Properties

Label 275.3.bk.c.82.13
Level $275$
Weight $3$
Character 275.82
Analytic conductor $7.493$
Analytic rank $0$
Dimension $128$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,3,Mod(82,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([5, 8])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.82"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 275.bk (of order \(20\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [128] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.49320726991\)
Analytic rank: \(0\)
Dimension: \(128\)
Relative dimension: \(16\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 82.13
Character \(\chi\) \(=\) 275.82
Dual form 275.3.bk.c.218.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.11368 - 2.18572i) q^{2} +(3.11704 - 0.493690i) q^{3} +(-1.18596 - 1.63233i) q^{4} +(2.39232 - 7.36280i) q^{6} +(1.55118 + 0.245682i) q^{7} +(4.80296 - 0.760714i) q^{8} +(0.912687 - 0.296550i) q^{9} +(4.19559 - 10.1684i) q^{11} +(-4.50255 - 4.50255i) q^{12} +(4.14212 + 2.11052i) q^{13} +(2.26451 - 3.11683i) q^{14} +(6.18024 - 19.0208i) q^{16} +(-9.81025 + 4.99857i) q^{17} +(0.368267 - 2.32514i) q^{18} +(2.44564 - 3.36614i) q^{19} +4.95637 q^{21} +(-17.5528 - 20.4948i) q^{22} +(4.08642 - 4.08642i) q^{23} +(14.5955 - 4.74235i) q^{24} +(9.22601 - 6.70309i) q^{26} +(-22.6088 + 11.5198i) q^{27} +(-1.43860 - 2.82341i) q^{28} +(-9.31687 - 12.8236i) q^{29} +(16.8361 + 51.8163i) q^{31} +(-20.9373 - 20.9373i) q^{32} +(8.05774 - 33.7667i) q^{33} +27.0093i q^{34} +(-1.56648 - 1.13811i) q^{36} +(-24.5018 - 3.88071i) q^{37} +(-4.63378 - 9.09431i) q^{38} +(13.9531 + 4.53363i) q^{39} +(34.9390 + 25.3846i) q^{41} +(5.51982 - 10.8333i) q^{42} +(-33.7901 + 33.7901i) q^{43} +(-21.5741 + 5.21076i) q^{44} +(-4.38082 - 13.4828i) q^{46} +(11.9207 + 75.2645i) q^{47} +(9.87365 - 62.3398i) q^{48} +(-44.2560 - 14.3796i) q^{49} +(-28.1112 + 20.4240i) q^{51} +(-1.46732 - 9.26431i) q^{52} +(-24.6242 - 12.5467i) q^{53} +62.2460i q^{54} +7.63714 q^{56} +(5.96133 - 11.6998i) q^{57} +(-38.4048 + 6.08273i) q^{58} +(-59.8804 - 82.4183i) q^{59} +(-8.72078 + 26.8398i) q^{61} +(132.006 + 20.9077i) q^{62} +(1.48860 - 0.235771i) q^{63} +(7.00270 - 2.27532i) q^{64} +(-64.8310 - 55.2174i) q^{66} +(1.02357 + 1.02357i) q^{67} +(19.7939 + 10.0855i) q^{68} +(10.7201 - 14.7550i) q^{69} +(23.0126 - 70.8254i) q^{71} +(4.15801 - 2.11861i) q^{72} +(-15.3779 + 97.0924i) q^{73} +(-35.7694 + 49.2323i) q^{74} -8.39510 q^{76} +(9.00630 - 14.7423i) q^{77} +(25.4486 - 25.4486i) q^{78} +(107.275 - 34.8559i) q^{79} +(-71.7727 + 52.1459i) q^{81} +(94.3947 - 48.0965i) q^{82} +(49.3617 + 96.8777i) q^{83} +(-5.87806 - 8.09045i) q^{84} +(36.2243 + 111.487i) q^{86} +(-35.3719 - 35.3719i) q^{87} +(12.4160 - 52.0302i) q^{88} -21.2775i q^{89} +(5.90665 + 4.29143i) q^{91} +(-11.5167 - 1.82407i) q^{92} +(78.0601 + 153.202i) q^{93} +(177.783 + 57.7653i) q^{94} +(-75.5989 - 54.9258i) q^{96} +(9.55693 - 18.7565i) q^{97} +(-80.7170 + 80.7170i) q^{98} +(0.813807 - 10.5248i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 128 q - 48 q^{6} + 32 q^{11} + 280 q^{16} - 8 q^{21} + 528 q^{26} - 16 q^{31} + 336 q^{36} - 604 q^{41} - 1152 q^{46} - 1024 q^{51} - 992 q^{56} - 320 q^{61} + 1624 q^{66} + 536 q^{71} + 1776 q^{76} + 3680 q^{81}+ \cdots - 6584 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.11368 2.18572i 0.556841 1.09286i −0.425359 0.905025i \(-0.639852\pi\)
0.982200 0.187837i \(-0.0601477\pi\)
\(3\) 3.11704 0.493690i 1.03901 0.164563i 0.386459 0.922306i \(-0.373698\pi\)
0.652553 + 0.757743i \(0.273698\pi\)
\(4\) −1.18596 1.63233i −0.296490 0.408083i
\(5\) 0 0
\(6\) 2.39232 7.36280i 0.398720 1.22713i
\(7\) 1.55118 + 0.245682i 0.221597 + 0.0350975i 0.266245 0.963905i \(-0.414217\pi\)
−0.0446486 + 0.999003i \(0.514217\pi\)
\(8\) 4.80296 0.760714i 0.600370 0.0950893i
\(9\) 0.912687 0.296550i 0.101410 0.0329500i
\(10\) 0 0
\(11\) 4.19559 10.1684i 0.381417 0.924403i
\(12\) −4.50255 4.50255i −0.375212 0.375212i
\(13\) 4.14212 + 2.11052i 0.318625 + 0.162347i 0.605987 0.795475i \(-0.292778\pi\)
−0.287362 + 0.957822i \(0.592778\pi\)
\(14\) 2.26451 3.11683i 0.161751 0.222631i
\(15\) 0 0
\(16\) 6.18024 19.0208i 0.386265 1.18880i
\(17\) −9.81025 + 4.99857i −0.577074 + 0.294034i −0.718064 0.695977i \(-0.754971\pi\)
0.140990 + 0.990011i \(0.454971\pi\)
\(18\) 0.368267 2.32514i 0.0204593 0.129175i
\(19\) 2.44564 3.36614i 0.128718 0.177165i −0.739794 0.672834i \(-0.765077\pi\)
0.868512 + 0.495669i \(0.165077\pi\)
\(20\) 0 0
\(21\) 4.95637 0.236018
\(22\) −17.5528 20.4948i −0.797856 0.931581i
\(23\) 4.08642 4.08642i 0.177671 0.177671i −0.612669 0.790340i \(-0.709904\pi\)
0.790340 + 0.612669i \(0.209904\pi\)
\(24\) 14.5955 4.74235i 0.608144 0.197598i
\(25\) 0 0
\(26\) 9.22601 6.70309i 0.354846 0.257811i
\(27\) −22.6088 + 11.5198i −0.837363 + 0.426658i
\(28\) −1.43860 2.82341i −0.0513785 0.100836i
\(29\) −9.31687 12.8236i −0.321271 0.442192i 0.617583 0.786505i \(-0.288112\pi\)
−0.938855 + 0.344313i \(0.888112\pi\)
\(30\) 0 0
\(31\) 16.8361 + 51.8163i 0.543101 + 1.67149i 0.725462 + 0.688263i \(0.241626\pi\)
−0.182360 + 0.983232i \(0.558374\pi\)
\(32\) −20.9373 20.9373i −0.654291 0.654291i
\(33\) 8.05774 33.7667i 0.244174 1.02323i
\(34\) 27.0093i 0.794392i
\(35\) 0 0
\(36\) −1.56648 1.13811i −0.0435133 0.0316143i
\(37\) −24.5018 3.88071i −0.662211 0.104884i −0.183723 0.982978i \(-0.558815\pi\)
−0.478488 + 0.878094i \(0.658815\pi\)
\(38\) −4.63378 9.09431i −0.121942 0.239324i
\(39\) 13.9531 + 4.53363i 0.357771 + 0.116247i
\(40\) 0 0
\(41\) 34.9390 + 25.3846i 0.852170 + 0.619138i 0.925743 0.378152i \(-0.123440\pi\)
−0.0735735 + 0.997290i \(0.523440\pi\)
\(42\) 5.51982 10.8333i 0.131424 0.257935i
\(43\) −33.7901 + 33.7901i −0.785815 + 0.785815i −0.980805 0.194990i \(-0.937533\pi\)
0.194990 + 0.980805i \(0.437533\pi\)
\(44\) −21.5741 + 5.21076i −0.490320 + 0.118426i
\(45\) 0 0
\(46\) −4.38082 13.4828i −0.0952351 0.293104i
\(47\) 11.9207 + 75.2645i 0.253632 + 1.60137i 0.705116 + 0.709092i \(0.250895\pi\)
−0.451484 + 0.892279i \(0.649105\pi\)
\(48\) 9.87365 62.3398i 0.205701 1.29875i
\(49\) −44.2560 14.3796i −0.903183 0.293462i
\(50\) 0 0
\(51\) −28.1112 + 20.4240i −0.551199 + 0.400470i
\(52\) −1.46732 9.26431i −0.0282177 0.178160i
\(53\) −24.6242 12.5467i −0.464608 0.236730i 0.205985 0.978555i \(-0.433960\pi\)
−0.670593 + 0.741826i \(0.733960\pi\)
\(54\) 62.2460i 1.15270i
\(55\) 0 0
\(56\) 7.63714 0.136378
\(57\) 5.96133 11.6998i 0.104585 0.205259i
\(58\) −38.4048 + 6.08273i −0.662152 + 0.104875i
\(59\) −59.8804 82.4183i −1.01492 1.39692i −0.915703 0.401855i \(-0.868366\pi\)
−0.0992186 0.995066i \(-0.531634\pi\)
\(60\) 0 0
\(61\) −8.72078 + 26.8398i −0.142964 + 0.439997i −0.996744 0.0806373i \(-0.974304\pi\)
0.853780 + 0.520634i \(0.174304\pi\)
\(62\) 132.006 + 20.9077i 2.12913 + 0.337222i
\(63\) 1.48860 0.235771i 0.0236285 0.00374239i
\(64\) 7.00270 2.27532i 0.109417 0.0355518i
\(65\) 0 0
\(66\) −64.8310 55.2174i −0.982287 0.836627i
\(67\) 1.02357 + 1.02357i 0.0152771 + 0.0152771i 0.714704 0.699427i \(-0.246561\pi\)
−0.699427 + 0.714704i \(0.746561\pi\)
\(68\) 19.7939 + 10.0855i 0.291087 + 0.148316i
\(69\) 10.7201 14.7550i 0.155364 0.213840i
\(70\) 0 0
\(71\) 23.0126 70.8254i 0.324121 0.997540i −0.647716 0.761882i \(-0.724275\pi\)
0.971836 0.235658i \(-0.0757245\pi\)
\(72\) 4.15801 2.11861i 0.0577502 0.0294252i
\(73\) −15.3779 + 97.0924i −0.210656 + 1.33003i 0.624933 + 0.780678i \(0.285126\pi\)
−0.835590 + 0.549354i \(0.814874\pi\)
\(74\) −35.7694 + 49.2323i −0.483370 + 0.665302i
\(75\) 0 0
\(76\) −8.39510 −0.110462
\(77\) 9.00630 14.7423i 0.116965 0.191458i
\(78\) 25.4486 25.4486i 0.326264 0.326264i
\(79\) 107.275 34.8559i 1.35792 0.441213i 0.462569 0.886583i \(-0.346928\pi\)
0.895347 + 0.445370i \(0.146928\pi\)
\(80\) 0 0
\(81\) −71.7727 + 52.1459i −0.886083 + 0.643777i
\(82\) 94.3947 48.0965i 1.15116 0.586543i
\(83\) 49.3617 + 96.8777i 0.594719 + 1.16720i 0.970637 + 0.240549i \(0.0773273\pi\)
−0.375918 + 0.926653i \(0.622673\pi\)
\(84\) −5.87806 8.09045i −0.0699768 0.0963149i
\(85\) 0 0
\(86\) 36.2243 + 111.487i 0.421213 + 1.29636i
\(87\) −35.3719 35.3719i −0.406574 0.406574i
\(88\) 12.4160 52.0302i 0.141090 0.591253i
\(89\) 21.2775i 0.239073i −0.992830 0.119537i \(-0.961859\pi\)
0.992830 0.119537i \(-0.0381409\pi\)
\(90\) 0 0
\(91\) 5.90665 + 4.29143i 0.0649082 + 0.0471586i
\(92\) −11.5167 1.82407i −0.125182 0.0198269i
\(93\) 78.0601 + 153.202i 0.839356 + 1.64733i
\(94\) 177.783 + 57.7653i 1.89131 + 0.614524i
\(95\) 0 0
\(96\) −75.5989 54.9258i −0.787488 0.572144i
\(97\) 9.55693 18.7565i 0.0985250 0.193366i −0.836483 0.547993i \(-0.815392\pi\)
0.935008 + 0.354627i \(0.115392\pi\)
\(98\) −80.7170 + 80.7170i −0.823643 + 0.823643i
\(99\) 0.813807 10.5248i 0.00822027 0.106311i
\(100\) 0 0
\(101\) −46.8773 144.273i −0.464132 1.42845i −0.860071 0.510174i \(-0.829581\pi\)
0.395940 0.918276i \(-0.370419\pi\)
\(102\) 13.3342 + 84.1891i 0.130728 + 0.825383i
\(103\) 13.2176 83.4524i 0.128326 0.810218i −0.836623 0.547779i \(-0.815473\pi\)
0.964949 0.262438i \(-0.0845267\pi\)
\(104\) 21.4999 + 6.98575i 0.206730 + 0.0671707i
\(105\) 0 0
\(106\) −54.8471 + 39.8488i −0.517426 + 0.375932i
\(107\) 26.6535 + 168.284i 0.249098 + 1.57274i 0.722167 + 0.691718i \(0.243146\pi\)
−0.473069 + 0.881025i \(0.656854\pi\)
\(108\) 45.6172 + 23.2431i 0.422382 + 0.215214i
\(109\) 144.976i 1.33005i 0.746820 + 0.665026i \(0.231580\pi\)
−0.746820 + 0.665026i \(0.768420\pi\)
\(110\) 0 0
\(111\) −78.2889 −0.705306
\(112\) 14.2597 27.9863i 0.127319 0.249878i
\(113\) 55.4609 8.78415i 0.490805 0.0777358i 0.0938734 0.995584i \(-0.470075\pi\)
0.396931 + 0.917848i \(0.370075\pi\)
\(114\) −18.9334 26.0596i −0.166083 0.228593i
\(115\) 0 0
\(116\) −9.88292 + 30.4165i −0.0851976 + 0.262211i
\(117\) 4.40633 + 0.697894i 0.0376610 + 0.00596491i
\(118\) −246.831 + 39.0942i −2.09179 + 0.331307i
\(119\) −16.4455 + 5.34347i −0.138197 + 0.0449031i
\(120\) 0 0
\(121\) −85.7941 85.3251i −0.709042 0.705166i
\(122\) 48.9522 + 48.9522i 0.401248 + 0.401248i
\(123\) 121.438 + 61.8759i 0.987303 + 0.503056i
\(124\) 64.6145 88.9343i 0.521085 0.717212i
\(125\) 0 0
\(126\) 1.14249 3.51623i 0.00906741 0.0279066i
\(127\) −99.8107 + 50.8561i −0.785911 + 0.400441i −0.800410 0.599453i \(-0.795385\pi\)
0.0144990 + 0.999895i \(0.495385\pi\)
\(128\) 21.3535 134.821i 0.166825 1.05329i
\(129\) −88.6431 + 122.007i −0.687155 + 0.945788i
\(130\) 0 0
\(131\) 203.816 1.55585 0.777923 0.628360i \(-0.216274\pi\)
0.777923 + 0.628360i \(0.216274\pi\)
\(132\) −64.6747 + 26.8930i −0.489960 + 0.203735i
\(133\) 4.62063 4.62063i 0.0347416 0.0347416i
\(134\) 3.37716 1.09730i 0.0252027 0.00818884i
\(135\) 0 0
\(136\) −43.3158 + 31.4707i −0.318498 + 0.231403i
\(137\) 231.768 118.092i 1.69174 0.861984i 0.703204 0.710989i \(-0.251752\pi\)
0.988535 0.150995i \(-0.0482478\pi\)
\(138\) −20.3115 39.8635i −0.147185 0.288866i
\(139\) −24.0521 33.1048i −0.173037 0.238164i 0.713687 0.700465i \(-0.247024\pi\)
−0.886723 + 0.462301i \(0.847024\pi\)
\(140\) 0 0
\(141\) 74.3147 + 228.717i 0.527054 + 1.62211i
\(142\) −129.176 129.176i −0.909690 0.909690i
\(143\) 38.8393 33.2640i 0.271603 0.232616i
\(144\) 19.1928i 0.133283i
\(145\) 0 0
\(146\) 195.091 + 141.742i 1.33624 + 0.970835i
\(147\) −145.047 22.9731i −0.986712 0.156280i
\(148\) 22.7236 + 44.5975i 0.153538 + 0.301334i
\(149\) −104.012 33.7955i −0.698066 0.226816i −0.0615785 0.998102i \(-0.519613\pi\)
−0.636488 + 0.771287i \(0.719613\pi\)
\(150\) 0 0
\(151\) −99.2813 72.1321i −0.657492 0.477696i 0.208323 0.978060i \(-0.433199\pi\)
−0.865815 + 0.500364i \(0.833199\pi\)
\(152\) 9.18566 18.0279i 0.0604320 0.118604i
\(153\) −7.47136 + 7.47136i −0.0488324 + 0.0488324i
\(154\) −22.1924 36.1035i −0.144106 0.234438i
\(155\) 0 0
\(156\) −9.14740 28.1528i −0.0586372 0.180467i
\(157\) −30.5733 193.032i −0.194734 1.22950i −0.870419 0.492312i \(-0.836152\pi\)
0.675685 0.737191i \(-0.263848\pi\)
\(158\) 43.2853 273.293i 0.273958 1.72970i
\(159\) −82.9488 26.9517i −0.521691 0.169508i
\(160\) 0 0
\(161\) 7.34273 5.33481i 0.0456070 0.0331354i
\(162\) 34.0446 + 214.949i 0.210152 + 1.32685i
\(163\) −280.098 142.717i −1.71840 0.875566i −0.979420 0.201834i \(-0.935310\pi\)
−0.738975 0.673732i \(-0.764690\pi\)
\(164\) 87.1372i 0.531324i
\(165\) 0 0
\(166\) 266.721 1.60675
\(167\) −13.6296 + 26.7496i −0.0816143 + 0.160177i −0.928207 0.372064i \(-0.878650\pi\)
0.846593 + 0.532241i \(0.178650\pi\)
\(168\) 23.8053 3.77038i 0.141698 0.0224428i
\(169\) −86.6328 119.240i −0.512620 0.705561i
\(170\) 0 0
\(171\) 1.23388 3.79749i 0.00721566 0.0222075i
\(172\) 95.2303 + 15.0830i 0.553664 + 0.0876918i
\(173\) −126.603 + 20.0520i −0.731811 + 0.115907i −0.511209 0.859457i \(-0.670802\pi\)
−0.220602 + 0.975364i \(0.570802\pi\)
\(174\) −116.706 + 37.9202i −0.670726 + 0.217932i
\(175\) 0 0
\(176\) −167.482 142.647i −0.951604 0.810494i
\(177\) −227.339 227.339i −1.28440 1.28440i
\(178\) −46.5068 23.6964i −0.261274 0.133126i
\(179\) −68.7567 + 94.6354i −0.384115 + 0.528690i −0.956669 0.291178i \(-0.905953\pi\)
0.572554 + 0.819867i \(0.305953\pi\)
\(180\) 0 0
\(181\) −18.9964 + 58.4650i −0.104953 + 0.323011i −0.989719 0.143023i \(-0.954318\pi\)
0.884767 + 0.466034i \(0.154318\pi\)
\(182\) 15.9580 8.13101i 0.0876813 0.0446759i
\(183\) −13.9325 + 87.9661i −0.0761336 + 0.480689i
\(184\) 16.5183 22.7355i 0.0897735 0.123563i
\(185\) 0 0
\(186\) 421.791 2.26769
\(187\) 9.66791 + 120.727i 0.0517001 + 0.645598i
\(188\) 108.719 108.719i 0.578294 0.578294i
\(189\) −37.9005 + 12.3146i −0.200532 + 0.0651567i
\(190\) 0 0
\(191\) 95.9178 69.6884i 0.502187 0.364860i −0.307664 0.951495i \(-0.599547\pi\)
0.809852 + 0.586634i \(0.199547\pi\)
\(192\) 20.7044 10.5494i 0.107835 0.0549449i
\(193\) 19.9057 + 39.0672i 0.103139 + 0.202421i 0.936809 0.349842i \(-0.113765\pi\)
−0.833670 + 0.552262i \(0.813765\pi\)
\(194\) −30.3532 41.7776i −0.156460 0.215349i
\(195\) 0 0
\(196\) 29.0134 + 89.2942i 0.148028 + 0.455583i
\(197\) −45.0392 45.0392i −0.228626 0.228626i 0.583493 0.812118i \(-0.301686\pi\)
−0.812118 + 0.583493i \(0.801686\pi\)
\(198\) −22.0980 13.5000i −0.111606 0.0681820i
\(199\) 185.939i 0.934367i −0.884160 0.467184i \(-0.845269\pi\)
0.884160 0.467184i \(-0.154731\pi\)
\(200\) 0 0
\(201\) 3.69582 + 2.68517i 0.0183871 + 0.0133590i
\(202\) −367.548 58.2139i −1.81955 0.288188i
\(203\) −11.3016 22.1806i −0.0556729 0.109264i
\(204\) 66.6774 + 21.6648i 0.326850 + 0.106200i
\(205\) 0 0
\(206\) −167.684 121.829i −0.813999 0.591405i
\(207\) 2.51780 4.94145i 0.0121633 0.0238718i
\(208\) 65.7431 65.7431i 0.316072 0.316072i
\(209\) −23.9675 38.9913i −0.114677 0.186561i
\(210\) 0 0
\(211\) −82.7053 254.541i −0.391968 1.20635i −0.931298 0.364259i \(-0.881322\pi\)
0.539329 0.842095i \(-0.318678\pi\)
\(212\) 8.72299 + 55.0748i 0.0411462 + 0.259787i
\(213\) 36.7652 232.126i 0.172607 1.08980i
\(214\) 397.505 + 129.157i 1.85750 + 0.603538i
\(215\) 0 0
\(216\) −99.8260 + 72.5278i −0.462157 + 0.335777i
\(217\) 13.3855 + 84.5127i 0.0616843 + 0.389459i
\(218\) 316.877 + 161.457i 1.45356 + 0.740628i
\(219\) 310.233i 1.41659i
\(220\) 0 0
\(221\) −51.1848 −0.231605
\(222\) −87.1890 + 171.118i −0.392743 + 0.770802i
\(223\) −117.472 + 18.6057i −0.526778 + 0.0834335i −0.414159 0.910205i \(-0.635924\pi\)
−0.112620 + 0.993638i \(0.535924\pi\)
\(224\) −27.3335 37.6214i −0.122025 0.167953i
\(225\) 0 0
\(226\) 42.5661 131.005i 0.188346 0.579668i
\(227\) −168.557 26.6968i −0.742543 0.117607i −0.226310 0.974055i \(-0.572666\pi\)
−0.516233 + 0.856448i \(0.672666\pi\)
\(228\) −26.1678 + 4.14458i −0.114771 + 0.0181780i
\(229\) 121.738 39.5550i 0.531606 0.172729i −0.0309000 0.999522i \(-0.509837\pi\)
0.562506 + 0.826793i \(0.309837\pi\)
\(230\) 0 0
\(231\) 20.7949 50.3985i 0.0900211 0.218175i
\(232\) −54.5037 54.5037i −0.234930 0.234930i
\(233\) 237.093 + 120.805i 1.01757 + 0.518477i 0.881481 0.472220i \(-0.156547\pi\)
0.136087 + 0.990697i \(0.456547\pi\)
\(234\) 6.43266 8.85379i 0.0274900 0.0378367i
\(235\) 0 0
\(236\) −63.5184 + 195.490i −0.269146 + 0.828346i
\(237\) 317.173 161.608i 1.33828 0.681890i
\(238\) −6.63571 + 41.8962i −0.0278811 + 0.176035i
\(239\) 106.692 146.849i 0.446411 0.614432i −0.525211 0.850972i \(-0.676013\pi\)
0.971622 + 0.236540i \(0.0760135\pi\)
\(240\) 0 0
\(241\) 114.219 0.473937 0.236968 0.971517i \(-0.423846\pi\)
0.236968 + 0.971517i \(0.423846\pi\)
\(242\) −282.044 + 92.4973i −1.16547 + 0.382220i
\(243\) −36.4923 + 36.4923i −0.150174 + 0.150174i
\(244\) 54.1540 17.5957i 0.221943 0.0721135i
\(245\) 0 0
\(246\) 270.487 196.520i 1.09954 0.798863i
\(247\) 17.2344 8.78138i 0.0697750 0.0355522i
\(248\) 120.281 + 236.064i 0.485003 + 0.951872i
\(249\) 201.690 + 277.602i 0.809999 + 1.11487i
\(250\) 0 0
\(251\) 58.3065 + 179.449i 0.232297 + 0.714936i 0.997469 + 0.0711096i \(0.0226540\pi\)
−0.765172 + 0.643826i \(0.777346\pi\)
\(252\) −2.15027 2.15027i −0.00853282 0.00853282i
\(253\) −24.4076 58.6975i −0.0964727 0.232006i
\(254\) 274.796i 1.08187i
\(255\) 0 0
\(256\) −247.073 179.509i −0.965129 0.701207i
\(257\) −31.7365 5.02657i −0.123488 0.0195587i 0.0943842 0.995536i \(-0.469912\pi\)
−0.217873 + 0.975977i \(0.569912\pi\)
\(258\) 167.953 + 329.626i 0.650980 + 1.27762i
\(259\) −37.0532 12.0393i −0.143063 0.0464839i
\(260\) 0 0
\(261\) −12.3062 8.94099i −0.0471503 0.0342567i
\(262\) 226.986 445.485i 0.866358 1.70032i
\(263\) 265.068 265.068i 1.00786 1.00786i 0.00789398 0.999969i \(-0.497487\pi\)
0.999969 0.00789398i \(-0.00251276\pi\)
\(264\) 13.0142 168.310i 0.0492962 0.637537i
\(265\) 0 0
\(266\) −4.95351 15.2453i −0.0186222 0.0573132i
\(267\) −10.5045 66.3228i −0.0393427 0.248400i
\(268\) 0.456893 2.88471i 0.00170482 0.0107638i
\(269\) 99.1773 + 32.2247i 0.368689 + 0.119794i 0.487501 0.873122i \(-0.337909\pi\)
−0.118812 + 0.992917i \(0.537909\pi\)
\(270\) 0 0
\(271\) −137.306 + 99.7586i −0.506664 + 0.368113i −0.811557 0.584274i \(-0.801379\pi\)
0.304892 + 0.952387i \(0.401379\pi\)
\(272\) 34.4473 + 217.492i 0.126644 + 0.799601i
\(273\) 20.5299 + 10.4605i 0.0752010 + 0.0383168i
\(274\) 638.098i 2.32882i
\(275\) 0 0
\(276\) −36.7986 −0.133328
\(277\) 15.4766 30.3745i 0.0558722 0.109655i −0.861382 0.507958i \(-0.830401\pi\)
0.917254 + 0.398302i \(0.130401\pi\)
\(278\) −99.1444 + 15.7029i −0.356635 + 0.0564854i
\(279\) 30.7323 + 42.2993i 0.110151 + 0.151610i
\(280\) 0 0
\(281\) −15.6934 + 48.2993i −0.0558484 + 0.171884i −0.975090 0.221811i \(-0.928803\pi\)
0.919241 + 0.393695i \(0.128803\pi\)
\(282\) 582.675 + 92.2867i 2.06622 + 0.327258i
\(283\) −221.248 + 35.0423i −0.781797 + 0.123824i −0.534560 0.845131i \(-0.679523\pi\)
−0.247237 + 0.968955i \(0.579523\pi\)
\(284\) −142.903 + 46.4319i −0.503178 + 0.163492i
\(285\) 0 0
\(286\) −29.4514 121.937i −0.102977 0.426355i
\(287\) 47.9600 + 47.9600i 0.167108 + 0.167108i
\(288\) −25.3182 12.9002i −0.0879103 0.0447925i
\(289\) −98.6147 + 135.731i −0.341227 + 0.469659i
\(290\) 0 0
\(291\) 20.5294 63.1830i 0.0705477 0.217124i
\(292\) 176.725 90.0457i 0.605222 0.308376i
\(293\) −76.4836 + 482.899i −0.261036 + 1.64812i 0.413959 + 0.910296i \(0.364146\pi\)
−0.674995 + 0.737822i \(0.735854\pi\)
\(294\) −211.749 + 291.447i −0.720234 + 0.991317i
\(295\) 0 0
\(296\) −120.633 −0.407545
\(297\) 22.2808 + 278.228i 0.0750194 + 0.936796i
\(298\) −189.704 + 189.704i −0.636590 + 0.636590i
\(299\) 25.5509 8.30199i 0.0854545 0.0277659i
\(300\) 0 0
\(301\) −60.7160 + 44.1127i −0.201714 + 0.146554i
\(302\) −268.228 + 136.669i −0.888174 + 0.452547i
\(303\) −217.345 426.563i −0.717309 1.40780i
\(304\) −48.9121 67.3217i −0.160895 0.221453i
\(305\) 0 0
\(306\) 8.00961 + 24.6511i 0.0261752 + 0.0805590i
\(307\) 237.129 + 237.129i 0.772408 + 0.772408i 0.978527 0.206119i \(-0.0660833\pi\)
−0.206119 + 0.978527i \(0.566083\pi\)
\(308\) −34.7454 + 2.78244i −0.112810 + 0.00903391i
\(309\) 266.650i 0.862944i
\(310\) 0 0
\(311\) −369.314 268.322i −1.18751 0.862773i −0.194507 0.980901i \(-0.562311\pi\)
−0.992998 + 0.118128i \(0.962311\pi\)
\(312\) 70.4649 + 11.1605i 0.225849 + 0.0357710i
\(313\) −172.969 339.470i −0.552616 1.08457i −0.983287 0.182061i \(-0.941723\pi\)
0.430671 0.902509i \(-0.358277\pi\)
\(314\) −455.963 148.152i −1.45211 0.471820i
\(315\) 0 0
\(316\) −184.121 133.771i −0.582660 0.423327i
\(317\) 163.756 321.390i 0.516582 1.01385i −0.474457 0.880278i \(-0.657356\pi\)
0.991039 0.133571i \(-0.0426443\pi\)
\(318\) −151.288 + 151.288i −0.475747 + 0.475747i
\(319\) −169.485 + 40.9356i −0.531302 + 0.128325i
\(320\) 0 0
\(321\) 166.160 + 511.388i 0.517632 + 1.59311i
\(322\) −3.48295 21.9905i −0.0108166 0.0682933i
\(323\) −7.16648 + 45.2474i −0.0221873 + 0.140085i
\(324\) 170.239 + 55.3140i 0.525429 + 0.170722i
\(325\) 0 0
\(326\) −623.881 + 453.276i −1.91375 + 1.39042i
\(327\) 71.5731 + 451.895i 0.218878 + 1.38194i
\(328\) 187.121 + 95.3429i 0.570491 + 0.290680i
\(329\) 119.677i 0.363761i
\(330\) 0 0
\(331\) −36.6252 −0.110650 −0.0553250 0.998468i \(-0.517620\pi\)
−0.0553250 + 0.998468i \(0.517620\pi\)
\(332\) 99.5958 195.468i 0.299987 0.588758i
\(333\) −23.5133 + 3.72414i −0.0706105 + 0.0111836i
\(334\) 43.2882 + 59.5810i 0.129605 + 0.178386i
\(335\) 0 0
\(336\) 30.6316 94.2743i 0.0911654 0.280578i
\(337\) 503.522 + 79.7500i 1.49413 + 0.236647i 0.849394 0.527759i \(-0.176967\pi\)
0.644736 + 0.764406i \(0.276967\pi\)
\(338\) −357.107 + 56.5602i −1.05653 + 0.167338i
\(339\) 168.537 54.7611i 0.497160 0.161537i
\(340\) 0 0
\(341\) 597.528 + 46.2026i 1.75228 + 0.135491i
\(342\) −6.92611 6.92611i −0.0202518 0.0202518i
\(343\) −133.684 68.1152i −0.389748 0.198587i
\(344\) −136.588 + 187.997i −0.397057 + 0.546503i
\(345\) 0 0
\(346\) −97.1676 + 299.051i −0.280831 + 0.864310i
\(347\) −51.9560 + 26.4729i −0.149729 + 0.0762908i −0.527250 0.849710i \(-0.676777\pi\)
0.377521 + 0.926001i \(0.376777\pi\)
\(348\) −15.7891 + 99.6884i −0.0453710 + 0.286461i
\(349\) 260.442 358.468i 0.746253 1.02713i −0.251982 0.967732i \(-0.581082\pi\)
0.998234 0.0593967i \(-0.0189177\pi\)
\(350\) 0 0
\(351\) −117.961 −0.336071
\(352\) −300.744 + 125.055i −0.854386 + 0.355271i
\(353\) 124.571 124.571i 0.352892 0.352892i −0.508293 0.861184i \(-0.669723\pi\)
0.861184 + 0.508293i \(0.169723\pi\)
\(354\) −750.082 + 243.716i −2.11888 + 0.688465i
\(355\) 0 0
\(356\) −34.7320 + 25.2343i −0.0975618 + 0.0708828i
\(357\) −48.6232 + 24.7748i −0.136200 + 0.0693971i
\(358\) 130.274 + 255.677i 0.363893 + 0.714181i
\(359\) 290.091 + 399.276i 0.808053 + 1.11219i 0.991621 + 0.129183i \(0.0412353\pi\)
−0.183568 + 0.983007i \(0.558765\pi\)
\(360\) 0 0
\(361\) 106.205 + 326.867i 0.294198 + 0.905448i
\(362\) 106.632 + 106.632i 0.294565 + 0.294565i
\(363\) −309.548 223.606i −0.852749 0.615994i
\(364\) 14.7311i 0.0404700i
\(365\) 0 0
\(366\) 176.753 + 128.419i 0.482932 + 0.350871i
\(367\) −92.1861 14.6008i −0.251188 0.0397843i 0.0295704 0.999563i \(-0.490586\pi\)
−0.280759 + 0.959778i \(0.590586\pi\)
\(368\) −52.4721 102.982i −0.142587 0.279843i
\(369\) 39.4162 + 12.8071i 0.106819 + 0.0347076i
\(370\) 0 0
\(371\) −35.1141 25.5119i −0.0946470 0.0687651i
\(372\) 157.500 309.111i 0.423387 0.830944i
\(373\) 278.202 278.202i 0.745850 0.745850i −0.227847 0.973697i \(-0.573169\pi\)
0.973697 + 0.227847i \(0.0731687\pi\)
\(374\) 274.642 + 113.320i 0.734338 + 0.302994i
\(375\) 0 0
\(376\) 114.510 + 352.424i 0.304547 + 0.937298i
\(377\) −11.5272 72.7802i −0.0305763 0.193051i
\(378\) −15.2927 + 96.5545i −0.0404570 + 0.255435i
\(379\) −267.869 87.0358i −0.706777 0.229646i −0.0664964 0.997787i \(-0.521182\pi\)
−0.640281 + 0.768141i \(0.721182\pi\)
\(380\) 0 0
\(381\) −286.006 + 207.796i −0.750673 + 0.545396i
\(382\) −45.4976 287.260i −0.119104 0.751991i
\(383\) 206.078 + 105.002i 0.538062 + 0.274156i 0.701832 0.712342i \(-0.252366\pi\)
−0.163770 + 0.986499i \(0.552366\pi\)
\(384\) 430.784i 1.12183i
\(385\) 0 0
\(386\) 107.559 0.278650
\(387\) −20.8193 + 40.8602i −0.0537966 + 0.105582i
\(388\) −41.9510 + 6.64439i −0.108121 + 0.0171247i
\(389\) 238.146 + 327.780i 0.612200 + 0.842621i 0.996756 0.0804803i \(-0.0256454\pi\)
−0.384556 + 0.923102i \(0.625645\pi\)
\(390\) 0 0
\(391\) −19.6625 + 60.5151i −0.0502879 + 0.154770i
\(392\) −223.499 35.3987i −0.570149 0.0903028i
\(393\) 635.301 100.622i 1.61654 0.256035i
\(394\) −148.603 + 48.2840i −0.377164 + 0.122548i
\(395\) 0 0
\(396\) −18.1451 + 11.1536i −0.0458210 + 0.0281656i
\(397\) 195.457 + 195.457i 0.492335 + 0.492335i 0.909041 0.416706i \(-0.136816\pi\)
−0.416706 + 0.909041i \(0.636816\pi\)
\(398\) −406.411 207.077i −1.02113 0.520294i
\(399\) 12.1215 16.6838i 0.0303797 0.0418141i
\(400\) 0 0
\(401\) −83.1565 + 255.929i −0.207373 + 0.638228i 0.792235 + 0.610216i \(0.208918\pi\)
−0.999608 + 0.0280116i \(0.991082\pi\)
\(402\) 9.98500 5.08761i 0.0248383 0.0126557i
\(403\) −39.6218 + 250.162i −0.0983172 + 0.620750i
\(404\) −179.908 + 247.622i −0.445316 + 0.612925i
\(405\) 0 0
\(406\) −61.0671 −0.150412
\(407\) −142.260 + 232.863i −0.349534 + 0.572146i
\(408\) −119.480 + 119.480i −0.292843 + 0.292843i
\(409\) 646.708 210.128i 1.58119 0.513761i 0.618830 0.785525i \(-0.287607\pi\)
0.962364 + 0.271764i \(0.0876069\pi\)
\(410\) 0 0
\(411\) 664.129 482.518i 1.61589 1.17401i
\(412\) −151.898 + 77.3957i −0.368684 + 0.187854i
\(413\) −72.6364 142.557i −0.175875 0.345174i
\(414\) −7.99663 11.0064i −0.0193155 0.0265855i
\(415\) 0 0
\(416\) −42.5363 130.913i −0.102251 0.314695i
\(417\) −91.3148 91.3148i −0.218980 0.218980i
\(418\) −111.916 + 8.96236i −0.267742 + 0.0214410i
\(419\) 451.895i 1.07851i 0.842143 + 0.539254i \(0.181294\pi\)
−0.842143 + 0.539254i \(0.818706\pi\)
\(420\) 0 0
\(421\) −299.721 217.760i −0.711926 0.517245i 0.171868 0.985120i \(-0.445020\pi\)
−0.883795 + 0.467875i \(0.845020\pi\)
\(422\) −648.463 102.706i −1.53664 0.243380i
\(423\) 33.1996 + 65.1578i 0.0784860 + 0.154037i
\(424\) −127.814 41.5292i −0.301447 0.0979462i
\(425\) 0 0
\(426\) −466.419 338.874i −1.09488 0.795478i
\(427\) −20.1215 + 39.4908i −0.0471231 + 0.0924842i
\(428\) 243.085 243.085i 0.567955 0.567955i
\(429\) 104.641 122.860i 0.243919 0.286386i
\(430\) 0 0
\(431\) −195.029 600.237i −0.452503 1.39266i −0.874041 0.485851i \(-0.838510\pi\)
0.421538 0.906811i \(-0.361490\pi\)
\(432\) 79.3876 + 501.233i 0.183768 + 1.16026i
\(433\) −85.1992 + 537.926i −0.196765 + 1.24232i 0.669528 + 0.742787i \(0.266497\pi\)
−0.866293 + 0.499537i \(0.833503\pi\)
\(434\) 199.629 + 64.8632i 0.459974 + 0.149454i
\(435\) 0 0
\(436\) 236.649 171.935i 0.542772 0.394347i
\(437\) −3.76154 23.7494i −0.00860763 0.0543464i
\(438\) 678.083 + 345.500i 1.54813 + 0.788814i
\(439\) 495.324i 1.12830i −0.825672 0.564150i \(-0.809204\pi\)
0.825672 0.564150i \(-0.190796\pi\)
\(440\) 0 0
\(441\) −44.6561 −0.101261
\(442\) −57.0036 + 111.876i −0.128967 + 0.253113i
\(443\) −334.553 + 52.9881i −0.755200 + 0.119612i −0.522151 0.852853i \(-0.674870\pi\)
−0.233049 + 0.972465i \(0.574870\pi\)
\(444\) 92.8475 + 127.794i 0.209116 + 0.287824i
\(445\) 0 0
\(446\) −90.1591 + 277.481i −0.202150 + 0.622155i
\(447\) −340.894 53.9922i −0.762625 0.120788i
\(448\) 11.4214 1.80898i 0.0254943 0.00403790i
\(449\) 666.170 216.452i 1.48368 0.482075i 0.548467 0.836173i \(-0.315212\pi\)
0.935209 + 0.354097i \(0.115212\pi\)
\(450\) 0 0
\(451\) 404.712 248.771i 0.897365 0.551599i
\(452\) −80.1131 80.1131i −0.177241 0.177241i
\(453\) −345.074 175.824i −0.761753 0.388133i
\(454\) −246.071 + 338.688i −0.542007 + 0.746008i
\(455\) 0 0
\(456\) 19.7319 60.7284i 0.0432716 0.133176i
\(457\) 136.674 69.6387i 0.299067 0.152382i −0.298018 0.954560i \(-0.596325\pi\)
0.597085 + 0.802178i \(0.296325\pi\)
\(458\) 49.1208 310.137i 0.107251 0.677154i
\(459\) 164.216 226.024i 0.357768 0.492426i
\(460\) 0 0
\(461\) 27.1012 0.0587879 0.0293940 0.999568i \(-0.490642\pi\)
0.0293940 + 0.999568i \(0.490642\pi\)
\(462\) −86.9984 101.580i −0.188308 0.219870i
\(463\) 422.021 422.021i 0.911492 0.911492i −0.0848979 0.996390i \(-0.527056\pi\)
0.996390 + 0.0848979i \(0.0270564\pi\)
\(464\) −301.496 + 97.9619i −0.649775 + 0.211125i
\(465\) 0 0
\(466\) 528.093 383.682i 1.13325 0.823352i
\(467\) 124.580 63.4768i 0.266767 0.135925i −0.315491 0.948929i \(-0.602169\pi\)
0.582258 + 0.813004i \(0.302169\pi\)
\(468\) −4.08654 8.02028i −0.00873191 0.0171373i
\(469\) 1.33626 + 1.83920i 0.00284917 + 0.00392154i
\(470\) 0 0
\(471\) −190.596 586.594i −0.404663 1.24542i
\(472\) −350.300 350.300i −0.742161 0.742161i
\(473\) 201.823 + 485.361i 0.426687 + 1.02613i
\(474\) 873.233i 1.84226i
\(475\) 0 0
\(476\) 28.2260 + 20.5074i 0.0592984 + 0.0430828i
\(477\) −26.1949 4.14887i −0.0549160 0.00869784i
\(478\) −202.151 396.743i −0.422909 0.830007i
\(479\) 250.078 + 81.2552i 0.522083 + 0.169635i 0.558190 0.829713i \(-0.311496\pi\)
−0.0361074 + 0.999348i \(0.511496\pi\)
\(480\) 0 0
\(481\) −93.2991 67.7858i −0.193969 0.140927i
\(482\) 127.203 249.651i 0.263907 0.517947i
\(483\) 20.2538 20.2538i 0.0419334 0.0419334i
\(484\) −37.5306 + 241.237i −0.0775426 + 0.498423i
\(485\) 0 0
\(486\) 39.1213 + 120.403i 0.0804964 + 0.247742i
\(487\) −118.812 750.146i −0.243966 1.54034i −0.740340 0.672233i \(-0.765335\pi\)
0.496374 0.868109i \(-0.334665\pi\)
\(488\) −21.4682 + 135.545i −0.0439921 + 0.277755i
\(489\) −943.536 306.573i −1.92952 0.626939i
\(490\) 0 0
\(491\) 433.696 315.098i 0.883290 0.641748i −0.0508295 0.998707i \(-0.516187\pi\)
0.934120 + 0.356959i \(0.116187\pi\)
\(492\) −43.0188 271.610i −0.0874366 0.552053i
\(493\) 155.500 + 79.2314i 0.315417 + 0.160713i
\(494\) 47.4494i 0.0960514i
\(495\) 0 0
\(496\) 1089.64 2.19686
\(497\) 53.0971 104.209i 0.106835 0.209676i
\(498\) 831.380 131.678i 1.66944 0.264413i
\(499\) 33.5801 + 46.2190i 0.0672947 + 0.0926233i 0.841338 0.540510i \(-0.181769\pi\)
−0.774043 + 0.633133i \(0.781769\pi\)
\(500\) 0 0
\(501\) −29.2779 + 90.1082i −0.0584390 + 0.179857i
\(502\) 457.161 + 72.4071i 0.910678 + 0.144237i
\(503\) 372.309 58.9680i 0.740177 0.117233i 0.225051 0.974347i \(-0.427745\pi\)
0.515126 + 0.857114i \(0.327745\pi\)
\(504\) 6.97032 2.26479i 0.0138300 0.00449364i
\(505\) 0 0
\(506\) −155.479 12.0221i −0.307270 0.0237590i
\(507\) −328.905 328.905i −0.648729 0.648729i
\(508\) 201.385 + 102.611i 0.396428 + 0.201990i
\(509\) 453.233 623.822i 0.890438 1.22558i −0.0829808 0.996551i \(-0.526444\pi\)
0.973419 0.229032i \(-0.0735560\pi\)
\(510\) 0 0
\(511\) −47.7078 + 146.829i −0.0933616 + 0.287337i
\(512\) −181.023 + 92.2357i −0.353560 + 0.180148i
\(513\) −16.5160 + 104.278i −0.0321948 + 0.203270i
\(514\) −46.3311 + 63.7693i −0.0901384 + 0.124065i
\(515\) 0 0
\(516\) 304.283 0.589695
\(517\) 815.336 + 194.563i 1.57705 + 0.376332i
\(518\) −67.5802 + 67.5802i −0.130464 + 0.130464i
\(519\) −384.728 + 125.006i −0.741286 + 0.240859i
\(520\) 0 0
\(521\) 449.127 326.310i 0.862047 0.626314i −0.0663939 0.997793i \(-0.521149\pi\)
0.928441 + 0.371480i \(0.121149\pi\)
\(522\) −33.2478 + 16.9406i −0.0636930 + 0.0324532i
\(523\) −238.116 467.329i −0.455289 0.893555i −0.998542 0.0539855i \(-0.982808\pi\)
0.543253 0.839569i \(-0.317192\pi\)
\(524\) −241.717 332.695i −0.461292 0.634915i
\(525\) 0 0
\(526\) −284.164 874.567i −0.540236 1.66267i
\(527\) −424.174 424.174i −0.804885 0.804885i
\(528\) −592.472 361.951i −1.12211 0.685514i
\(529\) 495.602i 0.936866i
\(530\) 0 0
\(531\) −79.0932 57.4646i −0.148951 0.108220i
\(532\) −13.0223 2.06253i −0.0244780 0.00387693i
\(533\) 91.1467 + 178.885i 0.171007 + 0.335620i
\(534\) −156.662 50.9026i −0.293375 0.0953232i
\(535\) 0 0
\(536\) 5.69478 + 4.13750i 0.0106246 + 0.00771922i
\(537\) −167.597 + 328.927i −0.312098 + 0.612527i
\(538\) 180.886 180.886i 0.336220 0.336220i
\(539\) −331.898 + 389.683i −0.615767 + 0.722974i
\(540\) 0 0
\(541\) 256.495 + 789.409i 0.474112 + 1.45917i 0.847151 + 0.531351i \(0.178316\pi\)
−0.373039 + 0.927815i \(0.621684\pi\)
\(542\) 65.1296 + 411.212i 0.120165 + 0.758694i
\(543\) −30.3490 + 191.616i −0.0558914 + 0.352884i
\(544\) 310.057 + 100.744i 0.569957 + 0.185190i
\(545\) 0 0
\(546\) 45.7275 33.2230i 0.0837500 0.0608479i
\(547\) 87.5917 + 553.032i 0.160131 + 1.01103i 0.928584 + 0.371122i \(0.121027\pi\)
−0.768453 + 0.639906i \(0.778973\pi\)
\(548\) −467.633 238.271i −0.853344 0.434801i
\(549\) 27.0825i 0.0493306i
\(550\) 0 0
\(551\) −65.9517 −0.119695
\(552\) 40.2640 79.0225i 0.0729419 0.143157i
\(553\) 174.967 27.7120i 0.316395 0.0501121i
\(554\) −49.1543 67.6551i −0.0887262 0.122121i
\(555\) 0 0
\(556\) −25.5134 + 78.5220i −0.0458873 + 0.141227i
\(557\) −858.051 135.902i −1.54049 0.243989i −0.672320 0.740261i \(-0.734702\pi\)
−0.868167 + 0.496272i \(0.834702\pi\)
\(558\) 126.681 20.0642i 0.227026 0.0359574i
\(559\) −211.277 + 68.6480i −0.377955 + 0.122805i
\(560\) 0 0
\(561\) 89.7369 + 371.537i 0.159959 + 0.662277i
\(562\) 88.0915 + 88.0915i 0.156746 + 0.156746i
\(563\) −816.464 416.009i −1.45020 0.738915i −0.461267 0.887262i \(-0.652605\pi\)
−0.988935 + 0.148347i \(0.952605\pi\)
\(564\) 285.208 392.555i 0.505688 0.696020i
\(565\) 0 0
\(566\) −169.808 + 522.614i −0.300013 + 0.923346i
\(567\) −124.144 + 63.2543i −0.218948 + 0.111560i
\(568\) 56.6506 357.678i 0.0997369 0.629714i
\(569\) −229.953 + 316.504i −0.404136 + 0.556245i −0.961776 0.273838i \(-0.911707\pi\)
0.557640 + 0.830083i \(0.311707\pi\)
\(570\) 0 0
\(571\) −768.261 −1.34547 −0.672733 0.739886i \(-0.734880\pi\)
−0.672733 + 0.739886i \(0.734880\pi\)
\(572\) −100.360 23.9488i −0.175454 0.0418686i
\(573\) 264.575 264.575i 0.461736 0.461736i
\(574\) 158.239 51.4151i 0.275678 0.0895734i
\(575\) 0 0
\(576\) 5.71653 4.15330i 0.00992453 0.00721059i
\(577\) 224.247 114.260i 0.388643 0.198023i −0.248741 0.968570i \(-0.580017\pi\)
0.637384 + 0.770547i \(0.280017\pi\)
\(578\) 186.846 + 366.706i 0.323263 + 0.634439i
\(579\) 81.3340 + 111.947i 0.140473 + 0.193345i
\(580\) 0 0
\(581\) 52.7676 + 162.402i 0.0908219 + 0.279521i
\(582\) −115.237 115.237i −0.198002 0.198002i
\(583\) −230.893 + 197.749i −0.396043 + 0.339193i
\(584\) 478.029i 0.818543i
\(585\) 0 0
\(586\) 970.304 + 704.967i 1.65581 + 1.20302i
\(587\) 450.651 + 71.3761i 0.767719 + 0.121595i 0.527996 0.849247i \(-0.322944\pi\)
0.239722 + 0.970841i \(0.422944\pi\)
\(588\) 134.520 + 264.010i 0.228775 + 0.448996i
\(589\) 215.596 + 70.0514i 0.366038 + 0.118933i
\(590\) 0 0
\(591\) −162.624 118.154i −0.275168 0.199921i
\(592\) −225.241 + 442.061i −0.380475 + 0.746725i
\(593\) 237.348 237.348i 0.400250 0.400250i −0.478071 0.878321i \(-0.658664\pi\)
0.878321 + 0.478071i \(0.158664\pi\)
\(594\) 632.944 + 261.158i 1.06556 + 0.439660i
\(595\) 0 0
\(596\) 68.1884 + 209.862i 0.114410 + 0.352118i
\(597\) −91.7963 579.579i −0.153763 0.970820i
\(598\) 10.3097 65.0930i 0.0172403 0.108851i
\(599\) −984.287 319.814i −1.64322 0.533913i −0.665962 0.745985i \(-0.731979\pi\)
−0.977254 + 0.212072i \(0.931979\pi\)
\(600\) 0 0
\(601\) 45.7081 33.2089i 0.0760534 0.0552560i −0.549109 0.835751i \(-0.685033\pi\)
0.625162 + 0.780495i \(0.285033\pi\)
\(602\) 28.8000 + 181.836i 0.0478405 + 0.302053i
\(603\) 1.23773 + 0.630656i 0.00205262 + 0.00104586i
\(604\) 247.606i 0.409943i
\(605\) 0 0
\(606\) −1174.40 −1.93796
\(607\) −369.707 + 725.590i −0.609072 + 1.19537i 0.356270 + 0.934383i \(0.384048\pi\)
−0.965342 + 0.260988i \(0.915952\pi\)
\(608\) −121.683 + 19.2727i −0.200137 + 0.0316985i
\(609\) −46.1779 63.5584i −0.0758257 0.104365i
\(610\) 0 0
\(611\) −109.470 + 336.913i −0.179165 + 0.551413i
\(612\) 21.0565 + 3.33502i 0.0344060 + 0.00544938i
\(613\) −802.492 + 127.102i −1.30912 + 0.207345i −0.771710 0.635975i \(-0.780598\pi\)
−0.537412 + 0.843320i \(0.680598\pi\)
\(614\) 782.386 254.213i 1.27424 0.414027i
\(615\) 0 0
\(616\) 32.0423 77.6578i 0.0520167 0.126068i
\(617\) 214.134 + 214.134i 0.347057 + 0.347057i 0.859012 0.511955i \(-0.171079\pi\)
−0.511955 + 0.859012i \(0.671079\pi\)
\(618\) −582.823 296.963i −0.943079 0.480523i
\(619\) −589.455 + 811.316i −0.952270 + 1.31069i −0.00175860 + 0.999998i \(0.500560\pi\)
−0.950512 + 0.310689i \(0.899440\pi\)
\(620\) 0 0
\(621\) −45.3145 + 139.464i −0.0729703 + 0.224579i
\(622\) −997.777 + 508.393i −1.60414 + 0.817352i
\(623\) 5.22751 33.0052i 0.00839087 0.0529778i
\(624\) 172.467 237.380i 0.276389 0.380417i
\(625\) 0 0
\(626\) −934.621 −1.49300
\(627\) −93.9571 109.705i −0.149852 0.174968i
\(628\) −278.834 + 278.834i −0.444003 + 0.444003i
\(629\) 259.767 84.4034i 0.412984 0.134187i
\(630\) 0 0
\(631\) −710.682 + 516.341i −1.12628 + 0.818289i −0.985149 0.171702i \(-0.945073\pi\)
−0.141130 + 0.989991i \(0.545073\pi\)
\(632\) 488.724 249.017i 0.773297 0.394015i
\(633\) −383.460 752.582i −0.605782 1.18891i
\(634\) −520.097 715.853i −0.820343 1.12911i
\(635\) 0 0
\(636\) 54.3798 + 167.364i 0.0855028 + 0.263151i
\(637\) −152.965 152.965i −0.240134 0.240134i
\(638\) −99.2789 + 416.038i −0.155610 + 0.652096i
\(639\) 71.4658i 0.111840i
\(640\) 0 0
\(641\) 398.231 + 289.331i 0.621265 + 0.451375i 0.853363 0.521317i \(-0.174559\pi\)
−0.232098 + 0.972692i \(0.574559\pi\)
\(642\) 1302.80 + 206.343i 2.02929 + 0.321407i
\(643\) 162.623 + 319.165i 0.252913 + 0.496369i 0.982200 0.187839i \(-0.0601482\pi\)
−0.729287 + 0.684208i \(0.760148\pi\)
\(644\) −17.4164 5.65892i −0.0270440 0.00878714i
\(645\) 0 0
\(646\) 90.9171 + 66.0551i 0.140739 + 0.102253i
\(647\) 10.0746 19.7726i 0.0155713 0.0305604i −0.883090 0.469204i \(-0.844541\pi\)
0.898661 + 0.438644i \(0.144541\pi\)
\(648\) −305.053 + 305.053i −0.470762 + 0.470762i
\(649\) −1089.30 + 263.097i −1.67843 + 0.405388i
\(650\) 0 0
\(651\) 83.4462 + 256.821i 0.128182 + 0.394502i
\(652\) 99.2233 + 626.471i 0.152183 + 0.960845i
\(653\) −99.8375 + 630.349i −0.152891 + 0.965313i 0.785280 + 0.619140i \(0.212519\pi\)
−0.938171 + 0.346173i \(0.887481\pi\)
\(654\) 1067.43 + 346.828i 1.63215 + 0.530318i
\(655\) 0 0
\(656\) 698.768 507.685i 1.06520 0.773910i
\(657\) 14.7575 + 93.1753i 0.0224620 + 0.141819i
\(658\) 261.581 + 133.282i 0.397540 + 0.202557i
\(659\) 384.749i 0.583838i 0.956443 + 0.291919i \(0.0942938\pi\)
−0.956443 + 0.291919i \(0.905706\pi\)
\(660\) 0 0
\(661\) −199.159 −0.301300 −0.150650 0.988587i \(-0.548137\pi\)
−0.150650 + 0.988587i \(0.548137\pi\)
\(662\) −40.7888 + 80.0525i −0.0616145 + 0.120925i
\(663\) −159.545 + 25.2694i −0.240641 + 0.0381138i
\(664\) 310.778 + 427.750i 0.468040 + 0.644202i
\(665\) 0 0
\(666\) −18.0464 + 55.5411i −0.0270967 + 0.0833951i
\(667\) −90.4752 14.3299i −0.135645 0.0214841i
\(668\) 59.8284 9.47588i 0.0895634 0.0141855i
\(669\) −356.978 + 115.989i −0.533599 + 0.173377i
\(670\) 0 0
\(671\) 236.330 + 201.285i 0.352206 + 0.299978i
\(672\) −103.773 103.773i −0.154424 0.154424i
\(673\) 850.014 + 433.104i 1.26302 + 0.643542i 0.951778 0.306788i \(-0.0992544\pi\)
0.311244 + 0.950330i \(0.399254\pi\)
\(674\) 735.075 1011.74i 1.09062 1.50110i
\(675\) 0 0
\(676\) −91.8962 + 282.827i −0.135941 + 0.418384i
\(677\) 736.540 375.286i 1.08795 0.554337i 0.184411 0.982849i \(-0.440962\pi\)
0.903536 + 0.428512i \(0.140962\pi\)
\(678\) 68.0043 429.362i 0.100301 0.633278i
\(679\) 19.4326 26.7467i 0.0286195 0.0393914i
\(680\) 0 0
\(681\) −538.579 −0.790865
\(682\) 766.443 1254.58i 1.12382 1.83956i
\(683\) −398.457 + 398.457i −0.583392 + 0.583392i −0.935834 0.352442i \(-0.885351\pi\)
0.352442 + 0.935834i \(0.385351\pi\)
\(684\) −7.66209 + 2.48957i −0.0112019 + 0.00363972i
\(685\) 0 0
\(686\) −297.762 + 216.337i −0.434055 + 0.315360i
\(687\) 359.933 183.395i 0.523920 0.266951i
\(688\) 433.884 + 851.546i 0.630646 + 1.23771i
\(689\) −75.5166 103.940i −0.109603 0.150856i
\(690\) 0 0
\(691\) −26.9603 82.9754i −0.0390164 0.120080i 0.929651 0.368441i \(-0.120108\pi\)
−0.968668 + 0.248361i \(0.920108\pi\)
\(692\) 182.878 + 182.878i 0.264274 + 0.264274i
\(693\) 3.84812 16.1259i 0.00555284 0.0232697i
\(694\) 143.044i 0.206115i
\(695\) 0 0
\(696\) −196.798 142.982i −0.282756 0.205434i
\(697\) −469.647 74.3848i −0.673812 0.106721i
\(698\) −493.462 968.474i −0.706966 1.38750i
\(699\) 798.669 + 259.503i 1.14259 + 0.371249i
\(700\) 0 0
\(701\) 48.2784 + 35.0763i 0.0688707 + 0.0500375i 0.621688 0.783265i \(-0.286447\pi\)
−0.552817 + 0.833303i \(0.686447\pi\)
\(702\) −131.371 + 257.830i −0.187138 + 0.367279i
\(703\) −72.9857 + 72.9857i −0.103820 + 0.103820i
\(704\) 6.24403 80.7528i 0.00886937 0.114706i
\(705\) 0 0
\(706\) −133.545 411.009i −0.189157 0.582166i
\(707\) −37.2695 235.311i −0.0527151 0.332830i
\(708\) −101.478 + 640.707i −0.143330 + 0.904953i
\(709\) −590.657 191.916i −0.833085 0.270686i −0.138740 0.990329i \(-0.544305\pi\)
−0.694344 + 0.719643i \(0.744305\pi\)
\(710\) 0 0
\(711\) 87.5723 63.6250i 0.123168 0.0894866i
\(712\) −16.1861 102.195i −0.0227333 0.143532i
\(713\) 280.543 + 142.944i 0.393468 + 0.200482i
\(714\) 133.868i 0.187490i
\(715\) 0 0
\(716\) 236.019 0.329636
\(717\) 260.066 510.408i 0.362714 0.711866i
\(718\) 1195.78 189.392i 1.66543 0.263778i
\(719\) −629.901 866.984i −0.876079 1.20582i −0.977491 0.210975i \(-0.932336\pi\)
0.101412 0.994844i \(-0.467664\pi\)
\(720\) 0 0
\(721\) 41.0056 126.202i 0.0568732 0.175038i
\(722\) 832.719 + 131.890i 1.15335 + 0.182673i
\(723\) 356.024 56.3887i 0.492426 0.0779926i
\(724\) 117.963 38.3286i 0.162933 0.0529401i
\(725\) 0 0
\(726\) −833.478 + 427.560i −1.14804 + 0.588926i
\(727\) 535.877 + 535.877i 0.737107 + 0.737107i 0.972017 0.234910i \(-0.0754795\pi\)
−0.234910 + 0.972017i \(0.575479\pi\)
\(728\) 31.6339 + 16.1183i 0.0434532 + 0.0221405i
\(729\) 373.581 514.191i 0.512457 0.705337i
\(730\) 0 0
\(731\) 162.587 500.391i 0.222417 0.684529i
\(732\) 160.113 81.5818i 0.218734 0.111451i
\(733\) −37.2155 + 234.969i −0.0507714 + 0.320558i 0.949211 + 0.314640i \(0.101884\pi\)
−0.999982 + 0.00591819i \(0.998116\pi\)
\(734\) −134.579 + 185.233i −0.183351 + 0.252361i
\(735\) 0 0
\(736\) −171.117 −0.232496
\(737\) 14.7025 6.11360i 0.0199491 0.00829525i
\(738\) 71.8898 71.8898i 0.0974117 0.0974117i
\(739\) −143.146 + 46.5111i −0.193703 + 0.0629378i −0.404262 0.914643i \(-0.632472\pi\)
0.210559 + 0.977581i \(0.432472\pi\)
\(740\) 0 0
\(741\) 49.3851 35.8804i 0.0666466 0.0484216i
\(742\) −94.8677 + 48.3375i −0.127854 + 0.0651449i
\(743\) 108.126 + 212.210i 0.145526 + 0.285612i 0.952251 0.305316i \(-0.0987620\pi\)
−0.806725 + 0.590927i \(0.798762\pi\)
\(744\) 491.462 + 676.440i 0.660568 + 0.909194i
\(745\) 0 0
\(746\) −298.244 917.901i −0.399791 1.23043i
\(747\) 73.7808 + 73.7808i 0.0987695 + 0.0987695i
\(748\) 185.601 158.958i 0.248129 0.212511i
\(749\) 267.586i 0.357258i
\(750\) 0 0
\(751\) −930.748 676.228i −1.23935 0.900437i −0.241790 0.970328i \(-0.577735\pi\)
−0.997555 + 0.0698916i \(0.977735\pi\)
\(752\) 1505.27 + 238.411i 2.00168 + 0.317035i
\(753\) 270.336 + 530.564i 0.359012 + 0.704600i
\(754\) −171.915 55.8586i −0.228004 0.0740830i
\(755\) 0 0
\(756\) 65.0500 + 47.2616i 0.0860450 + 0.0625153i
\(757\) −556.341 + 1091.88i −0.734929 + 1.44238i 0.155774 + 0.987793i \(0.450213\pi\)
−0.890703 + 0.454586i \(0.849787\pi\)
\(758\) −488.557 + 488.557i −0.644534 + 0.644534i
\(759\) −105.058 170.912i −0.138416 0.225181i
\(760\) 0 0
\(761\) −178.708 550.005i −0.234833 0.722740i −0.997144 0.0755295i \(-0.975935\pi\)
0.762311 0.647211i \(-0.224065\pi\)
\(762\) 135.664 + 856.550i 0.178037 + 1.12408i
\(763\) −35.6180 + 224.883i −0.0466815 + 0.294735i
\(764\) −227.509 73.9222i −0.297787 0.0967569i
\(765\) 0 0
\(766\) 459.010 333.490i 0.599230 0.435366i
\(767\) −74.0867 467.765i −0.0965928 0.609863i
\(768\) −858.758 437.559i −1.11817 0.569738i
\(769\) 1033.26i 1.34364i 0.740714 + 0.671821i \(0.234487\pi\)
−0.740714 + 0.671821i \(0.765513\pi\)
\(770\) 0 0
\(771\) −101.406 −0.131525
\(772\) 40.1633 78.8249i 0.0520250 0.102105i
\(773\) −856.088 + 135.591i −1.10749 + 0.175409i −0.683280 0.730156i \(-0.739447\pi\)
−0.424207 + 0.905565i \(0.639447\pi\)
\(774\) 66.1230 + 91.0105i 0.0854302 + 0.117585i
\(775\) 0 0
\(776\) 31.6332 97.3570i 0.0407644 0.125460i
\(777\) −121.440 19.2342i −0.156293 0.0247545i
\(778\) 981.655 155.479i 1.26177 0.199844i
\(779\) 170.896 55.5276i 0.219379 0.0712807i
\(780\) 0 0
\(781\) −623.632 531.156i −0.798504 0.680097i
\(782\) 110.371 + 110.371i 0.141140 + 0.141140i
\(783\) 358.368 + 182.598i 0.457686 + 0.233203i
\(784\) −547.025 + 752.916i −0.697737 + 0.960352i
\(785\) 0 0
\(786\) 487.592 1500.65i 0.620346 1.90923i
\(787\) −300.712 + 153.220i −0.382099 + 0.194689i −0.634481 0.772939i \(-0.718786\pi\)
0.252382 + 0.967628i \(0.418786\pi\)
\(788\) −20.1043 + 126.934i −0.0255131 + 0.161084i
\(789\) 695.365 957.088i 0.881325 1.21304i
\(790\) 0 0
\(791\) 88.1879 0.111489
\(792\) −4.09768 51.1693i −0.00517384 0.0646077i
\(793\) −92.7683 + 92.7683i −0.116984 + 0.116984i
\(794\) 644.892 209.538i 0.812207 0.263902i
\(795\) 0 0
\(796\) −303.515 + 220.516i −0.381300 + 0.277031i
\(797\) −62.3432 + 31.7654i −0.0782223 + 0.0398562i −0.492664 0.870220i \(-0.663977\pi\)
0.414442 + 0.910076i \(0.363977\pi\)
\(798\) −22.9667 45.0748i −0.0287804 0.0564847i
\(799\) −493.160 678.777i −0.617222 0.849533i
\(800\) 0 0
\(801\) −6.30985 19.4197i −0.00787746 0.0242443i
\(802\) 466.781 + 466.781i 0.582021 + 0.582021i
\(803\) 922.758 + 563.729i 1.14914 + 0.702028i
\(804\) 9.21730i 0.0114643i
\(805\) 0 0
\(806\) 502.660 + 365.204i 0.623647 + 0.453106i
\(807\) 325.048 + 51.4826i 0.402786 + 0.0637951i
\(808\) −334.901 657.280i −0.414481 0.813465i
\(809\) −577.635 187.685i −0.714011 0.231996i −0.0705865 0.997506i \(-0.522487\pi\)
−0.643425 + 0.765509i \(0.722487\pi\)
\(810\) 0 0
\(811\) 1034.41 + 751.545i 1.27548 + 0.926689i 0.999406 0.0344482i \(-0.0109674\pi\)
0.276071 + 0.961137i \(0.410967\pi\)
\(812\) −22.8030 + 44.7533i −0.0280825 + 0.0551149i
\(813\) −378.738 + 378.738i −0.465853 + 0.465853i
\(814\) 350.542 + 570.277i 0.430641 + 0.700586i
\(815\) 0 0
\(816\) 214.747 + 660.923i 0.263170 + 0.809955i
\(817\) 31.1036 + 196.380i 0.0380705 + 0.240368i
\(818\) 260.945 1647.54i 0.319004 2.01411i
\(819\) 6.66354 + 2.16512i 0.00813619 + 0.00264361i
\(820\) 0 0
\(821\) −388.039 + 281.927i −0.472641 + 0.343394i −0.798470 0.602035i \(-0.794357\pi\)
0.325828 + 0.945429i \(0.394357\pi\)
\(822\) −315.023 1988.97i −0.383239 2.41968i
\(823\) 77.4006 + 39.4376i 0.0940469 + 0.0479193i 0.500381 0.865805i \(-0.333193\pi\)
−0.406334 + 0.913724i \(0.633193\pi\)
\(824\) 410.874i 0.498633i
\(825\) 0 0
\(826\) −392.484 −0.475162
\(827\) 129.764 254.677i 0.156910 0.307953i −0.799146 0.601137i \(-0.794715\pi\)
0.956056 + 0.293184i \(0.0947148\pi\)
\(828\) −11.0521 + 1.75048i −0.0133480 + 0.00211411i
\(829\) 561.476 + 772.805i 0.677293 + 0.932214i 0.999897 0.0143202i \(-0.00455843\pi\)
−0.322605 + 0.946534i \(0.604558\pi\)
\(830\) 0 0
\(831\) 33.2455 102.319i 0.0400067 0.123128i
\(832\) 33.8081 + 5.35468i 0.0406348 + 0.00643591i
\(833\) 506.040 80.1488i 0.607491 0.0962171i
\(834\) −301.285 + 97.8933i −0.361252 + 0.117378i
\(835\) 0 0
\(836\) −35.2223 + 85.3650i −0.0421320 + 0.102111i
\(837\) −977.557 977.557i −1.16793 1.16793i
\(838\) 987.718 + 503.267i 1.17866 + 0.600558i
\(839\) 603.415 830.530i 0.719208 0.989904i −0.280342 0.959900i \(-0.590448\pi\)
0.999550 0.0300042i \(-0.00955205\pi\)
\(840\) 0 0
\(841\) 182.243 560.887i 0.216698 0.666929i
\(842\) −809.757 + 412.592i −0.961707 + 0.490014i
\(843\) −25.0720 + 158.298i −0.0297414 + 0.187780i
\(844\) −317.410 + 436.878i −0.376078 + 0.517628i
\(845\) 0 0
\(846\) 179.391 0.212046
\(847\) −112.119 153.432i −0.132372 0.181148i
\(848\) −390.832 + 390.832i −0.460887 + 0.460887i
\(849\) −672.340 + 218.456i −0.791920 + 0.257310i
\(850\) 0 0
\(851\) −115.983 + 84.2666i −0.136290 + 0.0990206i
\(852\) −422.510 + 215.279i −0.495904 + 0.252675i
\(853\) −26.2685 51.5549i −0.0307955 0.0604395i 0.875096 0.483949i \(-0.160798\pi\)
−0.905892 + 0.423510i \(0.860798\pi\)
\(854\) 63.9069 + 87.9603i 0.0748324 + 0.102998i
\(855\) 0 0
\(856\) 256.031 + 787.984i 0.299102 + 0.920542i
\(857\) 230.449 + 230.449i 0.268902 + 0.268902i 0.828658 0.559756i \(-0.189105\pi\)
−0.559756 + 0.828658i \(0.689105\pi\)
\(858\) −152.000 365.544i −0.177157 0.426042i
\(859\) 768.251i 0.894355i −0.894445 0.447177i \(-0.852429\pi\)
0.894445 0.447177i \(-0.147571\pi\)
\(860\) 0 0
\(861\) 173.170 + 125.816i 0.201127 + 0.146127i
\(862\) −1529.15 242.194i −1.77396 0.280968i
\(863\) −90.2355 177.097i −0.104560 0.205211i 0.832799 0.553576i \(-0.186737\pi\)
−0.937359 + 0.348365i \(0.886737\pi\)
\(864\) 714.560 + 232.175i 0.827037 + 0.268721i
\(865\) 0 0
\(866\) 1080.87 + 785.301i 1.24812 + 0.906814i
\(867\) −240.376 + 471.765i −0.277251 + 0.544135i
\(868\) 122.078 122.078i 0.140643 0.140643i
\(869\) 95.6532 1237.06i 0.110073 1.42355i
\(870\) 0 0
\(871\) 2.07948 + 6.39998i 0.00238746 + 0.00734785i
\(872\) 110.285 + 696.313i 0.126474 + 0.798524i
\(873\) 3.16024 19.9529i 0.00361997 0.0228556i
\(874\) −56.0988 18.2276i −0.0641862 0.0208554i
\(875\) 0 0
\(876\) 506.403 367.923i 0.578086 0.420004i
\(877\) −217.500 1373.24i −0.248005 1.56584i −0.726135 0.687552i \(-0.758685\pi\)
0.478130 0.878289i \(-0.341315\pi\)
\(878\) −1082.64 551.633i −1.23308 0.628283i
\(879\) 1542.97i 1.75537i
\(880\) 0 0
\(881\) 204.228 0.231813 0.115907 0.993260i \(-0.463023\pi\)
0.115907 + 0.993260i \(0.463023\pi\)
\(882\) −49.7327 + 97.6060i −0.0563863 + 0.110664i
\(883\) −1227.78 + 194.461i −1.39046 + 0.220227i −0.806346 0.591445i \(-0.798558\pi\)
−0.584114 + 0.811672i \(0.698558\pi\)
\(884\) 60.7031 + 83.5506i 0.0686687 + 0.0945143i
\(885\) 0 0
\(886\) −256.769 + 790.253i −0.289807 + 0.891934i
\(887\) −1186.05 187.852i −1.33715 0.211784i −0.553430 0.832896i \(-0.686681\pi\)
−0.783722 + 0.621112i \(0.786681\pi\)
\(888\) −376.019 + 59.5555i −0.423445 + 0.0670670i
\(889\) −167.318 + 54.3651i −0.188210 + 0.0611531i
\(890\) 0 0
\(891\) 229.114 + 948.599i 0.257142 + 1.06465i
\(892\) 169.687 + 169.687i 0.190232 + 0.190232i
\(893\) 282.504 + 143.943i 0.316354 + 0.161191i
\(894\) −497.659 + 684.969i −0.556666 + 0.766184i
\(895\) 0 0
\(896\) 66.2463 203.885i 0.0739356 0.227550i
\(897\) 75.5445 38.4919i 0.0842191 0.0429118i
\(898\) 268.798 1697.12i 0.299329 1.88989i
\(899\) 507.610 698.666i 0.564639 0.777159i
\(900\) 0 0
\(901\) 304.285 0.337719
\(902\) −93.0251 1161.64i −0.103132 1.28785i
\(903\) −167.476 + 167.476i −0.185466 + 0.185466i
\(904\) 259.695 84.3799i 0.287273 0.0933406i
\(905\) 0 0
\(906\) −768.606 + 558.425i −0.848351 + 0.616363i
\(907\) −1418.23 + 722.625i −1.56365 + 0.796720i −0.999579 0.0290052i \(-0.990766\pi\)
−0.564072 + 0.825725i \(0.690766\pi\)
\(908\) 156.324 + 306.803i 0.172163 + 0.337889i
\(909\) −85.5686 117.775i −0.0941349 0.129566i
\(910\) 0 0
\(911\) 409.334 + 1259.80i 0.449324 + 1.38288i 0.877672 + 0.479263i \(0.159096\pi\)
−0.428348 + 0.903614i \(0.640904\pi\)
\(912\) −185.697 185.697i −0.203615 0.203615i
\(913\) 1192.20 95.4721i 1.30580 0.104570i
\(914\) 376.286i 0.411692i
\(915\) 0 0
\(916\) −208.943 151.806i −0.228104 0.165727i
\(917\) 316.154 + 50.0739i 0.344770 + 0.0546063i
\(918\) −311.141 610.648i −0.338933 0.665194i
\(919\) 1470.30 + 477.730i 1.59989 + 0.519836i 0.967081 0.254470i \(-0.0819010\pi\)
0.632811 + 0.774306i \(0.281901\pi\)
\(920\) 0 0
\(921\) 856.210 + 622.073i 0.929652 + 0.675432i
\(922\) 30.1821 59.2358i 0.0327355 0.0642471i
\(923\) 244.799 244.799i 0.265221 0.265221i
\(924\) −106.929 + 25.8265i −0.115724 + 0.0279507i
\(925\) 0 0
\(926\) −452.424 1392.42i −0.488579 1.50369i
\(927\) −12.6843 80.0856i −0.0136832 0.0863923i
\(928\) −73.4209 + 463.561i −0.0791173 + 0.499527i
\(929\) −288.132 93.6196i −0.310152 0.100775i 0.149805 0.988716i \(-0.452135\pi\)
−0.459958 + 0.887941i \(0.652135\pi\)
\(930\) 0 0
\(931\) −156.638 + 113.804i −0.168247 + 0.122239i
\(932\) −83.9889 530.285i −0.0901169 0.568976i
\(933\) −1283.63 654.044i −1.37581 0.701012i
\(934\) 342.991i 0.367228i
\(935\) 0 0
\(936\) 21.6943 0.0231777
\(937\) −666.244 + 1307.58i −0.711039 + 1.39549i 0.198595 + 0.980082i \(0.436362\pi\)
−0.909634 + 0.415411i \(0.863638\pi\)
\(938\) 5.50816 0.872406i 0.00587224 0.000930071i
\(939\) −706.744 972.749i −0.752656 1.03594i
\(940\) 0 0
\(941\) 503.470 1549.52i 0.535037 1.64667i −0.208532 0.978015i \(-0.566869\pi\)
0.743569 0.668659i \(-0.233131\pi\)
\(942\) −1494.40 236.689i −1.58641 0.251262i
\(943\) 246.508 39.0430i 0.261408 0.0414030i
\(944\) −1937.74 + 629.610i −2.05269 + 0.666960i
\(945\) 0 0
\(946\) 1285.63 + 99.4087i 1.35902 + 0.105083i
\(947\) 849.529 + 849.529i 0.897074 + 0.897074i 0.995176 0.0981026i \(-0.0312773\pi\)
−0.0981026 + 0.995176i \(0.531277\pi\)
\(948\) −639.953 326.072i −0.675055 0.343958i
\(949\) −268.612 + 369.713i −0.283048 + 0.389581i
\(950\) 0 0
\(951\) 351.768 1082.63i 0.369893 1.13841i
\(952\) −74.9223 + 38.1748i −0.0786998 + 0.0400996i
\(953\) 85.0162 536.771i 0.0892091 0.563244i −0.902083 0.431563i \(-0.857962\pi\)
0.991292 0.131681i \(-0.0420376\pi\)
\(954\) −38.2411 + 52.6344i −0.0400850 + 0.0551723i
\(955\) 0 0
\(956\) −366.240 −0.383096
\(957\) −508.083 + 211.271i −0.530912 + 0.220764i
\(958\) 456.108 456.108i 0.476105 0.476105i
\(959\) 388.527 126.240i 0.405137 0.131637i
\(960\) 0 0
\(961\) −1624.01 + 1179.91i −1.68992 + 1.22780i
\(962\) −252.067 + 128.434i −0.262023 + 0.133508i
\(963\) 74.2308 + 145.686i 0.0770829 + 0.151284i
\(964\) −135.459 186.443i −0.140517 0.193406i
\(965\) 0 0
\(966\) −21.7129 66.8256i −0.0224772 0.0691776i
\(967\) 1120.43 + 1120.43i 1.15867 + 1.15867i 0.984762 + 0.173909i \(0.0556400\pi\)
0.173909 + 0.984762i \(0.444360\pi\)
\(968\) −476.974 344.548i −0.492742 0.355938i
\(969\) 144.576i 0.149201i
\(970\) 0 0
\(971\) −79.5621 57.8052i −0.0819383 0.0595316i 0.546062 0.837745i \(-0.316126\pi\)
−0.628000 + 0.778213i \(0.716126\pi\)
\(972\) 102.846 + 16.2892i 0.105809 + 0.0167584i
\(973\) −29.1758 57.2607i −0.0299854 0.0588496i
\(974\) −1771.93 575.735i −1.81923 0.591104i
\(975\) 0 0
\(976\) 456.619 + 331.753i 0.467847 + 0.339911i
\(977\) −84.4187 + 165.681i −0.0864060 + 0.169581i −0.930166 0.367140i \(-0.880337\pi\)
0.843760 + 0.536721i \(0.180337\pi\)
\(978\) −1720.88 + 1720.88i −1.75959 + 1.75959i
\(979\) −216.359 89.2716i −0.221000 0.0911865i
\(980\) 0 0
\(981\) 42.9925 + 132.317i 0.0438252 + 0.134880i
\(982\) −205.719 1298.86i −0.209490 1.32267i
\(983\) 288.673 1822.61i 0.293665 1.85413i −0.193870 0.981027i \(-0.562104\pi\)
0.487535 0.873103i \(-0.337896\pi\)
\(984\) 630.333 + 204.808i 0.640582 + 0.208138i
\(985\) 0 0
\(986\) 346.356 251.642i 0.351274 0.255215i
\(987\) 59.0835 + 373.038i 0.0598617 + 0.377952i
\(988\) −34.7735 17.7180i −0.0351958 0.0179332i
\(989\) 276.161i 0.279232i
\(990\) 0 0
\(991\) 340.674 0.343768 0.171884 0.985117i \(-0.445015\pi\)
0.171884 + 0.985117i \(0.445015\pi\)
\(992\) 732.390 1437.40i 0.738297 1.44899i
\(993\) −114.162 + 18.0815i −0.114967 + 0.0182090i
\(994\) −168.639 232.111i −0.169657 0.233512i
\(995\) 0 0
\(996\) 213.943 658.450i 0.214803 0.661094i
\(997\) 735.280 + 116.457i 0.737492 + 0.116807i 0.513869 0.857868i \(-0.328212\pi\)
0.223623 + 0.974676i \(0.428212\pi\)
\(998\) 138.420 21.9235i 0.138697 0.0219674i
\(999\) 598.662 194.517i 0.599261 0.194712i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.3.bk.c.82.13 yes 128
5.2 odd 4 inner 275.3.bk.c.93.13 yes 128
5.3 odd 4 inner 275.3.bk.c.93.4 yes 128
5.4 even 2 inner 275.3.bk.c.82.4 128
11.9 even 5 inner 275.3.bk.c.207.4 yes 128
55.9 even 10 inner 275.3.bk.c.207.13 yes 128
55.42 odd 20 inner 275.3.bk.c.218.4 yes 128
55.53 odd 20 inner 275.3.bk.c.218.13 yes 128
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
275.3.bk.c.82.4 128 5.4 even 2 inner
275.3.bk.c.82.13 yes 128 1.1 even 1 trivial
275.3.bk.c.93.4 yes 128 5.3 odd 4 inner
275.3.bk.c.93.13 yes 128 5.2 odd 4 inner
275.3.bk.c.207.4 yes 128 11.9 even 5 inner
275.3.bk.c.207.13 yes 128 55.9 even 10 inner
275.3.bk.c.218.4 yes 128 55.42 odd 20 inner
275.3.bk.c.218.13 yes 128 55.53 odd 20 inner