 0 0
\(311\) −11.7045 + 8.50380i −0.0376350 + 0.0273434i −0.606444 0.795126i \(-0.707404\pi\)
0.568809 + 0.822470i \(0.307404\pi\)
\(312\) 13.0192 2.06203i 0.0417281 0.00660909i
\(313\) 193.434 379.636i 0.618000 1.21289i −0.343775 0.939052i \(-0.611706\pi\)
0.961775 0.273841i \(-0.0882943\pi\)
\(314\) −324.187 + 105.335i −1.03244 + 0.335461i
\(315\) 0 0
\(316\) −91.2295 + 66.2821i −0.288701 + 0.209753i
\(317\) −171.173 335.946i −0.539978 1.05977i −0.986310 0.164899i \(-0.947270\pi\)
0.446333 0.894867i \(-0.352730\pi\)
\(318\) 53.5009 + 53.5009i 0.168242 + 0.168242i
\(319\) 11.3025 + 27.5930i 0.0354309 + 0.0864984i
\(320\) 0 0
\(321\) 67.4735 207.662i 0.210198 0.646923i
\(322\) −73.8381 + 466.196i −0.229311 + 1.44781i
\(323\) 42.9600 + 271.239i 0.133003 + 0.839749i
\(324\) −1241.09 + 403.254i −3.83052 + 1.24461i
\(325\) 0 0
\(326\) 55.5672 + 40.3720i 0.170452 + 0.123840i
\(327\) −1.22266 + 7.71959i −0.00373903 + 0.0236073i
\(328\) −146.262 + 74.5241i −0.445920 + 0.227208i
\(329\) 667.173i 2.02788i
\(330\) 0 0
\(331\) 177.839 0.537278 0.268639 0.963241i \(-0.413426\pi\)
0.268639 + 0.963241i \(0.413426\pi\)
\(332\) −187.493 367.975i −0.564736 1.10836i
\(333\) 708.826 + 112.267i 2.12861 + 0.337138i
\(334\) −389.347 + 535.890i −1.16571 + 1.60446i
\(335\) 0 0
\(336\) −148.099 455.802i −0.440771 1.35655i
\(337\) −176.531 + 27.9598i −0.523831 + 0.0829666i −0.412749 0.910845i \(-0.635431\pi\)
−0.111081 + 0.993811i \(0.535431\pi\)
\(338\) −496.778 78.6820i −1.46976 0.232787i
\(339\) 6.70356 + 2.17812i 0.0197745 + 0.00642513i
\(340\) 0 0
\(341\) 48.0095 + 56.6616i 0.140790 + 0.166163i
\(342\) 530.459 530.459i 1.55105 1.55105i
\(343\) 287.962 146.724i 0.839539 0.427767i
\(344\) 45.3805 + 62.4609i 0.131920 + 0.181572i
\(345\) 0 0
\(346\) 264.218 + 813.180i 0.763637 + 2.35023i
\(347\) 98.4313 + 50.1532i 0.283664 + 0.144534i 0.590034 0.807379i \(-0.299114\pi\)
−0.306370 + 0.951912i \(0.599114\pi\)
\(348\) −11.9423 75.4010i −0.0343171 0.216669i
\(349\) 179.109 + 246.522i 0.513206 + 0.706368i 0.984456 0.175632i \(-0.0561969\pi\)
−0.471250 + 0.882000i \(0.656197\pi\)
\(350\) 0 0
\(351\) −69.3719 −0.197641
\(352\) 114.237 + 484.212i 0.324537 + 1.37560i
\(353\) 275.060 + 275.060i 0.779207 + 0.779207i 0.979696 0.200489i \(-0.0642530\pi\)
−0.200489 + 0.979696i \(0.564253\pi\)
\(354\) 947.867 + 307.981i 2.67759 + 0.870002i
\(355\) 0 0
\(356\) −258.105 187.524i −0.725015 0.526754i
\(357\) 967.089 + 492.756i 2.70893 + 1.38027i
\(358\) −247.079 + 484.920i −0.690165 + 1.35453i
\(359\) −325.640 + 448.205i −0.907075 + 1.24848i 0.0610804 + 0.998133i \(0.480545\pi\)
−0.968156 + 0.250349i \(0.919455\pi\)
\(360\) 0 0
\(361\) 76.6775 235.989i 0.212403 0.653709i
\(362\) 183.054 183.054i 0.505674 0.505674i
\(363\) −208.409 659.010i −0.574129 1.81545i
\(364\) 30.0847i 0.0826503i
\(365\) 0 0
\(366\) −269.028 + 195.460i −0.735048 + 0.534044i
\(367\) 13.0718 2.07038i 0.0356181 0.00564135i −0.138600 0.990348i \(-0.544260\pi\)
0.174218 + 0.984707i \(0.444260\pi\)
\(368\) 111.344 218.525i 0.302566 0.593819i
\(369\) 1327.09 431.199i 3.59646 1.16856i
\(370\) 0 0
\(371\) −26.3590 + 19.1509i −0.0710486 + 0.0516198i
\(372\) −86.3206 169.414i −0.232045 0.455413i
\(373\) −11.0292 11.0292i −0.0295689 0.0295689i 0.692168 0.721737i \(-0.256656\pi\)
−0.721737 + 0.692168i \(0.756656\pi\)
\(374\) −722.749 446.821i −1.93248 1.19471i
\(375\) 0 0
\(376\) 77.9648 239.951i 0.207353 0.638168i
\(377\) 0.352022 2.22258i 0.000933745 0.00589543i
\(378\) −287.162 1813.07i −0.759688 4.79648i
\(379\) −162.869 + 52.9193i −0.429733 + 0.139629i −0.515894 0.856652i \(-0.672540\pi\)
0.0861607 + 0.996281i \(0.472540\pi\)
\(380\) 0 0
\(381\) −504.864 366.805i −1.32510 0.962744i
\(382\) 51.8763 327.534i 0.135802 0.857420i
\(383\) −498.019 + 253.753i −1.30031 + 0.662541i −0.960586 0.277984i \(-0.910334\pi\)
−0.339725 + 0.940525i \(0.610334\pi\)
\(384\) 494.377i 1.28744i
\(385\) 0 0
\(386\) −932.650 −2.41619
\(387\) −297.949 584.759i −0.769895 1.51100i
\(388\) 190.425 + 30.1603i 0.490785 + 0.0777328i
\(389\) 183.509 252.578i 0.471744 0.649300i −0.505148 0.863033i \(-0.668562\pi\)
0.976892 + 0.213733i \(0.0685621\pi\)
\(390\) 0 0
\(391\) 171.640 + 528.254i 0.438977 + 1.35103i
\(392\) −13.8193 + 2.18876i −0.0352533 + 0.00558358i
\(393\) 677.303 + 107.274i 1.72342 + 0.272963i
\(394\) −745.782 242.319i −1.89285 0.615024i
\(395\) 0 0
\(396\) 95.5185 + 1277.91i 0.241208 + 3.22705i
\(397\) 223.200 223.200i 0.562215 0.562215i −0.367721 0.929936i \(-0.619862\pi\)
0.929936 + 0.367721i \(0.119862\pi\)
\(398\) 808.684 412.045i 2.03187 1.03529i
\(399\) 262.203 + 360.891i 0.657150 + 0.904489i
\(400\) 0 0
\(401\) 175.008 + 538.619i 0.436429 + 1.34319i 0.891615 + 0.452794i \(0.149573\pi\)
−0.455186 + 0.890396i \(0.650427\pi\)
\(402\) 341.819 + 174.165i 0.850295 + 0.433247i
\(403\) −0.876759 5.53564i −0.00217558 0.0137361i
\(404\) 55.3966 + 76.2469i 0.137120 + 0.188730i
\(405\) 0 0
\(406\) 59.5455 0.146664
\(407\) 129.062 308.150i 0.317106 0.757126i
\(408\) 290.234 + 290.234i 0.711358 + 0.711358i
\(409\) 51.3176 + 16.6741i 0.125471 + 0.0407679i 0.371079 0.928601i \(-0.378988\pi\)
−0.245609 + 0.969369i \(0.578988\pi\)
\(410\) 0 0
\(411\) −891.477 647.696i −2.16904 1.57590i
\(412\) −598.782 305.095i −1.45335 0.740521i
\(413\) −194.842 + 382.400i −0.471773 + 0.925907i
\(414\) 891.846 1227.52i 2.15422 2.96503i
\(415\) 0 0
\(416\) 11.6021 35.7077i 0.0278897 0.0858357i
\(417\) −231.249 + 231.249i −0.554554 + 0.554554i
\(418\) −181.297 298.479i −0.433726 0.714065i
\(419\) 571.037i 1.36286i −0.731885 0.681428i \(-0.761359\pi\)
0.731885 0.681428i \(-0.238641\pi\)
\(420\) 0 0
\(421\) 537.862 390.780i 1.27758 0.928218i 0.278106 0.960550i \(-0.410293\pi\)
0.999477 + 0.0323321i \(0.0102934\pi\)
\(422\) 774.267 122.632i 1.83476 0.290597i
\(423\) −973.662 + 1910.92i −2.30180 + 4.51754i
\(424\) −11.7181 + 3.80743i −0.0276369 + 0.00897978i
\(425\) 0 0
\(426\) 872.861 634.171i 2.04897 1.48866i
\(427\) −65.0102 127.590i −0.152249 0.298805i
\(428\) 133.259 + 133.259i 0.311352 + 0.311352i
\(429\) −12.3762 + 50.6717i −0.0288489 + 0.118116i
\(430\) 0 0
\(431\) −111.781 + 344.025i −0.259352 + 0.798202i 0.733589 + 0.679593i \(0.237844\pi\)
−0.992941 + 0.118609i \(0.962156\pi\)
\(432\) −149.211 + 942.079i −0.345395 + 2.18074i
\(433\) 58.2731 + 367.922i 0.134580 + 0.849705i 0.958934 + 0.283630i \(0.0915387\pi\)
−0.824354 + 0.566075i \(0.808461\pi\)
\(434\) 141.048 45.8292i 0.324995 0.105597i
\(435\) 0 0
\(436\) −5.45748 3.96509i −0.0125172 0.00909424i
\(437\) −35.7110 + 225.470i −0.0817185 + 0.515950i
\(438\) 268.532 136.824i 0.613087 0.312384i
\(439\) 731.071i 1.66531i 0.553792 + 0.832655i \(0.313180\pi\)
−0.553792 + 0.832655i \(0.686820\pi\)
\(440\) 0 0
\(441\) 118.935 0.269695
\(442\) 29.1123 + 57.1362i 0.0658650 + 0.129267i
\(443\) 674.027 + 106.755i 1.52151 + 0.240983i 0.860521 0.509415i \(-0.170138\pi\)
0.660986 + 0.750398i \(0.270138\pi\)
\(444\) −502.753 + 691.980i −1.13233 + 1.55851i
\(445\) 0 0
\(446\) −366.549 1128.12i −0.821858 2.52942i
\(447\) −991.314 + 157.009i −2.21770 + 0.351250i
\(448\) 649.795 + 102.917i 1.45044 + 0.229726i
\(449\) −172.805 56.1477i −0.384866 0.125051i 0.110192 0.993910i \(-0.464853\pi\)
−0.495058 + 0.868860i \(0.664853\pi\)
\(450\) 0 0
\(451\) −48.4184 647.776i −0.107358 1.43631i
\(452\) −4.30174 + 4.30174i −0.00951712 + 0.00951712i
\(453\) −995.066 + 507.011i −2.19661 + 1.11923i
\(454\) 298.981 + 411.512i 0.658548 + 0.906413i
\(455\) 0 0
\(456\) 52.1289 + 160.436i 0.114318 + 0.351834i
\(457\) 734.574 + 374.284i 1.60738 + 0.819002i 0.999692 + 0.0248284i \(0.00790394\pi\)
0.607691 + 0.794174i \(0.292096\pi\)
\(458\) 124.795 + 787.926i 0.272479 + 1.72036i
\(459\) −1269.70 1747.59i −2.76623 3.80739i
\(460\) 0 0
\(461\) 719.958 1.56173 0.780866 0.624699i \(-0.214778\pi\)
0.780866 + 0.624699i \(0.214778\pi\)
\(462\) −1375.56 113.704i −2.97741 0.246113i
\(463\) −501.863 501.863i −1.08394 1.08394i −0.996138 0.0877980i \(-0.972017\pi\)
−0.0877980 0.996138i \(-0.527983\pi\)
\(464\) −29.4258 9.56101i −0.0634176 0.0206056i
\(465\) 0 0
\(466\) 279.653 + 203.180i 0.600114 + 0.436008i
\(467\) −45.4172 23.1412i −0.0972531 0.0495529i 0.404687 0.914455i \(-0.367380\pi\)
−0.501940 + 0.864902i \(0.667380\pi\)
\(468\) 43.9051 86.1687i 0.0938144 0.184121i
\(469\) −97.1022 + 133.650i −0.207041 + 0.284967i
\(470\) 0 0
\(471\) −201.348 + 619.684i −0.427489 + 1.31568i
\(472\) −114.762 + 114.762i −0.243140 + 0.243140i
\(473\) −297.353 + 70.1525i −0.628654 + 0.148314i
\(474\) 390.435i 0.823702i
\(475\) 0 0
\(476\) −757.885 + 550.635i −1.59219 + 1.15680i
\(477\) 103.446 16.3843i 0.216868 0.0343486i
\(478\) −6.92960 + 13.6001i −0.0144971 + 0.0284521i
\(479\) −27.4370 + 8.91483i −0.0572798 + 0.0186113i −0.337517 0.941320i \(-0.609587\pi\)
0.280237 + 0.959931i \(0.409587\pi\)
\(480\) 0 0
\(481\) −20.3974 + 14.8195i −0.0424061 + 0.0308099i
\(482\) −17.2502 33.8554i −0.0357888 0.0702395i
\(483\) 637.981 + 637.981i 1.32087 + 1.32087i
\(484\) 588.458 + 97.9533i 1.21582 + 0.202383i
\(485\) 0 0
\(486\) −701.679 + 2159.55i −1.44378 + 4.44351i
\(487\) 4.27107 26.9665i 0.00877017 0.0553727i −0.982915 0.184059i \(-0.941076\pi\)
0.991685 + 0.128687i \(0.0410761\pi\)
\(488\) −8.47119 53.4850i −0.0173590 0.109600i
\(489\) 124.865 40.5712i 0.255348 0.0829677i
\(490\) 0 0
\(491\) 313.154 + 227.520i 0.637788 + 0.463380i 0.859090 0.511825i \(-0.171030\pi\)
−0.221301 + 0.975205i \(0.571030\pi\)
\(492\) −260.162 + 1642.60i −0.528785 + 3.33861i
\(493\) 62.4335 31.8115i 0.126640 0.0645263i
\(494\) 26.3550i 0.0533502i
\(495\) 0 0
\(496\) −77.0606 −0.155364
\(497\) 210.926 + 413.965i 0.424398 + 0.832928i
\(498\) −1412.30 223.687i −2.83595 0.449170i
\(499\) −245.444 + 337.825i −0.491872 + 0.677003i −0.980732 0.195359i \(-0.937413\pi\)
0.488860 + 0.872362i \(0.337413\pi\)
\(500\) 0 0
\(501\) 391.268 + 1204.20i 0.780974 + 2.40359i
\(502\) 529.667 83.8910i 1.05511 0.167114i
\(503\) 817.154 + 129.425i 1.62456 + 0.257305i 0.901276 0.433245i \(-0.142631\pi\)
0.723285 + 0.690550i \(0.242631\pi\)
\(504\) 459.198 + 149.202i 0.911106 + 0.296036i
\(505\) 0 0
\(506\) −456.611 538.900i −0.902394 1.06502i
\(507\) −679.833 + 679.833i −1.34089 + 1.34089i
\(508\) 479.908 244.525i 0.944700 0.481349i
\(509\) −316.476 435.592i −0.621760 0.855780i 0.375719 0.926734i \(-0.377396\pi\)
−0.997480 + 0.0709537i \(0.977396\pi\)
\(510\) 0 0
\(511\) 40.1045 + 123.429i 0.0784824 + 0.241544i
\(512\) −573.040 291.978i −1.11922 0.570270i
\(513\) −138.883 876.871i −0.270727 1.70930i
\(514\) 207.034 + 284.958i 0.402790 + 0.554393i
\(515\) 0 0
\(516\) 782.189 1.51587
\(517\) 756.626 + 651.384i 1.46349 + 1.25993i
\(518\) −471.751 471.751i −0.910716 0.910716i
\(519\) 1554.39 + 505.053i 2.99498 + 0.973127i
\(520\) 0 0
\(521\) 236.468 + 171.804i 0.453874 + 0.329759i 0.791123 0.611657i \(-0.209497\pi\)
−0.337249 + 0.941415i \(0.609497\pi\)
\(522\) −170.550 86.8997i −0.326725 0.166475i
\(523\) 393.098 771.497i 0.751621 1.47514i −0.124074 0.992273i \(-0.539596\pi\)
0.875694 0.482866i \(-0.160404\pi\)
\(524\) −347.890 + 478.829i −0.663912 + 0.913797i
\(525\) 0 0
\(526\) −59.1125 + 181.930i −0.112381 + 0.345874i
\(527\) 123.405 123.405i 0.234165 0.234165i
\(528\) 661.509 + 277.059i 1.25286 + 0.524733i
\(529\) 67.2858i 0.127194i
\(530\) 0 0
\(531\) 1116.14 810.920i 2.10195 1.52716i
\(532\) −380.275 + 60.2297i −0.714803 + 0.113214i
\(533\) −22.2556 + 43.6790i −0.0417553 + 0.0819493i
\(534\) −1050.55 + 341.344i −1.96732 + 0.639221i
\(535\) 0 0
\(536\) −50.5412 + 36.7203i −0.0942933 + 0.0685081i
\(537\) 472.292 + 926.924i 0.879500 + 1.72612i
\(538\) 988.794 + 988.794i 1.83791 + 1.83791i
\(539\) 13.1368 53.7858i 0.0243725 0.0997882i
\(540\) 0 0
\(541\) 33.2984 102.482i 0.0615496 0.189430i −0.915554 0.402196i \(-0.868247\pi\)
0.977103 + 0.212766i \(0.0682471\pi\)
\(542\) 158.009 997.627i 0.291529 1.84064i
\(543\) −77.4106 488.751i −0.142561 0.900095i
\(544\) 1111.89 361.274i 2.04391 0.664107i
\(545\) 0 0
\(546\) 84.2703 + 61.2259i 0.154341 + 0.112135i
\(547\) 50.9150 321.465i 0.0930805 0.587687i −0.896425 0.443195i \(-0.853845\pi\)
0.989506 0.144492i \(-0.0461549\pi\)
\(548\) 847.410 431.777i 1.54637 0.787914i
\(549\) 460.317i 0.838465i
\(550\) 0 0
\(551\) 28.7985 0.0522659
\(552\) 154.898 + 304.005i 0.280613 + 0.550734i
\(553\) −166.059 26.3012i −0.300288 0.0475610i
\(554\) 9.79502 13.4817i 0.0176805 0.0243352i
\(555\) 0 0
\(556\) −87.2242 268.449i −0.156878 0.482821i
\(557\) 711.735 112.728i 1.27780 0.202384i 0.519603 0.854408i \(-0.326080\pi\)
0.758198 + 0.652024i \(0.226080\pi\)
\(558\) −470.871 74.5787i −0.843855 0.133654i
\(559\) 21.9280 + 7.12483i 0.0392271 + 0.0127457i
\(560\) 0 0
\(561\) −1503.02 + 615.659i −2.67919 + 1.09743i
\(562\) −289.576 + 289.576i −0.515260 + 0.515260i
\(563\) 590.171 300.707i 1.04826 0.534116i 0.156996 0.987599i \(-0.449819\pi\)
0.891265 + 0.453484i \(0.149819\pi\)
\(564\) −1502.44 2067.93i −2.66390 3.66654i
\(565\) 0 0
\(566\) −287.944 886.202i −0.508736 1.56573i
\(567\) −1733.58 883.302i −3.05746 1.55785i
\(568\) 27.4848 + 173.532i 0.0483888 + 0.305515i
\(569\) 298.438 + 410.765i 0.524496 + 0.721907i 0.986279 0.165086i \(-0.0527902\pi\)
−0.461783 + 0.886993i \(0.652790\pi\)
\(570\) 0 0
\(571\) −447.072 −0.782963 −0.391482 0.920186i \(-0.628037\pi\)
−0.391482 + 0.920186i \(0.628037\pi\)
\(572\) −34.1184 29.3727i −0.0596475 0.0513509i
\(573\) −448.225 448.225i −0.782243 0.782243i
\(574\) −1233.70 400.854i −2.14930 0.698351i
\(575\) 0 0
\(576\) −1710.95 1243.08i −2.97040 2.15812i
\(577\) −488.958 249.136i −0.847414 0.431779i −0.0243334 0.999704i \(-0.507746\pi\)
−0.823080 + 0.567925i \(0.807746\pi\)
\(578\) −514.438 + 1009.64i −0.890031 + 1.74678i
\(579\) −1047.88 + 1442.28i −1.80981 + 2.49099i
\(580\) 0 0
\(581\) 190.277 585.612i 0.327499 1.00794i
\(582\) 472.019 472.019i 0.811029 0.811029i
\(583\) 4.01653 48.5909i 0.00688942 0.0833463i
\(584\) 49.0782i 0.0840380i
\(585\) 0 0
\(586\) 597.501 434.110i 1.01963 0.740802i
\(587\) 321.206 50.8740i 0.547199 0.0866678i 0.123287 0.992371i \(-0.460657\pi\)
0.423912 + 0.905703i \(0.360657\pi\)
\(588\) −64.3538 + 126.301i −0.109445 + 0.214798i
\(589\) 68.2161 22.1647i 0.115817 0.0376311i
\(590\) 0 0
\(591\) −1212.66 + 881.046i −2.05187 + 1.49077i
\(592\) 157.379 + 308.874i 0.265843 + 0.521747i
\(593\) −5.55830 5.55830i −0.00937318 0.00937318i 0.702405 0.711778i \(-0.252110\pi\)
−0.711778 + 0.702405i \(0.752110\pi\)
\(594\) 2336.53 + 1444.50i 3.93355 + 2.43181i
\(595\) 0 0
\(596\) 267.691 823.868i 0.449146 1.38233i
\(597\) 271.397 1713.53i 0.454601 2.87024i
\(598\) 8.33873 + 52.6487i 0.0139444 + 0.0880412i
\(599\) 35.3715 11.4929i 0.0590509 0.0191868i −0.279343 0.960191i \(-0.590117\pi\)
0.338393 + 0.941005i \(0.390117\pi\)
\(600\) 0 0
\(601\) −166.472 120.949i −0.276992 0.201247i 0.440612 0.897698i \(-0.354761\pi\)
−0.717604 + 0.696451i \(0.754761\pi\)
\(602\) −95.4413 + 602.592i −0.158540 + 1.00098i
\(603\) 473.166 241.090i 0.784687 0.399818i
\(604\) 963.897i 1.59586i
\(605\) 0 0
\(606\) 326.314 0.538471
\(607\) −410.353 805.363i −0.676034 1.32679i −0.932827 0.360325i \(-0.882666\pi\)
0.256793 0.966467i \(-0.417334\pi\)
\(608\) 474.578 + 75.1658i 0.780556 + 0.123628i
\(609\) 66.9024 92.0833i 0.109856 0.151204i
\(610\) 0 0
\(611\) −23.2831 71.6579i −0.0381065 0.117280i
\(612\) 2974.32 471.087i 4.86001 0.769749i
\(613\) −487.431 77.2015i −0.795156 0.125940i −0.254377 0.967105i \(-0.581870\pi\)
−0.540779 + 0.841165i \(0.681870\pi\)
\(614\) 471.439 + 153.180i 0.767815 + 0.249478i
\(615\) 0 0
\(616\) 118.193 191.182i 0.191872 0.310360i
\(617\) −614.016 + 614.016i −0.995164 + 0.995164i −0.999988 0.00482401i \(-0.998464\pi\)
0.00482401 + 0.999988i \(0.498464\pi\)
\(618\) −2073.19 + 1056.34i −3.35468 + 1.70929i
\(619\) 138.286 + 190.335i 0.223403 + 0.307487i 0.905975 0.423330i \(-0.139139\pi\)
−0.682573 + 0.730818i \(0.739139\pi\)
\(620\) 0 0
\(621\) −554.884 1707.76i −0.893533 2.75001i
\(622\) −38.5218 19.6278i −0.0619321 0.0315560i
\(623\) −74.4111 469.813i −0.119440 0.754114i
\(624\) −31.8133 43.7872i −0.0509828 0.0701718i
\(625\) 0 0
\(626\) 1273.26 2.03396
\(627\) −665.276 54.9918i −1.06105 0.0877062i
\(628\) −397.657 397.657i −0.633212 0.633212i
\(629\) −746.659 242.604i −1.18706 0.385698i
\(630\) 0 0
\(631\) −531.837 386.402i −0.842848 0.612365i 0.0803166 0.996769i \(-0.474407\pi\)
−0.923165 + 0.384404i \(0.874407\pi\)
\(632\) −56.6503 28.8648i −0.0896365 0.0456721i
\(633\) 680.287 1335.14i 1.07470 2.10922i
\(634\) 662.274 911.542i 1.04460 1.43776i
\(635\) 0 0
\(636\) −38.5738 + 118.718i −0.0606507 + 0.186664i
\(637\) −2.95456 + 2.95456i −0.00463824 + 0.00463824i
\(638\) −58.1362 + 67.5292i −0.0911226 + 0.105845i
\(639\) 1493.50i 2.33725i
\(640\) 0 0
\(641\) −613.451 + 445.698i −0.957022 + 0.695317i −0.952457 0.304673i \(-0.901453\pi\)
−0.00456459 + 0.999990i \(0.501453\pi\)
\(642\) 644.468 102.074i 1.00384 0.158993i
\(643\) −129.076 + 253.326i −0.200740 + 0.393974i −0.969328 0.245769i \(-0.920959\pi\)
0.768588 + 0.639744i \(0.220959\pi\)
\(644\) −740.609 + 240.638i −1.15001 + 0.373662i
\(645\) 0 0
\(646\) −663.927 + 482.371i −1.02775 + 0.746705i
\(647\) −162.807 319.527i −0.251634 0.493860i 0.730289 0.683138i \(-0.239385\pi\)
−0.981924 + 0.189278i \(0.939385\pi\)
\(648\) −520.265 520.265i −0.802879 0.802879i
\(649\) −243.440 594.316i −0.375100 0.915741i
\(650\) 0 0
\(651\) 87.6024 269.613i 0.134566 0.414151i
\(652\) −17.7267 + 111.922i −0.0271882 + 0.171659i
\(653\) −6.13452 38.7318i −0.00939436 0.0593137i 0.982546 0.186021i \(-0.0595592\pi\)
−0.991940 + 0.126707i \(0.959559\pi\)
\(654\) −22.2132 + 7.21751i −0.0339652 + 0.0110360i
\(655\) 0 0
\(656\) 545.298 + 396.182i 0.831247 + 0.603936i
\(657\) 65.2629 412.053i 0.0993346 0.627174i
\(658\) 1776.44 905.141i 2.69976 1.37559i
\(659\) 693.150i 1.05182i 0.850540 + 0.525911i \(0.176275\pi\)
−0.850540 + 0.525911i \(0.823725\pi\)
\(660\) 0 0
\(661\) 1020.90 1.54448 0.772238 0.635334i \(-0.219137\pi\)
0.772238 + 0.635334i \(0.219137\pi\)
\(662\) 241.270 + 473.520i 0.364457 + 0.715287i
\(663\) 121.067 + 19.1751i 0.182604 + 0.0289217i
\(664\) 136.867 188.382i 0.206125 0.283707i
\(665\) 0 0
\(666\) 662.724 + 2039.66i 0.995082 + 3.06255i
\(667\) 57.5299 9.11184i 0.0862517 0.0136609i
\(668\) −1079.37 170.956i −1.61583 0.255922i
\(669\) −2156.40 700.658i −3.22332 1.04732i
\(670\) 0 0
\(671\) 208.168 + 50.8434i 0.310236 + 0.0757727i
\(672\) 1342.85 1342.85i 1.99828 1.99828i
\(673\) 553.128 281.833i 0.821885 0.418771i 0.00812090 0.999967i \(-0.497415\pi\)
0.813764 + 0.581196i \(0.197415\pi\)
\(674\) −313.943 432.105i −0.465790 0.641105i
\(675\) 0 0
\(676\) −256.424 789.193i −0.379326 1.16745i
\(677\) 368.236 + 187.626i 0.543923 + 0.277143i 0.704287 0.709915i \(-0.251267\pi\)
−0.160364 + 0.987058i \(0.551267\pi\)
\(678\) 3.29505 + 20.8041i 0.00485996 + 0.0306846i
\(679\) 168.962 + 232.556i 0.248839 + 0.342498i
\(680\) 0 0
\(681\) 972.297 1.42775
\(682\) −85.7357 + 204.703i −0.125712 + 0.300152i
\(683\) −862.593 862.593i −1.26295 1.26295i −0.949658 0.313289i \(-0.898569\pi\)
−0.313289 0.949658i \(-0.601431\pi\)
\(684\) 1177.08 + 382.458i 1.72088 + 0.559149i
\(685\) 0 0
\(686\) 781.345 + 567.680i 1.13899 + 0.827522i
\(687\) 1358.69 + 692.288i 1.97772 + 1.00770i
\(688\) 143.921 282.460i 0.209187 0.410553i
\(689\) −2.16277 + 2.97679i −0.00313899 + 0.00432045i
\(690\) 0 0
\(691\) −189.856 + 584.318i −0.274756 + 0.845612i 0.714528 + 0.699607i \(0.246642\pi\)
−0.989284 + 0.146005i \(0.953358\pi\)
\(692\) −997.469 + 997.469i −1.44143 + 1.44143i
\(693\) −1246.56 + 1447.97i −1.79879 + 2.08942i
\(694\) 330.128i 0.475689i
\(695\) 0 0
\(696\) 34.8224 25.2999i 0.0500321 0.0363505i
\(697\) −1507.69 + 238.794i −2.16311 + 0.342603i
\(698\) −413.405 + 811.354i −0.592271 + 1.16240i
\(699\) 628.409 204.183i 0.899012 0.292107i
\(700\) 0 0
\(701\) 675.948 491.105i 0.964262 0.700578i 0.0101256 0.999949i \(-0.496777\pi\)
0.954137 + 0.299371i \(0.0967769\pi\)
\(702\) −94.1154 184.712i −0.134068 0.263122i
\(703\) −228.157 228.157i −0.324548 0.324548i
\(704\) −751.133 + 636.436i −1.06695 + 0.904028i
\(705\) 0 0
\(706\) −359.216 + 1105.55i −0.508805 + 1.56594i
\(707\) −21.9818 + 138.788i −0.0310916 + 0.196305i
\(708\) 257.222 + 1624.03i 0.363308 + 2.29383i
\(709\) 913.184 296.711i 1.28799 0.418493i 0.416601 0.909089i \(-0.363221\pi\)
0.871387 + 0.490597i \(0.163221\pi\)
\(710\) 0 0
\(711\) 437.244 + 317.676i 0.614971 + 0.446802i
\(712\) 28.1394 177.665i 0.0395217 0.249530i
\(713\) 129.260 65.8614i 0.181291 0.0923723i
\(714\) 3243.52i 4.54274i
\(715\) 0 0
\(716\) −897.890 −1.25404
\(717\) 13.2459 + 25.9966i 0.0184741 + 0.0362575i
\(718\) −1635.20 258.990i −2.27743 0.360710i
\(719\) 72.4505 99.7196i 0.100766 0.138692i −0.755657 0.654968i \(-0.772682\pi\)
0.856422 + 0.516276i \(0.172682\pi\)
\(720\) 0 0
\(721\) −309.625 952.928i −0.429439 1.32168i
\(722\) 732.379 115.997i 1.01438 0.160661i
\(723\) −71.7368 11.3620i −0.0992210 0.0157151i
\(724\) 406.195 + 131.981i 0.561043 + 0.182294i
\(725\) 0 0
\(726\) 1471.96 1448.98i 2.02749 1.99584i
\(727\) 595.052 595.052i 0.818504 0.818504i −0.167388 0.985891i \(-0.553533\pi\)
0.985891 + 0.167388i \(0.0535331\pi\)
\(728\) −15.1137 + 7.70081i −0.0207606 + 0.0105780i
\(729\) 1151.02 + 1584.24i 1.57890 + 2.17317i
\(730\) 0 0
\(731\) 221.857 + 682.807i 0.303499 + 0.934073i
\(732\) −488.826 249.069i −0.667795 0.340259i
\(733\) 94.5709 + 597.097i 0.129019 + 0.814594i 0.964308 + 0.264783i \(0.0853003\pi\)
−0.835289 + 0.549811i \(0.814700\pi\)
\(734\) 23.2470 + 31.9967i 0.0316716 + 0.0435922i
\(735\) 0 0
\(736\) 971.833 1.32043
\(737\) −56.7650 240.608i −0.0770217 0.326469i
\(738\) 2948.57 + 2948.57i 3.99535 + 3.99535i
\(739\) −1039.94 337.898i −1.40723 0.457237i −0.495710 0.868488i \(-0.665092\pi\)
−0.911522 + 0.411251i \(0.865092\pi\)
\(740\) 0 0
\(741\) 40.7563 + 29.6112i 0.0550018 + 0.0399612i
\(742\) −86.7527 44.2027i −0.116917 0.0595724i
\(743\) −145.464 + 285.489i −0.195779 + 0.384238i −0.967937 0.251192i \(-0.919177\pi\)
0.772158 + 0.635431i \(0.219177\pi\)
\(744\) 63.0130 86.7299i 0.0846949 0.116572i
\(745\) 0 0
\(746\) 14.4036 44.3298i 0.0193078 0.0594234i
\(747\) −1399.62 + 1399.62i −1.87366 + 1.87366i
\(748\) 115.485 1397.10i 0.154391 1.86779i
\(749\) 280.981i 0.375142i
\(750\) 0 0
\(751\) −377.847 + 274.522i −0.503125 + 0.365542i −0.810209 0.586141i \(-0.800647\pi\)
0.307084 + 0.951682i \(0.400647\pi\)
\(752\) −1023.20 + 162.060i −1.36064 + 0.215505i
\(753\) 465.376 913.352i 0.618029 1.21295i
\(754\) 6.39550 2.07802i 0.00848209 0.00275600i
\(755\) 0 0
\(756\) 2450.12 1780.11i 3.24089 2.35465i
\(757\) −643.359 1262.66i −0.849880 1.66798i −0.738549 0.674199i \(-0.764489\pi\)
−0.111330 0.993783i \(-0.535511\pi\)
\(758\) −361.866 361.866i −0.477396 0.477396i
\(759\) −1346.40 + 100.638i −1.77391 + 0.132592i
\(760\) 0 0
\(761\) −46.2283 + 142.276i −0.0607468 + 0.186959i −0.976825 0.214041i \(-0.931337\pi\)
0.916078 + 0.401000i \(0.131337\pi\)
\(762\) 291.729 1841.91i 0.382847 2.41720i
\(763\) −1.57338 9.93391i −0.00206209 0.0130195i
\(764\) 520.328 169.065i 0.681058 0.221289i
\(765\) 0 0
\(766\) −1351.30 981.780i −1.76411 1.28170i
\(767\) −7.58208 + 47.8713i −0.00988537 + 0.0624137i
\(768\) −505.750 + 257.693i −0.658529 + 0.335537i
\(769\) 866.331i 1.12657i −0.826263 0.563284i \(-0.809538\pi\)
0.826263 0.563284i \(-0.190462\pi\)
\(770\) 0 0
\(771\) 673.283 0.873259
\(772\) −698.553 1370.99i −0.904862 1.77589i
\(773\) 236.050 + 37.3867i 0.305369 + 0.0483657i 0.307238 0.951633i \(-0.400595\pi\)
−0.00186958 + 0.999998i \(0.500595\pi\)
\(774\) 1152.78 1586.66i 1.48938 2.04995i
\(775\) 0 0
\(776\) 33.5915 + 103.384i 0.0432880 + 0.133227i
\(777\) −1259.57 + 199.496i −1.62107 + 0.256752i
\(778\) 921.485 + 145.949i 1.18443 + 0.187595i
\(779\) −596.665 193.868i −0.765937 0.248868i
\(780\) 0 0
\(781\) −675.402 164.962i −0.864792 0.211219i
\(782\) −1173.69 + 1173.69i −1.50088 + 1.50088i
\(783\) −201.837 + 102.841i −0.257774 + 0.131343i
\(784\) 33.7684 + 46.4782i 0.0430719 + 0.0592834i
\(785\) 0 0
\(786\) 633.252 + 1948.95i 0.805664 + 2.47958i
\(787\) −958.967 488.618i −1.21851 0.620862i −0.277984 0.960586i \(-0.589666\pi\)
−0.940525 + 0.339724i \(0.889666\pi\)
\(788\) −202.382 1277.79i −0.256830 1.62156i
\(789\) 214.926 + 295.821i 0.272404 + 0.374931i
\(790\) 0 0
\(791\) −9.07037 −0.0114670
\(792\) −617.537 + 375.094i −0.779718 + 0.473604i
\(793\) −11.4351 11.4351i −0.0144200 0.0144200i
\(794\) 897.109 + 291.488i 1.12986 + 0.367114i
\(795\) 0 0
\(796\) 1211.41 + 880.138i 1.52187 + 1.10570i
\(797\) 1166.61 + 594.417i 1.46375 + 0.745817i 0.990808 0.135276i \(-0.0431922\pi\)
0.472941 + 0.881094i \(0.343192\pi\)
\(798\) −605.196 + 1187.76i −0.758391 + 1.48843i
\(799\) 1379.04 1898.08i 1.72595 2.37557i
\(800\) 0 0
\(801\) −472.509 + 1454.23i −0.589899 + 1.81552i
\(802\) −1196.72 + 1196.72i −1.49217 + 1.49217i
\(803\) −179.133 75.0262i −0.223080 0.0934324i
\(804\) 632.920i 0.787214i
\(805\) 0 0
\(806\) 13.5499 9.84458i 0.0168113 0.0122141i
\(807\) 2640.07 418.145i 3.27146 0.518148i
\(808\) −24.1243 + 47.3466i −0.0298568 + 0.0585973i
\(809\) 938.088 304.803i 1.15956 0.376765i 0.334826 0.942280i \(-0.391322\pi\)
0.824738 + 0.565514i \(0.191322\pi\)
\(810\) 0 0
\(811\) 1031.12 749.155i 1.27142 0.923742i 0.272163 0.962251i \(-0.412261\pi\)
0.999258 + 0.0385091i \(0.0122609\pi\)
\(812\) 44.5995 + 87.5314i 0.0549255 + 0.107797i
\(813\) −1365.24 1365.24i −1.67926 1.67926i
\(814\) 995.588 74.4159i 1.22308 0.0914200i
\(815\) 0 0
\(816\) 520.800 1602.86i 0.638236 1.96429i
\(817\) −46.1591 + 291.437i −0.0564983 + 0.356716i
\(818\) 25.2245 + 159.261i 0.0308368 + 0.194696i
\(819\) 137.133 44.5571i 0.167439 0.0544043i
\(820\) 0 0
\(821\) 1061.13 + 770.954i 1.29248 + 0.939043i 0.999852 0.0171835i \(-0.00546994\pi\)
0.292629 + 0.956226i \(0.405470\pi\)
\(822\) 515.129 3252.40i 0.626677 3.95669i
\(823\) −1416.42 + 721.703i −1.72105 + 0.876918i −0.742790 + 0.669524i \(0.766498\pi\)
−0.978258 + 0.207393i \(0.933502\pi\)
\(824\) 378.906i 0.459837i
\(825\) 0 0
\(826\) −1282.53 −1.55270
\(827\) 531.696 + 1043.51i 0.642921 + 1.26180i 0.950631 + 0.310324i \(0.100437\pi\)
−0.307710 + 0.951480i \(0.599563\pi\)
\(828\) 2472.44 + 391.595i 2.98603 + 0.472941i
\(829\) −570.758 + 785.581i −0.688490 + 0.947625i −0.999997 0.00261906i \(-0.999166\pi\)
0.311507 + 0.950244i \(0.399166\pi\)
\(830\) 0 0
\(831\) −9.84336 30.2947i −0.0118452 0.0364558i
\(832\) 73.3830 11.6227i 0.0882007 0.0139696i
\(833\) −128.507 20.3535i −0.154270 0.0244340i
\(834\) −929.463 302.001i −1.11446 0.362111i
\(835\) 0 0
\(836\) 302.970 490.066i 0.362405 0.586203i
\(837\) −398.948 + 398.948i −0.476640 + 0.476640i
\(838\) 1520.46 774.714i 1.81439 0.924480i
\(839\) 282.214 + 388.434i 0.336369 + 0.462973i 0.943377 0.331724i \(-0.107630\pi\)
−0.607007 + 0.794696i \(0.707630\pi\)
\(840\) 0 0
\(841\) 257.613 + 792.850i 0.306317 + 0.942747i
\(842\) 1770.21 + 901.968i 2.10239 + 1.07122i
\(843\) 122.457 + 773.164i 0.145264 + 0.917158i
\(844\) 760.193 + 1046.32i 0.900703 + 1.23971i
\(845\) 0 0
\(846\) −6409.03 −7.57569
\(847\) 517.123 + 723.661i 0.610535 + 0.854382i
\(848\) 35.7734 + 35.7734i 0.0421856 + 0.0421856i
\(849\) −1693.98 550.406i −1.99526 0.648299i
\(850\) 0 0
\(851\) −527.971 383.594i −0.620413 0.450756i
\(852\) 1586.00 + 808.106i 1.86150 + 0.948482i
\(853\) 112.057 219.925i 0.131369 0.257825i −0.815947 0.578126i \(-0.803784\pi\)
0.947316 + 0.320301i \(0.103784\pi\)
\(854\) 251.527 346.197i 0.294528 0.405383i
\(855\) 0 0
\(856\) −32.8350 + 101.056i −0.0383586 + 0.118056i
\(857\) 93.0660 93.0660i 0.108595 0.108595i −0.650721 0.759317i \(-0.725533\pi\)
0.759317 + 0.650721i \(0.225533\pi\)
\(858\) −151.711 + 35.7921i −0.176819 + 0.0417157i
\(859\) 265.184i 0.308713i −0.988015 0.154356i \(-0.950670\pi\)
0.988015 0.154356i \(-0.0493304\pi\)
\(860\) 0 0
\(861\) −2006.02 + 1457.46i −2.32987 + 1.69275i
\(862\) −1067.66 + 169.101i −1.23859 + 0.196173i
\(863\) −350.143 + 687.194i −0.405727 + 0.796285i −0.999968 0.00800259i \(-0.997453\pi\)
0.594241 + 0.804287i \(0.297453\pi\)
\(864\) −3594.55 + 1167.94i −4.16036 + 1.35178i
\(865\) 0 0
\(866\) −900.584 + 654.313i −1.03994 + 0.755557i
\(867\) 983.348 + 1929.93i 1.13420 + 2.22599i
\(868\) 173.013 + 173.013i 0.199324 + 0.199324i
\(869\) 191.957 162.645i 0.220894 0.187164i
\(870\) 0 0
\(871\) −5.76516 + 17.7434i −0.00661902 + 0.0203712i
\(872\) 0.594991 3.75663i 0.000682329 0.00430806i
\(873\) −144.552 912.667i −0.165581 1.04544i
\(874\) −648.793 + 210.806i −0.742326 + 0.241196i
\(875\) 0 0
\(876\) 402.260 + 292.259i 0.459201 + 0.333629i
\(877\) 156.734 989.583i 0.178717 1.12837i −0.721334 0.692587i \(-0.756471\pi\)
0.900051 0.435785i \(-0.143529\pi\)
\(878\) −1946.58 + 991.830i −2.21706 + 1.12965i
\(879\) 1411.74i 1.60608i
\(880\) 0 0
\(881\) −629.188 −0.714175 −0.357087 0.934071i \(-0.616230\pi\)
−0.357087 + 0.934071i \(0.616230\pi\)
\(882\) 161.357 + 316.682i 0.182945 + 0.359049i
\(883\) 643.428 + 101.909i 0.728685 + 0.115412i 0.509744 0.860326i \(-0.329740\pi\)
0.218940 + 0.975738i \(0.429740\pi\)
\(884\) −62.1847 + 85.5898i −0.0703446 + 0.0968211i
\(885\) 0 0
\(886\) 630.189 + 1939.52i 0.711274 + 2.18908i
\(887\) −812.165 + 128.634i −0.915632 + 0.145022i −0.596430 0.802665i \(-0.703415\pi\)
−0.319202 + 0.947687i \(0.603415\pi\)
\(888\) −476.321 75.4418i −0.536397 0.0849570i
\(889\) 763.747 + 248.156i 0.859108 + 0.279141i
\(890\) 0 0
\(891\) 2694.28 1103.61i 3.02388 1.23862i
\(892\) 1383.78 1383.78i 1.55133 1.55133i
\(893\) 859.155 437.761i 0.962099 0.490214i
\(894\) −1762.95 2426.50i −1.97198 2.71420i
\(895\) 0 0
\(896\) 196.592 + 605.049i 0.219411 + 0.675278i
\(897\) 90.7868 + 46.2582i 0.101212 + 0.0515699i
\(898\) −84.9401 536.290i −0.0945880 0.597205i
\(899\) −10.7573 14.8062i −0.0119659 0.0164696i
\(900\) 0 0
\(901\) −114.575 −0.127164
\(902\) 1659.10 1007.74i 1.83936 1.11723i
\(903\) 824.637 + 824.637i 0.913220 + 0.913220i
\(904\) −3.26219 1.05995i −0.00360862 0.00117251i
\(905\) 0 0
\(906\) −2699.97 1961.64i −2.98010 2.16517i
\(907\) −175.306 89.3227i −0.193281 0.0984815i 0.354672 0.934991i \(-0.384593\pi\)
−0.547953 + 0.836509i \(0.684593\pi\)
\(908\) −380.983 + 747.721i −0.419585 + 0.823481i
\(909\) 265.505 365.436i 0.292084 0.402019i
\(910\) 0 0
\(911\) 474.334 1459.85i 0.520674 1.60247i −0.252040 0.967717i \(-0.581102\pi\)
0.772715 0.634754i \(-0.218898\pi\)
\(912\) 489.787 489.787i 0.537047 0.537047i
\(913\) 478.355 + 787.540i 0.523938 + 0.862585i
\(914\) 2463.69i 2.69550i
\(915\) 0 0
\(916\) −1064.77 + 773.603i −1.16242 + 0.844545i
\(917\) −871.584 + 138.045i −0.950473 + 0.150540i
\(918\) 2930.63 5751.68i 3.19240 6.26544i
\(919\) −525.464 + 170.734i −0.571778 + 0.185782i −0.580614 0.814179i \(-0.697187\pi\)
0.00883567 + 0.999961i \(0.497187\pi\)
\(920\) 0 0
\(921\) 766.568 556.944i 0.832322 0.604717i
\(922\) 976.753 + 1916.99i 1.05938 + 2.07916i
\(923\) 37.1011 + 37.1011i 0.0401962 + 0.0401962i
\(924\) −863.150 2107.23i −0.934145 2.28055i
\(925\) 0 0
\(926\) 655.410 2017.14i 0.707786 2.17834i
\(927\) −503.859 + 3181.24i −0.543537 + 3.43176i
\(928\) −19.1789 121.091i −0.0206670 0.130486i
\(929\) −408.527 + 132.739i −0.439749 + 0.142883i −0.520520 0.853849i \(-0.674262\pi\)
0.0807706 + 0.996733i \(0.474262\pi\)
\(930\) 0 0
\(931\) −43.2611 31.4310i −0.0464674 0.0337605i
\(932\) −89.2131 + 563.269i −0.0957222 + 0.604366i
\(933\) −73.6343 + 37.5186i −0.0789221 + 0.0402128i
\(934\) 152.325i 0.163088i
\(935\) 0 0
\(936\) 54.5271 0.0582555
\(937\) −337.934 663.233i −0.360655 0.707826i 0.637375 0.770554i \(-0.280020\pi\)
−0.998031 + 0.0627275i \(0.980020\pi\)
\(938\) −487.597 77.2277i −0.519826 0.0823323i
\(939\) 1430.57 1969.01i 1.52351 2.09693i
\(940\) 0 0
\(941\) −240.721 740.864i −0.255814 0.787315i −0.993668 0.112355i \(-0.964161\pi\)
0.737854 0.674960i \(-0.235839\pi\)
\(942\) −1923.16 + 304.598i −2.04157 + 0.323352i
\(943\) −1253.28 198.500i −1.32904 0.210499i
\(944\) 633.791 + 205.931i 0.671389 + 0.218148i
\(945\) 0 0
\(946\) −590.204 696.569i −0.623894 0.736331i
\(947\) −358.441 + 358.441i −0.378502 + 0.378502i −0.870561 0.492060i \(-0.836244\pi\)
0.492060 + 0.870561i \(0.336244\pi\)
\(948\) −573.936 + 292.435i −0.605417 + 0.308476i
\(949\) 8.61487 + 11.8573i 0.00907784 + 0.0124946i
\(950\) 0 0
\(951\) −665.542 2048.33i −0.699834 2.15387i
\(952\) −470.620 239.793i −0.494348 0.251883i
\(953\) 195.205 + 1232.48i 0.204832 + 1.29326i 0.849006 + 0.528382i \(0.177201\pi\)
−0.644174 + 0.764879i \(0.722799\pi\)
\(954\) 183.969 + 253.211i 0.192839 + 0.265420i
\(955\) 0 0
\(956\) −25.1823 −0.0263413
\(957\) 39.1105 + 165.776i 0.0408678 + 0.173225i
\(958\) −60.9602 60.9602i −0.0636327 0.0636327i
\(959\) 1348.61 + 438.189i 1.40626 + 0.456922i
\(960\) 0 0
\(961\) 740.589 + 538.069i 0.770644 + 0.559905i
\(962\) −67.1317 34.2053i −0.0697835 0.0355565i
\(963\) 410.059 804.787i 0.425814 0.835708i
\(964\) 36.8468 50.7153i 0.0382229 0.0526093i
\(965\) 0 0
\(966\) −833.174 + 2564.25i −0.862499 + 2.65450i
\(967\) 996.526 996.526i 1.03053 1.03053i 0.0310143 0.999519i \(-0.490126\pi\)
0.999519 0.0310143i \(-0.00987374\pi\)
\(968\) 101.419 + 320.697i 0.104772 + 0.331299i
\(969\) 1568.69i 1.61888i
\(970\) 0 0
\(971\) −907.621 + 659.425i −0.934728 + 0.679120i −0.947146 0.320803i \(-0.896047\pi\)
0.0124175 + 0.999923i \(0.496047\pi\)
\(972\) −3700.07 + 586.034i −3.80666 + 0.602915i
\(973\) 191.059 374.975i 0.196361 0.385380i
\(974\) 77.5964 25.2126i 0.0796678 0.0258856i
\(975\) 0 0
\(976\) −179.885 + 130.694i −0.184309 + 0.133908i
\(977\) −635.126 1246.51i −0.650078 1.27585i −0.947087 0.320976i \(-0.895989\pi\)
0.297009 0.954875i \(-0.404011\pi\)
\(978\) 277.428 + 277.428i 0.283669 + 0.283669i
\(979\) 605.454 + 374.306i 0.618442 + 0.382335i
\(980\) 0 0
\(981\) −9.99092 + 30.7489i −0.0101844 + 0.0313444i
\(982\) −180.952 + 1142.49i −0.184269 + 1.16343i
\(983\) 66.9091 + 422.448i 0.0680663 + 0.429754i 0.998064 + 0.0621892i \(0.0198082\pi\)
−0.929998 + 0.367564i \(0.880192\pi\)
\(984\) −891.788 + 289.759i −0.906288 + 0.294471i
\(985\) 0 0
\(986\) 169.405 + 123.080i 0.171810 + 0.124827i
\(987\) 596.178 3764.12i 0.604031 3.81370i
\(988\) −38.7417 + 19.7399i −0.0392122 + 0.0199796i
\(989\) 596.800i 0.603438i
\(990\) 0 0
\(991\) −1760.99 −1.77699 −0.888493 0.458890i \(-0.848247\pi\)
−0.888493 + 0.458890i \(0.848247\pi\)
\(992\) −138.628 272.072i −0.139746 0.274266i
\(993\) 1003.35 + 158.915i 1.01042 + 0.160035i
\(994\) −816.079 + 1123.24i −0.821005 + 1.13002i
\(995\) 0 0
\(996\) −728.995 2243.62i −0.731923 2.25263i
\(997\) 116.575 18.4636i 0.116925 0.0185191i −0.0976975 0.995216i \(-0.531148\pi\)
0.214623 + 0.976697i \(0.431148\pi\)
\(998\) −1232.49 195.208i −1.23496 0.195599i
\(999\) 2413.82 + 784.299i 2.41624 + 0.785084i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.3.bk.c.218.14 yes 128
5.2 odd 4 inner 275.3.bk.c.207.3 yes 128
5.3 odd 4 inner 275.3.bk.c.207.14 yes 128
5.4 even 2 inner 275.3.bk.c.218.3 yes 128
11.5 even 5 inner 275.3.bk.c.93.3 yes 128
55.27 odd 20 inner 275.3.bk.c.82.14 yes 128
55.38 odd 20 inner 275.3.bk.c.82.3 128
55.49 even 10 inner 275.3.bk.c.93.14 yes 128
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
275.3.bk.c.82.3 128 55.38 odd 20 inner
275.3.bk.c.82.14 yes 128 55.27 odd 20 inner
275.3.bk.c.93.3 yes 128 11.5 even 5 inner
275.3.bk.c.93.14 yes 128 55.49 even 10 inner
275.3.bk.c.207.3 yes 128 5.2 odd 4 inner
275.3.bk.c.207.14 yes 128 5.3 odd 4 inner
275.3.bk.c.218.3 yes 128 5.4 even 2 inner
275.3.bk.c.218.14 yes 128 1.1 even 1 trivial