Properties

Label 275.3.bk.c.82.1
Level $275$
Weight $3$
Character 275.82
Analytic conductor $7.493$
Analytic rank $0$
Dimension $128$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,3,Mod(82,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([5, 8])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.82"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 275.bk (of order \(20\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [128] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.49320726991\)
Analytic rank: \(0\)
Dimension: \(128\)
Relative dimension: \(16\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 82.1
Character \(\chi\) \(=\) 275.82
Dual form 275.3.bk.c.218.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.72172 + 3.37907i) q^{2} +(2.24871 - 0.356160i) q^{3} +(-6.10266 - 8.39959i) q^{4} +(-2.66816 + 8.21175i) q^{6} +(0.264482 + 0.0418898i) q^{7} +(23.9070 - 3.78649i) q^{8} +(-3.62968 + 1.17935i) q^{9} +(-8.77765 - 6.62969i) q^{11} +(-16.7147 - 16.7147i) q^{12} +(-16.3141 - 8.31246i) q^{13} +(-0.596913 + 0.821581i) q^{14} +(-15.5330 + 47.8055i) q^{16} +(25.9877 - 13.2414i) q^{17} +(2.26418 - 14.2955i) q^{18} +(12.9667 - 17.8472i) q^{19} +0.609661 q^{21} +(37.5149 - 18.2458i) q^{22} +(11.3432 - 11.3432i) q^{23} +(52.4112 - 17.0294i) q^{24} +(56.1768 - 40.8148i) q^{26} +(-25.9993 + 13.2473i) q^{27} +(-1.26219 - 2.47718i) q^{28} +(-20.5919 - 28.3423i) q^{29} +(-1.29669 - 3.99079i) q^{31} +(-66.3328 - 66.3328i) q^{32} +(-22.0996 - 11.7820i) q^{33} +110.612i q^{34} +(32.0568 + 23.2906i) q^{36} +(35.4724 + 5.61828i) q^{37} +(37.9817 + 74.5433i) q^{38} +(-39.6462 - 12.8818i) q^{39} +(-18.8632 - 13.7049i) q^{41} +(-1.04967 + 2.06009i) q^{42} +(-28.8549 + 28.8549i) q^{43} +(-2.11969 + 114.187i) q^{44} +(18.7997 + 57.8594i) q^{46} +(-6.00418 - 37.9089i) q^{47} +(-17.9026 + 113.033i) q^{48} +(-46.5336 - 15.1197i) q^{49} +(53.7226 - 39.0317i) q^{51} +(29.7383 + 187.760i) q^{52} +(40.7810 + 20.7790i) q^{53} -110.662i q^{54} +6.48158 q^{56} +(22.8019 - 44.7512i) q^{57} +(131.224 - 20.7838i) q^{58} +(-21.5538 - 29.6662i) q^{59} +(12.2697 - 37.7623i) q^{61} +(15.7177 + 2.48944i) q^{62} +(-1.00939 + 0.159871i) q^{63} +(147.128 - 47.8048i) q^{64} +(77.8616 - 54.3908i) q^{66} +(51.4949 + 51.4949i) q^{67} +(-269.816 - 137.478i) q^{68} +(21.4676 - 29.5476i) q^{69} +(-21.8132 + 67.1340i) q^{71} +(-82.3091 + 41.9386i) q^{72} +(-9.93715 + 62.7407i) q^{73} +(-80.0583 + 110.191i) q^{74} -229.040 q^{76} +(-2.04381 - 2.12113i) q^{77} +(111.789 - 111.789i) q^{78} +(26.1620 - 8.50056i) q^{79} +(-25.9584 + 18.8599i) q^{81} +(78.7870 - 40.1440i) q^{82} +(-47.2836 - 92.7992i) q^{83} +(-3.72056 - 5.12090i) q^{84} +(-47.8226 - 147.183i) q^{86} +(-56.3994 - 56.3994i) q^{87} +(-234.951 - 125.259i) q^{88} -6.15373i q^{89} +(-3.96658 - 2.88189i) q^{91} +(-164.502 - 26.0546i) q^{92} +(-4.33723 - 8.51229i) q^{93} +(138.434 + 44.9801i) q^{94} +(-172.788 - 125.538i) q^{96} +(0.706632 - 1.38684i) q^{97} +(131.208 - 131.208i) q^{98} +(39.6788 + 13.7117i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 128 q - 48 q^{6} + 32 q^{11} + 280 q^{16} - 8 q^{21} + 528 q^{26} - 16 q^{31} + 336 q^{36} - 604 q^{41} - 1152 q^{46} - 1024 q^{51} - 992 q^{56} - 320 q^{61} + 1624 q^{66} + 536 q^{71} + 1776 q^{76} + 3680 q^{81}+ \cdots - 6584 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.72172 + 3.37907i −0.860862 + 1.68954i −0.147130 + 0.989117i \(0.547004\pi\)
−0.713732 + 0.700419i \(0.752996\pi\)
\(3\) 2.24871 0.356160i 0.749569 0.118720i 0.230050 0.973179i \(-0.426111\pi\)
0.519519 + 0.854459i \(0.326111\pi\)
\(4\) −6.10266 8.39959i −1.52566 2.09990i
\(5\) 0 0
\(6\) −2.66816 + 8.21175i −0.444693 + 1.36862i
\(7\) 0.264482 + 0.0418898i 0.0377831 + 0.00598426i 0.175297 0.984516i \(-0.443911\pi\)
−0.137514 + 0.990500i \(0.543911\pi\)
\(8\) 23.9070 3.78649i 2.98837 0.473312i
\(9\) −3.62968 + 1.17935i −0.403298 + 0.131039i
\(10\) 0 0
\(11\) −8.77765 6.62969i −0.797968 0.602699i
\(12\) −16.7147 16.7147i −1.39289 1.39289i
\(13\) −16.3141 8.31246i −1.25493 0.639420i −0.305142 0.952307i \(-0.598704\pi\)
−0.949790 + 0.312887i \(0.898704\pi\)
\(14\) −0.596913 + 0.821581i −0.0426367 + 0.0586843i
\(15\) 0 0
\(16\) −15.5330 + 47.8055i −0.970809 + 2.98784i
\(17\) 25.9877 13.2414i 1.52869 0.778905i 0.531032 0.847352i \(-0.321804\pi\)
0.997655 + 0.0684472i \(0.0218045\pi\)
\(18\) 2.26418 14.2955i 0.125788 0.794193i
\(19\) 12.9667 17.8472i 0.682459 0.939324i −0.317501 0.948258i \(-0.602844\pi\)
0.999960 + 0.00893392i \(0.00284379\pi\)
\(20\) 0 0
\(21\) 0.609661 0.0290315
\(22\) 37.5149 18.2458i 1.70522 0.829356i
\(23\) 11.3432 11.3432i 0.493183 0.493183i −0.416124 0.909308i \(-0.636612\pi\)
0.909308 + 0.416124i \(0.136612\pi\)
\(24\) 52.4112 17.0294i 2.18380 0.709559i
\(25\) 0 0
\(26\) 56.1768 40.8148i 2.16065 1.56980i
\(27\) −25.9993 + 13.2473i −0.962938 + 0.490641i
\(28\) −1.26219 2.47718i −0.0450780 0.0884706i
\(29\) −20.5919 28.3423i −0.710064 0.977319i −0.999796 0.0202115i \(-0.993566\pi\)
0.289732 0.957108i \(-0.406434\pi\)
\(30\) 0 0
\(31\) −1.29669 3.99079i −0.0418286 0.128735i 0.927962 0.372676i \(-0.121560\pi\)
−0.969790 + 0.243941i \(0.921560\pi\)
\(32\) −66.3328 66.3328i −2.07290 2.07290i
\(33\) −22.0996 11.7820i −0.669685 0.357030i
\(34\) 110.612i 3.25330i
\(35\) 0 0
\(36\) 32.0568 + 23.2906i 0.890466 + 0.646962i
\(37\) 35.4724 + 5.61828i 0.958715 + 0.151845i 0.616133 0.787642i \(-0.288699\pi\)
0.342582 + 0.939488i \(0.388699\pi\)
\(38\) 37.9817 + 74.5433i 0.999519 + 1.96167i
\(39\) −39.6462 12.8818i −1.01657 0.330304i
\(40\) 0 0
\(41\) −18.8632 13.7049i −0.460078 0.334266i 0.333484 0.942756i \(-0.391776\pi\)
−0.793562 + 0.608490i \(0.791776\pi\)
\(42\) −1.04967 + 2.06009i −0.0249921 + 0.0490498i
\(43\) −28.8549 + 28.8549i −0.671043 + 0.671043i −0.957957 0.286913i \(-0.907371\pi\)
0.286913 + 0.957957i \(0.407371\pi\)
\(44\) −2.11969 + 114.187i −0.0481747 + 2.59517i
\(45\) 0 0
\(46\) 18.7997 + 57.8594i 0.408689 + 1.25781i
\(47\) −6.00418 37.9089i −0.127748 0.806572i −0.965478 0.260486i \(-0.916117\pi\)
0.837729 0.546086i \(-0.183883\pi\)
\(48\) −17.9026 + 113.033i −0.372971 + 2.35485i
\(49\) −46.5336 15.1197i −0.949665 0.308565i
\(50\) 0 0
\(51\) 53.7226 39.0317i 1.05338 0.765328i
\(52\) 29.7383 + 187.760i 0.571890 + 3.61077i
\(53\) 40.7810 + 20.7790i 0.769454 + 0.392056i 0.794215 0.607637i \(-0.207883\pi\)
−0.0247612 + 0.999693i \(0.507883\pi\)
\(54\) 110.662i 2.04929i
\(55\) 0 0
\(56\) 6.48158 0.115742
\(57\) 22.8019 44.7512i 0.400033 0.785109i
\(58\) 131.224 20.7838i 2.26248 0.358342i
\(59\) −21.5538 29.6662i −0.365318 0.502817i 0.586303 0.810092i \(-0.300583\pi\)
−0.951621 + 0.307275i \(0.900583\pi\)
\(60\) 0 0
\(61\) 12.2697 37.7623i 0.201143 0.619055i −0.798707 0.601721i \(-0.794482\pi\)
0.999850 0.0173342i \(-0.00551792\pi\)
\(62\) 15.7177 + 2.48944i 0.253512 + 0.0401523i
\(63\) −1.00939 + 0.159871i −0.0160220 + 0.00253764i
\(64\) 147.128 47.8048i 2.29887 0.746949i
\(65\) 0 0
\(66\) 77.8616 54.3908i 1.17972 0.824103i
\(67\) 51.4949 + 51.4949i 0.768580 + 0.768580i 0.977856 0.209277i \(-0.0671109\pi\)
−0.209277 + 0.977856i \(0.567111\pi\)
\(68\) −269.816 137.478i −3.96788 2.02174i
\(69\) 21.4676 29.5476i 0.311124 0.428226i
\(70\) 0 0
\(71\) −21.8132 + 67.1340i −0.307228 + 0.945550i 0.671609 + 0.740906i \(0.265604\pi\)
−0.978836 + 0.204644i \(0.934396\pi\)
\(72\) −82.3091 + 41.9386i −1.14318 + 0.582480i
\(73\) −9.93715 + 62.7407i −0.136125 + 0.859462i 0.821240 + 0.570583i \(0.193283\pi\)
−0.957366 + 0.288879i \(0.906717\pi\)
\(74\) −80.0583 + 110.191i −1.08187 + 1.48907i
\(75\) 0 0
\(76\) −229.040 −3.01369
\(77\) −2.04381 2.12113i −0.0265430 0.0275471i
\(78\) 111.789 111.789i 1.43319 1.43319i
\(79\) 26.1620 8.50056i 0.331165 0.107602i −0.138715 0.990332i \(-0.544297\pi\)
0.469880 + 0.882730i \(0.344297\pi\)
\(80\) 0 0
\(81\) −25.9584 + 18.8599i −0.320474 + 0.232838i
\(82\) 78.7870 40.1440i 0.960818 0.489561i
\(83\) −47.2836 92.7992i −0.569682 1.11806i −0.978654 0.205516i \(-0.934113\pi\)
0.408972 0.912547i \(-0.365887\pi\)
\(84\) −3.72056 5.12090i −0.0442923 0.0609632i
\(85\) 0 0
\(86\) −47.8226 147.183i −0.556077 1.71143i
\(87\) −56.3994 56.3994i −0.648269 0.648269i
\(88\) −234.951 125.259i −2.66989 1.42340i
\(89\) 6.15373i 0.0691430i −0.999402 0.0345715i \(-0.988993\pi\)
0.999402 0.0345715i \(-0.0110066\pi\)
\(90\) 0 0
\(91\) −3.96658 2.88189i −0.0435888 0.0316691i
\(92\) −164.502 26.0546i −1.78807 0.283202i
\(93\) −4.33723 8.51229i −0.0466369 0.0915300i
\(94\) 138.434 + 44.9801i 1.47271 + 0.478511i
\(95\) 0 0
\(96\) −172.788 125.538i −1.79987 1.30769i
\(97\) 0.706632 1.38684i 0.00728486 0.0142973i −0.887335 0.461125i \(-0.847446\pi\)
0.894620 + 0.446827i \(0.147446\pi\)
\(98\) 131.208 131.208i 1.33886 1.33886i
\(99\) 39.6788 + 13.7117i 0.400796 + 0.138502i
\(100\) 0 0
\(101\) −18.0392 55.5189i −0.178606 0.549692i 0.821174 0.570678i \(-0.193319\pi\)
−0.999780 + 0.0209859i \(0.993319\pi\)
\(102\) 39.3957 + 248.734i 0.386232 + 2.43857i
\(103\) −14.5617 + 91.9393i −0.141376 + 0.892614i 0.810413 + 0.585860i \(0.199243\pi\)
−0.951789 + 0.306754i \(0.900757\pi\)
\(104\) −421.497 136.953i −4.05285 1.31685i
\(105\) 0 0
\(106\) −140.427 + 102.026i −1.32479 + 0.962514i
\(107\) −22.5509 142.381i −0.210756 1.33066i −0.835353 0.549713i \(-0.814737\pi\)
0.624597 0.780947i \(-0.285263\pi\)
\(108\) 269.937 + 137.540i 2.49942 + 1.27352i
\(109\) 197.319i 1.81026i −0.425130 0.905132i \(-0.639772\pi\)
0.425130 0.905132i \(-0.360228\pi\)
\(110\) 0 0
\(111\) 81.7681 0.736649
\(112\) −6.11075 + 11.9930i −0.0545602 + 0.107080i
\(113\) −133.043 + 21.0719i −1.17737 + 0.186477i −0.714297 0.699843i \(-0.753253\pi\)
−0.463073 + 0.886320i \(0.653253\pi\)
\(114\) 111.959 + 154.098i 0.982097 + 1.35174i
\(115\) 0 0
\(116\) −112.398 + 345.926i −0.968951 + 2.98212i
\(117\) 69.0184 + 10.9314i 0.589901 + 0.0934311i
\(118\) 137.354 21.7547i 1.16402 0.184362i
\(119\) 7.42795 2.41349i 0.0624197 0.0202814i
\(120\) 0 0
\(121\) 33.0943 + 116.386i 0.273507 + 0.961870i
\(122\) 106.477 + 106.477i 0.872759 + 0.872759i
\(123\) −47.2989 24.1000i −0.384544 0.195935i
\(124\) −25.6078 + 35.2461i −0.206514 + 0.284243i
\(125\) 0 0
\(126\) 1.19767 3.68605i 0.00950531 0.0292543i
\(127\) −62.5920 + 31.8922i −0.492851 + 0.251120i −0.682707 0.730692i \(-0.739198\pi\)
0.189857 + 0.981812i \(0.439198\pi\)
\(128\) −33.0782 + 208.847i −0.258423 + 1.63162i
\(129\) −54.6092 + 75.1631i −0.423327 + 0.582659i
\(130\) 0 0
\(131\) −16.9883 −0.129682 −0.0648408 0.997896i \(-0.520654\pi\)
−0.0648408 + 0.997896i \(0.520654\pi\)
\(132\) 35.9024 + 257.529i 0.271988 + 1.95098i
\(133\) 4.17707 4.17707i 0.0314066 0.0314066i
\(134\) −262.665 + 85.3450i −1.96018 + 0.636903i
\(135\) 0 0
\(136\) 571.149 414.964i 4.19962 3.05120i
\(137\) −72.5736 + 36.9781i −0.529734 + 0.269913i −0.698335 0.715771i \(-0.746075\pi\)
0.168600 + 0.985684i \(0.446075\pi\)
\(138\) 62.8822 + 123.413i 0.455668 + 0.894298i
\(139\) 71.6463 + 98.6127i 0.515441 + 0.709444i 0.984825 0.173550i \(-0.0555240\pi\)
−0.469384 + 0.882994i \(0.655524\pi\)
\(140\) 0 0
\(141\) −27.0033 83.1075i −0.191512 0.589415i
\(142\) −189.295 189.295i −1.33306 1.33306i
\(143\) 88.0906 + 181.122i 0.616018 + 1.26658i
\(144\) 191.838i 1.33221i
\(145\) 0 0
\(146\) −194.896 141.600i −1.33491 0.969866i
\(147\) −110.025 17.4263i −0.748472 0.118546i
\(148\) −169.285 332.240i −1.14382 2.24487i
\(149\) 223.209 + 72.5250i 1.49805 + 0.486745i 0.939448 0.342693i \(-0.111339\pi\)
0.558599 + 0.829438i \(0.311339\pi\)
\(150\) 0 0
\(151\) −92.9400 67.5249i −0.615497 0.447185i 0.235849 0.971790i \(-0.424213\pi\)
−0.851346 + 0.524605i \(0.824213\pi\)
\(152\) 242.417 475.770i 1.59485 3.13007i
\(153\) −78.7106 + 78.7106i −0.514449 + 0.514449i
\(154\) 10.6863 3.25420i 0.0693917 0.0211311i
\(155\) 0 0
\(156\) 133.745 + 411.626i 0.857341 + 2.63863i
\(157\) 10.1236 + 63.9179i 0.0644815 + 0.407120i 0.998725 + 0.0504840i \(0.0160764\pi\)
−0.934243 + 0.356636i \(0.883924\pi\)
\(158\) −16.3198 + 103.039i −0.103290 + 0.652146i
\(159\) 99.1052 + 32.2012i 0.623303 + 0.202523i
\(160\) 0 0
\(161\) 3.47524 2.52491i 0.0215853 0.0156827i
\(162\) −19.0357 120.187i −0.117504 0.741893i
\(163\) −72.7852 37.0859i −0.446535 0.227521i 0.216239 0.976340i \(-0.430621\pi\)
−0.662774 + 0.748820i \(0.730621\pi\)
\(164\) 242.079i 1.47609i
\(165\) 0 0
\(166\) 394.985 2.37942
\(167\) −24.5061 + 48.0959i −0.146743 + 0.288000i −0.952665 0.304022i \(-0.901670\pi\)
0.805922 + 0.592022i \(0.201670\pi\)
\(168\) 14.5752 2.30848i 0.0867569 0.0137410i
\(169\) 97.7179 + 134.497i 0.578212 + 0.795841i
\(170\) 0 0
\(171\) −26.0169 + 80.0718i −0.152146 + 0.468256i
\(172\) 418.460 + 66.2776i 2.43291 + 0.385335i
\(173\) 26.9852 4.27403i 0.155984 0.0247054i −0.0779542 0.996957i \(-0.524839\pi\)
0.233938 + 0.972252i \(0.424839\pi\)
\(174\) 287.682 93.4735i 1.65334 0.537204i
\(175\) 0 0
\(176\) 453.279 316.641i 2.57545 1.79910i
\(177\) −59.0340 59.0340i −0.333525 0.333525i
\(178\) 20.7939 + 10.5950i 0.116820 + 0.0595225i
\(179\) 142.222 195.751i 0.794535 1.09358i −0.198994 0.980001i \(-0.563767\pi\)
0.993529 0.113582i \(-0.0362326\pi\)
\(180\) 0 0
\(181\) −24.9142 + 76.6781i −0.137648 + 0.423636i −0.995992 0.0894373i \(-0.971493\pi\)
0.858345 + 0.513073i \(0.171493\pi\)
\(182\) 16.5675 8.44155i 0.0910301 0.0463821i
\(183\) 14.1416 89.2864i 0.0772764 0.487904i
\(184\) 228.231 314.133i 1.24039 1.70725i
\(185\) 0 0
\(186\) 36.2312 0.194791
\(187\) −315.897 56.0621i −1.68929 0.299797i
\(188\) −281.778 + 281.778i −1.49882 + 1.49882i
\(189\) −7.43128 + 2.41457i −0.0393189 + 0.0127755i
\(190\) 0 0
\(191\) 44.5047 32.3346i 0.233009 0.169291i −0.465154 0.885230i \(-0.654001\pi\)
0.698163 + 0.715939i \(0.254001\pi\)
\(192\) 313.821 159.900i 1.63449 0.832812i
\(193\) −51.4223 100.922i −0.266437 0.522911i 0.718564 0.695461i \(-0.244800\pi\)
−0.985001 + 0.172549i \(0.944800\pi\)
\(194\) 3.46962 + 4.77552i 0.0178846 + 0.0246161i
\(195\) 0 0
\(196\) 156.979 + 483.133i 0.800916 + 2.46496i
\(197\) 191.948 + 191.948i 0.974353 + 0.974353i 0.999679 0.0253260i \(-0.00806237\pi\)
−0.0253260 + 0.999679i \(0.508062\pi\)
\(198\) −114.649 + 110.470i −0.579034 + 0.557929i
\(199\) 33.5384i 0.168534i 0.996443 + 0.0842672i \(0.0268549\pi\)
−0.996443 + 0.0842672i \(0.973145\pi\)
\(200\) 0 0
\(201\) 134.137 + 97.4564i 0.667349 + 0.484858i
\(202\) 218.661 + 34.6325i 1.08248 + 0.171448i
\(203\) −4.25892 8.35860i −0.0209799 0.0411754i
\(204\) −655.701 213.050i −3.21422 1.04436i
\(205\) 0 0
\(206\) −285.598 207.499i −1.38640 1.00728i
\(207\) −27.7946 + 54.5499i −0.134273 + 0.263526i
\(208\) 650.788 650.788i 3.12879 3.12879i
\(209\) −232.138 + 70.6907i −1.11071 + 0.338233i
\(210\) 0 0
\(211\) 52.4776 + 161.510i 0.248709 + 0.765448i 0.995004 + 0.0998327i \(0.0318308\pi\)
−0.746295 + 0.665615i \(0.768169\pi\)
\(212\) −74.3379 469.351i −0.350650 2.21392i
\(213\) −25.1409 + 158.734i −0.118033 + 0.745229i
\(214\) 519.941 + 168.939i 2.42963 + 0.789435i
\(215\) 0 0
\(216\) −571.405 + 415.150i −2.64539 + 1.92199i
\(217\) −0.175777 1.10981i −0.000810031 0.00511433i
\(218\) 666.755 + 339.728i 3.05851 + 1.55839i
\(219\) 144.625i 0.660386i
\(220\) 0 0
\(221\) −534.034 −2.41645
\(222\) −140.782 + 276.300i −0.634153 + 1.24460i
\(223\) 155.796 24.6757i 0.698638 0.110653i 0.202995 0.979180i \(-0.434932\pi\)
0.495643 + 0.868526i \(0.334932\pi\)
\(224\) −14.7651 20.3225i −0.0659158 0.0907254i
\(225\) 0 0
\(226\) 157.859 485.841i 0.698493 2.14974i
\(227\) −61.1052 9.67811i −0.269186 0.0426349i 0.0203822 0.999792i \(-0.493512\pi\)
−0.289568 + 0.957157i \(0.593512\pi\)
\(228\) −515.044 + 81.5750i −2.25897 + 0.357785i
\(229\) −431.134 + 140.084i −1.88268 + 0.611720i −0.897279 + 0.441463i \(0.854460\pi\)
−0.985400 + 0.170257i \(0.945540\pi\)
\(230\) 0 0
\(231\) −5.35140 4.04187i −0.0231662 0.0174973i
\(232\) −599.607 599.607i −2.58451 2.58451i
\(233\) 303.971 + 154.881i 1.30460 + 0.664725i 0.961560 0.274596i \(-0.0885442\pi\)
0.343037 + 0.939322i \(0.388544\pi\)
\(234\) −155.769 + 214.397i −0.665678 + 0.916227i
\(235\) 0 0
\(236\) −117.649 + 362.085i −0.498511 + 1.53426i
\(237\) 55.8032 28.4331i 0.235456 0.119971i
\(238\) −4.63352 + 29.2549i −0.0194686 + 0.122920i
\(239\) 99.8447 137.424i 0.417760 0.574998i −0.547329 0.836917i \(-0.684356\pi\)
0.965090 + 0.261920i \(0.0843555\pi\)
\(240\) 0 0
\(241\) −209.522 −0.869384 −0.434692 0.900579i \(-0.643143\pi\)
−0.434692 + 0.900579i \(0.643143\pi\)
\(242\) −450.257 88.5568i −1.86057 0.365937i
\(243\) 134.043 134.043i 0.551617 0.551617i
\(244\) −392.066 + 127.390i −1.60683 + 0.522090i
\(245\) 0 0
\(246\) 162.871 118.333i 0.662078 0.481028i
\(247\) −359.894 + 183.375i −1.45706 + 0.742410i
\(248\) −46.1110 90.4979i −0.185931 0.364911i
\(249\) −139.378 191.838i −0.559752 0.770432i
\(250\) 0 0
\(251\) 18.0637 + 55.5944i 0.0719670 + 0.221492i 0.980570 0.196169i \(-0.0628501\pi\)
−0.908603 + 0.417661i \(0.862850\pi\)
\(252\) 7.50280 + 7.50280i 0.0297730 + 0.0297730i
\(253\) −174.769 + 24.3648i −0.690786 + 0.0963034i
\(254\) 266.413i 1.04887i
\(255\) 0 0
\(256\) −148.141 107.631i −0.578677 0.420433i
\(257\) 164.934 + 26.1230i 0.641767 + 0.101646i 0.468832 0.883287i \(-0.344675\pi\)
0.172935 + 0.984933i \(0.444675\pi\)
\(258\) −159.960 313.938i −0.619998 1.21682i
\(259\) 9.14647 + 2.97187i 0.0353145 + 0.0114744i
\(260\) 0 0
\(261\) 108.167 + 78.5882i 0.414435 + 0.301104i
\(262\) 29.2492 57.4047i 0.111638 0.219102i
\(263\) 229.419 229.419i 0.872315 0.872315i −0.120409 0.992724i \(-0.538421\pi\)
0.992724 + 0.120409i \(0.0384206\pi\)
\(264\) −572.947 197.992i −2.17025 0.749969i
\(265\) 0 0
\(266\) 6.92287 + 21.3064i 0.0260258 + 0.0800993i
\(267\) −2.19171 13.8379i −0.00820866 0.0518274i
\(268\) 118.280 746.791i 0.441344 2.78653i
\(269\) 447.195 + 145.302i 1.66243 + 0.540157i 0.981380 0.192076i \(-0.0615220\pi\)
0.681054 + 0.732233i \(0.261522\pi\)
\(270\) 0 0
\(271\) 393.019 285.545i 1.45026 1.05367i 0.464485 0.885581i \(-0.346240\pi\)
0.985771 0.168092i \(-0.0537605\pi\)
\(272\) 229.346 + 1448.03i 0.843183 + 5.32365i
\(273\) −9.94609 5.06779i −0.0364326 0.0185633i
\(274\) 308.897i 1.12736i
\(275\) 0 0
\(276\) −379.197 −1.37390
\(277\) 73.3475 143.953i 0.264792 0.519685i −0.719880 0.694099i \(-0.755803\pi\)
0.984672 + 0.174414i \(0.0558031\pi\)
\(278\) −456.575 + 72.3143i −1.64235 + 0.260123i
\(279\) 9.41312 + 12.9560i 0.0337388 + 0.0464374i
\(280\) 0 0
\(281\) −65.0399 + 200.172i −0.231459 + 0.712357i 0.766113 + 0.642706i \(0.222188\pi\)
−0.997571 + 0.0696507i \(0.977812\pi\)
\(282\) 327.318 + 51.8421i 1.16070 + 0.183837i
\(283\) −183.921 + 29.1302i −0.649897 + 0.102934i −0.472674 0.881237i \(-0.656711\pi\)
−0.177223 + 0.984171i \(0.556711\pi\)
\(284\) 697.017 226.474i 2.45428 0.797445i
\(285\) 0 0
\(286\) −763.690 14.1766i −2.67025 0.0495684i
\(287\) −4.41487 4.41487i −0.0153828 0.0153828i
\(288\) 318.997 + 162.537i 1.10763 + 0.564364i
\(289\) 330.155 454.419i 1.14240 1.57239i
\(290\) 0 0
\(291\) 1.09507 3.37028i 0.00376312 0.0115817i
\(292\) 587.639 299.417i 2.01246 1.02540i
\(293\) 17.6153 111.219i 0.0601205 0.379586i −0.939221 0.343312i \(-0.888451\pi\)
0.999342 0.0362737i \(-0.0115488\pi\)
\(294\) 248.318 341.780i 0.844619 1.16252i
\(295\) 0 0
\(296\) 869.313 2.93687
\(297\) 316.039 + 56.0872i 1.06410 + 0.188846i
\(298\) −629.371 + 629.371i −2.11198 + 2.11198i
\(299\) −279.345 + 90.7646i −0.934263 + 0.303561i
\(300\) 0 0
\(301\) −8.84031 + 6.42286i −0.0293698 + 0.0213384i
\(302\) 388.189 197.792i 1.28539 0.654940i
\(303\) −60.3384 118.421i −0.199137 0.390828i
\(304\) 651.781 + 897.099i 2.14402 + 2.95098i
\(305\) 0 0
\(306\) −130.451 401.487i −0.426311 1.31205i
\(307\) 140.701 + 140.701i 0.458308 + 0.458308i 0.898100 0.439792i \(-0.144948\pi\)
−0.439792 + 0.898100i \(0.644948\pi\)
\(308\) −5.34391 + 30.1117i −0.0173504 + 0.0977653i
\(309\) 211.931i 0.685860i
\(310\) 0 0
\(311\) −184.187 133.820i −0.592241 0.430288i 0.250875 0.968019i \(-0.419282\pi\)
−0.843116 + 0.537731i \(0.819282\pi\)
\(312\) −996.599 157.846i −3.19423 0.505916i
\(313\) 119.867 + 235.253i 0.382962 + 0.751606i 0.999358 0.0358309i \(-0.0114078\pi\)
−0.616396 + 0.787437i \(0.711408\pi\)
\(314\) −233.413 75.8405i −0.743354 0.241530i
\(315\) 0 0
\(316\) −231.059 167.874i −0.731200 0.531248i
\(317\) 66.3921 130.302i 0.209439 0.411047i −0.762260 0.647271i \(-0.775910\pi\)
0.971698 + 0.236225i \(0.0759101\pi\)
\(318\) −279.442 + 279.442i −0.878749 + 0.878749i
\(319\) −7.15234 + 385.296i −0.0224211 + 1.20783i
\(320\) 0 0
\(321\) −101.421 312.141i −0.315952 0.972400i
\(322\) 2.54845 + 16.0903i 0.00791444 + 0.0499698i
\(323\) 100.654 635.503i 0.311622 1.96750i
\(324\) 316.830 + 102.944i 0.977871 + 0.317729i
\(325\) 0 0
\(326\) 250.632 182.095i 0.768810 0.558573i
\(327\) −70.2771 443.712i −0.214915 1.35692i
\(328\) −502.855 256.218i −1.53310 0.781151i
\(329\) 10.2777i 0.0312393i
\(330\) 0 0
\(331\) 544.980 1.64647 0.823233 0.567704i \(-0.192168\pi\)
0.823233 + 0.567704i \(0.192168\pi\)
\(332\) −490.920 + 963.485i −1.47867 + 2.90206i
\(333\) −135.380 + 21.4420i −0.406545 + 0.0643904i
\(334\) −120.327 165.616i −0.360260 0.495856i
\(335\) 0 0
\(336\) −9.46984 + 29.1452i −0.0281840 + 0.0867416i
\(337\) 298.986 + 47.3547i 0.887198 + 0.140518i 0.583368 0.812208i \(-0.301735\pi\)
0.303830 + 0.952726i \(0.401735\pi\)
\(338\) −622.719 + 98.6289i −1.84236 + 0.291802i
\(339\) −291.669 + 94.7690i −0.860381 + 0.279555i
\(340\) 0 0
\(341\) −15.0759 + 43.6264i −0.0442107 + 0.127937i
\(342\) −225.775 225.775i −0.660159 0.660159i
\(343\) −23.3650 11.9050i −0.0681194 0.0347086i
\(344\) −580.574 + 799.092i −1.68772 + 2.32294i
\(345\) 0 0
\(346\) −32.0187 + 98.5435i −0.0925397 + 0.284808i
\(347\) 236.217 120.359i 0.680741 0.346855i −0.0791889 0.996860i \(-0.525233\pi\)
0.759930 + 0.650005i \(0.225233\pi\)
\(348\) −129.546 + 817.918i −0.372257 + 2.35034i
\(349\) −321.631 + 442.687i −0.921579 + 1.26844i 0.0414756 + 0.999140i \(0.486794\pi\)
−0.963055 + 0.269305i \(0.913206\pi\)
\(350\) 0 0
\(351\) 534.274 1.52215
\(352\) 142.480 + 1022.01i 0.404773 + 2.90344i
\(353\) 190.687 190.687i 0.540190 0.540190i −0.383395 0.923585i \(-0.625245\pi\)
0.923585 + 0.383395i \(0.125245\pi\)
\(354\) 301.120 97.8399i 0.850622 0.276384i
\(355\) 0 0
\(356\) −51.6888 + 37.5541i −0.145193 + 0.105489i
\(357\) 15.8437 8.07276i 0.0443801 0.0226128i
\(358\) 416.592 + 817.607i 1.16366 + 2.28382i
\(359\) −390.631 537.658i −1.08811 1.49765i −0.850268 0.526350i \(-0.823560\pi\)
−0.237841 0.971304i \(-0.576440\pi\)
\(360\) 0 0
\(361\) −38.8300 119.507i −0.107562 0.331043i
\(362\) −216.206 216.206i −0.597253 0.597253i
\(363\) 115.872 + 249.932i 0.319205 + 0.688517i
\(364\) 50.9048i 0.139848i
\(365\) 0 0
\(366\) 277.357 + 201.512i 0.757807 + 0.550579i
\(367\) 255.996 + 40.5459i 0.697538 + 0.110479i 0.495126 0.868821i \(-0.335122\pi\)
0.202412 + 0.979300i \(0.435122\pi\)
\(368\) 366.075 + 718.462i 0.994768 + 1.95234i
\(369\) 84.6303 + 27.4980i 0.229350 + 0.0745204i
\(370\) 0 0
\(371\) 9.91542 + 7.20397i 0.0267262 + 0.0194177i
\(372\) −45.0311 + 88.3786i −0.121051 + 0.237577i
\(373\) 214.214 214.214i 0.574301 0.574301i −0.359027 0.933327i \(-0.616891\pi\)
0.933327 + 0.359027i \(0.116891\pi\)
\(374\) 733.325 970.916i 1.96076 2.59603i
\(375\) 0 0
\(376\) −287.084 883.552i −0.763520 2.34987i
\(377\) 100.344 + 633.548i 0.266165 + 1.68050i
\(378\) 4.63560 29.2680i 0.0122635 0.0774287i
\(379\) −271.298 88.1499i −0.715825 0.232586i −0.0716127 0.997433i \(-0.522815\pi\)
−0.644212 + 0.764847i \(0.722815\pi\)
\(380\) 0 0
\(381\) −129.392 + 94.0091i −0.339613 + 0.246743i
\(382\) 32.6360 + 206.056i 0.0854346 + 0.539413i
\(383\) −55.1978 28.1247i −0.144119 0.0734325i 0.380444 0.924804i \(-0.375771\pi\)
−0.524563 + 0.851372i \(0.675771\pi\)
\(384\) 481.418i 1.25369i
\(385\) 0 0
\(386\) 429.557 1.11284
\(387\) 70.7038 138.764i 0.182697 0.358563i
\(388\) −15.9612 + 2.52801i −0.0411372 + 0.00651550i
\(389\) 33.9161 + 46.6815i 0.0871879 + 0.120004i 0.850383 0.526165i \(-0.176370\pi\)
−0.763195 + 0.646168i \(0.776370\pi\)
\(390\) 0 0
\(391\) 144.584 444.984i 0.369780 1.13807i
\(392\) −1169.73 185.267i −2.98400 0.472619i
\(393\) −38.2017 + 6.05055i −0.0972053 + 0.0153958i
\(394\) −979.086 + 318.124i −2.48499 + 0.807422i
\(395\) 0 0
\(396\) −126.974 416.964i −0.320641 1.05294i
\(397\) 327.770 + 327.770i 0.825617 + 0.825617i 0.986907 0.161290i \(-0.0515656\pi\)
−0.161290 + 0.986907i \(0.551566\pi\)
\(398\) −113.329 57.7438i −0.284745 0.145085i
\(399\) 7.90531 10.8807i 0.0198128 0.0272700i
\(400\) 0 0
\(401\) −117.251 + 360.860i −0.292395 + 0.899900i 0.691689 + 0.722196i \(0.256867\pi\)
−0.984084 + 0.177704i \(0.943133\pi\)
\(402\) −560.259 + 285.466i −1.39368 + 0.710115i
\(403\) −12.0190 + 75.8849i −0.0298238 + 0.188300i
\(404\) −356.249 + 490.335i −0.881804 + 1.21370i
\(405\) 0 0
\(406\) 35.5770 0.0876281
\(407\) −274.117 284.487i −0.673507 0.698985i
\(408\) 1136.55 1136.55i 2.78567 2.78567i
\(409\) 54.3872 17.6715i 0.132976 0.0432065i −0.241773 0.970333i \(-0.577729\pi\)
0.374749 + 0.927126i \(0.377729\pi\)
\(410\) 0 0
\(411\) −150.027 + 109.001i −0.365028 + 0.265208i
\(412\) 861.117 438.761i 2.09009 1.06495i
\(413\) −4.45786 8.74905i −0.0107939 0.0211841i
\(414\) −136.474 187.840i −0.329646 0.453719i
\(415\) 0 0
\(416\) 530.772 + 1633.55i 1.27590 + 3.92680i
\(417\) 196.233 + 196.233i 0.470584 + 0.470584i
\(418\) 160.809 906.123i 0.384711 2.16776i
\(419\) 759.616i 1.81293i −0.422285 0.906463i \(-0.638772\pi\)
0.422285 0.906463i \(-0.361228\pi\)
\(420\) 0 0
\(421\) 205.163 + 149.060i 0.487323 + 0.354061i 0.804154 0.594421i \(-0.202619\pi\)
−0.316831 + 0.948482i \(0.602619\pi\)
\(422\) −636.104 100.749i −1.50736 0.238742i
\(423\) 66.5012 + 130.516i 0.157213 + 0.308549i
\(424\) 1053.63 + 342.346i 2.48498 + 0.807419i
\(425\) 0 0
\(426\) −493.087 358.249i −1.15748 0.840959i
\(427\) 4.82698 9.47348i 0.0113044 0.0221861i
\(428\) −1058.32 + 1058.32i −2.47271 + 2.47271i
\(429\) 262.598 + 375.915i 0.612117 + 0.876258i
\(430\) 0 0
\(431\) −205.208 631.566i −0.476121 1.46535i −0.844440 0.535651i \(-0.820066\pi\)
0.368318 0.929700i \(-0.379934\pi\)
\(432\) −229.449 1448.68i −0.531131 3.35343i
\(433\) −102.418 + 646.644i −0.236532 + 1.49340i 0.528236 + 0.849097i \(0.322854\pi\)
−0.764768 + 0.644306i \(0.777146\pi\)
\(434\) 4.05277 + 1.31682i 0.00933818 + 0.00303416i
\(435\) 0 0
\(436\) −1657.40 + 1204.17i −3.80137 + 2.76186i
\(437\) −55.3599 349.528i −0.126682 0.799836i
\(438\) −488.697 249.004i −1.11575 0.568501i
\(439\) 230.999i 0.526194i 0.964769 + 0.263097i \(0.0847440\pi\)
−0.964769 + 0.263097i \(0.915256\pi\)
\(440\) 0 0
\(441\) 186.733 0.423432
\(442\) 919.460 1804.54i 2.08023 4.08267i
\(443\) 469.772 74.4046i 1.06043 0.167956i 0.398234 0.917284i \(-0.369623\pi\)
0.662199 + 0.749328i \(0.269623\pi\)
\(444\) −499.003 686.818i −1.12388 1.54689i
\(445\) 0 0
\(446\) −184.857 + 568.932i −0.414478 + 1.27563i
\(447\) 527.762 + 83.5893i 1.18068 + 0.187001i
\(448\) 40.9152 6.48033i 0.0913286 0.0144650i
\(449\) −132.723 + 43.1244i −0.295597 + 0.0960453i −0.453061 0.891479i \(-0.649668\pi\)
0.157464 + 0.987525i \(0.449668\pi\)
\(450\) 0 0
\(451\) 74.7151 + 245.354i 0.165665 + 0.544022i
\(452\) 988.910 + 988.910i 2.18785 + 2.18785i
\(453\) −233.044 118.742i −0.514447 0.262124i
\(454\) 137.909 189.816i 0.303765 0.418097i
\(455\) 0 0
\(456\) 375.674 1156.21i 0.823847 2.53554i
\(457\) −299.602 + 152.655i −0.655584 + 0.334037i −0.749944 0.661501i \(-0.769920\pi\)
0.0943600 + 0.995538i \(0.469920\pi\)
\(458\) 268.939 1698.02i 0.587204 3.70746i
\(459\) −500.249 + 688.534i −1.08987 + 1.50007i
\(460\) 0 0
\(461\) 288.038 0.624812 0.312406 0.949949i \(-0.398865\pi\)
0.312406 + 0.949949i \(0.398865\pi\)
\(462\) 22.8714 11.1238i 0.0495052 0.0240774i
\(463\) 8.59030 8.59030i 0.0185536 0.0185536i −0.697769 0.716323i \(-0.745824\pi\)
0.716323 + 0.697769i \(0.245824\pi\)
\(464\) 1674.77 544.165i 3.60942 1.17277i
\(465\) 0 0
\(466\) −1046.71 + 760.478i −2.24616 + 1.63193i
\(467\) −368.828 + 187.927i −0.789781 + 0.402414i −0.801859 0.597513i \(-0.796155\pi\)
0.0120776 + 0.999927i \(0.496155\pi\)
\(468\) −329.376 646.437i −0.703795 1.38128i
\(469\) 11.4623 + 15.7766i 0.0244400 + 0.0336387i
\(470\) 0 0
\(471\) 45.5300 + 140.127i 0.0966666 + 0.297509i
\(472\) −627.616 627.616i −1.32970 1.32970i
\(473\) 444.577 61.9791i 0.939909 0.131034i
\(474\) 237.517i 0.501091i
\(475\) 0 0
\(476\) −65.6025 47.6630i −0.137820 0.100132i
\(477\) −172.528 27.3257i −0.361694 0.0572867i
\(478\) 292.462 + 573.989i 0.611846 + 1.20081i
\(479\) −36.1149 11.7344i −0.0753965 0.0244978i 0.271076 0.962558i \(-0.412621\pi\)
−0.346472 + 0.938060i \(0.612621\pi\)
\(480\) 0 0
\(481\) −532.000 386.521i −1.10603 0.803577i
\(482\) 360.738 707.989i 0.748420 1.46886i
\(483\) 6.91552 6.91552i 0.0143179 0.0143179i
\(484\) 775.633 988.245i 1.60255 2.04183i
\(485\) 0 0
\(486\) 222.156 + 683.726i 0.457111 + 1.40684i
\(487\) −7.23241 45.6636i −0.0148509 0.0937652i 0.979150 0.203141i \(-0.0651149\pi\)
−0.994000 + 0.109376i \(0.965115\pi\)
\(488\) 150.345 949.243i 0.308085 1.94517i
\(489\) −176.881 57.4721i −0.361720 0.117530i
\(490\) 0 0
\(491\) 749.160 544.296i 1.52578 1.10855i 0.567258 0.823540i \(-0.308004\pi\)
0.958526 0.285007i \(-0.0919958\pi\)
\(492\) 86.2190 + 544.365i 0.175242 + 1.10643i
\(493\) −910.425 463.885i −1.84670 0.940943i
\(494\) 1531.83i 3.10087i
\(495\) 0 0
\(496\) 210.923 0.425249
\(497\) −8.58142 + 16.8420i −0.0172664 + 0.0338873i
\(498\) 888.204 140.678i 1.78354 0.282485i
\(499\) −326.862 449.887i −0.655035 0.901578i 0.344270 0.938871i \(-0.388127\pi\)
−0.999304 + 0.0372930i \(0.988127\pi\)
\(500\) 0 0
\(501\) −37.9772 + 116.882i −0.0758028 + 0.233297i
\(502\) −218.958 34.6796i −0.436172 0.0690828i
\(503\) 634.447 100.487i 1.26133 0.199775i 0.510271 0.860013i \(-0.329545\pi\)
0.751056 + 0.660239i \(0.229545\pi\)
\(504\) −23.5261 + 7.64408i −0.0466787 + 0.0151668i
\(505\) 0 0
\(506\) 218.573 632.506i 0.431963 1.25001i
\(507\) 267.641 + 267.641i 0.527892 + 0.527892i
\(508\) 649.860 + 331.120i 1.27925 + 0.651811i
\(509\) 159.366 219.349i 0.313097 0.430941i −0.623247 0.782025i \(-0.714187\pi\)
0.936344 + 0.351084i \(0.114187\pi\)
\(510\) 0 0
\(511\) −5.25639 + 16.1775i −0.0102865 + 0.0316585i
\(512\) −134.865 + 68.7172i −0.263409 + 0.134213i
\(513\) −100.699 + 635.788i −0.196294 + 1.23935i
\(514\) −372.243 + 512.348i −0.724207 + 0.996786i
\(515\) 0 0
\(516\) 964.600 1.86938
\(517\) −198.622 + 372.557i −0.384181 + 0.720613i
\(518\) −25.7898 + 25.7898i −0.0497873 + 0.0497873i
\(519\) 59.1595 19.2221i 0.113987 0.0370367i
\(520\) 0 0
\(521\) −380.890 + 276.733i −0.731076 + 0.531158i −0.889904 0.456149i \(-0.849228\pi\)
0.158828 + 0.987306i \(0.449228\pi\)
\(522\) −451.790 + 230.198i −0.865498 + 0.440993i
\(523\) −249.695 490.055i −0.477429 0.937007i −0.996604 0.0823394i \(-0.973761\pi\)
0.519175 0.854668i \(-0.326239\pi\)
\(524\) 103.674 + 142.695i 0.197851 + 0.272318i
\(525\) 0 0
\(526\) 380.227 + 1170.22i 0.722865 + 2.22475i
\(527\) −86.5415 86.5415i −0.164215 0.164215i
\(528\) 906.515 873.473i 1.71689 1.65431i
\(529\) 271.663i 0.513540i
\(530\) 0 0
\(531\) 113.220 + 82.2593i 0.213221 + 0.154914i
\(532\) −60.5770 9.59445i −0.113866 0.0180347i
\(533\) 193.815 + 380.383i 0.363630 + 0.713664i
\(534\) 50.5329 + 16.4191i 0.0946308 + 0.0307474i
\(535\) 0 0
\(536\) 1426.07 + 1036.10i 2.66058 + 1.93303i
\(537\) 250.096 490.841i 0.465728 0.914043i
\(538\) −1260.93 + 1260.93i −2.34374 + 2.34374i
\(539\) 308.217 + 441.219i 0.571831 + 0.818587i
\(540\) 0 0
\(541\) 68.1056 + 209.607i 0.125888 + 0.387444i 0.994062 0.108816i \(-0.0347060\pi\)
−0.868174 + 0.496261i \(0.834706\pi\)
\(542\) 288.208 + 1819.67i 0.531748 + 3.35733i
\(543\) −28.7151 + 181.300i −0.0528823 + 0.333886i
\(544\) −2602.17 845.497i −4.78340 1.55422i
\(545\) 0 0
\(546\) 34.2488 24.8832i 0.0627268 0.0455737i
\(547\) −20.5594 129.807i −0.0375857 0.237307i 0.961743 0.273955i \(-0.0883319\pi\)
−0.999328 + 0.0366482i \(0.988332\pi\)
\(548\) 753.492 + 383.924i 1.37499 + 0.700590i
\(549\) 151.536i 0.276021i
\(550\) 0 0
\(551\) −772.838 −1.40261
\(552\) 401.343 787.680i 0.727071 1.42696i
\(553\) 7.27547 1.15232i 0.0131564 0.00208376i
\(554\) 360.142 + 495.693i 0.650076 + 0.894753i
\(555\) 0 0
\(556\) 391.073 1203.60i 0.703369 2.16475i
\(557\) 333.457 + 52.8144i 0.598666 + 0.0948193i 0.448410 0.893828i \(-0.351990\pi\)
0.150256 + 0.988647i \(0.451990\pi\)
\(558\) −59.9862 + 9.50088i −0.107502 + 0.0170267i
\(559\) 710.597 230.887i 1.27119 0.413036i
\(560\) 0 0
\(561\) −730.327 13.5572i −1.30183 0.0241662i
\(562\) −564.416 564.416i −1.00430 1.00430i
\(563\) −125.749 64.0726i −0.223356 0.113806i 0.338732 0.940883i \(-0.390002\pi\)
−0.562088 + 0.827077i \(0.690002\pi\)
\(564\) −533.277 + 733.993i −0.945527 + 1.30141i
\(565\) 0 0
\(566\) 218.228 671.636i 0.385562 1.18664i
\(567\) −7.65555 + 3.90070i −0.0135019 + 0.00687954i
\(568\) −267.285 + 1687.57i −0.470571 + 2.97107i
\(569\) −183.146 + 252.079i −0.321874 + 0.443022i −0.939038 0.343813i \(-0.888281\pi\)
0.617164 + 0.786834i \(0.288281\pi\)
\(570\) 0 0
\(571\) 81.2513 0.142296 0.0711482 0.997466i \(-0.477334\pi\)
0.0711482 + 0.997466i \(0.477334\pi\)
\(572\) 983.759 1845.25i 1.71986 3.22596i
\(573\) 88.5617 88.5617i 0.154558 0.154558i
\(574\) 22.5194 7.31699i 0.0392323 0.0127474i
\(575\) 0 0
\(576\) −477.649 + 347.032i −0.829251 + 0.602486i
\(577\) −988.752 + 503.794i −1.71361 + 0.873127i −0.732225 + 0.681063i \(0.761518\pi\)
−0.981382 + 0.192064i \(0.938482\pi\)
\(578\) 967.080 + 1898.00i 1.67315 + 3.28374i
\(579\) −151.578 208.629i −0.261793 0.360327i
\(580\) 0 0
\(581\) −8.61830 26.5244i −0.0148336 0.0456530i
\(582\) 9.50300 + 9.50300i 0.0163282 + 0.0163282i
\(583\) −220.203 452.756i −0.377708 0.776598i
\(584\) 1537.57i 2.63282i
\(585\) 0 0
\(586\) 345.487 + 251.011i 0.589568 + 0.428346i
\(587\) −872.285 138.156i −1.48601 0.235360i −0.639934 0.768430i \(-0.721038\pi\)
−0.846071 + 0.533070i \(0.821038\pi\)
\(588\) 525.073 + 1030.51i 0.892982 + 1.75258i
\(589\) −88.0381 28.6053i −0.149470 0.0485659i
\(590\) 0 0
\(591\) 499.998 + 363.270i 0.846020 + 0.614669i
\(592\) −819.576 + 1608.51i −1.38442 + 2.71708i
\(593\) −203.778 + 203.778i −0.343640 + 0.343640i −0.857734 0.514094i \(-0.828128\pi\)
0.514094 + 0.857734i \(0.328128\pi\)
\(594\) −733.654 + 971.351i −1.23511 + 1.63527i
\(595\) 0 0
\(596\) −752.988 2317.46i −1.26340 3.88835i
\(597\) 11.9450 + 75.4179i 0.0200084 + 0.126328i
\(598\) 174.254 1100.20i 0.291395 1.83980i
\(599\) 1046.83 + 340.135i 1.74763 + 0.567839i 0.995803 0.0915235i \(-0.0291737\pi\)
0.751825 + 0.659362i \(0.229174\pi\)
\(600\) 0 0
\(601\) −7.40130 + 5.37736i −0.0123150 + 0.00894735i −0.593926 0.804520i \(-0.702423\pi\)
0.581611 + 0.813467i \(0.302423\pi\)
\(602\) −6.48275 40.9305i −0.0107687 0.0679908i
\(603\) −247.641 126.179i −0.410681 0.209252i
\(604\) 1192.74i 1.97473i
\(605\) 0 0
\(606\) 504.039 0.831747
\(607\) 107.816 211.600i 0.177621 0.348600i −0.784981 0.619519i \(-0.787328\pi\)
0.962602 + 0.270919i \(0.0873276\pi\)
\(608\) −2043.97 + 323.733i −3.36179 + 0.532456i
\(609\) −12.5541 17.2792i −0.0206142 0.0283730i
\(610\) 0 0
\(611\) −217.163 + 668.360i −0.355423 + 1.09388i
\(612\) 1141.48 + 180.793i 1.86517 + 0.295413i
\(613\) 308.840 48.9154i 0.503817 0.0797967i 0.100647 0.994922i \(-0.467909\pi\)
0.403169 + 0.915125i \(0.367909\pi\)
\(614\) −717.685 + 233.190i −1.16887 + 0.379788i
\(615\) 0 0
\(616\) −56.8930 42.9709i −0.0923588 0.0697579i
\(617\) −468.934 468.934i −0.760022 0.760022i 0.216304 0.976326i \(-0.430600\pi\)
−0.976326 + 0.216304i \(0.930600\pi\)
\(618\) −716.129 364.886i −1.15878 0.590430i
\(619\) 280.219 385.688i 0.452696 0.623083i −0.520278 0.853997i \(-0.674172\pi\)
0.972974 + 0.230914i \(0.0741716\pi\)
\(620\) 0 0
\(621\) −144.649 + 445.183i −0.232929 + 0.716881i
\(622\) 769.305 391.981i 1.23683 0.630194i
\(623\) 0.257778 1.62755i 0.000413769 0.00261244i
\(624\) 1231.65 1695.22i 1.97379 2.71669i
\(625\) 0 0
\(626\) −1001.31 −1.59954
\(627\) −496.834 + 241.641i −0.792399 + 0.385393i
\(628\) 475.103 475.103i 0.756533 0.756533i
\(629\) 996.240 323.698i 1.58385 0.514623i
\(630\) 0 0
\(631\) 554.825 403.104i 0.879279 0.638833i −0.0537820 0.998553i \(-0.517128\pi\)
0.933061 + 0.359719i \(0.117128\pi\)
\(632\) 593.268 302.285i 0.938716 0.478300i
\(633\) 175.530 + 344.497i 0.277299 + 0.544229i
\(634\) 325.990 + 448.687i 0.514180 + 0.707709i
\(635\) 0 0
\(636\) −334.328 1028.96i −0.525673 1.61786i
\(637\) 633.473 + 633.473i 0.994463 + 0.994463i
\(638\) −1289.63 687.542i −2.02136 1.07765i
\(639\) 269.401i 0.421597i
\(640\) 0 0
\(641\) 133.478 + 96.9773i 0.208234 + 0.151291i 0.687014 0.726644i \(-0.258921\pi\)
−0.478781 + 0.877935i \(0.658921\pi\)
\(642\) 1229.36 + 194.712i 1.91490 + 0.303290i
\(643\) 50.5582 + 99.2260i 0.0786286 + 0.154317i 0.926974 0.375126i \(-0.122401\pi\)
−0.848345 + 0.529444i \(0.822401\pi\)
\(644\) −42.4164 13.7819i −0.0658640 0.0214005i
\(645\) 0 0
\(646\) 1974.11 + 1434.28i 3.05590 + 2.22024i
\(647\) 356.766 700.193i 0.551416 1.08221i −0.432173 0.901791i \(-0.642253\pi\)
0.983589 0.180424i \(-0.0577469\pi\)
\(648\) −549.174 + 549.174i −0.847490 + 0.847490i
\(649\) −7.48645 + 403.294i −0.0115354 + 0.621409i
\(650\) 0 0
\(651\) −0.790540 2.43303i −0.00121435 0.00373738i
\(652\) 132.677 + 837.688i 0.203492 + 1.28480i
\(653\) 11.7418 74.1348i 0.0179813 0.113530i −0.977065 0.212941i \(-0.931696\pi\)
0.995046 + 0.0994111i \(0.0316959\pi\)
\(654\) 1620.33 + 526.478i 2.47757 + 0.805012i
\(655\) 0 0
\(656\) 948.171 688.886i 1.44538 1.05013i
\(657\) −37.9248 239.448i −0.0577243 0.364457i
\(658\) 34.7292 + 17.6954i 0.0527799 + 0.0268927i
\(659\) 8.82858i 0.0133969i −0.999978 0.00669847i \(-0.997868\pi\)
0.999978 0.00669847i \(-0.00213220\pi\)
\(660\) 0 0
\(661\) −18.3998 −0.0278363 −0.0139181 0.999903i \(-0.504430\pi\)
−0.0139181 + 0.999903i \(0.504430\pi\)
\(662\) −938.305 + 1841.53i −1.41738 + 2.78176i
\(663\) −1200.89 + 190.202i −1.81129 + 0.286880i
\(664\) −1481.79 2039.51i −2.23161 3.07155i
\(665\) 0 0
\(666\) 160.632 494.375i 0.241189 0.742304i
\(667\) −555.070 87.9145i −0.832190 0.131806i
\(668\) 553.539 87.6719i 0.828651 0.131245i
\(669\) 341.551 110.977i 0.510540 0.165885i
\(670\) 0 0
\(671\) −358.052 + 250.120i −0.533610 + 0.372757i
\(672\) −40.4405 40.4405i −0.0601794 0.0601794i
\(673\) −57.8341 29.4680i −0.0859348 0.0437860i 0.410495 0.911863i \(-0.365356\pi\)
−0.496430 + 0.868077i \(0.665356\pi\)
\(674\) −674.786 + 928.763i −1.00117 + 1.37799i
\(675\) 0 0
\(676\) 533.382 1641.58i 0.789026 2.42837i
\(677\) 1067.27 543.802i 1.57647 0.803252i 0.576566 0.817051i \(-0.304392\pi\)
0.999905 + 0.0137987i \(0.00439240\pi\)
\(678\) 181.942 1148.74i 0.268351 1.69430i
\(679\) 0.244986 0.337194i 0.000360804 0.000496604i
\(680\) 0 0
\(681\) −140.855 −0.206835
\(682\) −121.460 126.055i −0.178094 0.184832i
\(683\) −403.111 + 403.111i −0.590207 + 0.590207i −0.937687 0.347480i \(-0.887037\pi\)
0.347480 + 0.937687i \(0.387037\pi\)
\(684\) 831.343 270.120i 1.21541 0.394912i
\(685\) 0 0
\(686\) 80.4560 58.4547i 0.117283 0.0852109i
\(687\) −919.600 + 468.560i −1.33857 + 0.682038i
\(688\) −931.220 1827.62i −1.35352 2.65643i
\(689\) −492.582 677.981i −0.714924 0.984008i
\(690\) 0 0
\(691\) −229.306 705.732i −0.331847 1.02132i −0.968255 0.249966i \(-0.919580\pi\)
0.636408 0.771353i \(-0.280420\pi\)
\(692\) −200.581 200.581i −0.289857 0.289857i
\(693\) 9.91995 + 5.28863i 0.0143145 + 0.00763151i
\(694\) 1005.42i 1.44873i
\(695\) 0 0
\(696\) −1561.90 1134.78i −2.24410 1.63044i
\(697\) −671.682 106.384i −0.963676 0.152631i
\(698\) −942.113 1849.00i −1.34973 2.64900i
\(699\) 738.704 + 240.020i 1.05680 + 0.343376i
\(700\) 0 0
\(701\) −710.832 516.450i −1.01403 0.736733i −0.0489764 0.998800i \(-0.515596\pi\)
−0.965050 + 0.262067i \(0.915596\pi\)
\(702\) −919.872 + 1805.35i −1.31036 + 2.57172i
\(703\) 560.231 560.231i 0.796915 0.796915i
\(704\) −1608.37 555.800i −2.28461 0.789488i
\(705\) 0 0
\(706\) 316.035 + 972.656i 0.447642 + 1.37770i
\(707\) −2.44536 15.4394i −0.00345878 0.0218379i
\(708\) −135.597 + 856.125i −0.191521 + 1.20922i
\(709\) 341.238 + 110.875i 0.481295 + 0.156382i 0.539608 0.841916i \(-0.318572\pi\)
−0.0583137 + 0.998298i \(0.518572\pi\)
\(710\) 0 0
\(711\) −84.9347 + 61.7087i −0.119458 + 0.0867914i
\(712\) −23.3010 147.117i −0.0327262 0.206625i
\(713\) −59.9770 30.5598i −0.0841193 0.0428609i
\(714\) 67.4360i 0.0944482i
\(715\) 0 0
\(716\) −2512.16 −3.50861
\(717\) 175.576 344.588i 0.244876 0.480597i
\(718\) 2489.34 394.273i 3.46705 0.549127i
\(719\) −113.787 156.615i −0.158258 0.217823i 0.722524 0.691346i \(-0.242982\pi\)
−0.880781 + 0.473523i \(0.842982\pi\)
\(720\) 0 0
\(721\) −7.70264 + 23.7063i −0.0106833 + 0.0328797i
\(722\) 470.676 + 74.5477i 0.651906 + 0.103252i
\(723\) −471.153 + 74.6232i −0.651663 + 0.103213i
\(724\) 796.108 258.671i 1.09960 0.357281i
\(725\) 0 0
\(726\) −1044.04 38.7747i −1.43807 0.0534087i
\(727\) −783.477 783.477i −1.07768 1.07768i −0.996717 0.0809678i \(-0.974199\pi\)
−0.0809678 0.996717i \(-0.525801\pi\)
\(728\) −105.741 53.8779i −0.145249 0.0740081i
\(729\) 423.421 582.789i 0.580825 0.799437i
\(730\) 0 0
\(731\) −367.793 + 1131.95i −0.503136 + 1.54849i
\(732\) −836.270 + 426.101i −1.14245 + 0.582105i
\(733\) −94.7661 + 598.330i −0.129285 + 0.816275i 0.834775 + 0.550591i \(0.185598\pi\)
−0.964060 + 0.265684i \(0.914402\pi\)
\(734\) −577.763 + 795.222i −0.787142 + 1.08341i
\(735\) 0 0
\(736\) −1504.85 −2.04464
\(737\) −110.609 793.399i −0.150080 1.07653i
\(738\) −238.628 + 238.628i −0.323344 + 0.323344i
\(739\) −709.511 + 230.534i −0.960096 + 0.311954i −0.746811 0.665036i \(-0.768416\pi\)
−0.213285 + 0.976990i \(0.568416\pi\)
\(740\) 0 0
\(741\) −743.986 + 540.537i −1.00403 + 0.729470i
\(742\) −41.4143 + 21.1017i −0.0558145 + 0.0284389i
\(743\) 200.657 + 393.811i 0.270063 + 0.530028i 0.985714 0.168430i \(-0.0538698\pi\)
−0.715651 + 0.698458i \(0.753870\pi\)
\(744\) −135.922 187.080i −0.182691 0.251452i
\(745\) 0 0
\(746\) 355.028 + 1092.66i 0.475908 + 1.46470i
\(747\) 281.067 + 281.067i 0.376262 + 0.376262i
\(748\) 1456.91 + 2995.53i 1.94774 + 4.00472i
\(749\) 38.6018i 0.0515377i
\(750\) 0 0
\(751\) 659.513 + 479.164i 0.878180 + 0.638035i 0.932769 0.360474i \(-0.117385\pi\)
−0.0545897 + 0.998509i \(0.517385\pi\)
\(752\) 1905.52 + 301.804i 2.53393 + 0.401335i
\(753\) 60.4205 + 118.582i 0.0802397 + 0.157479i
\(754\) −2313.57 751.724i −3.06840 0.996982i
\(755\) 0 0
\(756\) 65.6319 + 47.6844i 0.0868147 + 0.0630746i
\(757\) −73.1375 + 143.540i −0.0966150 + 0.189618i −0.934256 0.356604i \(-0.883934\pi\)
0.837641 + 0.546222i \(0.183934\pi\)
\(758\) 764.964 764.964i 1.00919 1.00919i
\(759\) −384.326 + 117.035i −0.506358 + 0.154196i
\(760\) 0 0
\(761\) 114.014 + 350.898i 0.149821 + 0.461101i 0.997599 0.0692494i \(-0.0220604\pi\)
−0.847779 + 0.530350i \(0.822060\pi\)
\(762\) −94.8856 599.084i −0.124522 0.786199i
\(763\) 8.26565 52.1872i 0.0108331 0.0683974i
\(764\) −543.194 176.494i −0.710987 0.231014i
\(765\) 0 0
\(766\) 190.071 138.094i 0.248134 0.180280i
\(767\) 105.031 + 663.143i 0.136938 + 0.864593i
\(768\) −371.460 189.268i −0.483672 0.246443i
\(769\) 574.792i 0.747454i 0.927539 + 0.373727i \(0.121920\pi\)
−0.927539 + 0.373727i \(0.878080\pi\)
\(770\) 0 0
\(771\) 380.193 0.493116
\(772\) −533.890 + 1047.82i −0.691567 + 1.35728i
\(773\) 352.990 55.9081i 0.456649 0.0723262i 0.0761275 0.997098i \(-0.475744\pi\)
0.380522 + 0.924772i \(0.375744\pi\)
\(774\) 347.161 + 477.827i 0.448529 + 0.617347i
\(775\) 0 0
\(776\) 11.6422 35.8309i 0.0150028 0.0461738i
\(777\) 21.6262 + 3.42525i 0.0278329 + 0.00440830i
\(778\) −216.134 + 34.2323i −0.277807 + 0.0440004i
\(779\) −489.187 + 158.947i −0.627968 + 0.204039i
\(780\) 0 0
\(781\) 636.547 444.665i 0.815040 0.569353i
\(782\) 1254.70 + 1254.70i 1.60447 + 1.60447i
\(783\) 910.833 + 464.093i 1.16326 + 0.592711i
\(784\) 1445.61 1989.71i 1.84389 2.53789i
\(785\) 0 0
\(786\) 45.3275 139.504i 0.0576686 0.177486i
\(787\) −1169.61 + 595.947i −1.48617 + 0.757239i −0.993591 0.113031i \(-0.963944\pi\)
−0.492575 + 0.870270i \(0.663944\pi\)
\(788\) 440.890 2783.67i 0.559505 3.53258i
\(789\) 434.186 597.606i 0.550299 0.757421i
\(790\) 0 0
\(791\) −36.0701 −0.0456006
\(792\) 1000.52 + 177.562i 1.26328 + 0.224194i
\(793\) −514.068 + 514.068i −0.648257 + 0.648257i
\(794\) −1671.89 + 543.229i −2.10565 + 0.684167i
\(795\) 0 0
\(796\) 281.708 204.673i 0.353905 0.257127i
\(797\) −392.129 + 199.800i −0.492007 + 0.250690i −0.682347 0.731028i \(-0.739041\pi\)
0.190341 + 0.981718i \(0.439041\pi\)
\(798\) 23.1560 + 45.4462i 0.0290175 + 0.0569501i
\(799\) −658.000 905.660i −0.823530 1.13349i
\(800\) 0 0
\(801\) 7.25742 + 22.3361i 0.00906045 + 0.0278852i
\(802\) −1017.50 1017.50i −1.26870 1.26870i
\(803\) 503.176 484.836i 0.626621 0.603780i
\(804\) 1721.44i 2.14110i
\(805\) 0 0
\(806\) −235.727 171.266i −0.292466 0.212489i
\(807\) 1057.36 + 167.469i 1.31024 + 0.207521i
\(808\) −641.484 1258.98i −0.793916 1.55815i
\(809\) −516.346 167.771i −0.638252 0.207381i −0.0280248 0.999607i \(-0.508922\pi\)
−0.610227 + 0.792227i \(0.708922\pi\)
\(810\) 0 0
\(811\) −962.374 699.206i −1.18665 0.862152i −0.193745 0.981052i \(-0.562063\pi\)
−0.992906 + 0.118900i \(0.962063\pi\)
\(812\) −44.2181 + 86.7829i −0.0544558 + 0.106875i
\(813\) 782.085 782.085i 0.961975 0.961975i
\(814\) 1433.26 436.455i 1.76076 0.536185i
\(815\) 0 0
\(816\) 1031.46 + 3174.51i 1.26405 + 3.89033i
\(817\) 140.824 + 889.130i 0.172368 + 1.08829i
\(818\) −33.9265 + 214.204i −0.0414749 + 0.261862i
\(819\) 17.7962 + 5.78233i 0.0217292 + 0.00706024i
\(820\) 0 0
\(821\) −107.913 + 78.4034i −0.131441 + 0.0954975i −0.651563 0.758594i \(-0.725886\pi\)
0.520122 + 0.854092i \(0.325886\pi\)
\(822\) −110.017 694.619i −0.133841 0.845036i
\(823\) −42.8055 21.8105i −0.0520115 0.0265012i 0.427791 0.903878i \(-0.359292\pi\)
−0.479803 + 0.877376i \(0.659292\pi\)
\(824\) 2253.13i 2.73438i
\(825\) 0 0
\(826\) 37.2389 0.0450834
\(827\) 191.334 375.514i 0.231359 0.454068i −0.745917 0.666039i \(-0.767988\pi\)
0.977276 + 0.211971i \(0.0679883\pi\)
\(828\) 627.818 99.4366i 0.758234 0.120092i
\(829\) 364.741 + 502.023i 0.439977 + 0.605576i 0.970207 0.242278i \(-0.0778944\pi\)
−0.530230 + 0.847854i \(0.677894\pi\)
\(830\) 0 0
\(831\) 113.667 349.831i 0.136783 0.420975i
\(832\) −2797.64 443.102i −3.36255 0.532575i
\(833\) −1409.50 + 223.244i −1.69208 + 0.268000i
\(834\) −1000.95 + 325.227i −1.20018 + 0.389961i
\(835\) 0 0
\(836\) 2010.44 + 1518.47i 2.40483 + 1.81635i
\(837\) 86.5803 + 86.5803i 0.103441 + 0.103441i
\(838\) 2566.80 + 1307.85i 3.06300 + 1.56068i
\(839\) 189.672 261.061i 0.226069 0.311157i −0.680882 0.732393i \(-0.738404\pi\)
0.906951 + 0.421236i \(0.138404\pi\)
\(840\) 0 0
\(841\) −119.376 + 367.401i −0.141945 + 0.436862i
\(842\) −856.918 + 436.621i −1.01772 + 0.518553i
\(843\) −74.9623 + 473.293i −0.0889232 + 0.561439i
\(844\) 1036.36 1426.43i 1.22792 1.69008i
\(845\) 0 0
\(846\) −555.520 −0.656643
\(847\) 3.87745 + 32.1684i 0.00457786 + 0.0379792i
\(848\) −1626.80 + 1626.80i −1.91840 + 1.91840i
\(849\) −403.209 + 131.011i −0.474922 + 0.154312i
\(850\) 0 0
\(851\) 466.101 338.642i 0.547710 0.397934i
\(852\) 1486.72 757.524i 1.74498 0.889113i
\(853\) −539.096 1058.03i −0.632000 1.24037i −0.955737 0.294222i \(-0.904939\pi\)
0.323737 0.946147i \(-0.395061\pi\)
\(854\) 23.7008 + 32.6214i 0.0277527 + 0.0381984i
\(855\) 0 0
\(856\) −1078.25 3318.50i −1.25963 3.87676i
\(857\) 352.891 + 352.891i 0.411775 + 0.411775i 0.882356 0.470582i \(-0.155956\pi\)
−0.470582 + 0.882356i \(0.655956\pi\)
\(858\) −1722.36 + 240.117i −2.00742 + 0.279857i
\(859\) 479.820i 0.558580i −0.960207 0.279290i \(-0.909901\pi\)
0.960207 0.279290i \(-0.0900990\pi\)
\(860\) 0 0
\(861\) −11.5002 8.35535i −0.0133567 0.00970424i
\(862\) 2487.42 + 393.969i 2.88564 + 0.457040i
\(863\) 414.755 + 814.002i 0.480597 + 0.943224i 0.996258 + 0.0864314i \(0.0275463\pi\)
−0.515661 + 0.856793i \(0.672454\pi\)
\(864\) 2603.34 + 845.876i 3.01312 + 0.979023i
\(865\) 0 0
\(866\) −2008.72 1459.42i −2.31954 1.68524i
\(867\) 580.575 1139.44i 0.669637 1.31424i
\(868\) −8.24925 + 8.24925i −0.00950374 + 0.00950374i
\(869\) −285.997 98.8313i −0.329111 0.113730i
\(870\) 0 0
\(871\) −412.044 1268.14i −0.473071 1.45596i
\(872\) −747.147 4717.30i −0.856820 5.40975i
\(873\) −0.929268 + 5.86717i −0.00106445 + 0.00672069i
\(874\) 1276.40 + 414.726i 1.46041 + 0.474515i
\(875\) 0 0
\(876\) 1214.79 882.595i 1.38674 1.00753i
\(877\) −186.351 1176.57i −0.212487 1.34159i −0.831201 0.555972i \(-0.812346\pi\)
0.618715 0.785616i \(-0.287654\pi\)
\(878\) −780.563 397.717i −0.889024 0.452981i
\(879\) 256.372i 0.291663i
\(880\) 0 0
\(881\) 720.309 0.817604 0.408802 0.912623i \(-0.365947\pi\)
0.408802 + 0.912623i \(0.365947\pi\)
\(882\) −321.503 + 630.986i −0.364516 + 0.715403i
\(883\) −1507.09 + 238.699i −1.70678 + 0.270328i −0.932147 0.362080i \(-0.882067\pi\)
−0.774635 + 0.632408i \(0.782067\pi\)
\(884\) 3259.03 + 4485.67i 3.68669 + 5.07429i
\(885\) 0 0
\(886\) −557.399 + 1715.50i −0.629118 + 1.93623i
\(887\) −648.602 102.728i −0.731231 0.115816i −0.220294 0.975434i \(-0.570702\pi\)
−0.510937 + 0.859618i \(0.670702\pi\)
\(888\) 1954.83 309.614i 2.20138 0.348665i
\(889\) −17.8904 + 5.81295i −0.0201242 + 0.00653875i
\(890\) 0 0
\(891\) 352.889 + 6.55075i 0.396059 + 0.00735214i
\(892\) −1158.04 1158.04i −1.29825 1.29825i
\(893\) −754.420 384.396i −0.844815 0.430455i
\(894\) −1191.11 + 1639.43i −1.33234 + 1.83381i
\(895\) 0 0
\(896\) −17.4972 + 53.8507i −0.0195281 + 0.0601012i
\(897\) −595.837 + 303.594i −0.664256 + 0.338455i
\(898\) 82.7922 522.729i 0.0921962 0.582104i
\(899\) −86.4069 + 118.929i −0.0961145 + 0.132290i
\(900\) 0 0
\(901\) 1334.95 1.48163
\(902\) −957.708 169.964i −1.06176 0.188430i
\(903\) −17.5917 + 17.5917i −0.0194814 + 0.0194814i
\(904\) −3100.86 + 1007.53i −3.43016 + 1.11453i
\(905\) 0 0
\(906\) 802.476 583.033i 0.885735 0.643524i
\(907\) 1457.77 742.773i 1.60725 0.818934i 0.607552 0.794280i \(-0.292152\pi\)
0.999696 0.0246539i \(-0.00784839\pi\)
\(908\) 291.612 + 572.321i 0.321159 + 0.630309i
\(909\) 130.953 + 180.241i 0.144063 + 0.198285i
\(910\) 0 0
\(911\) −3.10080 9.54327i −0.00340373 0.0104756i 0.949340 0.314250i \(-0.101753\pi\)
−0.952744 + 0.303775i \(0.901753\pi\)
\(912\) 1785.17 + 1785.17i 1.95743 + 1.95743i
\(913\) −200.192 + 1128.03i −0.219268 + 1.23553i
\(914\) 1275.21i 1.39519i
\(915\) 0 0
\(916\) 3807.71 + 2766.46i 4.15689 + 3.02015i
\(917\) −4.49310 0.711637i −0.00489978 0.000776049i
\(918\) −1465.32 2875.84i −1.59620 3.13273i
\(919\) 912.133 + 296.370i 0.992528 + 0.322492i 0.759876 0.650068i \(-0.225260\pi\)
0.232652 + 0.972560i \(0.425260\pi\)
\(920\) 0 0
\(921\) 366.506 + 266.282i 0.397944 + 0.289123i
\(922\) −495.922 + 973.302i −0.537876 + 1.05564i
\(923\) 913.912 913.912i 0.990154 0.990154i
\(924\) −1.29229 + 69.6157i −0.00139858 + 0.0753416i
\(925\) 0 0
\(926\) 14.2371 + 43.8174i 0.0153749 + 0.0473190i
\(927\) −55.5745 350.884i −0.0599509 0.378515i
\(928\) −514.106 + 3245.94i −0.553993 + 3.49778i
\(929\) −1566.61 509.024i −1.68634 0.547926i −0.700218 0.713929i \(-0.746914\pi\)
−0.986125 + 0.166002i \(0.946914\pi\)
\(930\) 0 0
\(931\) −873.231 + 634.439i −0.937949 + 0.681460i
\(932\) −554.095 3498.42i −0.594523 3.75367i
\(933\) −461.844 235.321i −0.495009 0.252220i
\(934\) 1569.85i 1.68079i
\(935\) 0 0
\(936\) 1691.41 1.80707
\(937\) 110.409 216.690i 0.117833 0.231259i −0.824556 0.565781i \(-0.808575\pi\)
0.942388 + 0.334522i \(0.108575\pi\)
\(938\) −73.0451 + 11.5692i −0.0778733 + 0.0123339i
\(939\) 353.334 + 486.322i 0.376287 + 0.517915i
\(940\) 0 0
\(941\) 489.886 1507.72i 0.520602 1.60225i −0.252251 0.967662i \(-0.581171\pi\)
0.772852 0.634586i \(-0.218829\pi\)
\(942\) −551.889 87.4106i −0.585869 0.0927926i
\(943\) −369.427 + 58.5115i −0.391757 + 0.0620482i
\(944\) 1753.00 569.584i 1.85699 0.603373i
\(945\) 0 0
\(946\) −556.007 + 1608.97i −0.587745 + 1.70081i
\(947\) 945.689 + 945.689i 0.998615 + 0.998615i 0.999999 0.00138355i \(-0.000440398\pi\)
−0.00138355 + 0.999999i \(0.500440\pi\)
\(948\) −579.375 295.206i −0.611155 0.311399i
\(949\) 683.645 940.957i 0.720385 0.991525i
\(950\) 0 0
\(951\) 102.888 316.657i 0.108189 0.332972i
\(952\) 168.441 85.8251i 0.176934 0.0901524i
\(953\) −47.1815 + 297.893i −0.0495084 + 0.312584i 0.950490 + 0.310755i \(0.100582\pi\)
−0.999998 + 0.00182850i \(0.999418\pi\)
\(954\) 389.381 535.937i 0.408156 0.561779i
\(955\) 0 0
\(956\) −1763.63 −1.84480
\(957\) 121.144 + 868.965i 0.126587 + 0.908010i
\(958\) 101.831 101.831i 0.106296 0.106296i
\(959\) −20.7434 + 6.73994i −0.0216302 + 0.00702809i
\(960\) 0 0
\(961\) 763.220 554.512i 0.794194 0.577016i
\(962\) 2222.04 1132.18i 2.30981 1.17691i
\(963\) 249.770 + 490.201i 0.259366 + 0.509035i
\(964\) 1278.64 + 1759.90i 1.32639 + 1.82562i
\(965\) 0 0
\(966\) 11.4614 + 35.2747i 0.0118648 + 0.0365162i
\(967\) 695.911 + 695.911i 0.719660 + 0.719660i 0.968535 0.248876i \(-0.0800611\pi\)
−0.248876 + 0.968535i \(0.580061\pi\)
\(968\) 1231.88 + 2657.13i 1.27261 + 2.74497i
\(969\) 1464.91i 1.51177i
\(970\) 0 0
\(971\) −740.809 538.229i −0.762934 0.554304i 0.136875 0.990588i \(-0.456294\pi\)
−0.899809 + 0.436284i \(0.856294\pi\)
\(972\) −1943.93 307.888i −1.99992 0.316757i
\(973\) 14.8183 + 29.0825i 0.0152295 + 0.0298895i
\(974\) 166.753 + 54.1813i 0.171204 + 0.0556277i
\(975\) 0 0
\(976\) 1614.66 + 1173.12i 1.65437 + 1.20197i
\(977\) 90.6052 177.823i 0.0927381 0.182009i −0.839978 0.542621i \(-0.817432\pi\)
0.932716 + 0.360612i \(0.117432\pi\)
\(978\) 498.743 498.743i 0.509962 0.509962i
\(979\) −40.7973 + 54.0153i −0.0416724 + 0.0551739i
\(980\) 0 0
\(981\) 232.709 + 716.204i 0.237216 + 0.730076i
\(982\) 549.371 + 3468.59i 0.559441 + 3.53217i
\(983\) −255.639 + 1614.04i −0.260060 + 1.64196i 0.419080 + 0.907949i \(0.362353\pi\)
−0.679141 + 0.734008i \(0.737647\pi\)
\(984\) −1222.03 397.061i −1.24190 0.403517i
\(985\) 0 0
\(986\) 3135.00 2277.71i 3.17951 2.31005i
\(987\) −3.66051 23.1116i −0.00370873 0.0234160i
\(988\) 3736.59 + 1903.89i 3.78197 + 1.92701i
\(989\) 654.614i 0.661895i
\(990\) 0 0
\(991\) −935.782 −0.944281 −0.472141 0.881523i \(-0.656519\pi\)
−0.472141 + 0.881523i \(0.656519\pi\)
\(992\) −178.708 + 350.733i −0.180149 + 0.353562i
\(993\) 1225.50 194.100i 1.23414 0.195468i
\(994\) −42.1355 57.9945i −0.0423898 0.0583445i
\(995\) 0 0
\(996\) −760.780 + 2341.44i −0.763835 + 2.35084i
\(997\) 1426.04 + 225.862i 1.43033 + 0.226542i 0.823060 0.567955i \(-0.192265\pi\)
0.607269 + 0.794496i \(0.292265\pi\)
\(998\) 2082.97 329.910i 2.08714 0.330571i
\(999\) −996.687 + 323.843i −0.997684 + 0.324167i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.3.bk.c.82.1 128
5.2 odd 4 inner 275.3.bk.c.93.1 yes 128
5.3 odd 4 inner 275.3.bk.c.93.16 yes 128
5.4 even 2 inner 275.3.bk.c.82.16 yes 128
11.9 even 5 inner 275.3.bk.c.207.16 yes 128
55.9 even 10 inner 275.3.bk.c.207.1 yes 128
55.42 odd 20 inner 275.3.bk.c.218.16 yes 128
55.53 odd 20 inner 275.3.bk.c.218.1 yes 128
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
275.3.bk.c.82.1 128 1.1 even 1 trivial
275.3.bk.c.82.16 yes 128 5.4 even 2 inner
275.3.bk.c.93.1 yes 128 5.2 odd 4 inner
275.3.bk.c.93.16 yes 128 5.3 odd 4 inner
275.3.bk.c.207.1 yes 128 55.9 even 10 inner
275.3.bk.c.207.16 yes 128 11.9 even 5 inner
275.3.bk.c.218.1 yes 128 55.53 odd 20 inner
275.3.bk.c.218.16 yes 128 55.42 odd 20 inner