Properties

Label 275.3.bk.c.207.13
Level $275$
Weight $3$
Character 275.207
Analytic conductor $7.493$
Analytic rank $0$
Dimension $128$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,3,Mod(82,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([5, 8])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.82"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 275.bk (of order \(20\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [128] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.49320726991\)
Analytic rank: \(0\)
Dimension: \(128\)
Relative dimension: \(16\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 207.13
Character \(\chi\) \(=\) 275.207
Dual form 275.3.bk.c.93.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.18572 - 1.11368i) q^{2} +(-0.493690 + 3.11704i) q^{3} +(1.18596 - 1.63233i) q^{4} +(2.39232 + 7.36280i) q^{6} +(-0.245682 - 1.55118i) q^{7} +(-0.760714 + 4.80296i) q^{8} +(-0.912687 - 0.296550i) q^{9} +(4.19559 + 10.1684i) q^{11} +(4.50255 + 4.50255i) q^{12} +(2.11052 + 4.14212i) q^{13} +(-2.26451 - 3.11683i) q^{14} +(6.18024 + 19.0208i) q^{16} +(-4.99857 + 9.81025i) q^{17} +(-2.32514 + 0.368267i) q^{18} +(-2.44564 - 3.36614i) q^{19} +4.95637 q^{21} +(20.4948 + 17.5528i) q^{22} +(-4.08642 + 4.08642i) q^{23} +(-14.5955 - 4.74235i) q^{24} +(9.22601 + 6.70309i) q^{26} +(-11.5198 + 22.6088i) q^{27} +(-2.82341 - 1.43860i) q^{28} +(9.31687 - 12.8236i) q^{29} +(16.8361 - 51.8163i) q^{31} +(20.9373 + 20.9373i) q^{32} +(-33.7667 + 8.05774i) q^{33} +27.0093i q^{34} +(-1.56648 + 1.13811i) q^{36} +(3.88071 + 24.5018i) q^{37} +(-9.09431 - 4.63378i) q^{38} +(-13.9531 + 4.53363i) q^{39} +(34.9390 - 25.3846i) q^{41} +(10.8333 - 5.51982i) q^{42} +(33.7901 - 33.7901i) q^{43} +(21.5741 + 5.21076i) q^{44} +(-4.38082 + 13.4828i) q^{46} +(-75.2645 - 11.9207i) q^{47} +(-62.3398 + 9.87365i) q^{48} +(44.2560 - 14.3796i) q^{49} +(-28.1112 - 20.4240i) q^{51} +(9.26431 + 1.46732i) q^{52} +(-12.5467 - 24.6242i) q^{53} +62.2460i q^{54} +7.63714 q^{56} +(11.6998 - 5.96133i) q^{57} +(6.08273 - 38.4048i) q^{58} +(59.8804 - 82.4183i) q^{59} +(-8.72078 - 26.8398i) q^{61} +(-20.9077 - 132.006i) q^{62} +(-0.235771 + 1.48860i) q^{63} +(-7.00270 - 2.27532i) q^{64} +(-64.8310 + 55.2174i) q^{66} +(-1.02357 - 1.02357i) q^{67} +(10.0855 + 19.7939i) q^{68} +(-10.7201 - 14.7550i) q^{69} +(23.0126 + 70.8254i) q^{71} +(2.11861 - 4.15801i) q^{72} +(97.0924 - 15.3779i) q^{73} +(35.7694 + 49.2323i) q^{74} -8.39510 q^{76} +(14.7423 - 9.00630i) q^{77} +(-25.4486 + 25.4486i) q^{78} +(-107.275 - 34.8559i) q^{79} +(-71.7727 - 52.1459i) q^{81} +(48.0965 - 94.3947i) q^{82} +(96.8777 + 49.3617i) q^{83} +(5.87806 - 8.09045i) q^{84} +(36.2243 - 111.487i) q^{86} +(35.3719 + 35.3719i) q^{87} +(-52.0302 + 12.4160i) q^{88} -21.2775i q^{89} +(5.90665 - 4.29143i) q^{91} +(1.82407 + 11.5167i) q^{92} +(153.202 + 78.0601i) q^{93} +(-177.783 + 57.7653i) q^{94} +(-75.5989 + 54.9258i) q^{96} +(18.7565 - 9.55693i) q^{97} +(80.7170 - 80.7170i) q^{98} +(-0.813807 - 10.5248i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 128 q - 48 q^{6} + 32 q^{11} + 280 q^{16} - 8 q^{21} + 528 q^{26} - 16 q^{31} + 336 q^{36} - 604 q^{41} - 1152 q^{46} - 1024 q^{51} - 992 q^{56} - 320 q^{61} + 1624 q^{66} + 536 q^{71} + 1776 q^{76} + 3680 q^{81}+ \cdots - 6584 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.18572 1.11368i 1.09286 0.556841i 0.187837 0.982200i \(-0.439852\pi\)
0.905025 + 0.425359i \(0.139852\pi\)
\(3\) −0.493690 + 3.11704i −0.164563 + 1.03901i 0.757743 + 0.652553i \(0.226302\pi\)
−0.922306 + 0.386459i \(0.873698\pi\)
\(4\) 1.18596 1.63233i 0.296490 0.408083i
\(5\) 0 0
\(6\) 2.39232 + 7.36280i 0.398720 + 1.22713i
\(7\) −0.245682 1.55118i −0.0350975 0.221597i 0.963905 0.266245i \(-0.0857832\pi\)
−0.999003 + 0.0446486i \(0.985783\pi\)
\(8\) −0.760714 + 4.80296i −0.0950893 + 0.600370i
\(9\) −0.912687 0.296550i −0.101410 0.0329500i
\(10\) 0 0
\(11\) 4.19559 + 10.1684i 0.381417 + 0.924403i
\(12\) 4.50255 + 4.50255i 0.375212 + 0.375212i
\(13\) 2.11052 + 4.14212i 0.162347 + 0.318625i 0.957822 0.287362i \(-0.0927784\pi\)
−0.795475 + 0.605987i \(0.792778\pi\)
\(14\) −2.26451 3.11683i −0.161751 0.222631i
\(15\) 0 0
\(16\) 6.18024 + 19.0208i 0.386265 + 1.18880i
\(17\) −4.99857 + 9.81025i −0.294034 + 0.577074i −0.990011 0.140990i \(-0.954971\pi\)
0.695977 + 0.718064i \(0.254971\pi\)
\(18\) −2.32514 + 0.368267i −0.129175 + 0.0204593i
\(19\) −2.44564 3.36614i −0.128718 0.177165i 0.739794 0.672834i \(-0.234923\pi\)
−0.868512 + 0.495669i \(0.834923\pi\)
\(20\) 0 0
\(21\) 4.95637 0.236018
\(22\) 20.4948 + 17.5528i 0.931581 + 0.797856i
\(23\) −4.08642 + 4.08642i −0.177671 + 0.177671i −0.790340 0.612669i \(-0.790096\pi\)
0.612669 + 0.790340i \(0.290096\pi\)
\(24\) −14.5955 4.74235i −0.608144 0.197598i
\(25\) 0 0
\(26\) 9.22601 + 6.70309i 0.354846 + 0.257811i
\(27\) −11.5198 + 22.6088i −0.426658 + 0.837363i
\(28\) −2.82341 1.43860i −0.100836 0.0513785i
\(29\) 9.31687 12.8236i 0.321271 0.442192i −0.617583 0.786505i \(-0.711888\pi\)
0.938855 + 0.344313i \(0.111888\pi\)
\(30\) 0 0
\(31\) 16.8361 51.8163i 0.543101 1.67149i −0.182360 0.983232i \(-0.558374\pi\)
0.725462 0.688263i \(-0.241626\pi\)
\(32\) 20.9373 + 20.9373i 0.654291 + 0.654291i
\(33\) −33.7667 + 8.05774i −1.02323 + 0.244174i
\(34\) 27.0093i 0.794392i
\(35\) 0 0
\(36\) −1.56648 + 1.13811i −0.0435133 + 0.0316143i
\(37\) 3.88071 + 24.5018i 0.104884 + 0.662211i 0.982978 + 0.183723i \(0.0588150\pi\)
−0.878094 + 0.478488i \(0.841185\pi\)
\(38\) −9.09431 4.63378i −0.239324 0.121942i
\(39\) −13.9531 + 4.53363i −0.357771 + 0.116247i
\(40\) 0 0
\(41\) 34.9390 25.3846i 0.852170 0.619138i −0.0735735 0.997290i \(-0.523440\pi\)
0.925743 + 0.378152i \(0.123440\pi\)
\(42\) 10.8333 5.51982i 0.257935 0.131424i
\(43\) 33.7901 33.7901i 0.785815 0.785815i −0.194990 0.980805i \(-0.562467\pi\)
0.980805 + 0.194990i \(0.0624675\pi\)
\(44\) 21.5741 + 5.21076i 0.490320 + 0.118426i
\(45\) 0 0
\(46\) −4.38082 + 13.4828i −0.0952351 + 0.293104i
\(47\) −75.2645 11.9207i −1.60137 0.253632i −0.709092 0.705116i \(-0.750895\pi\)
−0.892279 + 0.451484i \(0.850895\pi\)
\(48\) −62.3398 + 9.87365i −1.29875 + 0.205701i
\(49\) 44.2560 14.3796i 0.903183 0.293462i
\(50\) 0 0
\(51\) −28.1112 20.4240i −0.551199 0.400470i
\(52\) 9.26431 + 1.46732i 0.178160 + 0.0282177i
\(53\) −12.5467 24.6242i −0.236730 0.464608i 0.741826 0.670593i \(-0.233960\pi\)
−0.978555 + 0.205985i \(0.933960\pi\)
\(54\) 62.2460i 1.15270i
\(55\) 0 0
\(56\) 7.63714 0.136378
\(57\) 11.6998 5.96133i 0.205259 0.104585i
\(58\) 6.08273 38.4048i 0.104875 0.662152i
\(59\) 59.8804 82.4183i 1.01492 1.39692i 0.0992186 0.995066i \(-0.468366\pi\)
0.915703 0.401855i \(-0.131634\pi\)
\(60\) 0 0
\(61\) −8.72078 26.8398i −0.142964 0.439997i 0.853780 0.520634i \(-0.174304\pi\)
−0.996744 + 0.0806373i \(0.974304\pi\)
\(62\) −20.9077 132.006i −0.337222 2.12913i
\(63\) −0.235771 + 1.48860i −0.00374239 + 0.0236285i
\(64\) −7.00270 2.27532i −0.109417 0.0355518i
\(65\) 0 0
\(66\) −64.8310 + 55.2174i −0.982287 + 0.836627i
\(67\) −1.02357 1.02357i −0.0152771 0.0152771i 0.699427 0.714704i \(-0.253439\pi\)
−0.714704 + 0.699427i \(0.753439\pi\)
\(68\) 10.0855 + 19.7939i 0.148316 + 0.291087i
\(69\) −10.7201 14.7550i −0.155364 0.213840i
\(70\) 0 0
\(71\) 23.0126 + 70.8254i 0.324121 + 0.997540i 0.971836 + 0.235658i \(0.0757245\pi\)
−0.647716 + 0.761882i \(0.724275\pi\)
\(72\) 2.11861 4.15801i 0.0294252 0.0577502i
\(73\) 97.0924 15.3779i 1.33003 0.210656i 0.549354 0.835590i \(-0.314874\pi\)
0.780678 + 0.624933i \(0.214874\pi\)
\(74\) 35.7694 + 49.2323i 0.483370 + 0.665302i
\(75\) 0 0
\(76\) −8.39510 −0.110462
\(77\) 14.7423 9.00630i 0.191458 0.116965i
\(78\) −25.4486 + 25.4486i −0.326264 + 0.326264i
\(79\) −107.275 34.8559i −1.35792 0.441213i −0.462569 0.886583i \(-0.653072\pi\)
−0.895347 + 0.445370i \(0.853072\pi\)
\(80\) 0 0
\(81\) −71.7727 52.1459i −0.886083 0.643777i
\(82\) 48.0965 94.3947i 0.586543 1.15116i
\(83\) 96.8777 + 49.3617i 1.16720 + 0.594719i 0.926653 0.375918i \(-0.122673\pi\)
0.240549 + 0.970637i \(0.422673\pi\)
\(84\) 5.87806 8.09045i 0.0699768 0.0963149i
\(85\) 0 0
\(86\) 36.2243 111.487i 0.421213 1.29636i
\(87\) 35.3719 + 35.3719i 0.406574 + 0.406574i
\(88\) −52.0302 + 12.4160i −0.591253 + 0.141090i
\(89\) 21.2775i 0.239073i −0.992830 0.119537i \(-0.961859\pi\)
0.992830 0.119537i \(-0.0381409\pi\)
\(90\) 0 0
\(91\) 5.90665 4.29143i 0.0649082 0.0471586i
\(92\) 1.82407 + 11.5167i 0.0198269 + 0.125182i
\(93\) 153.202 + 78.0601i 1.64733 + 0.839356i
\(94\) −177.783 + 57.7653i −1.89131 + 0.614524i
\(95\) 0 0
\(96\) −75.5989 + 54.9258i −0.787488 + 0.572144i
\(97\) 18.7565 9.55693i 0.193366 0.0985250i −0.354627 0.935008i \(-0.615392\pi\)
0.547993 + 0.836483i \(0.315392\pi\)
\(98\) 80.7170 80.7170i 0.823643 0.823643i
\(99\) −0.813807 10.5248i −0.00822027 0.106311i
\(100\) 0 0
\(101\) −46.8773 + 144.273i −0.464132 + 1.42845i 0.395940 + 0.918276i \(0.370419\pi\)
−0.860071 + 0.510174i \(0.829581\pi\)
\(102\) −84.1891 13.3342i −0.825383 0.130728i
\(103\) −83.4524 + 13.2176i −0.810218 + 0.128326i −0.547779 0.836623i \(-0.684527\pi\)
−0.262438 + 0.964949i \(0.584527\pi\)
\(104\) −21.4999 + 6.98575i −0.206730 + 0.0671707i
\(105\) 0 0
\(106\) −54.8471 39.8488i −0.517426 0.375932i
\(107\) −168.284 26.6535i −1.57274 0.249098i −0.691718 0.722167i \(-0.743146\pi\)
−0.881025 + 0.473069i \(0.843146\pi\)
\(108\) 23.2431 + 45.6172i 0.215214 + 0.422382i
\(109\) 144.976i 1.33005i 0.746820 + 0.665026i \(0.231580\pi\)
−0.746820 + 0.665026i \(0.768420\pi\)
\(110\) 0 0
\(111\) −78.2889 −0.705306
\(112\) 27.9863 14.2597i 0.249878 0.127319i
\(113\) −8.78415 + 55.4609i −0.0777358 + 0.490805i 0.917848 + 0.396931i \(0.129925\pi\)
−0.995584 + 0.0938734i \(0.970075\pi\)
\(114\) 18.9334 26.0596i 0.166083 0.228593i
\(115\) 0 0
\(116\) −9.88292 30.4165i −0.0851976 0.262211i
\(117\) −0.697894 4.40633i −0.00596491 0.0376610i
\(118\) 39.0942 246.831i 0.331307 2.09179i
\(119\) 16.4455 + 5.34347i 0.138197 + 0.0449031i
\(120\) 0 0
\(121\) −85.7941 + 85.3251i −0.709042 + 0.705166i
\(122\) −48.9522 48.9522i −0.401248 0.401248i
\(123\) 61.8759 + 121.438i 0.503056 + 0.987303i
\(124\) −64.6145 88.9343i −0.521085 0.717212i
\(125\) 0 0
\(126\) 1.14249 + 3.51623i 0.00906741 + 0.0279066i
\(127\) −50.8561 + 99.8107i −0.400441 + 0.785911i −0.999895 0.0144990i \(-0.995385\pi\)
0.599453 + 0.800410i \(0.295385\pi\)
\(128\) −134.821 + 21.3535i −1.05329 + 0.166825i
\(129\) 88.6431 + 122.007i 0.687155 + 0.945788i
\(130\) 0 0
\(131\) 203.816 1.55585 0.777923 0.628360i \(-0.216274\pi\)
0.777923 + 0.628360i \(0.216274\pi\)
\(132\) −26.8930 + 64.6747i −0.203735 + 0.489960i
\(133\) −4.62063 + 4.62063i −0.0347416 + 0.0347416i
\(134\) −3.37716 1.09730i −0.0252027 0.00818884i
\(135\) 0 0
\(136\) −43.3158 31.4707i −0.318498 0.231403i
\(137\) 118.092 231.768i 0.861984 1.69174i 0.150995 0.988535i \(-0.451752\pi\)
0.710989 0.703204i \(-0.248248\pi\)
\(138\) −39.8635 20.3115i −0.288866 0.147185i
\(139\) 24.0521 33.1048i 0.173037 0.238164i −0.713687 0.700465i \(-0.752976\pi\)
0.886723 + 0.462301i \(0.152976\pi\)
\(140\) 0 0
\(141\) 74.3147 228.717i 0.527054 1.62211i
\(142\) 129.176 + 129.176i 0.909690 + 0.909690i
\(143\) −33.2640 + 38.8393i −0.232616 + 0.271603i
\(144\) 19.1928i 0.133283i
\(145\) 0 0
\(146\) 195.091 141.742i 1.33624 0.970835i
\(147\) 22.9731 + 145.047i 0.156280 + 0.986712i
\(148\) 44.5975 + 22.7236i 0.301334 + 0.153538i
\(149\) 104.012 33.7955i 0.698066 0.226816i 0.0615785 0.998102i \(-0.480387\pi\)
0.636488 + 0.771287i \(0.280387\pi\)
\(150\) 0 0
\(151\) −99.2813 + 72.1321i −0.657492 + 0.477696i −0.865815 0.500364i \(-0.833199\pi\)
0.208323 + 0.978060i \(0.433199\pi\)
\(152\) 18.0279 9.18566i 0.118604 0.0604320i
\(153\) 7.47136 7.47136i 0.0488324 0.0488324i
\(154\) 22.1924 36.1035i 0.144106 0.234438i
\(155\) 0 0
\(156\) −9.14740 + 28.1528i −0.0586372 + 0.180467i
\(157\) 193.032 + 30.5733i 1.22950 + 0.194734i 0.737191 0.675685i \(-0.236152\pi\)
0.492312 + 0.870419i \(0.336152\pi\)
\(158\) −273.293 + 43.2853i −1.72970 + 0.273958i
\(159\) 82.9488 26.9517i 0.521691 0.169508i
\(160\) 0 0
\(161\) 7.34273 + 5.33481i 0.0456070 + 0.0331354i
\(162\) −214.949 34.0446i −1.32685 0.210152i
\(163\) −142.717 280.098i −0.875566 1.71840i −0.673732 0.738975i \(-0.735310\pi\)
−0.201834 0.979420i \(-0.564690\pi\)
\(164\) 87.1372i 0.531324i
\(165\) 0 0
\(166\) 266.721 1.60675
\(167\) −26.7496 + 13.6296i −0.160177 + 0.0816143i −0.532241 0.846593i \(-0.678650\pi\)
0.372064 + 0.928207i \(0.378650\pi\)
\(168\) −3.77038 + 23.8053i −0.0224428 + 0.141698i
\(169\) 86.6328 119.240i 0.512620 0.705561i
\(170\) 0 0
\(171\) 1.23388 + 3.79749i 0.00721566 + 0.0222075i
\(172\) −15.0830 95.2303i −0.0876918 0.553664i
\(173\) 20.0520 126.603i 0.115907 0.731811i −0.859457 0.511209i \(-0.829198\pi\)
0.975364 0.220602i \(-0.0708021\pi\)
\(174\) 116.706 + 37.9202i 0.670726 + 0.217932i
\(175\) 0 0
\(176\) −167.482 + 142.647i −0.951604 + 0.810494i
\(177\) 227.339 + 227.339i 1.28440 + 1.28440i
\(178\) −23.6964 46.5068i −0.133126 0.261274i
\(179\) 68.7567 + 94.6354i 0.384115 + 0.528690i 0.956669 0.291178i \(-0.0940471\pi\)
−0.572554 + 0.819867i \(0.694047\pi\)
\(180\) 0 0
\(181\) −18.9964 58.4650i −0.104953 0.323011i 0.884767 0.466034i \(-0.154318\pi\)
−0.989719 + 0.143023i \(0.954318\pi\)
\(182\) 8.13101 15.9580i 0.0446759 0.0876813i
\(183\) 87.9661 13.9325i 0.480689 0.0761336i
\(184\) −16.5183 22.7355i −0.0897735 0.123563i
\(185\) 0 0
\(186\) 421.791 2.26769
\(187\) −120.727 9.66791i −0.645598 0.0517001i
\(188\) −108.719 + 108.719i −0.578294 + 0.578294i
\(189\) 37.9005 + 12.3146i 0.200532 + 0.0651567i
\(190\) 0 0
\(191\) 95.9178 + 69.6884i 0.502187 + 0.364860i 0.809852 0.586634i \(-0.199547\pi\)
−0.307664 + 0.951495i \(0.599547\pi\)
\(192\) 10.5494 20.7044i 0.0549449 0.107835i
\(193\) 39.0672 + 19.9057i 0.202421 + 0.103139i 0.552262 0.833670i \(-0.313765\pi\)
−0.349842 + 0.936809i \(0.613765\pi\)
\(194\) 30.3532 41.7776i 0.156460 0.215349i
\(195\) 0 0
\(196\) 29.0134 89.2942i 0.148028 0.455583i
\(197\) 45.0392 + 45.0392i 0.228626 + 0.228626i 0.812118 0.583493i \(-0.198314\pi\)
−0.583493 + 0.812118i \(0.698314\pi\)
\(198\) −13.5000 22.0980i −0.0681820 0.111606i
\(199\) 185.939i 0.934367i −0.884160 0.467184i \(-0.845269\pi\)
0.884160 0.467184i \(-0.154731\pi\)
\(200\) 0 0
\(201\) 3.69582 2.68517i 0.0183871 0.0133590i
\(202\) 58.2139 + 367.548i 0.288188 + 1.81955i
\(203\) −22.1806 11.3016i −0.109264 0.0556729i
\(204\) −66.6774 + 21.6648i −0.326850 + 0.106200i
\(205\) 0 0
\(206\) −167.684 + 121.829i −0.813999 + 0.591405i
\(207\) 4.94145 2.51780i 0.0238718 0.0121633i
\(208\) −65.7431 + 65.7431i −0.316072 + 0.316072i
\(209\) 23.9675 38.9913i 0.114677 0.186561i
\(210\) 0 0
\(211\) −82.7053 + 254.541i −0.391968 + 1.20635i 0.539329 + 0.842095i \(0.318678\pi\)
−0.931298 + 0.364259i \(0.881322\pi\)
\(212\) −55.0748 8.72299i −0.259787 0.0411462i
\(213\) −232.126 + 36.7652i −1.08980 + 0.172607i
\(214\) −397.505 + 129.157i −1.85750 + 0.603538i
\(215\) 0 0
\(216\) −99.8260 72.5278i −0.462157 0.335777i
\(217\) −84.5127 13.3855i −0.389459 0.0616843i
\(218\) 161.457 + 316.877i 0.740628 + 1.45356i
\(219\) 310.233i 1.41659i
\(220\) 0 0
\(221\) −51.1848 −0.231605
\(222\) −171.118 + 87.1890i −0.770802 + 0.392743i
\(223\) 18.6057 117.472i 0.0834335 0.526778i −0.910205 0.414159i \(-0.864076\pi\)
0.993638 0.112620i \(-0.0359242\pi\)
\(224\) 27.3335 37.6214i 0.122025 0.167953i
\(225\) 0 0
\(226\) 42.5661 + 131.005i 0.188346 + 0.579668i
\(227\) 26.6968 + 168.557i 0.117607 + 0.742543i 0.974055 + 0.226310i \(0.0726662\pi\)
−0.856448 + 0.516233i \(0.827334\pi\)
\(228\) 4.14458 26.1678i 0.0181780 0.114771i
\(229\) −121.738 39.5550i −0.531606 0.172729i 0.0309000 0.999522i \(-0.490163\pi\)
−0.562506 + 0.826793i \(0.690163\pi\)
\(230\) 0 0
\(231\) 20.7949 + 50.3985i 0.0900211 + 0.218175i
\(232\) 54.5037 + 54.5037i 0.234930 + 0.234930i
\(233\) 120.805 + 237.093i 0.518477 + 1.01757i 0.990697 + 0.136087i \(0.0434527\pi\)
−0.472220 + 0.881481i \(0.656547\pi\)
\(234\) −6.43266 8.85379i −0.0274900 0.0378367i
\(235\) 0 0
\(236\) −63.5184 195.490i −0.269146 0.828346i
\(237\) 161.608 317.173i 0.681890 1.33828i
\(238\) 41.8962 6.63571i 0.176035 0.0278811i
\(239\) −106.692 146.849i −0.446411 0.614432i 0.525211 0.850972i \(-0.323987\pi\)
−0.971622 + 0.236540i \(0.923987\pi\)
\(240\) 0 0
\(241\) 114.219 0.473937 0.236968 0.971517i \(-0.423846\pi\)
0.236968 + 0.971517i \(0.423846\pi\)
\(242\) −92.4973 + 282.044i −0.382220 + 1.16547i
\(243\) 36.4923 36.4923i 0.150174 0.150174i
\(244\) −54.1540 17.5957i −0.221943 0.0721135i
\(245\) 0 0
\(246\) 270.487 + 196.520i 1.09954 + 0.798863i
\(247\) 8.78138 17.2344i 0.0355522 0.0697750i
\(248\) 236.064 + 120.281i 0.951872 + 0.485003i
\(249\) −201.690 + 277.602i −0.809999 + 1.11487i
\(250\) 0 0
\(251\) 58.3065 179.449i 0.232297 0.714936i −0.765172 0.643826i \(-0.777346\pi\)
0.997469 0.0711096i \(-0.0226540\pi\)
\(252\) 2.15027 + 2.15027i 0.00853282 + 0.00853282i
\(253\) −58.6975 24.4076i −0.232006 0.0964727i
\(254\) 274.796i 1.08187i
\(255\) 0 0
\(256\) −247.073 + 179.509i −0.965129 + 0.701207i
\(257\) 5.02657 + 31.7365i 0.0195587 + 0.123488i 0.995536 0.0943842i \(-0.0300882\pi\)
−0.975977 + 0.217873i \(0.930088\pi\)
\(258\) 329.626 + 167.953i 1.27762 + 0.650980i
\(259\) 37.0532 12.0393i 0.143063 0.0464839i
\(260\) 0 0
\(261\) −12.3062 + 8.94099i −0.0471503 + 0.0342567i
\(262\) 445.485 226.986i 1.70032 0.866358i
\(263\) −265.068 + 265.068i −1.00786 + 1.00786i −0.00789398 + 0.999969i \(0.502513\pi\)
−0.999969 + 0.00789398i \(0.997487\pi\)
\(264\) −13.0142 168.310i −0.0492962 0.637537i
\(265\) 0 0
\(266\) −4.95351 + 15.2453i −0.0186222 + 0.0573132i
\(267\) 66.3228 + 10.5045i 0.248400 + 0.0393427i
\(268\) −2.88471 + 0.456893i −0.0107638 + 0.00170482i
\(269\) −99.1773 + 32.2247i −0.368689 + 0.119794i −0.487501 0.873122i \(-0.662091\pi\)
0.118812 + 0.992917i \(0.462091\pi\)
\(270\) 0 0
\(271\) −137.306 99.7586i −0.506664 0.368113i 0.304892 0.952387i \(-0.401379\pi\)
−0.811557 + 0.584274i \(0.801379\pi\)
\(272\) −217.492 34.4473i −0.799601 0.126644i
\(273\) 10.4605 + 20.5299i 0.0383168 + 0.0752010i
\(274\) 638.098i 2.32882i
\(275\) 0 0
\(276\) −36.7986 −0.133328
\(277\) 30.3745 15.4766i 0.109655 0.0558722i −0.398302 0.917254i \(-0.630401\pi\)
0.507958 + 0.861382i \(0.330401\pi\)
\(278\) 15.7029 99.1444i 0.0564854 0.356635i
\(279\) −30.7323 + 42.2993i −0.110151 + 0.151610i
\(280\) 0 0
\(281\) −15.6934 48.2993i −0.0558484 0.171884i 0.919241 0.393695i \(-0.128803\pi\)
−0.975090 + 0.221811i \(0.928803\pi\)
\(282\) −92.2867 582.675i −0.327258 2.06622i
\(283\) 35.0423 221.248i 0.123824 0.781797i −0.845131 0.534560i \(-0.820477\pi\)
0.968955 0.247237i \(-0.0795226\pi\)
\(284\) 142.903 + 46.4319i 0.503178 + 0.163492i
\(285\) 0 0
\(286\) −29.4514 + 121.937i −0.102977 + 0.426355i
\(287\) −47.9600 47.9600i −0.167108 0.167108i
\(288\) −12.9002 25.3182i −0.0447925 0.0879103i
\(289\) 98.6147 + 135.731i 0.341227 + 0.469659i
\(290\) 0 0
\(291\) 20.5294 + 63.1830i 0.0705477 + 0.217124i
\(292\) 90.0457 176.725i 0.308376 0.605222i
\(293\) 482.899 76.4836i 1.64812 0.261036i 0.737822 0.674995i \(-0.235854\pi\)
0.910296 + 0.413959i \(0.135854\pi\)
\(294\) 211.749 + 291.447i 0.720234 + 0.991317i
\(295\) 0 0
\(296\) −120.633 −0.407545
\(297\) −278.228 22.2808i −0.936796 0.0750194i
\(298\) 189.704 189.704i 0.636590 0.636590i
\(299\) −25.5509 8.30199i −0.0854545 0.0277659i
\(300\) 0 0
\(301\) −60.7160 44.1127i −0.201714 0.146554i
\(302\) −136.669 + 268.228i −0.452547 + 0.888174i
\(303\) −426.563 217.345i −1.40780 0.717309i
\(304\) 48.9121 67.3217i 0.160895 0.221453i
\(305\) 0 0
\(306\) 8.00961 24.6511i 0.0261752 0.0805590i
\(307\) −237.129 237.129i −0.772408 0.772408i 0.206119 0.978527i \(-0.433917\pi\)
−0.978527 + 0.206119i \(0.933917\pi\)
\(308\) 2.78244 34.7454i 0.00903391 0.112810i
\(309\) 266.650i 0.862944i
\(310\) 0 0
\(311\) −369.314 + 268.322i −1.18751 + 0.862773i −0.992998 0.118128i \(-0.962311\pi\)
−0.194507 + 0.980901i \(0.562311\pi\)
\(312\) −11.1605 70.4649i −0.0357710 0.225849i
\(313\) −339.470 172.969i −1.08457 0.552616i −0.182061 0.983287i \(-0.558277\pi\)
−0.902509 + 0.430671i \(0.858277\pi\)
\(314\) 455.963 148.152i 1.45211 0.471820i
\(315\) 0 0
\(316\) −184.121 + 133.771i −0.582660 + 0.423327i
\(317\) 321.390 163.756i 1.01385 0.516582i 0.133571 0.991039i \(-0.457356\pi\)
0.880278 + 0.474457i \(0.157356\pi\)
\(318\) 151.288 151.288i 0.475747 0.475747i
\(319\) 169.485 + 40.9356i 0.531302 + 0.128325i
\(320\) 0 0
\(321\) 166.160 511.388i 0.517632 1.59311i
\(322\) 21.9905 + 3.48295i 0.0682933 + 0.0108166i
\(323\) 45.2474 7.16648i 0.140085 0.0221873i
\(324\) −170.239 + 55.3140i −0.525429 + 0.170722i
\(325\) 0 0
\(326\) −623.881 453.276i −1.91375 1.39042i
\(327\) −451.895 71.5731i −1.38194 0.218878i
\(328\) 95.3429 + 187.121i 0.290680 + 0.570491i
\(329\) 119.677i 0.363761i
\(330\) 0 0
\(331\) −36.6252 −0.110650 −0.0553250 0.998468i \(-0.517620\pi\)
−0.0553250 + 0.998468i \(0.517620\pi\)
\(332\) 195.468 99.5958i 0.588758 0.299987i
\(333\) 3.72414 23.5133i 0.0111836 0.0706105i
\(334\) −43.2882 + 59.5810i −0.129605 + 0.178386i
\(335\) 0 0
\(336\) 30.6316 + 94.2743i 0.0911654 + 0.280578i
\(337\) −79.7500 503.522i −0.236647 1.49413i −0.764406 0.644736i \(-0.776967\pi\)
0.527759 0.849394i \(-0.323033\pi\)
\(338\) 56.5602 357.107i 0.167338 1.05653i
\(339\) −168.537 54.7611i −0.497160 0.161537i
\(340\) 0 0
\(341\) 597.528 46.2026i 1.75228 0.135491i
\(342\) 6.92611 + 6.92611i 0.0202518 + 0.0202518i
\(343\) −68.1152 133.684i −0.198587 0.389748i
\(344\) 136.588 + 187.997i 0.397057 + 0.546503i
\(345\) 0 0
\(346\) −97.1676 299.051i −0.280831 0.864310i
\(347\) −26.4729 + 51.9560i −0.0762908 + 0.149729i −0.926001 0.377521i \(-0.876777\pi\)
0.849710 + 0.527250i \(0.176777\pi\)
\(348\) 99.6884 15.7891i 0.286461 0.0453710i
\(349\) −260.442 358.468i −0.746253 1.02713i −0.998234 0.0593967i \(-0.981082\pi\)
0.251982 0.967732i \(-0.418918\pi\)
\(350\) 0 0
\(351\) −117.961 −0.336071
\(352\) −125.055 + 300.744i −0.355271 + 0.854386i
\(353\) −124.571 + 124.571i −0.352892 + 0.352892i −0.861184 0.508293i \(-0.830277\pi\)
0.508293 + 0.861184i \(0.330277\pi\)
\(354\) 750.082 + 243.716i 2.11888 + 0.688465i
\(355\) 0 0
\(356\) −34.7320 25.2343i −0.0975618 0.0708828i
\(357\) −24.7748 + 48.6232i −0.0693971 + 0.136200i
\(358\) 255.677 + 130.274i 0.714181 + 0.363893i
\(359\) −290.091 + 399.276i −0.808053 + 1.11219i 0.183568 + 0.983007i \(0.441235\pi\)
−0.991621 + 0.129183i \(0.958765\pi\)
\(360\) 0 0
\(361\) 106.205 326.867i 0.294198 0.905448i
\(362\) −106.632 106.632i −0.294565 0.294565i
\(363\) −223.606 309.548i −0.615994 0.852749i
\(364\) 14.7311i 0.0404700i
\(365\) 0 0
\(366\) 176.753 128.419i 0.482932 0.350871i
\(367\) 14.6008 + 92.1861i 0.0397843 + 0.251188i 0.999563 0.0295704i \(-0.00941392\pi\)
−0.959778 + 0.280759i \(0.909414\pi\)
\(368\) −102.982 52.4721i −0.279843 0.142587i
\(369\) −39.4162 + 12.8071i −0.106819 + 0.0347076i
\(370\) 0 0
\(371\) −35.1141 + 25.5119i −0.0946470 + 0.0687651i
\(372\) 309.111 157.500i 0.830944 0.423387i
\(373\) −278.202 + 278.202i −0.745850 + 0.745850i −0.973697 0.227847i \(-0.926831\pi\)
0.227847 + 0.973697i \(0.426831\pi\)
\(374\) −274.642 + 113.320i −0.734338 + 0.302994i
\(375\) 0 0
\(376\) 114.510 352.424i 0.304547 0.937298i
\(377\) 72.7802 + 11.5272i 0.193051 + 0.0305763i
\(378\) 96.5545 15.2927i 0.255435 0.0404570i
\(379\) 267.869 87.0358i 0.706777 0.229646i 0.0664964 0.997787i \(-0.478818\pi\)
0.640281 + 0.768141i \(0.278818\pi\)
\(380\) 0 0
\(381\) −286.006 207.796i −0.750673 0.545396i
\(382\) 287.260 + 45.4976i 0.751991 + 0.119104i
\(383\) 105.002 + 206.078i 0.274156 + 0.538062i 0.986499 0.163770i \(-0.0523656\pi\)
−0.712342 + 0.701832i \(0.752366\pi\)
\(384\) 430.784i 1.12183i
\(385\) 0 0
\(386\) 107.559 0.278650
\(387\) −40.8602 + 20.8193i −0.105582 + 0.0537966i
\(388\) 6.64439 41.9510i 0.0171247 0.108121i
\(389\) −238.146 + 327.780i −0.612200 + 0.842621i −0.996756 0.0804803i \(-0.974355\pi\)
0.384556 + 0.923102i \(0.374355\pi\)
\(390\) 0 0
\(391\) −19.6625 60.5151i −0.0502879 0.154770i
\(392\) 35.3987 + 223.499i 0.0903028 + 0.570149i
\(393\) −100.622 + 635.301i −0.256035 + 1.61654i
\(394\) 148.603 + 48.2840i 0.377164 + 0.122548i
\(395\) 0 0
\(396\) −18.1451 11.1536i −0.0458210 0.0281656i
\(397\) −195.457 195.457i −0.492335 0.492335i 0.416706 0.909041i \(-0.363184\pi\)
−0.909041 + 0.416706i \(0.863184\pi\)
\(398\) −207.077 406.411i −0.520294 1.02113i
\(399\) −12.1215 16.6838i −0.0303797 0.0418141i
\(400\) 0 0
\(401\) −83.1565 255.929i −0.207373 0.638228i −0.999608 0.0280116i \(-0.991082\pi\)
0.792235 0.610216i \(-0.208918\pi\)
\(402\) 5.08761 9.98500i 0.0126557 0.0248383i
\(403\) 250.162 39.6218i 0.620750 0.0983172i
\(404\) 179.908 + 247.622i 0.445316 + 0.612925i
\(405\) 0 0
\(406\) −61.0671 −0.150412
\(407\) −232.863 + 142.260i −0.572146 + 0.349534i
\(408\) 119.480 119.480i 0.292843 0.292843i
\(409\) −646.708 210.128i −1.58119 0.513761i −0.618830 0.785525i \(-0.712393\pi\)
−0.962364 + 0.271764i \(0.912393\pi\)
\(410\) 0 0
\(411\) 664.129 + 482.518i 1.61589 + 1.17401i
\(412\) −77.3957 + 151.898i −0.187854 + 0.368684i
\(413\) −142.557 72.6364i −0.345174 0.175875i
\(414\) 7.99663 11.0064i 0.0193155 0.0265855i
\(415\) 0 0
\(416\) −42.5363 + 130.913i −0.102251 + 0.314695i
\(417\) 91.3148 + 91.3148i 0.218980 + 0.218980i
\(418\) 8.96236 111.916i 0.0214410 0.267742i
\(419\) 451.895i 1.07851i 0.842143 + 0.539254i \(0.181294\pi\)
−0.842143 + 0.539254i \(0.818706\pi\)
\(420\) 0 0
\(421\) −299.721 + 217.760i −0.711926 + 0.517245i −0.883795 0.467875i \(-0.845020\pi\)
0.171868 + 0.985120i \(0.445020\pi\)
\(422\) 102.706 + 648.463i 0.243380 + 1.53664i
\(423\) 65.1578 + 33.1996i 0.154037 + 0.0784860i
\(424\) 127.814 41.5292i 0.301447 0.0979462i
\(425\) 0 0
\(426\) −466.419 + 338.874i −1.09488 + 0.795478i
\(427\) −39.4908 + 20.1215i −0.0924842 + 0.0471231i
\(428\) −243.085 + 243.085i −0.567955 + 0.567955i
\(429\) −104.641 122.860i −0.243919 0.286386i
\(430\) 0 0
\(431\) −195.029 + 600.237i −0.452503 + 1.39266i 0.421538 + 0.906811i \(0.361490\pi\)
−0.874041 + 0.485851i \(0.838510\pi\)
\(432\) −501.233 79.3876i −1.16026 0.183768i
\(433\) 537.926 85.1992i 1.24232 0.196765i 0.499537 0.866293i \(-0.333503\pi\)
0.742787 + 0.669528i \(0.233503\pi\)
\(434\) −199.629 + 64.8632i −0.459974 + 0.149454i
\(435\) 0 0
\(436\) 236.649 + 171.935i 0.542772 + 0.394347i
\(437\) 23.7494 + 3.76154i 0.0543464 + 0.00860763i
\(438\) 345.500 + 678.083i 0.788814 + 1.54813i
\(439\) 495.324i 1.12830i −0.825672 0.564150i \(-0.809204\pi\)
0.825672 0.564150i \(-0.190796\pi\)
\(440\) 0 0
\(441\) −44.6561 −0.101261
\(442\) −111.876 + 57.0036i −0.253113 + 0.128967i
\(443\) 52.9881 334.553i 0.119612 0.755200i −0.852853 0.522151i \(-0.825130\pi\)
0.972465 0.233049i \(-0.0748702\pi\)
\(444\) −92.8475 + 127.794i −0.209116 + 0.287824i
\(445\) 0 0
\(446\) −90.1591 277.481i −0.202150 0.622155i
\(447\) 53.9922 + 340.894i 0.120788 + 0.762625i
\(448\) −1.80898 + 11.4214i −0.00403790 + 0.0254943i
\(449\) −666.170 216.452i −1.48368 0.482075i −0.548467 0.836173i \(-0.684788\pi\)
−0.935209 + 0.354097i \(0.884788\pi\)
\(450\) 0 0
\(451\) 404.712 + 248.771i 0.897365 + 0.551599i
\(452\) 80.1131 + 80.1131i 0.177241 + 0.177241i
\(453\) −175.824 345.074i −0.388133 0.761753i
\(454\) 246.071 + 338.688i 0.542007 + 0.746008i
\(455\) 0 0
\(456\) 19.7319 + 60.7284i 0.0432716 + 0.133176i
\(457\) 69.6387 136.674i 0.152382 0.299067i −0.802178 0.597085i \(-0.796325\pi\)
0.954560 + 0.298018i \(0.0963255\pi\)
\(458\) −310.137 + 49.1208i −0.677154 + 0.107251i
\(459\) −164.216 226.024i −0.357768 0.492426i
\(460\) 0 0
\(461\) 27.1012 0.0587879 0.0293940 0.999568i \(-0.490642\pi\)
0.0293940 + 0.999568i \(0.490642\pi\)
\(462\) 101.580 + 86.9984i 0.219870 + 0.188308i
\(463\) −422.021 + 422.021i −0.911492 + 0.911492i −0.996390 0.0848979i \(-0.972944\pi\)
0.0848979 + 0.996390i \(0.472944\pi\)
\(464\) 301.496 + 97.9619i 0.649775 + 0.211125i
\(465\) 0 0
\(466\) 528.093 + 383.682i 1.13325 + 0.823352i
\(467\) 63.4768 124.580i 0.135925 0.266767i −0.813004 0.582258i \(-0.802169\pi\)
0.948929 + 0.315491i \(0.102169\pi\)
\(468\) −8.02028 4.08654i −0.0171373 0.00873191i
\(469\) −1.33626 + 1.83920i −0.00284917 + 0.00392154i
\(470\) 0 0
\(471\) −190.596 + 586.594i −0.404663 + 1.24542i
\(472\) 350.300 + 350.300i 0.742161 + 0.742161i
\(473\) 485.361 + 201.823i 1.02613 + 0.426687i
\(474\) 873.233i 1.84226i
\(475\) 0 0
\(476\) 28.2260 20.5074i 0.0592984 0.0430828i
\(477\) 4.14887 + 26.1949i 0.00869784 + 0.0549160i
\(478\) −396.743 202.151i −0.830007 0.422909i
\(479\) −250.078 + 81.2552i −0.522083 + 0.169635i −0.558190 0.829713i \(-0.688504\pi\)
0.0361074 + 0.999348i \(0.488504\pi\)
\(480\) 0 0
\(481\) −93.2991 + 67.7858i −0.193969 + 0.140927i
\(482\) 249.651 127.203i 0.517947 0.263907i
\(483\) −20.2538 + 20.2538i −0.0419334 + 0.0419334i
\(484\) 37.5306 + 241.237i 0.0775426 + 0.498423i
\(485\) 0 0
\(486\) 39.1213 120.403i 0.0804964 0.247742i
\(487\) 750.146 + 118.812i 1.54034 + 0.243966i 0.868109 0.496374i \(-0.165335\pi\)
0.672233 + 0.740340i \(0.265335\pi\)
\(488\) 135.545 21.4682i 0.277755 0.0439921i
\(489\) 943.536 306.573i 1.92952 0.626939i
\(490\) 0 0
\(491\) 433.696 + 315.098i 0.883290 + 0.641748i 0.934120 0.356959i \(-0.116187\pi\)
−0.0508295 + 0.998707i \(0.516187\pi\)
\(492\) 271.610 + 43.0188i 0.552053 + 0.0874366i
\(493\) 79.2314 + 155.500i 0.160713 + 0.315417i
\(494\) 47.4494i 0.0960514i
\(495\) 0 0
\(496\) 1089.64 2.19686
\(497\) 104.209 53.0971i 0.209676 0.106835i
\(498\) −131.678 + 831.380i −0.264413 + 1.66944i
\(499\) −33.5801 + 46.2190i −0.0672947 + 0.0926233i −0.841338 0.540510i \(-0.818231\pi\)
0.774043 + 0.633133i \(0.218231\pi\)
\(500\) 0 0
\(501\) −29.2779 90.1082i −0.0584390 0.179857i
\(502\) −72.4071 457.161i −0.144237 0.910678i
\(503\) −58.9680 + 372.309i −0.117233 + 0.740177i 0.857114 + 0.515126i \(0.172255\pi\)
−0.974347 + 0.225051i \(0.927745\pi\)
\(504\) −6.97032 2.26479i −0.0138300 0.00449364i
\(505\) 0 0
\(506\) −155.479 + 12.0221i −0.307270 + 0.0237590i
\(507\) 328.905 + 328.905i 0.648729 + 0.648729i
\(508\) 102.611 + 201.385i 0.201990 + 0.396428i
\(509\) −453.233 623.822i −0.890438 1.22558i −0.973419 0.229032i \(-0.926444\pi\)
0.0829808 0.996551i \(-0.473556\pi\)
\(510\) 0 0
\(511\) −47.7078 146.829i −0.0933616 0.287337i
\(512\) −92.2357 + 181.023i −0.180148 + 0.353560i
\(513\) 104.278 16.5160i 0.203270 0.0321948i
\(514\) 46.3311 + 63.7693i 0.0901384 + 0.124065i
\(515\) 0 0
\(516\) 304.283 0.589695
\(517\) −194.563 815.336i −0.376332 1.57705i
\(518\) 67.5802 67.5802i 0.130464 0.130464i
\(519\) 384.728 + 125.006i 0.741286 + 0.240859i
\(520\) 0 0
\(521\) 449.127 + 326.310i 0.862047 + 0.626314i 0.928441 0.371480i \(-0.121149\pi\)
−0.0663939 + 0.997793i \(0.521149\pi\)
\(522\) −16.9406 + 33.2478i −0.0324532 + 0.0636930i
\(523\) −467.329 238.116i −0.893555 0.455289i −0.0539855 0.998542i \(-0.517192\pi\)
−0.839569 + 0.543253i \(0.817192\pi\)
\(524\) 241.717 332.695i 0.461292 0.634915i
\(525\) 0 0
\(526\) −284.164 + 874.567i −0.540236 + 1.66267i
\(527\) 424.174 + 424.174i 0.804885 + 0.804885i
\(528\) −361.951 592.472i −0.685514 1.12211i
\(529\) 495.602i 0.936866i
\(530\) 0 0
\(531\) −79.0932 + 57.4646i −0.148951 + 0.108220i
\(532\) 2.06253 + 13.0223i 0.00387693 + 0.0244780i
\(533\) 178.885 + 91.1467i 0.335620 + 0.171007i
\(534\) 156.662 50.9026i 0.293375 0.0953232i
\(535\) 0 0
\(536\) 5.69478 4.13750i 0.0106246 0.00771922i
\(537\) −328.927 + 167.597i −0.612527 + 0.312098i
\(538\) −180.886 + 180.886i −0.336220 + 0.336220i
\(539\) 331.898 + 389.683i 0.615767 + 0.722974i
\(540\) 0 0
\(541\) 256.495 789.409i 0.474112 1.45917i −0.373039 0.927815i \(-0.621684\pi\)
0.847151 0.531351i \(-0.178316\pi\)
\(542\) −411.212 65.1296i −0.758694 0.120165i
\(543\) 191.616 30.3490i 0.352884 0.0558914i
\(544\) −310.057 + 100.744i −0.569957 + 0.185190i
\(545\) 0 0
\(546\) 45.7275 + 33.2230i 0.0837500 + 0.0608479i
\(547\) −553.032 87.5917i −1.01103 0.160131i −0.371122 0.928584i \(-0.621027\pi\)
−0.639906 + 0.768453i \(0.721027\pi\)
\(548\) −238.271 467.633i −0.434801 0.853344i
\(549\) 27.0825i 0.0493306i
\(550\) 0 0
\(551\) −65.9517 −0.119695
\(552\) 79.0225 40.2640i 0.143157 0.0729419i
\(553\) −27.7120 + 174.967i −0.0501121 + 0.316395i
\(554\) 49.1543 67.6551i 0.0887262 0.122121i
\(555\) 0 0
\(556\) −25.5134 78.5220i −0.0458873 0.141227i
\(557\) 135.902 + 858.051i 0.243989 + 1.54049i 0.740261 + 0.672320i \(0.234702\pi\)
−0.496272 + 0.868167i \(0.665298\pi\)
\(558\) −20.0642 + 126.681i −0.0359574 + 0.227026i
\(559\) 211.277 + 68.6480i 0.377955 + 0.122805i
\(560\) 0 0
\(561\) 89.7369 371.537i 0.159959 0.662277i
\(562\) −88.0915 88.0915i −0.156746 0.156746i
\(563\) −416.009 816.464i −0.738915 1.45020i −0.887262 0.461267i \(-0.847395\pi\)
0.148347 0.988935i \(-0.452605\pi\)
\(564\) −285.208 392.555i −0.505688 0.696020i
\(565\) 0 0
\(566\) −169.808 522.614i −0.300013 0.923346i
\(567\) −63.2543 + 124.144i −0.111560 + 0.218948i
\(568\) −357.678 + 56.6506i −0.629714 + 0.0997369i
\(569\) 229.953 + 316.504i 0.404136 + 0.556245i 0.961776 0.273838i \(-0.0882931\pi\)
−0.557640 + 0.830083i \(0.688293\pi\)
\(570\) 0 0
\(571\) −768.261 −1.34547 −0.672733 0.739886i \(-0.734880\pi\)
−0.672733 + 0.739886i \(0.734880\pi\)
\(572\) 23.9488 + 100.360i 0.0418686 + 0.175454i
\(573\) −264.575 + 264.575i −0.461736 + 0.461736i
\(574\) −158.239 51.4151i −0.275678 0.0895734i
\(575\) 0 0
\(576\) 5.71653 + 4.15330i 0.00992453 + 0.00721059i
\(577\) 114.260 224.247i 0.198023 0.388643i −0.770547 0.637384i \(-0.780017\pi\)
0.968570 + 0.248741i \(0.0800167\pi\)
\(578\) 366.706 + 186.846i 0.634439 + 0.323263i
\(579\) −81.3340 + 111.947i −0.140473 + 0.193345i
\(580\) 0 0
\(581\) 52.7676 162.402i 0.0908219 0.279521i
\(582\) 115.237 + 115.237i 0.198002 + 0.198002i
\(583\) 197.749 230.893i 0.339193 0.396043i
\(584\) 478.029i 0.818543i
\(585\) 0 0
\(586\) 970.304 704.967i 1.65581 1.20302i
\(587\) −71.3761 450.651i −0.121595 0.767719i −0.970841 0.239722i \(-0.922944\pi\)
0.849247 0.527996i \(-0.177056\pi\)
\(588\) 264.010 + 134.520i 0.448996 + 0.228775i
\(589\) −215.596 + 70.0514i −0.366038 + 0.118933i
\(590\) 0 0
\(591\) −162.624 + 118.154i −0.275168 + 0.199921i
\(592\) −442.061 + 225.241i −0.746725 + 0.380475i
\(593\) −237.348 + 237.348i −0.400250 + 0.400250i −0.878321 0.478071i \(-0.841336\pi\)
0.478071 + 0.878321i \(0.341336\pi\)
\(594\) −632.944 + 261.158i −1.06556 + 0.439660i
\(595\) 0 0
\(596\) 68.1884 209.862i 0.114410 0.352118i
\(597\) 579.579 + 91.7963i 0.970820 + 0.153763i
\(598\) −65.0930 + 10.3097i −0.108851 + 0.0172403i
\(599\) 984.287 319.814i 1.64322 0.533913i 0.665962 0.745985i \(-0.268021\pi\)
0.977254 + 0.212072i \(0.0680212\pi\)
\(600\) 0 0
\(601\) 45.7081 + 33.2089i 0.0760534 + 0.0552560i 0.625162 0.780495i \(-0.285033\pi\)
−0.549109 + 0.835751i \(0.685033\pi\)
\(602\) −181.836 28.8000i −0.302053 0.0478405i
\(603\) 0.630656 + 1.23773i 0.00104586 + 0.00205262i
\(604\) 247.606i 0.409943i
\(605\) 0 0
\(606\) −1174.40 −1.93796
\(607\) −725.590 + 369.707i −1.19537 + 0.609072i −0.934383 0.356270i \(-0.884048\pi\)
−0.260988 + 0.965342i \(0.584048\pi\)
\(608\) 19.2727 121.683i 0.0316985 0.200137i
\(609\) 46.1779 63.5584i 0.0758257 0.104365i
\(610\) 0 0
\(611\) −109.470 336.913i −0.179165 0.551413i
\(612\) −3.33502 21.0565i −0.00544938 0.0344060i
\(613\) 127.102 802.492i 0.207345 1.30912i −0.635975 0.771710i \(-0.719402\pi\)
0.843320 0.537412i \(-0.180598\pi\)
\(614\) −782.386 254.213i −1.27424 0.414027i
\(615\) 0 0
\(616\) 32.0423 + 77.6578i 0.0520167 + 0.126068i
\(617\) −214.134 214.134i −0.347057 0.347057i 0.511955 0.859012i \(-0.328921\pi\)
−0.859012 + 0.511955i \(0.828921\pi\)
\(618\) −296.963 582.823i −0.480523 0.943079i
\(619\) 589.455 + 811.316i 0.952270 + 1.31069i 0.950512 + 0.310689i \(0.100560\pi\)
0.00175860 + 0.999998i \(0.499440\pi\)
\(620\) 0 0
\(621\) −45.3145 139.464i −0.0729703 0.224579i
\(622\) −508.393 + 997.777i −0.817352 + 1.60414i
\(623\) −33.0052 + 5.22751i −0.0529778 + 0.00839087i
\(624\) −172.467 237.380i −0.276389 0.380417i
\(625\) 0 0
\(626\) −934.621 −1.49300
\(627\) 109.705 + 93.9571i 0.174968 + 0.149852i
\(628\) 278.834 278.834i 0.444003 0.444003i
\(629\) −259.767 84.4034i −0.412984 0.134187i
\(630\) 0 0
\(631\) −710.682 516.341i −1.12628 0.818289i −0.141130 0.989991i \(-0.545073\pi\)
−0.985149 + 0.171702i \(0.945073\pi\)
\(632\) 249.017 488.724i 0.394015 0.773297i
\(633\) −752.582 383.460i −1.18891 0.605782i
\(634\) 520.097 715.853i 0.820343 1.12911i
\(635\) 0 0
\(636\) 54.3798 167.364i 0.0855028 0.263151i
\(637\) 152.965 + 152.965i 0.240134 + 0.240134i
\(638\) 416.038 99.2789i 0.652096 0.155610i
\(639\) 71.4658i 0.111840i
\(640\) 0 0
\(641\) 398.231 289.331i 0.621265 0.451375i −0.232098 0.972692i \(-0.574559\pi\)
0.853363 + 0.521317i \(0.174559\pi\)
\(642\) −206.343 1302.80i −0.321407 2.02929i
\(643\) 319.165 + 162.623i 0.496369 + 0.252913i 0.684208 0.729287i \(-0.260148\pi\)
−0.187839 + 0.982200i \(0.560148\pi\)
\(644\) 17.4164 5.65892i 0.0270440 0.00878714i
\(645\) 0 0
\(646\) 90.9171 66.0551i 0.140739 0.102253i
\(647\) 19.7726 10.0746i 0.0305604 0.0155713i −0.438644 0.898661i \(-0.644541\pi\)
0.469204 + 0.883090i \(0.344541\pi\)
\(648\) 305.053 305.053i 0.470762 0.470762i
\(649\) 1089.30 + 263.097i 1.67843 + 0.405388i
\(650\) 0 0
\(651\) 83.4462 256.821i 0.128182 0.394502i
\(652\) −626.471 99.2233i −0.960845 0.152183i
\(653\) 630.349 99.8375i 0.965313 0.152891i 0.346173 0.938171i \(-0.387481\pi\)
0.619140 + 0.785280i \(0.287481\pi\)
\(654\) −1067.43 + 346.828i −1.63215 + 0.530318i
\(655\) 0 0
\(656\) 698.768 + 507.685i 1.06520 + 0.773910i
\(657\) −93.1753 14.7575i −0.141819 0.0224620i
\(658\) 133.282 + 261.581i 0.202557 + 0.397540i
\(659\) 384.749i 0.583838i 0.956443 + 0.291919i \(0.0942938\pi\)
−0.956443 + 0.291919i \(0.905706\pi\)
\(660\) 0 0
\(661\) −199.159 −0.301300 −0.150650 0.988587i \(-0.548137\pi\)
−0.150650 + 0.988587i \(0.548137\pi\)
\(662\) −80.0525 + 40.7888i −0.120925 + 0.0616145i
\(663\) 25.2694 159.545i 0.0381138 0.240641i
\(664\) −310.778 + 427.750i −0.468040 + 0.644202i
\(665\) 0 0
\(666\) −18.0464 55.5411i −0.0270967 0.0833951i
\(667\) 14.3299 + 90.4752i 0.0214841 + 0.135645i
\(668\) −9.47588 + 59.8284i −0.0141855 + 0.0895634i
\(669\) 356.978 + 115.989i 0.533599 + 0.173377i
\(670\) 0 0
\(671\) 236.330 201.285i 0.352206 0.299978i
\(672\) 103.773 + 103.773i 0.154424 + 0.154424i
\(673\) 433.104 + 850.014i 0.643542 + 1.26302i 0.950330 + 0.311244i \(0.100746\pi\)
−0.306788 + 0.951778i \(0.599254\pi\)
\(674\) −735.075 1011.74i −1.09062 1.50110i
\(675\) 0 0
\(676\) −91.8962 282.827i −0.135941 0.418384i
\(677\) 375.286 736.540i 0.554337 1.08795i −0.428512 0.903536i \(-0.640962\pi\)
0.982849 0.184411i \(-0.0590378\pi\)
\(678\) −429.362 + 68.0043i −0.633278 + 0.100301i
\(679\) −19.4326 26.7467i −0.0286195 0.0393914i
\(680\) 0 0
\(681\) −538.579 −0.790865
\(682\) 1254.58 766.443i 1.83956 1.12382i
\(683\) 398.457 398.457i 0.583392 0.583392i −0.352442 0.935834i \(-0.614649\pi\)
0.935834 + 0.352442i \(0.114649\pi\)
\(684\) 7.66209 + 2.48957i 0.0112019 + 0.00363972i
\(685\) 0 0
\(686\) −297.762 216.337i −0.434055 0.315360i
\(687\) 183.395 359.933i 0.266951 0.523920i
\(688\) 851.546 + 433.884i 1.23771 + 0.630646i
\(689\) 75.5166 103.940i 0.109603 0.150856i
\(690\) 0 0
\(691\) −26.9603 + 82.9754i −0.0390164 + 0.120080i −0.968668 0.248361i \(-0.920108\pi\)
0.929651 + 0.368441i \(0.120108\pi\)
\(692\) −182.878 182.878i −0.264274 0.264274i
\(693\) −16.1259 + 3.84812i −0.0232697 + 0.00555284i
\(694\) 143.044i 0.206115i
\(695\) 0 0
\(696\) −196.798 + 142.982i −0.282756 + 0.205434i
\(697\) 74.3848 + 469.647i 0.106721 + 0.673812i
\(698\) −968.474 493.462i −1.38750 0.706966i
\(699\) −798.669 + 259.503i −1.14259 + 0.371249i
\(700\) 0 0
\(701\) 48.2784 35.0763i 0.0688707 0.0500375i −0.552817 0.833303i \(-0.686447\pi\)
0.621688 + 0.783265i \(0.286447\pi\)
\(702\) −257.830 + 131.371i −0.367279 + 0.187138i
\(703\) 72.9857 72.9857i 0.103820 0.103820i
\(704\) −6.24403 80.7528i −0.00886937 0.114706i
\(705\) 0 0
\(706\) −133.545 + 411.009i −0.189157 + 0.582166i
\(707\) 235.311 + 37.2695i 0.332830 + 0.0527151i
\(708\) 640.707 101.478i 0.904953 0.143330i
\(709\) 590.657 191.916i 0.833085 0.270686i 0.138740 0.990329i \(-0.455695\pi\)
0.694344 + 0.719643i \(0.255695\pi\)
\(710\) 0 0
\(711\) 87.5723 + 63.6250i 0.123168 + 0.0894866i
\(712\) 102.195 + 16.1861i 0.143532 + 0.0227333i
\(713\) 142.944 + 280.543i 0.200482 + 0.393468i
\(714\) 133.868i 0.187490i
\(715\) 0 0
\(716\) 236.019 0.329636
\(717\) 510.408 260.066i 0.711866 0.362714i
\(718\) −189.392 + 1195.78i −0.263778 + 1.66543i
\(719\) 629.901 866.984i 0.876079 1.20582i −0.101412 0.994844i \(-0.532336\pi\)
0.977491 0.210975i \(-0.0676639\pi\)
\(720\) 0 0
\(721\) 41.0056 + 126.202i 0.0568732 + 0.175038i
\(722\) −131.890 832.719i −0.182673 1.15335i
\(723\) −56.3887 + 356.024i −0.0779926 + 0.492426i
\(724\) −117.963 38.3286i −0.162933 0.0529401i
\(725\) 0 0
\(726\) −833.478 427.560i −1.14804 0.588926i
\(727\) −535.877 535.877i −0.737107 0.737107i 0.234910 0.972017i \(-0.424521\pi\)
−0.972017 + 0.234910i \(0.924521\pi\)
\(728\) 16.1183 + 31.6339i 0.0221405 + 0.0434532i
\(729\) −373.581 514.191i −0.512457 0.705337i
\(730\) 0 0
\(731\) 162.587 + 500.391i 0.222417 + 0.684529i
\(732\) 81.5818 160.113i 0.111451 0.218734i
\(733\) 234.969 37.2155i 0.320558 0.0507714i 0.00591819 0.999982i \(-0.498116\pi\)
0.314640 + 0.949211i \(0.398116\pi\)
\(734\) 134.579 + 185.233i 0.183351 + 0.252361i
\(735\) 0 0
\(736\) −171.117 −0.232496
\(737\) 6.11360 14.7025i 0.00829525 0.0199491i
\(738\) −71.8898 + 71.8898i −0.0974117 + 0.0974117i
\(739\) 143.146 + 46.5111i 0.193703 + 0.0629378i 0.404262 0.914643i \(-0.367528\pi\)
−0.210559 + 0.977581i \(0.567528\pi\)
\(740\) 0 0
\(741\) 49.3851 + 35.8804i 0.0666466 + 0.0484216i
\(742\) −48.3375 + 94.8677i −0.0651449 + 0.127854i
\(743\) 212.210 + 108.126i 0.285612 + 0.145526i 0.590927 0.806725i \(-0.298762\pi\)
−0.305316 + 0.952251i \(0.598762\pi\)
\(744\) −491.462 + 676.440i −0.660568 + 0.909194i
\(745\) 0 0
\(746\) −298.244 + 917.901i −0.399791 + 1.23043i
\(747\) −73.7808 73.7808i −0.0987695 0.0987695i
\(748\) −158.958 + 185.601i −0.212511 + 0.248129i
\(749\) 267.586i 0.357258i
\(750\) 0 0
\(751\) −930.748 + 676.228i −1.23935 + 0.900437i −0.997555 0.0698916i \(-0.977735\pi\)
−0.241790 + 0.970328i \(0.577735\pi\)
\(752\) −238.411 1505.27i −0.317035 2.00168i
\(753\) 530.564 + 270.336i 0.704600 + 0.359012i
\(754\) 171.915 55.8586i 0.228004 0.0740830i
\(755\) 0 0
\(756\) 65.0500 47.2616i 0.0860450 0.0625153i
\(757\) −1091.88 + 556.341i −1.44238 + 0.734929i −0.987793 0.155774i \(-0.950213\pi\)
−0.454586 + 0.890703i \(0.650213\pi\)
\(758\) 488.557 488.557i 0.644534 0.644534i
\(759\) 105.058 170.912i 0.138416 0.225181i
\(760\) 0 0
\(761\) −178.708 + 550.005i −0.234833 + 0.722740i 0.762311 + 0.647211i \(0.224065\pi\)
−0.997144 + 0.0755295i \(0.975935\pi\)
\(762\) −856.550 135.664i −1.12408 0.178037i
\(763\) 224.883 35.6180i 0.294735 0.0466815i
\(764\) 227.509 73.9222i 0.297787 0.0967569i
\(765\) 0 0
\(766\) 459.010 + 333.490i 0.599230 + 0.435366i
\(767\) 467.765 + 74.0867i 0.609863 + 0.0965928i
\(768\) −437.559 858.758i −0.569738 1.11817i
\(769\) 1033.26i 1.34364i 0.740714 + 0.671821i \(0.234487\pi\)
−0.740714 + 0.671821i \(0.765513\pi\)
\(770\) 0 0
\(771\) −101.406 −0.131525
\(772\) 78.8249 40.1633i 0.102105 0.0520250i
\(773\) 135.591 856.088i 0.175409 1.10749i −0.730156 0.683280i \(-0.760553\pi\)
0.905565 0.424207i \(-0.139447\pi\)
\(774\) −66.1230 + 91.0105i −0.0854302 + 0.117585i
\(775\) 0 0
\(776\) 31.6332 + 97.3570i 0.0407644 + 0.125460i
\(777\) 19.2342 + 121.440i 0.0247545 + 0.156293i
\(778\) −155.479 + 981.655i −0.199844 + 1.26177i
\(779\) −170.896 55.5276i −0.219379 0.0712807i
\(780\) 0 0
\(781\) −623.632 + 531.156i −0.798504 + 0.680097i
\(782\) −110.371 110.371i −0.141140 0.141140i
\(783\) 182.598 + 358.368i 0.233203 + 0.457686i
\(784\) 547.025 + 752.916i 0.697737 + 0.960352i
\(785\) 0 0
\(786\) 487.592 + 1500.65i 0.620346 + 1.90923i
\(787\) −153.220 + 300.712i −0.194689 + 0.382099i −0.967628 0.252382i \(-0.918786\pi\)
0.772939 + 0.634481i \(0.218786\pi\)
\(788\) 126.934 20.1043i 0.161084 0.0255131i
\(789\) −695.365 957.088i −0.881325 1.21304i
\(790\) 0 0
\(791\) 88.1879 0.111489
\(792\) 51.1693 + 4.09768i 0.0646077 + 0.00517384i
\(793\) 92.7683 92.7683i 0.116984 0.116984i
\(794\) −644.892 209.538i −0.812207 0.263902i
\(795\) 0 0
\(796\) −303.515 220.516i −0.381300 0.277031i
\(797\) −31.7654 + 62.3432i −0.0398562 + 0.0782223i −0.910076 0.414442i \(-0.863977\pi\)
0.870220 + 0.492664i \(0.163977\pi\)
\(798\) −45.0748 22.9667i −0.0564847 0.0287804i
\(799\) 493.160 678.777i 0.617222 0.849533i
\(800\) 0 0
\(801\) −6.30985 + 19.4197i −0.00787746 + 0.0242443i
\(802\) −466.781 466.781i −0.582021 0.582021i
\(803\) 563.729 + 922.758i 0.702028 + 1.14914i
\(804\) 9.21730i 0.0114643i
\(805\) 0 0
\(806\) 502.660 365.204i 0.623647 0.453106i
\(807\) −51.4826 325.048i −0.0637951 0.402786i
\(808\) −657.280 334.901i −0.813465 0.414481i
\(809\) 577.635 187.685i 0.714011 0.231996i 0.0705865 0.997506i \(-0.477513\pi\)
0.643425 + 0.765509i \(0.277513\pi\)
\(810\) 0 0
\(811\) 1034.41 751.545i 1.27548 0.926689i 0.276071 0.961137i \(-0.410967\pi\)
0.999406 + 0.0344482i \(0.0109674\pi\)
\(812\) −44.7533 + 22.8030i −0.0551149 + 0.0280825i
\(813\) 378.738 378.738i 0.465853 0.465853i
\(814\) −350.542 + 570.277i −0.430641 + 0.700586i
\(815\) 0 0
\(816\) 214.747 660.923i 0.263170 0.809955i
\(817\) −196.380 31.1036i −0.240368 0.0380705i
\(818\) −1647.54 + 260.945i −2.01411 + 0.319004i
\(819\) −6.66354 + 2.16512i −0.00813619 + 0.00264361i
\(820\) 0 0
\(821\) −388.039 281.927i −0.472641 0.343394i 0.325828 0.945429i \(-0.394357\pi\)
−0.798470 + 0.602035i \(0.794357\pi\)
\(822\) 1988.97 + 315.023i 2.41968 + 0.383239i
\(823\) 39.4376 + 77.4006i 0.0479193 + 0.0940469i 0.913724 0.406334i \(-0.133193\pi\)
−0.865805 + 0.500381i \(0.833193\pi\)
\(824\) 410.874i 0.498633i
\(825\) 0 0
\(826\) −392.484 −0.475162
\(827\) 254.677 129.764i 0.307953 0.156910i −0.293184 0.956056i \(-0.594715\pi\)
0.601137 + 0.799146i \(0.294715\pi\)
\(828\) 1.75048 11.0521i 0.00211411 0.0133480i
\(829\) −561.476 + 772.805i −0.677293 + 0.932214i −0.999897 0.0143202i \(-0.995442\pi\)
0.322605 + 0.946534i \(0.395442\pi\)
\(830\) 0 0
\(831\) 33.2455 + 102.319i 0.0400067 + 0.123128i
\(832\) −5.35468 33.8081i −0.00643591 0.0406348i
\(833\) −80.1488 + 506.040i −0.0962171 + 0.607491i
\(834\) 301.285 + 97.8933i 0.361252 + 0.117378i
\(835\) 0 0
\(836\) −35.2223 85.3650i −0.0421320 0.102111i
\(837\) 977.557 + 977.557i 1.16793 + 1.16793i
\(838\) 503.267 + 987.718i 0.600558 + 1.17866i
\(839\) −603.415 830.530i −0.719208 0.989904i −0.999550 0.0300042i \(-0.990448\pi\)
0.280342 0.959900i \(-0.409552\pi\)
\(840\) 0 0
\(841\) 182.243 + 560.887i 0.216698 + 0.666929i
\(842\) −412.592 + 809.757i −0.490014 + 0.961707i
\(843\) 158.298 25.0720i 0.187780 0.0297414i
\(844\) 317.410 + 436.878i 0.376078 + 0.517628i
\(845\) 0 0
\(846\) 179.391 0.212046
\(847\) 153.432 + 112.119i 0.181148 + 0.132372i
\(848\) 390.832 390.832i 0.460887 0.460887i
\(849\) 672.340 + 218.456i 0.791920 + 0.257310i
\(850\) 0 0
\(851\) −115.983 84.2666i −0.136290 0.0990206i
\(852\) −215.279 + 422.510i −0.252675 + 0.495904i
\(853\) −51.5549 26.2685i −0.0604395 0.0307955i 0.423510 0.905892i \(-0.360798\pi\)
−0.483949 + 0.875096i \(0.660798\pi\)
\(854\) −63.9069 + 87.9603i −0.0748324 + 0.102998i
\(855\) 0 0
\(856\) 256.031 787.984i 0.299102 0.920542i
\(857\) −230.449 230.449i −0.268902 0.268902i 0.559756 0.828658i \(-0.310895\pi\)
−0.828658 + 0.559756i \(0.810895\pi\)
\(858\) −365.544 152.000i −0.426042 0.177157i
\(859\) 768.251i 0.894355i −0.894445 0.447177i \(-0.852429\pi\)
0.894445 0.447177i \(-0.147571\pi\)
\(860\) 0 0
\(861\) 173.170 125.816i 0.201127 0.146127i
\(862\) 242.194 + 1529.15i 0.280968 + 1.77396i
\(863\) −177.097 90.2355i −0.205211 0.104560i 0.348365 0.937359i \(-0.386737\pi\)
−0.553576 + 0.832799i \(0.686737\pi\)
\(864\) −714.560 + 232.175i −0.827037 + 0.268721i
\(865\) 0 0
\(866\) 1080.87 785.301i 1.24812 0.906814i
\(867\) −471.765 + 240.376i −0.544135 + 0.277251i
\(868\) −122.078 + 122.078i −0.140643 + 0.140643i
\(869\) −95.6532 1237.06i −0.110073 1.42355i
\(870\) 0 0
\(871\) 2.07948 6.39998i 0.00238746 0.00734785i
\(872\) −696.313 110.285i −0.798524 0.126474i
\(873\) −19.9529 + 3.16024i −0.0228556 + 0.00361997i
\(874\) 56.0988 18.2276i 0.0641862 0.0208554i
\(875\) 0 0
\(876\) 506.403 + 367.923i 0.578086 + 0.420004i
\(877\) 1373.24 + 217.500i 1.56584 + 0.248005i 0.878289 0.478130i \(-0.158685\pi\)
0.687552 + 0.726135i \(0.258685\pi\)
\(878\) −551.633 1082.64i −0.628283 1.23308i
\(879\) 1542.97i 1.75537i
\(880\) 0 0
\(881\) 204.228 0.231813 0.115907 0.993260i \(-0.463023\pi\)
0.115907 + 0.993260i \(0.463023\pi\)
\(882\) −97.6060 + 49.7327i −0.110664 + 0.0563863i
\(883\) 194.461 1227.78i 0.220227 1.39046i −0.591445 0.806346i \(-0.701442\pi\)
0.811672 0.584114i \(-0.198558\pi\)
\(884\) −60.7031 + 83.5506i −0.0686687 + 0.0945143i
\(885\) 0 0
\(886\) −256.769 790.253i −0.289807 0.891934i
\(887\) 187.852 + 1186.05i 0.211784 + 1.33715i 0.832896 + 0.553430i \(0.186681\pi\)
−0.621112 + 0.783722i \(0.713319\pi\)
\(888\) 59.5555 376.019i 0.0670670 0.423445i
\(889\) 167.318 + 54.3651i 0.188210 + 0.0611531i
\(890\) 0 0
\(891\) 229.114 948.599i 0.257142 1.06465i
\(892\) −169.687 169.687i −0.190232 0.190232i
\(893\) 143.943 + 282.504i 0.161191 + 0.316354i
\(894\) 497.659 + 684.969i 0.556666 + 0.766184i
\(895\) 0 0
\(896\) 66.2463 + 203.885i 0.0739356 + 0.227550i
\(897\) 38.4919 75.5445i 0.0429118 0.0842191i
\(898\) −1697.12 + 268.798i −1.88989 + 0.299329i
\(899\) −507.610 698.666i −0.564639 0.777159i
\(900\) 0 0
\(901\) 304.285 0.337719
\(902\) 1161.64 + 93.0251i 1.28785 + 0.103132i
\(903\) 167.476 167.476i 0.185466 0.185466i
\(904\) −259.695 84.3799i −0.287273 0.0933406i
\(905\) 0 0
\(906\) −768.606 558.425i −0.848351 0.616363i
\(907\) −722.625 + 1418.23i −0.796720 + 1.56365i 0.0290052 + 0.999579i \(0.490766\pi\)
−0.825725 + 0.564072i \(0.809234\pi\)
\(908\) 306.803 + 156.324i 0.337889 + 0.172163i
\(909\) 85.5686 117.775i 0.0941349 0.129566i
\(910\) 0 0
\(911\) 409.334 1259.80i 0.449324 1.38288i −0.428348 0.903614i \(-0.640904\pi\)
0.877672 0.479263i \(-0.159096\pi\)
\(912\) 185.697 + 185.697i 0.203615 + 0.203615i
\(913\) −95.4721 + 1192.20i −0.104570 + 1.30580i
\(914\) 376.286i 0.411692i
\(915\) 0 0
\(916\) −208.943 + 151.806i −0.228104 + 0.165727i
\(917\) −50.0739 316.154i −0.0546063 0.344770i
\(918\) −610.648 311.141i −0.665194 0.338933i
\(919\) −1470.30 + 477.730i −1.59989 + 0.519836i −0.967081 0.254470i \(-0.918099\pi\)
−0.632811 + 0.774306i \(0.718099\pi\)
\(920\) 0 0
\(921\) 856.210 622.073i 0.929652 0.675432i
\(922\) 59.2358 30.1821i 0.0642471 0.0327355i
\(923\) −244.799 + 244.799i −0.265221 + 0.265221i
\(924\) 106.929 + 25.8265i 0.115724 + 0.0279507i
\(925\) 0 0
\(926\) −452.424 + 1392.42i −0.488579 + 1.50369i
\(927\) 80.0856 + 12.6843i 0.0863923 + 0.0136832i
\(928\) 463.561 73.4209i 0.499527 0.0791173i
\(929\) 288.132 93.6196i 0.310152 0.100775i −0.149805 0.988716i \(-0.547865\pi\)
0.459958 + 0.887941i \(0.347865\pi\)
\(930\) 0 0
\(931\) −156.638 113.804i −0.168247 0.122239i
\(932\) 530.285 + 83.9889i 0.568976 + 0.0901169i
\(933\) −654.044 1283.63i −0.701012 1.37581i
\(934\) 342.991i 0.367228i
\(935\) 0 0
\(936\) 21.6943 0.0231777
\(937\) −1307.58 + 666.244i −1.39549 + 0.711039i −0.980082 0.198595i \(-0.936362\pi\)
−0.415411 + 0.909634i \(0.636362\pi\)
\(938\) −0.872406 + 5.50816i −0.000930071 + 0.00587224i
\(939\) 706.744 972.749i 0.752656 1.03594i
\(940\) 0 0
\(941\) 503.470 + 1549.52i 0.535037 + 1.64667i 0.743569 + 0.668659i \(0.233131\pi\)
−0.208532 + 0.978015i \(0.566869\pi\)
\(942\) 236.689 + 1494.40i 0.251262 + 1.58641i
\(943\) −39.0430 + 246.508i −0.0414030 + 0.261408i
\(944\) 1937.74 + 629.610i 2.05269 + 0.666960i
\(945\) 0 0
\(946\) 1285.63 99.4087i 1.35902 0.105083i
\(947\) −849.529 849.529i −0.897074 0.897074i 0.0981026 0.995176i \(-0.468723\pi\)
−0.995176 + 0.0981026i \(0.968723\pi\)
\(948\) −326.072 639.953i −0.343958 0.675055i
\(949\) 268.612 + 369.713i 0.283048 + 0.389581i
\(950\) 0 0
\(951\) 351.768 + 1082.63i 0.369893 + 1.13841i
\(952\) −38.1748 + 74.9223i −0.0400996 + 0.0786998i
\(953\) −536.771 + 85.0162i −0.563244 + 0.0892091i −0.431563 0.902083i \(-0.642038\pi\)
−0.131681 + 0.991292i \(0.542038\pi\)
\(954\) 38.2411 + 52.6344i 0.0400850 + 0.0551723i
\(955\) 0 0
\(956\) −366.240 −0.383096
\(957\) −211.271 + 508.083i −0.220764 + 0.530912i
\(958\) −456.108 + 456.108i −0.476105 + 0.476105i
\(959\) −388.527 126.240i −0.405137 0.131637i
\(960\) 0 0
\(961\) −1624.01 1179.91i −1.68992 1.22780i
\(962\) −128.434 + 252.067i −0.133508 + 0.262023i
\(963\) 145.686 + 74.2308i 0.151284 + 0.0770829i
\(964\) 135.459 186.443i 0.140517 0.193406i
\(965\) 0 0
\(966\) −21.7129 + 66.8256i −0.0224772 + 0.0691776i
\(967\) −1120.43 1120.43i −1.15867 1.15867i −0.984762 0.173909i \(-0.944360\pi\)
−0.173909 0.984762i \(-0.555640\pi\)
\(968\) −344.548 476.974i −0.355938 0.492742i
\(969\) 144.576i 0.149201i
\(970\) 0 0
\(971\) −79.5621 + 57.8052i −0.0819383 + 0.0595316i −0.628000 0.778213i \(-0.716126\pi\)
0.546062 + 0.837745i \(0.316126\pi\)
\(972\) −16.2892 102.846i −0.0167584 0.105809i
\(973\) −57.2607 29.1758i −0.0588496 0.0299854i
\(974\) 1771.93 575.735i 1.81923 0.591104i
\(975\) 0 0
\(976\) 456.619 331.753i 0.467847 0.339911i
\(977\) −165.681 + 84.4187i −0.169581 + 0.0864060i −0.536721 0.843760i \(-0.680337\pi\)
0.367140 + 0.930166i \(0.380337\pi\)
\(978\) 1720.88 1720.88i 1.75959 1.75959i
\(979\) 216.359 89.2716i 0.221000 0.0911865i
\(980\) 0 0
\(981\) 42.9925 132.317i 0.0438252 0.134880i
\(982\) 1298.86 + 205.719i 1.32267 + 0.209490i
\(983\) −1822.61 + 288.673i −1.85413 + 0.293665i −0.981027 0.193870i \(-0.937896\pi\)
−0.873103 + 0.487535i \(0.837896\pi\)
\(984\) −630.333 + 204.808i −0.640582 + 0.208138i
\(985\) 0 0
\(986\) 346.356 + 251.642i 0.351274 + 0.255215i
\(987\) −373.038 59.0835i −0.377952 0.0598617i
\(988\) −17.7180 34.7735i −0.0179332 0.0351958i
\(989\) 276.161i 0.279232i
\(990\) 0 0
\(991\) 340.674 0.343768 0.171884 0.985117i \(-0.445015\pi\)
0.171884 + 0.985117i \(0.445015\pi\)
\(992\) 1437.40 732.390i 1.44899 0.738297i
\(993\) 18.0815 114.162i 0.0182090 0.114967i
\(994\) 168.639 232.111i 0.169657 0.233512i
\(995\) 0 0
\(996\) 213.943 + 658.450i 0.214803 + 0.661094i
\(997\) −116.457 735.280i −0.116807 0.737492i −0.974676 0.223623i \(-0.928212\pi\)
0.857868 0.513869i \(-0.171788\pi\)
\(998\) −21.9235 + 138.420i −0.0219674 + 0.138697i
\(999\) −598.662 194.517i −0.599261 0.194712i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.3.bk.c.207.13 yes 128
5.2 odd 4 inner 275.3.bk.c.218.13 yes 128
5.3 odd 4 inner 275.3.bk.c.218.4 yes 128
5.4 even 2 inner 275.3.bk.c.207.4 yes 128
11.5 even 5 inner 275.3.bk.c.82.4 128
55.27 odd 20 inner 275.3.bk.c.93.4 yes 128
55.38 odd 20 inner 275.3.bk.c.93.13 yes 128
55.49 even 10 inner 275.3.bk.c.82.13 yes 128
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
275.3.bk.c.82.4 128 11.5 even 5 inner
275.3.bk.c.82.13 yes 128 55.49 even 10 inner
275.3.bk.c.93.4 yes 128 55.27 odd 20 inner
275.3.bk.c.93.13 yes 128 55.38 odd 20 inner
275.3.bk.c.207.4 yes 128 5.4 even 2 inner
275.3.bk.c.207.13 yes 128 1.1 even 1 trivial
275.3.bk.c.218.4 yes 128 5.3 odd 4 inner
275.3.bk.c.218.13 yes 128 5.2 odd 4 inner