Properties

Label 275.3.bk.c.218.1
Level $275$
Weight $3$
Character 275.218
Analytic conductor $7.493$
Analytic rank $0$
Dimension $128$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,3,Mod(82,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([5, 8])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.82"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 275.bk (of order \(20\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [128] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.49320726991\)
Analytic rank: \(0\)
Dimension: \(128\)
Relative dimension: \(16\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 218.1
Character \(\chi\) \(=\) 275.218
Dual form 275.3.bk.c.82.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.72172 - 3.37907i) q^{2} +(2.24871 + 0.356160i) q^{3} +(-6.10266 + 8.39959i) q^{4} +(-2.66816 - 8.21175i) q^{6} +(0.264482 - 0.0418898i) q^{7} +(23.9070 + 3.78649i) q^{8} +(-3.62968 - 1.17935i) q^{9} +(-8.77765 + 6.62969i) q^{11} +(-16.7147 + 16.7147i) q^{12} +(-16.3141 + 8.31246i) q^{13} +(-0.596913 - 0.821581i) q^{14} +(-15.5330 - 47.8055i) q^{16} +(25.9877 + 13.2414i) q^{17} +(2.26418 + 14.2955i) q^{18} +(12.9667 + 17.8472i) q^{19} +0.609661 q^{21} +(37.5149 + 18.2458i) q^{22} +(11.3432 + 11.3432i) q^{23} +(52.4112 + 17.0294i) q^{24} +(56.1768 + 40.8148i) q^{26} +(-25.9993 - 13.2473i) q^{27} +(-1.26219 + 2.47718i) q^{28} +(-20.5919 + 28.3423i) q^{29} +(-1.29669 + 3.99079i) q^{31} +(-66.3328 + 66.3328i) q^{32} +(-22.0996 + 11.7820i) q^{33} -110.612i q^{34} +(32.0568 - 23.2906i) q^{36} +(35.4724 - 5.61828i) q^{37} +(37.9817 - 74.5433i) q^{38} +(-39.6462 + 12.8818i) q^{39} +(-18.8632 + 13.7049i) q^{41} +(-1.04967 - 2.06009i) q^{42} +(-28.8549 - 28.8549i) q^{43} +(-2.11969 - 114.187i) q^{44} +(18.7997 - 57.8594i) q^{46} +(-6.00418 + 37.9089i) q^{47} +(-17.9026 - 113.033i) q^{48} +(-46.5336 + 15.1197i) q^{49} +(53.7226 + 39.0317i) q^{51} +(29.7383 - 187.760i) q^{52} +(40.7810 - 20.7790i) q^{53} +110.662i q^{54} +6.48158 q^{56} +(22.8019 + 44.7512i) q^{57} +(131.224 + 20.7838i) q^{58} +(-21.5538 + 29.6662i) q^{59} +(12.2697 + 37.7623i) q^{61} +(15.7177 - 2.48944i) q^{62} +(-1.00939 - 0.159871i) q^{63} +(147.128 + 47.8048i) q^{64} +(77.8616 + 54.3908i) q^{66} +(51.4949 - 51.4949i) q^{67} +(-269.816 + 137.478i) q^{68} +(21.4676 + 29.5476i) q^{69} +(-21.8132 - 67.1340i) q^{71} +(-82.3091 - 41.9386i) q^{72} +(-9.93715 - 62.7407i) q^{73} +(-80.0583 - 110.191i) q^{74} -229.040 q^{76} +(-2.04381 + 2.12113i) q^{77} +(111.789 + 111.789i) q^{78} +(26.1620 + 8.50056i) q^{79} +(-25.9584 - 18.8599i) q^{81} +(78.7870 + 40.1440i) q^{82} +(-47.2836 + 92.7992i) q^{83} +(-3.72056 + 5.12090i) q^{84} +(-47.8226 + 147.183i) q^{86} +(-56.3994 + 56.3994i) q^{87} +(-234.951 + 125.259i) q^{88} +6.15373i q^{89} +(-3.96658 + 2.88189i) q^{91} +(-164.502 + 26.0546i) q^{92} +(-4.33723 + 8.51229i) q^{93} +(138.434 - 44.9801i) q^{94} +(-172.788 + 125.538i) q^{96} +(0.706632 + 1.38684i) q^{97} +(131.208 + 131.208i) q^{98} +(39.6788 - 13.7117i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 128 q - 48 q^{6} + 32 q^{11} + 280 q^{16} - 8 q^{21} + 528 q^{26} - 16 q^{31} + 336 q^{36} - 604 q^{41} - 1152 q^{46} - 1024 q^{51} - 992 q^{56} - 320 q^{61} + 1624 q^{66} + 536 q^{71} + 1776 q^{76} + 3680 q^{81}+ \cdots - 6584 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.72172 3.37907i −0.860862 1.68954i −0.713732 0.700419i \(-0.752996\pi\)
−0.147130 0.989117i \(-0.547004\pi\)
\(3\) 2.24871 + 0.356160i 0.749569 + 0.118720i 0.519519 0.854459i \(-0.326111\pi\)
0.230050 + 0.973179i \(0.426111\pi\)
\(4\) −6.10266 + 8.39959i −1.52566 + 2.09990i
\(5\) 0 0
\(6\) −2.66816 8.21175i −0.444693 1.36862i
\(7\) 0.264482 0.0418898i 0.0377831 0.00598426i −0.137514 0.990500i \(-0.543911\pi\)
0.175297 + 0.984516i \(0.443911\pi\)
\(8\) 23.9070 + 3.78649i 2.98837 + 0.473312i
\(9\) −3.62968 1.17935i −0.403298 0.131039i
\(10\) 0 0
\(11\) −8.77765 + 6.62969i −0.797968 + 0.602699i
\(12\) −16.7147 + 16.7147i −1.39289 + 1.39289i
\(13\) −16.3141 + 8.31246i −1.25493 + 0.639420i −0.949790 0.312887i \(-0.898704\pi\)
−0.305142 + 0.952307i \(0.598704\pi\)
\(14\) −0.596913 0.821581i −0.0426367 0.0586843i
\(15\) 0 0
\(16\) −15.5330 47.8055i −0.970809 2.98784i
\(17\) 25.9877 + 13.2414i 1.52869 + 0.778905i 0.997655 0.0684472i \(-0.0218045\pi\)
0.531032 + 0.847352i \(0.321804\pi\)
\(18\) 2.26418 + 14.2955i 0.125788 + 0.794193i
\(19\) 12.9667 + 17.8472i 0.682459 + 0.939324i 0.999960 0.00893392i \(-0.00284379\pi\)
−0.317501 + 0.948258i \(0.602844\pi\)
\(20\) 0 0
\(21\) 0.609661 0.0290315
\(22\) 37.5149 + 18.2458i 1.70522 + 0.829356i
\(23\) 11.3432 + 11.3432i 0.493183 + 0.493183i 0.909308 0.416124i \(-0.136612\pi\)
−0.416124 + 0.909308i \(0.636612\pi\)
\(24\) 52.4112 + 17.0294i 2.18380 + 0.709559i
\(25\) 0 0
\(26\) 56.1768 + 40.8148i 2.16065 + 1.56980i
\(27\) −25.9993 13.2473i −0.962938 0.490641i
\(28\) −1.26219 + 2.47718i −0.0450780 + 0.0884706i
\(29\) −20.5919 + 28.3423i −0.710064 + 0.977319i 0.289732 + 0.957108i \(0.406434\pi\)
−0.999796 + 0.0202115i \(0.993566\pi\)
\(30\) 0 0
\(31\) −1.29669 + 3.99079i −0.0418286 + 0.128735i −0.969790 0.243941i \(-0.921560\pi\)
0.927962 + 0.372676i \(0.121560\pi\)
\(32\) −66.3328 + 66.3328i −2.07290 + 2.07290i
\(33\) −22.0996 + 11.7820i −0.669685 + 0.357030i
\(34\) 110.612i 3.25330i
\(35\) 0 0
\(36\) 32.0568 23.2906i 0.890466 0.646962i
\(37\) 35.4724 5.61828i 0.958715 0.151845i 0.342582 0.939488i \(-0.388699\pi\)
0.616133 + 0.787642i \(0.288699\pi\)
\(38\) 37.9817 74.5433i 0.999519 1.96167i
\(39\) −39.6462 + 12.8818i −1.01657 + 0.330304i
\(40\) 0 0
\(41\) −18.8632 + 13.7049i −0.460078 + 0.334266i −0.793562 0.608490i \(-0.791776\pi\)
0.333484 + 0.942756i \(0.391776\pi\)
\(42\) −1.04967 2.06009i −0.0249921 0.0490498i
\(43\) −28.8549 28.8549i −0.671043 0.671043i 0.286913 0.957957i \(-0.407371\pi\)
−0.957957 + 0.286913i \(0.907371\pi\)
\(44\) −2.11969 114.187i −0.0481747 2.59517i
\(45\) 0 0
\(46\) 18.7997 57.8594i 0.408689 1.25781i
\(47\) −6.00418 + 37.9089i −0.127748 + 0.806572i 0.837729 + 0.546086i \(0.183883\pi\)
−0.965478 + 0.260486i \(0.916117\pi\)
\(48\) −17.9026 113.033i −0.372971 2.35485i
\(49\) −46.5336 + 15.1197i −0.949665 + 0.308565i
\(50\) 0 0
\(51\) 53.7226 + 39.0317i 1.05338 + 0.765328i
\(52\) 29.7383 187.760i 0.571890 3.61077i
\(53\) 40.7810 20.7790i 0.769454 0.392056i −0.0247612 0.999693i \(-0.507883\pi\)
0.794215 + 0.607637i \(0.207883\pi\)
\(54\) 110.662i 2.04929i
\(55\) 0 0
\(56\) 6.48158 0.115742
\(57\) 22.8019 + 44.7512i 0.400033 + 0.785109i
\(58\) 131.224 + 20.7838i 2.26248 + 0.358342i
\(59\) −21.5538 + 29.6662i −0.365318 + 0.502817i −0.951621 0.307275i \(-0.900583\pi\)
0.586303 + 0.810092i \(0.300583\pi\)
\(60\) 0 0
\(61\) 12.2697 + 37.7623i 0.201143 + 0.619055i 0.999850 + 0.0173342i \(0.00551792\pi\)
−0.798707 + 0.601721i \(0.794482\pi\)
\(62\) 15.7177 2.48944i 0.253512 0.0401523i
\(63\) −1.00939 0.159871i −0.0160220 0.00253764i
\(64\) 147.128 + 47.8048i 2.29887 + 0.746949i
\(65\) 0 0
\(66\) 77.8616 + 54.3908i 1.17972 + 0.824103i
\(67\) 51.4949 51.4949i 0.768580 0.768580i −0.209277 0.977856i \(-0.567111\pi\)
0.977856 + 0.209277i \(0.0671109\pi\)
\(68\) −269.816 + 137.478i −3.96788 + 2.02174i
\(69\) 21.4676 + 29.5476i 0.311124 + 0.428226i
\(70\) 0 0
\(71\) −21.8132 67.1340i −0.307228 0.945550i −0.978836 0.204644i \(-0.934396\pi\)
0.671609 0.740906i \(-0.265604\pi\)
\(72\) −82.3091 41.9386i −1.14318 0.582480i
\(73\) −9.93715 62.7407i −0.136125 0.859462i −0.957366 0.288879i \(-0.906717\pi\)
0.821240 0.570583i \(-0.193283\pi\)
\(74\) −80.0583 110.191i −1.08187 1.48907i
\(75\) 0 0
\(76\) −229.040 −3.01369
\(77\) −2.04381 + 2.12113i −0.0265430 + 0.0275471i
\(78\) 111.789 + 111.789i 1.43319 + 1.43319i
\(79\) 26.1620 + 8.50056i 0.331165 + 0.107602i 0.469880 0.882730i \(-0.344297\pi\)
−0.138715 + 0.990332i \(0.544297\pi\)
\(80\) 0 0
\(81\) −25.9584 18.8599i −0.320474 0.232838i
\(82\) 78.7870 + 40.1440i 0.960818 + 0.489561i
\(83\) −47.2836 + 92.7992i −0.569682 + 1.11806i 0.408972 + 0.912547i \(0.365887\pi\)
−0.978654 + 0.205516i \(0.934113\pi\)
\(84\) −3.72056 + 5.12090i −0.0442923 + 0.0609632i
\(85\) 0 0
\(86\) −47.8226 + 147.183i −0.556077 + 1.71143i
\(87\) −56.3994 + 56.3994i −0.648269 + 0.648269i
\(88\) −234.951 + 125.259i −2.66989 + 1.42340i
\(89\) 6.15373i 0.0691430i 0.999402 + 0.0345715i \(0.0110066\pi\)
−0.999402 + 0.0345715i \(0.988993\pi\)
\(90\) 0 0
\(91\) −3.96658 + 2.88189i −0.0435888 + 0.0316691i
\(92\) −164.502 + 26.0546i −1.78807 + 0.283202i
\(93\) −4.33723 + 8.51229i −0.0466369 + 0.0915300i
\(94\) 138.434 44.9801i 1.47271 0.478511i
\(95\) 0 0
\(96\) −172.788 + 125.538i −1.79987 + 1.30769i
\(97\) 0.706632 + 1.38684i 0.00728486 + 0.0142973i 0.894620 0.446827i \(-0.147446\pi\)
−0.887335 + 0.461125i \(0.847446\pi\)
\(98\) 131.208 + 131.208i 1.33886 + 1.33886i
\(99\) 39.6788 13.7117i 0.400796 0.138502i
\(100\) 0 0
\(101\) −18.0392 + 55.5189i −0.178606 + 0.549692i −0.999780 0.0209859i \(-0.993319\pi\)
0.821174 + 0.570678i \(0.193319\pi\)
\(102\) 39.3957 248.734i 0.386232 2.43857i
\(103\) −14.5617 91.9393i −0.141376 0.892614i −0.951789 0.306754i \(-0.900757\pi\)
0.810413 0.585860i \(-0.199243\pi\)
\(104\) −421.497 + 136.953i −4.05285 + 1.31685i
\(105\) 0 0
\(106\) −140.427 102.026i −1.32479 0.962514i
\(107\) −22.5509 + 142.381i −0.210756 + 1.33066i 0.624597 + 0.780947i \(0.285263\pi\)
−0.835353 + 0.549713i \(0.814737\pi\)
\(108\) 269.937 137.540i 2.49942 1.27352i
\(109\) 197.319i 1.81026i 0.425130 + 0.905132i \(0.360228\pi\)
−0.425130 + 0.905132i \(0.639772\pi\)
\(110\) 0 0
\(111\) 81.7681 0.736649
\(112\) −6.11075 11.9930i −0.0545602 0.107080i
\(113\) −133.043 21.0719i −1.17737 0.186477i −0.463073 0.886320i \(-0.653253\pi\)
−0.714297 + 0.699843i \(0.753253\pi\)
\(114\) 111.959 154.098i 0.982097 1.35174i
\(115\) 0 0
\(116\) −112.398 345.926i −0.968951 2.98212i
\(117\) 69.0184 10.9314i 0.589901 0.0934311i
\(118\) 137.354 + 21.7547i 1.16402 + 0.184362i
\(119\) 7.42795 + 2.41349i 0.0624197 + 0.0202814i
\(120\) 0 0
\(121\) 33.0943 116.386i 0.273507 0.961870i
\(122\) 106.477 106.477i 0.872759 0.872759i
\(123\) −47.2989 + 24.1000i −0.384544 + 0.195935i
\(124\) −25.6078 35.2461i −0.206514 0.284243i
\(125\) 0 0
\(126\) 1.19767 + 3.68605i 0.00950531 + 0.0292543i
\(127\) −62.5920 31.8922i −0.492851 0.251120i 0.189857 0.981812i \(-0.439198\pi\)
−0.682707 + 0.730692i \(0.739198\pi\)
\(128\) −33.0782 208.847i −0.258423 1.63162i
\(129\) −54.6092 75.1631i −0.423327 0.582659i
\(130\) 0 0
\(131\) −16.9883 −0.129682 −0.0648408 0.997896i \(-0.520654\pi\)
−0.0648408 + 0.997896i \(0.520654\pi\)
\(132\) 35.9024 257.529i 0.271988 1.95098i
\(133\) 4.17707 + 4.17707i 0.0314066 + 0.0314066i
\(134\) −262.665 85.3450i −1.96018 0.636903i
\(135\) 0 0
\(136\) 571.149 + 414.964i 4.19962 + 3.05120i
\(137\) −72.5736 36.9781i −0.529734 0.269913i 0.168600 0.985684i \(-0.446075\pi\)
−0.698335 + 0.715771i \(0.746075\pi\)
\(138\) 62.8822 123.413i 0.455668 0.894298i
\(139\) 71.6463 98.6127i 0.515441 0.709444i −0.469384 0.882994i \(-0.655524\pi\)
0.984825 + 0.173550i \(0.0555240\pi\)
\(140\) 0 0
\(141\) −27.0033 + 83.1075i −0.191512 + 0.589415i
\(142\) −189.295 + 189.295i −1.33306 + 1.33306i
\(143\) 88.0906 181.122i 0.616018 1.26658i
\(144\) 191.838i 1.33221i
\(145\) 0 0
\(146\) −194.896 + 141.600i −1.33491 + 0.969866i
\(147\) −110.025 + 17.4263i −0.748472 + 0.118546i
\(148\) −169.285 + 332.240i −1.14382 + 2.24487i
\(149\) 223.209 72.5250i 1.49805 0.486745i 0.558599 0.829438i \(-0.311339\pi\)
0.939448 + 0.342693i \(0.111339\pi\)
\(150\) 0 0
\(151\) −92.9400 + 67.5249i −0.615497 + 0.447185i −0.851346 0.524605i \(-0.824213\pi\)
0.235849 + 0.971790i \(0.424213\pi\)
\(152\) 242.417 + 475.770i 1.59485 + 3.13007i
\(153\) −78.7106 78.7106i −0.514449 0.514449i
\(154\) 10.6863 + 3.25420i 0.0693917 + 0.0211311i
\(155\) 0 0
\(156\) 133.745 411.626i 0.857341 2.63863i
\(157\) 10.1236 63.9179i 0.0644815 0.407120i −0.934243 0.356636i \(-0.883924\pi\)
0.998725 0.0504840i \(-0.0160764\pi\)
\(158\) −16.3198 103.039i −0.103290 0.652146i
\(159\) 99.1052 32.2012i 0.623303 0.202523i
\(160\) 0 0
\(161\) 3.47524 + 2.52491i 0.0215853 + 0.0156827i
\(162\) −19.0357 + 120.187i −0.117504 + 0.741893i
\(163\) −72.7852 + 37.0859i −0.446535 + 0.227521i −0.662774 0.748820i \(-0.730621\pi\)
0.216239 + 0.976340i \(0.430621\pi\)
\(164\) 242.079i 1.47609i
\(165\) 0 0
\(166\) 394.985 2.37942
\(167\) −24.5061 48.0959i −0.146743 0.288000i 0.805922 0.592022i \(-0.201670\pi\)
−0.952665 + 0.304022i \(0.901670\pi\)
\(168\) 14.5752 + 2.30848i 0.0867569 + 0.0137410i
\(169\) 97.7179 134.497i 0.578212 0.795841i
\(170\) 0 0
\(171\) −26.0169 80.0718i −0.152146 0.468256i
\(172\) 418.460 66.2776i 2.43291 0.385335i
\(173\) 26.9852 + 4.27403i 0.155984 + 0.0247054i 0.233938 0.972252i \(-0.424839\pi\)
−0.0779542 + 0.996957i \(0.524839\pi\)
\(174\) 287.682 + 93.4735i 1.65334 + 0.537204i
\(175\) 0 0
\(176\) 453.279 + 316.641i 2.57545 + 1.79910i
\(177\) −59.0340 + 59.0340i −0.333525 + 0.333525i
\(178\) 20.7939 10.5950i 0.116820 0.0595225i
\(179\) 142.222 + 195.751i 0.794535 + 1.09358i 0.993529 + 0.113582i \(0.0362326\pi\)
−0.198994 + 0.980001i \(0.563767\pi\)
\(180\) 0 0
\(181\) −24.9142 76.6781i −0.137648 0.423636i 0.858345 0.513073i \(-0.171493\pi\)
−0.995992 + 0.0894373i \(0.971493\pi\)
\(182\) 16.5675 + 8.44155i 0.0910301 + 0.0463821i
\(183\) 14.1416 + 89.2864i 0.0772764 + 0.487904i
\(184\) 228.231 + 314.133i 1.24039 + 1.70725i
\(185\) 0 0
\(186\) 36.2312 0.194791
\(187\) −315.897 + 56.0621i −1.68929 + 0.299797i
\(188\) −281.778 281.778i −1.49882 1.49882i
\(189\) −7.43128 2.41457i −0.0393189 0.0127755i
\(190\) 0 0
\(191\) 44.5047 + 32.3346i 0.233009 + 0.169291i 0.698163 0.715939i \(-0.254001\pi\)
−0.465154 + 0.885230i \(0.654001\pi\)
\(192\) 313.821 + 159.900i 1.63449 + 0.832812i
\(193\) −51.4223 + 100.922i −0.266437 + 0.522911i −0.985001 0.172549i \(-0.944800\pi\)
0.718564 + 0.695461i \(0.244800\pi\)
\(194\) 3.46962 4.77552i 0.0178846 0.0246161i
\(195\) 0 0
\(196\) 156.979 483.133i 0.800916 2.46496i
\(197\) 191.948 191.948i 0.974353 0.974353i −0.0253260 0.999679i \(-0.508062\pi\)
0.999679 + 0.0253260i \(0.00806237\pi\)
\(198\) −114.649 110.470i −0.579034 0.557929i
\(199\) 33.5384i 0.168534i −0.996443 0.0842672i \(-0.973145\pi\)
0.996443 0.0842672i \(-0.0268549\pi\)
\(200\) 0 0
\(201\) 134.137 97.4564i 0.667349 0.484858i
\(202\) 218.661 34.6325i 1.08248 0.171448i
\(203\) −4.25892 + 8.35860i −0.0209799 + 0.0411754i
\(204\) −655.701 + 213.050i −3.21422 + 1.04436i
\(205\) 0 0
\(206\) −285.598 + 207.499i −1.38640 + 1.00728i
\(207\) −27.7946 54.5499i −0.134273 0.263526i
\(208\) 650.788 + 650.788i 3.12879 + 3.12879i
\(209\) −232.138 70.6907i −1.11071 0.338233i
\(210\) 0 0
\(211\) 52.4776 161.510i 0.248709 0.765448i −0.746295 0.665615i \(-0.768169\pi\)
0.995004 0.0998327i \(-0.0318308\pi\)
\(212\) −74.3379 + 469.351i −0.350650 + 2.21392i
\(213\) −25.1409 158.734i −0.118033 0.745229i
\(214\) 519.941 168.939i 2.42963 0.789435i
\(215\) 0 0
\(216\) −571.405 415.150i −2.64539 1.92199i
\(217\) −0.175777 + 1.10981i −0.000810031 + 0.00511433i
\(218\) 666.755 339.728i 3.05851 1.55839i
\(219\) 144.625i 0.660386i
\(220\) 0 0
\(221\) −534.034 −2.41645
\(222\) −140.782 276.300i −0.634153 1.24460i
\(223\) 155.796 + 24.6757i 0.698638 + 0.110653i 0.495643 0.868526i \(-0.334932\pi\)
0.202995 + 0.979180i \(0.434932\pi\)
\(224\) −14.7651 + 20.3225i −0.0659158 + 0.0907254i
\(225\) 0 0
\(226\) 157.859 + 485.841i 0.698493 + 2.14974i
\(227\) −61.1052 + 9.67811i −0.269186 + 0.0426349i −0.289568 0.957157i \(-0.593512\pi\)
0.0203822 + 0.999792i \(0.493512\pi\)
\(228\) −515.044 81.5750i −2.25897 0.357785i
\(229\) −431.134 140.084i −1.88268 0.611720i −0.985400 0.170257i \(-0.945540\pi\)
−0.897279 0.441463i \(-0.854460\pi\)
\(230\) 0 0
\(231\) −5.35140 + 4.04187i −0.0231662 + 0.0174973i
\(232\) −599.607 + 599.607i −2.58451 + 2.58451i
\(233\) 303.971 154.881i 1.30460 0.664725i 0.343037 0.939322i \(-0.388544\pi\)
0.961560 + 0.274596i \(0.0885442\pi\)
\(234\) −155.769 214.397i −0.665678 0.916227i
\(235\) 0 0
\(236\) −117.649 362.085i −0.498511 1.53426i
\(237\) 55.8032 + 28.4331i 0.235456 + 0.119971i
\(238\) −4.63352 29.2549i −0.0194686 0.122920i
\(239\) 99.8447 + 137.424i 0.417760 + 0.574998i 0.965090 0.261920i \(-0.0843555\pi\)
−0.547329 + 0.836917i \(0.684356\pi\)
\(240\) 0 0
\(241\) −209.522 −0.869384 −0.434692 0.900579i \(-0.643143\pi\)
−0.434692 + 0.900579i \(0.643143\pi\)
\(242\) −450.257 + 88.5568i −1.86057 + 0.365937i
\(243\) 134.043 + 134.043i 0.551617 + 0.551617i
\(244\) −392.066 127.390i −1.60683 0.522090i
\(245\) 0 0
\(246\) 162.871 + 118.333i 0.662078 + 0.481028i
\(247\) −359.894 183.375i −1.45706 0.742410i
\(248\) −46.1110 + 90.4979i −0.185931 + 0.364911i
\(249\) −139.378 + 191.838i −0.559752 + 0.770432i
\(250\) 0 0
\(251\) 18.0637 55.5944i 0.0719670 0.221492i −0.908603 0.417661i \(-0.862850\pi\)
0.980570 + 0.196169i \(0.0628501\pi\)
\(252\) 7.50280 7.50280i 0.0297730 0.0297730i
\(253\) −174.769 24.3648i −0.690786 0.0963034i
\(254\) 266.413i 1.04887i
\(255\) 0 0
\(256\) −148.141 + 107.631i −0.578677 + 0.420433i
\(257\) 164.934 26.1230i 0.641767 0.101646i 0.172935 0.984933i \(-0.444675\pi\)
0.468832 + 0.883287i \(0.344675\pi\)
\(258\) −159.960 + 313.938i −0.619998 + 1.21682i
\(259\) 9.14647 2.97187i 0.0353145 0.0114744i
\(260\) 0 0
\(261\) 108.167 78.5882i 0.414435 0.301104i
\(262\) 29.2492 + 57.4047i 0.111638 + 0.219102i
\(263\) 229.419 + 229.419i 0.872315 + 0.872315i 0.992724 0.120409i \(-0.0384206\pi\)
−0.120409 + 0.992724i \(0.538421\pi\)
\(264\) −572.947 + 197.992i −2.17025 + 0.749969i
\(265\) 0 0
\(266\) 6.92287 21.3064i 0.0260258 0.0800993i
\(267\) −2.19171 + 13.8379i −0.00820866 + 0.0518274i
\(268\) 118.280 + 746.791i 0.441344 + 2.78653i
\(269\) 447.195 145.302i 1.66243 0.540157i 0.681054 0.732233i \(-0.261522\pi\)
0.981380 + 0.192076i \(0.0615220\pi\)
\(270\) 0 0
\(271\) 393.019 + 285.545i 1.45026 + 1.05367i 0.985771 + 0.168092i \(0.0537605\pi\)
0.464485 + 0.885581i \(0.346240\pi\)
\(272\) 229.346 1448.03i 0.843183 5.32365i
\(273\) −9.94609 + 5.06779i −0.0364326 + 0.0185633i
\(274\) 308.897i 1.12736i
\(275\) 0 0
\(276\) −379.197 −1.37390
\(277\) 73.3475 + 143.953i 0.264792 + 0.519685i 0.984672 0.174414i \(-0.0558031\pi\)
−0.719880 + 0.694099i \(0.755803\pi\)
\(278\) −456.575 72.3143i −1.64235 0.260123i
\(279\) 9.41312 12.9560i 0.0337388 0.0464374i
\(280\) 0 0
\(281\) −65.0399 200.172i −0.231459 0.712357i −0.997571 0.0696507i \(-0.977812\pi\)
0.766113 0.642706i \(-0.222188\pi\)
\(282\) 327.318 51.8421i 1.16070 0.183837i
\(283\) −183.921 29.1302i −0.649897 0.102934i −0.177223 0.984171i \(-0.556711\pi\)
−0.472674 + 0.881237i \(0.656711\pi\)
\(284\) 697.017 + 226.474i 2.45428 + 0.797445i
\(285\) 0 0
\(286\) −763.690 + 14.1766i −2.67025 + 0.0495684i
\(287\) −4.41487 + 4.41487i −0.0153828 + 0.0153828i
\(288\) 318.997 162.537i 1.10763 0.564364i
\(289\) 330.155 + 454.419i 1.14240 + 1.57239i
\(290\) 0 0
\(291\) 1.09507 + 3.37028i 0.00376312 + 0.0115817i
\(292\) 587.639 + 299.417i 2.01246 + 1.02540i
\(293\) 17.6153 + 111.219i 0.0601205 + 0.379586i 0.999342 + 0.0362737i \(0.0115488\pi\)
−0.939221 + 0.343312i \(0.888451\pi\)
\(294\) 248.318 + 341.780i 0.844619 + 1.16252i
\(295\) 0 0
\(296\) 869.313 2.93687
\(297\) 316.039 56.0872i 1.06410 0.188846i
\(298\) −629.371 629.371i −2.11198 2.11198i
\(299\) −279.345 90.7646i −0.934263 0.303561i
\(300\) 0 0
\(301\) −8.84031 6.42286i −0.0293698 0.0213384i
\(302\) 388.189 + 197.792i 1.28539 + 0.654940i
\(303\) −60.3384 + 118.421i −0.199137 + 0.390828i
\(304\) 651.781 897.099i 2.14402 2.95098i
\(305\) 0 0
\(306\) −130.451 + 401.487i −0.426311 + 1.31205i
\(307\) 140.701 140.701i 0.458308 0.458308i −0.439792 0.898100i \(-0.644948\pi\)
0.898100 + 0.439792i \(0.144948\pi\)
\(308\) −5.34391 30.1117i −0.0173504 0.0977653i
\(309\) 211.931i 0.685860i
\(310\) 0 0
\(311\) −184.187 + 133.820i −0.592241 + 0.430288i −0.843116 0.537731i \(-0.819282\pi\)
0.250875 + 0.968019i \(0.419282\pi\)
\(312\) −996.599 + 157.846i −3.19423 + 0.505916i
\(313\) 119.867 235.253i 0.382962 0.751606i −0.616396 0.787437i \(-0.711408\pi\)
0.999358 + 0.0358309i \(0.0114078\pi\)
\(314\) −233.413 + 75.8405i −0.743354 + 0.241530i
\(315\) 0 0
\(316\) −231.059 + 167.874i −0.731200 + 0.531248i
\(317\) 66.3921 + 130.302i 0.209439 + 0.411047i 0.971698 0.236225i \(-0.0759101\pi\)
−0.762260 + 0.647271i \(0.775910\pi\)
\(318\) −279.442 279.442i −0.878749 0.878749i
\(319\) −7.15234 385.296i −0.0224211 1.20783i
\(320\) 0 0
\(321\) −101.421 + 312.141i −0.315952 + 0.972400i
\(322\) 2.54845 16.0903i 0.00791444 0.0499698i
\(323\) 100.654 + 635.503i 0.311622 + 1.96750i
\(324\) 316.830 102.944i 0.977871 0.317729i
\(325\) 0 0
\(326\) 250.632 + 182.095i 0.768810 + 0.558573i
\(327\) −70.2771 + 443.712i −0.214915 + 1.35692i
\(328\) −502.855 + 256.218i −1.53310 + 0.781151i
\(329\) 10.2777i 0.0312393i
\(330\) 0 0
\(331\) 544.980 1.64647 0.823233 0.567704i \(-0.192168\pi\)
0.823233 + 0.567704i \(0.192168\pi\)
\(332\) −490.920 963.485i −1.47867 2.90206i
\(333\) −135.380 21.4420i −0.406545 0.0643904i
\(334\) −120.327 + 165.616i −0.360260 + 0.495856i
\(335\) 0 0
\(336\) −9.46984 29.1452i −0.0281840 0.0867416i
\(337\) 298.986 47.3547i 0.887198 0.140518i 0.303830 0.952726i \(-0.401735\pi\)
0.583368 + 0.812208i \(0.301735\pi\)
\(338\) −622.719 98.6289i −1.84236 0.291802i
\(339\) −291.669 94.7690i −0.860381 0.279555i
\(340\) 0 0
\(341\) −15.0759 43.6264i −0.0442107 0.127937i
\(342\) −225.775 + 225.775i −0.660159 + 0.660159i
\(343\) −23.3650 + 11.9050i −0.0681194 + 0.0347086i
\(344\) −580.574 799.092i −1.68772 2.32294i
\(345\) 0 0
\(346\) −32.0187 98.5435i −0.0925397 0.284808i
\(347\) 236.217 + 120.359i 0.680741 + 0.346855i 0.759930 0.650005i \(-0.225233\pi\)
−0.0791889 + 0.996860i \(0.525233\pi\)
\(348\) −129.546 817.918i −0.372257 2.35034i
\(349\) −321.631 442.687i −0.921579 1.26844i −0.963055 0.269305i \(-0.913206\pi\)
0.0414756 0.999140i \(-0.486794\pi\)
\(350\) 0 0
\(351\) 534.274 1.52215
\(352\) 142.480 1022.01i 0.404773 2.90344i
\(353\) 190.687 + 190.687i 0.540190 + 0.540190i 0.923585 0.383395i \(-0.125245\pi\)
−0.383395 + 0.923585i \(0.625245\pi\)
\(354\) 301.120 + 97.8399i 0.850622 + 0.276384i
\(355\) 0 0
\(356\) −51.6888 37.5541i −0.145193 0.105489i
\(357\) 15.8437 + 8.07276i 0.0443801 + 0.0226128i
\(358\) 416.592 817.607i 1.16366 2.28382i
\(359\) −390.631 + 537.658i −1.08811 + 1.49765i −0.237841 + 0.971304i \(0.576440\pi\)
−0.850268 + 0.526350i \(0.823560\pi\)
\(360\) 0 0
\(361\) −38.8300 + 119.507i −0.107562 + 0.331043i
\(362\) −216.206 + 216.206i −0.597253 + 0.597253i
\(363\) 115.872 249.932i 0.319205 0.688517i
\(364\) 50.9048i 0.139848i
\(365\) 0 0
\(366\) 277.357 201.512i 0.757807 0.550579i
\(367\) 255.996 40.5459i 0.697538 0.110479i 0.202412 0.979300i \(-0.435122\pi\)
0.495126 + 0.868821i \(0.335122\pi\)
\(368\) 366.075 718.462i 0.994768 1.95234i
\(369\) 84.6303 27.4980i 0.229350 0.0745204i
\(370\) 0 0
\(371\) 9.91542 7.20397i 0.0267262 0.0194177i
\(372\) −45.0311 88.3786i −0.121051 0.237577i
\(373\) 214.214 + 214.214i 0.574301 + 0.574301i 0.933327 0.359027i \(-0.116891\pi\)
−0.359027 + 0.933327i \(0.616891\pi\)
\(374\) 733.325 + 970.916i 1.96076 + 2.59603i
\(375\) 0 0
\(376\) −287.084 + 883.552i −0.763520 + 2.34987i
\(377\) 100.344 633.548i 0.266165 1.68050i
\(378\) 4.63560 + 29.2680i 0.0122635 + 0.0774287i
\(379\) −271.298 + 88.1499i −0.715825 + 0.232586i −0.644212 0.764847i \(-0.722815\pi\)
−0.0716127 + 0.997433i \(0.522815\pi\)
\(380\) 0 0
\(381\) −129.392 94.0091i −0.339613 0.246743i
\(382\) 32.6360 206.056i 0.0854346 0.539413i
\(383\) −55.1978 + 28.1247i −0.144119 + 0.0734325i −0.524563 0.851372i \(-0.675771\pi\)
0.380444 + 0.924804i \(0.375771\pi\)
\(384\) 481.418i 1.25369i
\(385\) 0 0
\(386\) 429.557 1.11284
\(387\) 70.7038 + 138.764i 0.182697 + 0.358563i
\(388\) −15.9612 2.52801i −0.0411372 0.00651550i
\(389\) 33.9161 46.6815i 0.0871879 0.120004i −0.763195 0.646168i \(-0.776370\pi\)
0.850383 + 0.526165i \(0.176370\pi\)
\(390\) 0 0
\(391\) 144.584 + 444.984i 0.369780 + 1.13807i
\(392\) −1169.73 + 185.267i −2.98400 + 0.472619i
\(393\) −38.2017 6.05055i −0.0972053 0.0153958i
\(394\) −979.086 318.124i −2.48499 0.807422i
\(395\) 0 0
\(396\) −126.974 + 416.964i −0.320641 + 1.05294i
\(397\) 327.770 327.770i 0.825617 0.825617i −0.161290 0.986907i \(-0.551566\pi\)
0.986907 + 0.161290i \(0.0515656\pi\)
\(398\) −113.329 + 57.7438i −0.284745 + 0.145085i
\(399\) 7.90531 + 10.8807i 0.0198128 + 0.0272700i
\(400\) 0 0
\(401\) −117.251 360.860i −0.292395 0.899900i −0.984084 0.177704i \(-0.943133\pi\)
0.691689 0.722196i \(-0.256867\pi\)
\(402\) −560.259 285.466i −1.39368 0.710115i
\(403\) −12.0190 75.8849i −0.0298238 0.188300i
\(404\) −356.249 490.335i −0.881804 1.21370i
\(405\) 0 0
\(406\) 35.5770 0.0876281
\(407\) −274.117 + 284.487i −0.673507 + 0.698985i
\(408\) 1136.55 + 1136.55i 2.78567 + 2.78567i
\(409\) 54.3872 + 17.6715i 0.132976 + 0.0432065i 0.374749 0.927126i \(-0.377729\pi\)
−0.241773 + 0.970333i \(0.577729\pi\)
\(410\) 0 0
\(411\) −150.027 109.001i −0.365028 0.265208i
\(412\) 861.117 + 438.761i 2.09009 + 1.06495i
\(413\) −4.45786 + 8.74905i −0.0107939 + 0.0211841i
\(414\) −136.474 + 187.840i −0.329646 + 0.453719i
\(415\) 0 0
\(416\) 530.772 1633.55i 1.27590 3.92680i
\(417\) 196.233 196.233i 0.470584 0.470584i
\(418\) 160.809 + 906.123i 0.384711 + 2.16776i
\(419\) 759.616i 1.81293i 0.422285 + 0.906463i \(0.361228\pi\)
−0.422285 + 0.906463i \(0.638772\pi\)
\(420\) 0 0
\(421\) 205.163 149.060i 0.487323 0.354061i −0.316831 0.948482i \(-0.602619\pi\)
0.804154 + 0.594421i \(0.202619\pi\)
\(422\) −636.104 + 100.749i −1.50736 + 0.238742i
\(423\) 66.5012 130.516i 0.157213 0.308549i
\(424\) 1053.63 342.346i 2.48498 0.807419i
\(425\) 0 0
\(426\) −493.087 + 358.249i −1.15748 + 0.840959i
\(427\) 4.82698 + 9.47348i 0.0113044 + 0.0221861i
\(428\) −1058.32 1058.32i −2.47271 2.47271i
\(429\) 262.598 375.915i 0.612117 0.876258i
\(430\) 0 0
\(431\) −205.208 + 631.566i −0.476121 + 1.46535i 0.368318 + 0.929700i \(0.379934\pi\)
−0.844440 + 0.535651i \(0.820066\pi\)
\(432\) −229.449 + 1448.68i −0.531131 + 3.35343i
\(433\) −102.418 646.644i −0.236532 1.49340i −0.764768 0.644306i \(-0.777146\pi\)
0.528236 0.849097i \(-0.322854\pi\)
\(434\) 4.05277 1.31682i 0.00933818 0.00303416i
\(435\) 0 0
\(436\) −1657.40 1204.17i −3.80137 2.76186i
\(437\) −55.3599 + 349.528i −0.126682 + 0.799836i
\(438\) −488.697 + 249.004i −1.11575 + 0.568501i
\(439\) 230.999i 0.526194i −0.964769 0.263097i \(-0.915256\pi\)
0.964769 0.263097i \(-0.0847440\pi\)
\(440\) 0 0
\(441\) 186.733 0.423432
\(442\) 919.460 + 1804.54i 2.08023 + 4.08267i
\(443\) 469.772 + 74.4046i 1.06043 + 0.167956i 0.662199 0.749328i \(-0.269623\pi\)
0.398234 + 0.917284i \(0.369623\pi\)
\(444\) −499.003 + 686.818i −1.12388 + 1.54689i
\(445\) 0 0
\(446\) −184.857 568.932i −0.414478 1.27563i
\(447\) 527.762 83.5893i 1.18068 0.187001i
\(448\) 40.9152 + 6.48033i 0.0913286 + 0.0144650i
\(449\) −132.723 43.1244i −0.295597 0.0960453i 0.157464 0.987525i \(-0.449668\pi\)
−0.453061 + 0.891479i \(0.649668\pi\)
\(450\) 0 0
\(451\) 74.7151 245.354i 0.165665 0.544022i
\(452\) 988.910 988.910i 2.18785 2.18785i
\(453\) −233.044 + 118.742i −0.514447 + 0.262124i
\(454\) 137.909 + 189.816i 0.303765 + 0.418097i
\(455\) 0 0
\(456\) 375.674 + 1156.21i 0.823847 + 2.53554i
\(457\) −299.602 152.655i −0.655584 0.334037i 0.0943600 0.995538i \(-0.469920\pi\)
−0.749944 + 0.661501i \(0.769920\pi\)
\(458\) 268.939 + 1698.02i 0.587204 + 3.70746i
\(459\) −500.249 688.534i −1.08987 1.50007i
\(460\) 0 0
\(461\) 288.038 0.624812 0.312406 0.949949i \(-0.398865\pi\)
0.312406 + 0.949949i \(0.398865\pi\)
\(462\) 22.8714 + 11.1238i 0.0495052 + 0.0240774i
\(463\) 8.59030 + 8.59030i 0.0185536 + 0.0185536i 0.716323 0.697769i \(-0.245824\pi\)
−0.697769 + 0.716323i \(0.745824\pi\)
\(464\) 1674.77 + 544.165i 3.60942 + 1.17277i
\(465\) 0 0
\(466\) −1046.71 760.478i −2.24616 1.63193i
\(467\) −368.828 187.927i −0.789781 0.402414i 0.0120776 0.999927i \(-0.496155\pi\)
−0.801859 + 0.597513i \(0.796155\pi\)
\(468\) −329.376 + 646.437i −0.703795 + 1.38128i
\(469\) 11.4623 15.7766i 0.0244400 0.0336387i
\(470\) 0 0
\(471\) 45.5300 140.127i 0.0966666 0.297509i
\(472\) −627.616 + 627.616i −1.32970 + 1.32970i
\(473\) 444.577 + 61.9791i 0.939909 + 0.131034i
\(474\) 237.517i 0.501091i
\(475\) 0 0
\(476\) −65.6025 + 47.6630i −0.137820 + 0.100132i
\(477\) −172.528 + 27.3257i −0.361694 + 0.0572867i
\(478\) 292.462 573.989i 0.611846 1.20081i
\(479\) −36.1149 + 11.7344i −0.0753965 + 0.0244978i −0.346472 0.938060i \(-0.612621\pi\)
0.271076 + 0.962558i \(0.412621\pi\)
\(480\) 0 0
\(481\) −532.000 + 386.521i −1.10603 + 0.803577i
\(482\) 360.738 + 707.989i 0.748420 + 1.46886i
\(483\) 6.91552 + 6.91552i 0.0143179 + 0.0143179i
\(484\) 775.633 + 988.245i 1.60255 + 2.04183i
\(485\) 0 0
\(486\) 222.156 683.726i 0.457111 1.40684i
\(487\) −7.23241 + 45.6636i −0.0148509 + 0.0937652i −0.994000 0.109376i \(-0.965115\pi\)
0.979150 + 0.203141i \(0.0651149\pi\)
\(488\) 150.345 + 949.243i 0.308085 + 1.94517i
\(489\) −176.881 + 57.4721i −0.361720 + 0.117530i
\(490\) 0 0
\(491\) 749.160 + 544.296i 1.52578 + 1.10855i 0.958526 + 0.285007i \(0.0919958\pi\)
0.567258 + 0.823540i \(0.308004\pi\)
\(492\) 86.2190 544.365i 0.175242 1.10643i
\(493\) −910.425 + 463.885i −1.84670 + 0.940943i
\(494\) 1531.83i 3.10087i
\(495\) 0 0
\(496\) 210.923 0.425249
\(497\) −8.58142 16.8420i −0.0172664 0.0338873i
\(498\) 888.204 + 140.678i 1.78354 + 0.282485i
\(499\) −326.862 + 449.887i −0.655035 + 0.901578i −0.999304 0.0372930i \(-0.988127\pi\)
0.344270 + 0.938871i \(0.388127\pi\)
\(500\) 0 0
\(501\) −37.9772 116.882i −0.0758028 0.233297i
\(502\) −218.958 + 34.6796i −0.436172 + 0.0690828i
\(503\) 634.447 + 100.487i 1.26133 + 0.199775i 0.751056 0.660239i \(-0.229545\pi\)
0.510271 + 0.860013i \(0.329545\pi\)
\(504\) −23.5261 7.64408i −0.0466787 0.0151668i
\(505\) 0 0
\(506\) 218.573 + 632.506i 0.431963 + 1.25001i
\(507\) 267.641 267.641i 0.527892 0.527892i
\(508\) 649.860 331.120i 1.27925 0.651811i
\(509\) 159.366 + 219.349i 0.313097 + 0.430941i 0.936344 0.351084i \(-0.114187\pi\)
−0.623247 + 0.782025i \(0.714187\pi\)
\(510\) 0 0
\(511\) −5.25639 16.1775i −0.0102865 0.0316585i
\(512\) −134.865 68.7172i −0.263409 0.134213i
\(513\) −100.699 635.788i −0.196294 1.23935i
\(514\) −372.243 512.348i −0.724207 0.996786i
\(515\) 0 0
\(516\) 964.600 1.86938
\(517\) −198.622 372.557i −0.384181 0.720613i
\(518\) −25.7898 25.7898i −0.0497873 0.0497873i
\(519\) 59.1595 + 19.2221i 0.113987 + 0.0370367i
\(520\) 0 0
\(521\) −380.890 276.733i −0.731076 0.531158i 0.158828 0.987306i \(-0.449228\pi\)
−0.889904 + 0.456149i \(0.849228\pi\)
\(522\) −451.790 230.198i −0.865498 0.440993i
\(523\) −249.695 + 490.055i −0.477429 + 0.937007i 0.519175 + 0.854668i \(0.326239\pi\)
−0.996604 + 0.0823394i \(0.973761\pi\)
\(524\) 103.674 142.695i 0.197851 0.272318i
\(525\) 0 0
\(526\) 380.227 1170.22i 0.722865 2.22475i
\(527\) −86.5415 + 86.5415i −0.164215 + 0.164215i
\(528\) 906.515 + 873.473i 1.71689 + 1.65431i
\(529\) 271.663i 0.513540i
\(530\) 0 0
\(531\) 113.220 82.2593i 0.213221 0.154914i
\(532\) −60.5770 + 9.59445i −0.113866 + 0.0180347i
\(533\) 193.815 380.383i 0.363630 0.713664i
\(534\) 50.5329 16.4191i 0.0946308 0.0307474i
\(535\) 0 0
\(536\) 1426.07 1036.10i 2.66058 1.93303i
\(537\) 250.096 + 490.841i 0.465728 + 0.914043i
\(538\) −1260.93 1260.93i −2.34374 2.34374i
\(539\) 308.217 441.219i 0.571831 0.818587i
\(540\) 0 0
\(541\) 68.1056 209.607i 0.125888 0.387444i −0.868174 0.496261i \(-0.834706\pi\)
0.994062 + 0.108816i \(0.0347060\pi\)
\(542\) 288.208 1819.67i 0.531748 3.35733i
\(543\) −28.7151 181.300i −0.0528823 0.333886i
\(544\) −2602.17 + 845.497i −4.78340 + 1.55422i
\(545\) 0 0
\(546\) 34.2488 + 24.8832i 0.0627268 + 0.0455737i
\(547\) −20.5594 + 129.807i −0.0375857 + 0.237307i −0.999328 0.0366482i \(-0.988332\pi\)
0.961743 + 0.273955i \(0.0883319\pi\)
\(548\) 753.492 383.924i 1.37499 0.700590i
\(549\) 151.536i 0.276021i
\(550\) 0 0
\(551\) −772.838 −1.40261
\(552\) 401.343 + 787.680i 0.727071 + 1.42696i
\(553\) 7.27547 + 1.15232i 0.0131564 + 0.00208376i
\(554\) 360.142 495.693i 0.650076 0.894753i
\(555\) 0 0
\(556\) 391.073 + 1203.60i 0.703369 + 2.16475i
\(557\) 333.457 52.8144i 0.598666 0.0948193i 0.150256 0.988647i \(-0.451990\pi\)
0.448410 + 0.893828i \(0.351990\pi\)
\(558\) −59.9862 9.50088i −0.107502 0.0170267i
\(559\) 710.597 + 230.887i 1.27119 + 0.413036i
\(560\) 0 0
\(561\) −730.327 + 13.5572i −1.30183 + 0.0241662i
\(562\) −564.416 + 564.416i −1.00430 + 1.00430i
\(563\) −125.749 + 64.0726i −0.223356 + 0.113806i −0.562088 0.827077i \(-0.690002\pi\)
0.338732 + 0.940883i \(0.390002\pi\)
\(564\) −533.277 733.993i −0.945527 1.30141i
\(565\) 0 0
\(566\) 218.228 + 671.636i 0.385562 + 1.18664i
\(567\) −7.65555 3.90070i −0.0135019 0.00687954i
\(568\) −267.285 1687.57i −0.470571 2.97107i
\(569\) −183.146 252.079i −0.321874 0.443022i 0.617164 0.786834i \(-0.288281\pi\)
−0.939038 + 0.343813i \(0.888281\pi\)
\(570\) 0 0
\(571\) 81.2513 0.142296 0.0711482 0.997466i \(-0.477334\pi\)
0.0711482 + 0.997466i \(0.477334\pi\)
\(572\) 983.759 + 1845.25i 1.71986 + 3.22596i
\(573\) 88.5617 + 88.5617i 0.154558 + 0.154558i
\(574\) 22.5194 + 7.31699i 0.0392323 + 0.0127474i
\(575\) 0 0
\(576\) −477.649 347.032i −0.829251 0.602486i
\(577\) −988.752 503.794i −1.71361 0.873127i −0.981382 0.192064i \(-0.938482\pi\)
−0.732225 0.681063i \(-0.761518\pi\)
\(578\) 967.080 1898.00i 1.67315 3.28374i
\(579\) −151.578 + 208.629i −0.261793 + 0.360327i
\(580\) 0 0
\(581\) −8.61830 + 26.5244i −0.0148336 + 0.0456530i
\(582\) 9.50300 9.50300i 0.0163282 0.0163282i
\(583\) −220.203 + 452.756i −0.377708 + 0.776598i
\(584\) 1537.57i 2.63282i
\(585\) 0 0
\(586\) 345.487 251.011i 0.589568 0.428346i
\(587\) −872.285 + 138.156i −1.48601 + 0.235360i −0.846071 0.533070i \(-0.821038\pi\)
−0.639934 + 0.768430i \(0.721038\pi\)
\(588\) 525.073 1030.51i 0.892982 1.75258i
\(589\) −88.0381 + 28.6053i −0.149470 + 0.0485659i
\(590\) 0 0
\(591\) 499.998 363.270i 0.846020 0.614669i
\(592\) −819.576 1608.51i −1.38442 2.71708i
\(593\) −203.778 203.778i −0.343640 0.343640i 0.514094 0.857734i \(-0.328128\pi\)
−0.857734 + 0.514094i \(0.828128\pi\)
\(594\) −733.654 971.351i −1.23511 1.63527i
\(595\) 0 0
\(596\) −752.988 + 2317.46i −1.26340 + 3.88835i
\(597\) 11.9450 75.4179i 0.0200084 0.126328i
\(598\) 174.254 + 1100.20i 0.291395 + 1.83980i
\(599\) 1046.83 340.135i 1.74763 0.567839i 0.751825 0.659362i \(-0.229174\pi\)
0.995803 + 0.0915235i \(0.0291737\pi\)
\(600\) 0 0
\(601\) −7.40130 5.37736i −0.0123150 0.00894735i 0.581611 0.813467i \(-0.302423\pi\)
−0.593926 + 0.804520i \(0.702423\pi\)
\(602\) −6.48275 + 40.9305i −0.0107687 + 0.0679908i
\(603\) −247.641 + 126.179i −0.410681 + 0.209252i
\(604\) 1192.74i 1.97473i
\(605\) 0 0
\(606\) 504.039 0.831747
\(607\) 107.816 + 211.600i 0.177621 + 0.348600i 0.962602 0.270919i \(-0.0873276\pi\)
−0.784981 + 0.619519i \(0.787328\pi\)
\(608\) −2043.97 323.733i −3.36179 0.532456i
\(609\) −12.5541 + 17.2792i −0.0206142 + 0.0283730i
\(610\) 0 0
\(611\) −217.163 668.360i −0.355423 1.09388i
\(612\) 1141.48 180.793i 1.86517 0.295413i
\(613\) 308.840 + 48.9154i 0.503817 + 0.0797967i 0.403169 0.915125i \(-0.367909\pi\)
0.100647 + 0.994922i \(0.467909\pi\)
\(614\) −717.685 233.190i −1.16887 0.379788i
\(615\) 0 0
\(616\) −56.8930 + 42.9709i −0.0923588 + 0.0697579i
\(617\) −468.934 + 468.934i −0.760022 + 0.760022i −0.976326 0.216304i \(-0.930600\pi\)
0.216304 + 0.976326i \(0.430600\pi\)
\(618\) −716.129 + 364.886i −1.15878 + 0.590430i
\(619\) 280.219 + 385.688i 0.452696 + 0.623083i 0.972974 0.230914i \(-0.0741716\pi\)
−0.520278 + 0.853997i \(0.674172\pi\)
\(620\) 0 0
\(621\) −144.649 445.183i −0.232929 0.716881i
\(622\) 769.305 + 391.981i 1.23683 + 0.630194i
\(623\) 0.257778 + 1.62755i 0.000413769 + 0.00261244i
\(624\) 1231.65 + 1695.22i 1.97379 + 2.71669i
\(625\) 0 0
\(626\) −1001.31 −1.59954
\(627\) −496.834 241.641i −0.792399 0.385393i
\(628\) 475.103 + 475.103i 0.756533 + 0.756533i
\(629\) 996.240 + 323.698i 1.58385 + 0.514623i
\(630\) 0 0
\(631\) 554.825 + 403.104i 0.879279 + 0.638833i 0.933061 0.359719i \(-0.117128\pi\)
−0.0537820 + 0.998553i \(0.517128\pi\)
\(632\) 593.268 + 302.285i 0.938716 + 0.478300i
\(633\) 175.530 344.497i 0.277299 0.544229i
\(634\) 325.990 448.687i 0.514180 0.707709i
\(635\) 0 0
\(636\) −334.328 + 1028.96i −0.525673 + 1.61786i
\(637\) 633.473 633.473i 0.994463 0.994463i
\(638\) −1289.63 + 687.542i −2.02136 + 1.07765i
\(639\) 269.401i 0.421597i
\(640\) 0 0
\(641\) 133.478 96.9773i 0.208234 0.151291i −0.478781 0.877935i \(-0.658921\pi\)
0.687014 + 0.726644i \(0.258921\pi\)
\(642\) 1229.36 194.712i 1.91490 0.303290i
\(643\) 50.5582 99.2260i 0.0786286 0.154317i −0.848345 0.529444i \(-0.822401\pi\)
0.926974 + 0.375126i \(0.122401\pi\)
\(644\) −42.4164 + 13.7819i −0.0658640 + 0.0214005i
\(645\) 0 0
\(646\) 1974.11 1434.28i 3.05590 2.22024i
\(647\) 356.766 + 700.193i 0.551416 + 1.08221i 0.983589 + 0.180424i \(0.0577469\pi\)
−0.432173 + 0.901791i \(0.642253\pi\)
\(648\) −549.174 549.174i −0.847490 0.847490i
\(649\) −7.48645 403.294i −0.0115354 0.621409i
\(650\) 0 0
\(651\) −0.790540 + 2.43303i −0.00121435 + 0.00373738i
\(652\) 132.677 837.688i 0.203492 1.28480i
\(653\) 11.7418 + 74.1348i 0.0179813 + 0.113530i 0.995046 0.0994111i \(-0.0316959\pi\)
−0.977065 + 0.212941i \(0.931696\pi\)
\(654\) 1620.33 526.478i 2.47757 0.805012i
\(655\) 0 0
\(656\) 948.171 + 688.886i 1.44538 + 1.05013i
\(657\) −37.9248 + 239.448i −0.0577243 + 0.364457i
\(658\) 34.7292 17.6954i 0.0527799 0.0268927i
\(659\) 8.82858i 0.0133969i 0.999978 + 0.00669847i \(0.00213220\pi\)
−0.999978 + 0.00669847i \(0.997868\pi\)
\(660\) 0 0
\(661\) −18.3998 −0.0278363 −0.0139181 0.999903i \(-0.504430\pi\)
−0.0139181 + 0.999903i \(0.504430\pi\)
\(662\) −938.305 1841.53i −1.41738 2.78176i
\(663\) −1200.89 190.202i −1.81129 0.286880i
\(664\) −1481.79 + 2039.51i −2.23161 + 3.07155i
\(665\) 0 0
\(666\) 160.632 + 494.375i 0.241189 + 0.742304i
\(667\) −555.070 + 87.9145i −0.832190 + 0.131806i
\(668\) 553.539 + 87.6719i 0.828651 + 0.131245i
\(669\) 341.551 + 110.977i 0.510540 + 0.165885i
\(670\) 0 0
\(671\) −358.052 250.120i −0.533610 0.372757i
\(672\) −40.4405 + 40.4405i −0.0601794 + 0.0601794i
\(673\) −57.8341 + 29.4680i −0.0859348 + 0.0437860i −0.496430 0.868077i \(-0.665356\pi\)
0.410495 + 0.911863i \(0.365356\pi\)
\(674\) −674.786 928.763i −1.00117 1.37799i
\(675\) 0 0
\(676\) 533.382 + 1641.58i 0.789026 + 2.42837i
\(677\) 1067.27 + 543.802i 1.57647 + 0.803252i 0.999905 0.0137987i \(-0.00439240\pi\)
0.576566 + 0.817051i \(0.304392\pi\)
\(678\) 181.942 + 1148.74i 0.268351 + 1.69430i
\(679\) 0.244986 + 0.337194i 0.000360804 + 0.000496604i
\(680\) 0 0
\(681\) −140.855 −0.206835
\(682\) −121.460 + 126.055i −0.178094 + 0.184832i
\(683\) −403.111 403.111i −0.590207 0.590207i 0.347480 0.937687i \(-0.387037\pi\)
−0.937687 + 0.347480i \(0.887037\pi\)
\(684\) 831.343 + 270.120i 1.21541 + 0.394912i
\(685\) 0 0
\(686\) 80.4560 + 58.4547i 0.117283 + 0.0852109i
\(687\) −919.600 468.560i −1.33857 0.682038i
\(688\) −931.220 + 1827.62i −1.35352 + 2.65643i
\(689\) −492.582 + 677.981i −0.714924 + 0.984008i
\(690\) 0 0
\(691\) −229.306 + 705.732i −0.331847 + 1.02132i 0.636408 + 0.771353i \(0.280420\pi\)
−0.968255 + 0.249966i \(0.919580\pi\)
\(692\) −200.581 + 200.581i −0.289857 + 0.289857i
\(693\) 9.91995 5.28863i 0.0143145 0.00763151i
\(694\) 1005.42i 1.44873i
\(695\) 0 0
\(696\) −1561.90 + 1134.78i −2.24410 + 1.63044i
\(697\) −671.682 + 106.384i −0.963676 + 0.152631i
\(698\) −942.113 + 1849.00i −1.34973 + 2.64900i
\(699\) 738.704 240.020i 1.05680 0.343376i
\(700\) 0 0
\(701\) −710.832 + 516.450i −1.01403 + 0.736733i −0.965050 0.262067i \(-0.915596\pi\)
−0.0489764 + 0.998800i \(0.515596\pi\)
\(702\) −919.872 1805.35i −1.31036 2.57172i
\(703\) 560.231 + 560.231i 0.796915 + 0.796915i
\(704\) −1608.37 + 555.800i −2.28461 + 0.789488i
\(705\) 0 0
\(706\) 316.035 972.656i 0.447642 1.37770i
\(707\) −2.44536 + 15.4394i −0.00345878 + 0.0218379i
\(708\) −135.597 856.125i −0.191521 1.20922i
\(709\) 341.238 110.875i 0.481295 0.156382i −0.0583137 0.998298i \(-0.518572\pi\)
0.539608 + 0.841916i \(0.318572\pi\)
\(710\) 0 0
\(711\) −84.9347 61.7087i −0.119458 0.0867914i
\(712\) −23.3010 + 147.117i −0.0327262 + 0.206625i
\(713\) −59.9770 + 30.5598i −0.0841193 + 0.0428609i
\(714\) 67.4360i 0.0944482i
\(715\) 0 0
\(716\) −2512.16 −3.50861
\(717\) 175.576 + 344.588i 0.244876 + 0.480597i
\(718\) 2489.34 + 394.273i 3.46705 + 0.549127i
\(719\) −113.787 + 156.615i −0.158258 + 0.217823i −0.880781 0.473523i \(-0.842982\pi\)
0.722524 + 0.691346i \(0.242982\pi\)
\(720\) 0 0
\(721\) −7.70264 23.7063i −0.0106833 0.0328797i
\(722\) 470.676 74.5477i 0.651906 0.103252i
\(723\) −471.153 74.6232i −0.651663 0.103213i
\(724\) 796.108 + 258.671i 1.09960 + 0.357281i
\(725\) 0 0
\(726\) −1044.04 + 38.7747i −1.43807 + 0.0534087i
\(727\) −783.477 + 783.477i −1.07768 + 1.07768i −0.0809678 + 0.996717i \(0.525801\pi\)
−0.996717 + 0.0809678i \(0.974199\pi\)
\(728\) −105.741 + 53.8779i −0.145249 + 0.0740081i
\(729\) 423.421 + 582.789i 0.580825 + 0.799437i
\(730\) 0 0
\(731\) −367.793 1131.95i −0.503136 1.54849i
\(732\) −836.270 426.101i −1.14245 0.582105i
\(733\) −94.7661 598.330i −0.129285 0.816275i −0.964060 0.265684i \(-0.914402\pi\)
0.834775 0.550591i \(-0.185598\pi\)
\(734\) −577.763 795.222i −0.787142 1.08341i
\(735\) 0 0
\(736\) −1504.85 −2.04464
\(737\) −110.609 + 793.399i −0.150080 + 1.07653i
\(738\) −238.628 238.628i −0.323344 0.323344i
\(739\) −709.511 230.534i −0.960096 0.311954i −0.213285 0.976990i \(-0.568416\pi\)
−0.746811 + 0.665036i \(0.768416\pi\)
\(740\) 0 0
\(741\) −743.986 540.537i −1.00403 0.729470i
\(742\) −41.4143 21.1017i −0.0558145 0.0284389i
\(743\) 200.657 393.811i 0.270063 0.530028i −0.715651 0.698458i \(-0.753870\pi\)
0.985714 + 0.168430i \(0.0538698\pi\)
\(744\) −135.922 + 187.080i −0.182691 + 0.251452i
\(745\) 0 0
\(746\) 355.028 1092.66i 0.475908 1.46470i
\(747\) 281.067 281.067i 0.376262 0.376262i
\(748\) 1456.91 2995.53i 1.94774 4.00472i
\(749\) 38.6018i 0.0515377i
\(750\) 0 0
\(751\) 659.513 479.164i 0.878180 0.638035i −0.0545897 0.998509i \(-0.517385\pi\)
0.932769 + 0.360474i \(0.117385\pi\)
\(752\) 1905.52 301.804i 2.53393 0.401335i
\(753\) 60.4205 118.582i 0.0802397 0.157479i
\(754\) −2313.57 + 751.724i −3.06840 + 0.996982i
\(755\) 0 0
\(756\) 65.6319 47.6844i 0.0868147 0.0630746i
\(757\) −73.1375 143.540i −0.0966150 0.189618i 0.837641 0.546222i \(-0.183934\pi\)
−0.934256 + 0.356604i \(0.883934\pi\)
\(758\) 764.964 + 764.964i 1.00919 + 1.00919i
\(759\) −384.326 117.035i −0.506358 0.154196i
\(760\) 0 0
\(761\) 114.014 350.898i 0.149821 0.461101i −0.847779 0.530350i \(-0.822060\pi\)
0.997599 + 0.0692494i \(0.0220604\pi\)
\(762\) −94.8856 + 599.084i −0.124522 + 0.786199i
\(763\) 8.26565 + 52.1872i 0.0108331 + 0.0683974i
\(764\) −543.194 + 176.494i −0.710987 + 0.231014i
\(765\) 0 0
\(766\) 190.071 + 138.094i 0.248134 + 0.180280i
\(767\) 105.031 663.143i 0.136938 0.864593i
\(768\) −371.460 + 189.268i −0.483672 + 0.246443i
\(769\) 574.792i 0.747454i −0.927539 0.373727i \(-0.878080\pi\)
0.927539 0.373727i \(-0.121920\pi\)
\(770\) 0 0
\(771\) 380.193 0.493116
\(772\) −533.890 1047.82i −0.691567 1.35728i
\(773\) 352.990 + 55.9081i 0.456649 + 0.0723262i 0.380522 0.924772i \(-0.375744\pi\)
0.0761275 + 0.997098i \(0.475744\pi\)
\(774\) 347.161 477.827i 0.448529 0.617347i
\(775\) 0 0
\(776\) 11.6422 + 35.8309i 0.0150028 + 0.0461738i
\(777\) 21.6262 3.42525i 0.0278329 0.00440830i
\(778\) −216.134 34.2323i −0.277807 0.0440004i
\(779\) −489.187 158.947i −0.627968 0.204039i
\(780\) 0 0
\(781\) 636.547 + 444.665i 0.815040 + 0.569353i
\(782\) 1254.70 1254.70i 1.60447 1.60447i
\(783\) 910.833 464.093i 1.16326 0.592711i
\(784\) 1445.61 + 1989.71i 1.84389 + 2.53789i
\(785\) 0 0
\(786\) 45.3275 + 139.504i 0.0576686 + 0.177486i
\(787\) −1169.61 595.947i −1.48617 0.757239i −0.492575 0.870270i \(-0.663944\pi\)
−0.993591 + 0.113031i \(0.963944\pi\)
\(788\) 440.890 + 2783.67i 0.559505 + 3.53258i
\(789\) 434.186 + 597.606i 0.550299 + 0.757421i
\(790\) 0 0
\(791\) −36.0701 −0.0456006
\(792\) 1000.52 177.562i 1.26328 0.224194i
\(793\) −514.068 514.068i −0.648257 0.648257i
\(794\) −1671.89 543.229i −2.10565 0.684167i
\(795\) 0 0
\(796\) 281.708 + 204.673i 0.353905 + 0.257127i
\(797\) −392.129 199.800i −0.492007 0.250690i 0.190341 0.981718i \(-0.439041\pi\)
−0.682347 + 0.731028i \(0.739041\pi\)
\(798\) 23.1560 45.4462i 0.0290175 0.0569501i
\(799\) −658.000 + 905.660i −0.823530 + 1.13349i
\(800\) 0 0
\(801\) 7.25742 22.3361i 0.00906045 0.0278852i
\(802\) −1017.50 + 1017.50i −1.26870 + 1.26870i
\(803\) 503.176 + 484.836i 0.626621 + 0.603780i
\(804\) 1721.44i 2.14110i
\(805\) 0 0
\(806\) −235.727 + 171.266i −0.292466 + 0.212489i
\(807\) 1057.36 167.469i 1.31024 0.207521i
\(808\) −641.484 + 1258.98i −0.793916 + 1.55815i
\(809\) −516.346 + 167.771i −0.638252 + 0.207381i −0.610227 0.792227i \(-0.708922\pi\)
−0.0280248 + 0.999607i \(0.508922\pi\)
\(810\) 0 0
\(811\) −962.374 + 699.206i −1.18665 + 0.862152i −0.992906 0.118900i \(-0.962063\pi\)
−0.193745 + 0.981052i \(0.562063\pi\)
\(812\) −44.2181 86.7829i −0.0544558 0.106875i
\(813\) 782.085 + 782.085i 0.961975 + 0.961975i
\(814\) 1433.26 + 436.455i 1.76076 + 0.536185i
\(815\) 0 0
\(816\) 1031.46 3174.51i 1.26405 3.89033i
\(817\) 140.824 889.130i 0.172368 1.08829i
\(818\) −33.9265 214.204i −0.0414749 0.261862i
\(819\) 17.7962 5.78233i 0.0217292 0.00706024i
\(820\) 0 0
\(821\) −107.913 78.4034i −0.131441 0.0954975i 0.520122 0.854092i \(-0.325886\pi\)
−0.651563 + 0.758594i \(0.725886\pi\)
\(822\) −110.017 + 694.619i −0.133841 + 0.845036i
\(823\) −42.8055 + 21.8105i −0.0520115 + 0.0265012i −0.479803 0.877376i \(-0.659292\pi\)
0.427791 + 0.903878i \(0.359292\pi\)
\(824\) 2253.13i 2.73438i
\(825\) 0 0
\(826\) 37.2389 0.0450834
\(827\) 191.334 + 375.514i 0.231359 + 0.454068i 0.977276 0.211971i \(-0.0679883\pi\)
−0.745917 + 0.666039i \(0.767988\pi\)
\(828\) 627.818 + 99.4366i 0.758234 + 0.120092i
\(829\) 364.741 502.023i 0.439977 0.605576i −0.530230 0.847854i \(-0.677894\pi\)
0.970207 + 0.242278i \(0.0778944\pi\)
\(830\) 0 0
\(831\) 113.667 + 349.831i 0.136783 + 0.420975i
\(832\) −2797.64 + 443.102i −3.36255 + 0.532575i
\(833\) −1409.50 223.244i −1.69208 0.268000i
\(834\) −1000.95 325.227i −1.20018 0.389961i
\(835\) 0 0
\(836\) 2010.44 1518.47i 2.40483 1.81635i
\(837\) 86.5803 86.5803i 0.103441 0.103441i
\(838\) 2566.80 1307.85i 3.06300 1.56068i
\(839\) 189.672 + 261.061i 0.226069 + 0.311157i 0.906951 0.421236i \(-0.138404\pi\)
−0.680882 + 0.732393i \(0.738404\pi\)
\(840\) 0 0
\(841\) −119.376 367.401i −0.141945 0.436862i
\(842\) −856.918 436.621i −1.01772 0.518553i
\(843\) −74.9623 473.293i −0.0889232 0.561439i
\(844\) 1036.36 + 1426.43i 1.22792 + 1.69008i
\(845\) 0 0
\(846\) −555.520 −0.656643
\(847\) 3.87745 32.1684i 0.00457786 0.0379792i
\(848\) −1626.80 1626.80i −1.91840 1.91840i
\(849\) −403.209 131.011i −0.474922 0.154312i
\(850\) 0 0
\(851\) 466.101 + 338.642i 0.547710 + 0.397934i
\(852\) 1486.72 + 757.524i 1.74498 + 0.889113i
\(853\) −539.096 + 1058.03i −0.632000 + 1.24037i 0.323737 + 0.946147i \(0.395061\pi\)
−0.955737 + 0.294222i \(0.904939\pi\)
\(854\) 23.7008 32.6214i 0.0277527 0.0381984i
\(855\) 0 0
\(856\) −1078.25 + 3318.50i −1.25963 + 3.87676i
\(857\) 352.891 352.891i 0.411775 0.411775i −0.470582 0.882356i \(-0.655956\pi\)
0.882356 + 0.470582i \(0.155956\pi\)
\(858\) −1722.36 240.117i −2.00742 0.279857i
\(859\) 479.820i 0.558580i 0.960207 + 0.279290i \(0.0900990\pi\)
−0.960207 + 0.279290i \(0.909901\pi\)
\(860\) 0 0
\(861\) −11.5002 + 8.35535i −0.0133567 + 0.00970424i
\(862\) 2487.42 393.969i 2.88564 0.457040i
\(863\) 414.755 814.002i 0.480597 0.943224i −0.515661 0.856793i \(-0.672454\pi\)
0.996258 0.0864314i \(-0.0275463\pi\)
\(864\) 2603.34 845.876i 3.01312 0.979023i
\(865\) 0 0
\(866\) −2008.72 + 1459.42i −2.31954 + 1.68524i
\(867\) 580.575 + 1139.44i 0.669637 + 1.31424i
\(868\) −8.24925 8.24925i −0.00950374 0.00950374i
\(869\) −285.997 + 98.8313i −0.329111 + 0.113730i
\(870\) 0 0
\(871\) −412.044 + 1268.14i −0.473071 + 1.45596i
\(872\) −747.147 + 4717.30i −0.856820 + 5.40975i
\(873\) −0.929268 5.86717i −0.00106445 0.00672069i
\(874\) 1276.40 414.726i 1.46041 0.474515i
\(875\) 0 0
\(876\) 1214.79 + 882.595i 1.38674 + 1.00753i
\(877\) −186.351 + 1176.57i −0.212487 + 1.34159i 0.618715 + 0.785616i \(0.287654\pi\)
−0.831201 + 0.555972i \(0.812346\pi\)
\(878\) −780.563 + 397.717i −0.889024 + 0.452981i
\(879\) 256.372i 0.291663i
\(880\) 0 0
\(881\) 720.309 0.817604 0.408802 0.912623i \(-0.365947\pi\)
0.408802 + 0.912623i \(0.365947\pi\)
\(882\) −321.503 630.986i −0.364516 0.715403i
\(883\) −1507.09 238.699i −1.70678 0.270328i −0.774635 0.632408i \(-0.782067\pi\)
−0.932147 + 0.362080i \(0.882067\pi\)
\(884\) 3259.03 4485.67i 3.68669 5.07429i
\(885\) 0 0
\(886\) −557.399 1715.50i −0.629118 1.93623i
\(887\) −648.602 + 102.728i −0.731231 + 0.115816i −0.510937 0.859618i \(-0.670702\pi\)
−0.220294 + 0.975434i \(0.570702\pi\)
\(888\) 1954.83 + 309.614i 2.20138 + 0.348665i
\(889\) −17.8904 5.81295i −0.0201242 0.00653875i
\(890\) 0 0
\(891\) 352.889 6.55075i 0.396059 0.00735214i
\(892\) −1158.04 + 1158.04i −1.29825 + 1.29825i
\(893\) −754.420 + 384.396i −0.844815 + 0.430455i
\(894\) −1191.11 1639.43i −1.33234 1.83381i
\(895\) 0 0
\(896\) −17.4972 53.8507i −0.0195281 0.0601012i
\(897\) −595.837 303.594i −0.664256 0.338455i
\(898\) 82.7922 + 522.729i 0.0921962 + 0.582104i
\(899\) −86.4069 118.929i −0.0961145 0.132290i
\(900\) 0 0
\(901\) 1334.95 1.48163
\(902\) −957.708 + 169.964i −1.06176 + 0.188430i
\(903\) −17.5917 17.5917i −0.0194814 0.0194814i
\(904\) −3100.86 1007.53i −3.43016 1.11453i
\(905\) 0 0
\(906\) 802.476 + 583.033i 0.885735 + 0.643524i
\(907\) 1457.77 + 742.773i 1.60725 + 0.818934i 0.999696 + 0.0246539i \(0.00784839\pi\)
0.607552 + 0.794280i \(0.292152\pi\)
\(908\) 291.612 572.321i 0.321159 0.630309i
\(909\) 130.953 180.241i 0.144063 0.198285i
\(910\) 0 0
\(911\) −3.10080 + 9.54327i −0.00340373 + 0.0104756i −0.952744 0.303775i \(-0.901753\pi\)
0.949340 + 0.314250i \(0.101753\pi\)
\(912\) 1785.17 1785.17i 1.95743 1.95743i
\(913\) −200.192 1128.03i −0.219268 1.23553i
\(914\) 1275.21i 1.39519i
\(915\) 0 0
\(916\) 3807.71 2766.46i 4.15689 3.02015i
\(917\) −4.49310 + 0.711637i −0.00489978 + 0.000776049i
\(918\) −1465.32 + 2875.84i −1.59620 + 3.13273i
\(919\) 912.133 296.370i 0.992528 0.322492i 0.232652 0.972560i \(-0.425260\pi\)
0.759876 + 0.650068i \(0.225260\pi\)
\(920\) 0 0
\(921\) 366.506 266.282i 0.397944 0.289123i
\(922\) −495.922 973.302i −0.537876 1.05564i
\(923\) 913.912 + 913.912i 0.990154 + 0.990154i
\(924\) −1.29229 69.6157i −0.00139858 0.0753416i
\(925\) 0 0
\(926\) 14.2371 43.8174i 0.0153749 0.0473190i
\(927\) −55.5745 + 350.884i −0.0599509 + 0.378515i
\(928\) −514.106 3245.94i −0.553993 3.49778i
\(929\) −1566.61 + 509.024i −1.68634 + 0.547926i −0.986125 0.166002i \(-0.946914\pi\)
−0.700218 + 0.713929i \(0.746914\pi\)
\(930\) 0 0
\(931\) −873.231 634.439i −0.937949 0.681460i
\(932\) −554.095 + 3498.42i −0.594523 + 3.75367i
\(933\) −461.844 + 235.321i −0.495009 + 0.252220i
\(934\) 1569.85i 1.68079i
\(935\) 0 0
\(936\) 1691.41 1.80707
\(937\) 110.409 + 216.690i 0.117833 + 0.231259i 0.942388 0.334522i \(-0.108575\pi\)
−0.824556 + 0.565781i \(0.808575\pi\)
\(938\) −73.0451 11.5692i −0.0778733 0.0123339i
\(939\) 353.334 486.322i 0.376287 0.517915i
\(940\) 0 0
\(941\) 489.886 + 1507.72i 0.520602 + 1.60225i 0.772852 + 0.634586i \(0.218829\pi\)
−0.252251 + 0.967662i \(0.581171\pi\)
\(942\) −551.889 + 87.4106i −0.585869 + 0.0927926i
\(943\) −369.427 58.5115i −0.391757 0.0620482i
\(944\) 1753.00 + 569.584i 1.85699 + 0.603373i
\(945\) 0 0
\(946\) −556.007 1608.97i −0.587745 1.70081i
\(947\) 945.689 945.689i 0.998615 0.998615i −0.00138355 0.999999i \(-0.500440\pi\)
0.999999 + 0.00138355i \(0.000440398\pi\)
\(948\) −579.375 + 295.206i −0.611155 + 0.311399i
\(949\) 683.645 + 940.957i 0.720385 + 0.991525i
\(950\) 0 0
\(951\) 102.888 + 316.657i 0.108189 + 0.332972i
\(952\) 168.441 + 85.8251i 0.176934 + 0.0901524i
\(953\) −47.1815 297.893i −0.0495084 0.312584i −0.999998 0.00182850i \(-0.999418\pi\)
0.950490 0.310755i \(-0.100582\pi\)
\(954\) 389.381 + 535.937i 0.408156 + 0.561779i
\(955\) 0 0
\(956\) −1763.63 −1.84480
\(957\) 121.144 868.965i 0.126587 0.908010i
\(958\) 101.831 + 101.831i 0.106296 + 0.106296i
\(959\) −20.7434 6.73994i −0.0216302 0.00702809i
\(960\) 0 0
\(961\) 763.220 + 554.512i 0.794194 + 0.577016i
\(962\) 2222.04 + 1132.18i 2.30981 + 1.17691i
\(963\) 249.770 490.201i 0.259366 0.509035i
\(964\) 1278.64 1759.90i 1.32639 1.82562i
\(965\) 0 0
\(966\) 11.4614 35.2747i 0.0118648 0.0365162i
\(967\) 695.911 695.911i 0.719660 0.719660i −0.248876 0.968535i \(-0.580061\pi\)
0.968535 + 0.248876i \(0.0800611\pi\)
\(968\) 1231.88 2657.13i 1.27261 2.74497i
\(969\) 1464.91i 1.51177i
\(970\) 0 0
\(971\) −740.809 + 538.229i −0.762934 + 0.554304i −0.899809 0.436284i \(-0.856294\pi\)
0.136875 + 0.990588i \(0.456294\pi\)
\(972\) −1943.93 + 307.888i −1.99992 + 0.316757i
\(973\) 14.8183 29.0825i 0.0152295 0.0298895i
\(974\) 166.753 54.1813i 0.171204 0.0556277i
\(975\) 0 0
\(976\) 1614.66 1173.12i 1.65437 1.20197i
\(977\) 90.6052 + 177.823i 0.0927381 + 0.182009i 0.932716 0.360612i \(-0.117432\pi\)
−0.839978 + 0.542621i \(0.817432\pi\)
\(978\) 498.743 + 498.743i 0.509962 + 0.509962i
\(979\) −40.7973 54.0153i −0.0416724 0.0551739i
\(980\) 0 0
\(981\) 232.709 716.204i 0.237216 0.730076i
\(982\) 549.371 3468.59i 0.559441 3.53217i
\(983\) −255.639 1614.04i −0.260060 1.64196i −0.679141 0.734008i \(-0.737647\pi\)
0.419080 0.907949i \(-0.362353\pi\)
\(984\) −1222.03 + 397.061i −1.24190 + 0.403517i
\(985\) 0 0
\(986\) 3135.00 + 2277.71i 3.17951 + 2.31005i
\(987\) −3.66051 + 23.1116i −0.00370873 + 0.0234160i
\(988\) 3736.59 1903.89i 3.78197 1.92701i
\(989\) 654.614i 0.661895i
\(990\) 0 0
\(991\) −935.782 −0.944281 −0.472141 0.881523i \(-0.656519\pi\)
−0.472141 + 0.881523i \(0.656519\pi\)
\(992\) −178.708 350.733i −0.180149 0.353562i
\(993\) 1225.50 + 194.100i 1.23414 + 0.195468i
\(994\) −42.1355 + 57.9945i −0.0423898 + 0.0583445i
\(995\) 0 0
\(996\) −760.780 2341.44i −0.763835 2.35084i
\(997\) 1426.04 225.862i 1.43033 0.226542i 0.607269 0.794496i \(-0.292265\pi\)
0.823060 + 0.567955i \(0.192265\pi\)
\(998\) 2082.97 + 329.910i 2.08714 + 0.330571i
\(999\) −996.687 323.843i −0.997684 0.324167i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.3.bk.c.218.1 yes 128
5.2 odd 4 inner 275.3.bk.c.207.16 yes 128
5.3 odd 4 inner 275.3.bk.c.207.1 yes 128
5.4 even 2 inner 275.3.bk.c.218.16 yes 128
11.5 even 5 inner 275.3.bk.c.93.16 yes 128
55.27 odd 20 inner 275.3.bk.c.82.1 128
55.38 odd 20 inner 275.3.bk.c.82.16 yes 128
55.49 even 10 inner 275.3.bk.c.93.1 yes 128
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
275.3.bk.c.82.1 128 55.27 odd 20 inner
275.3.bk.c.82.16 yes 128 55.38 odd 20 inner
275.3.bk.c.93.1 yes 128 55.49 even 10 inner
275.3.bk.c.93.16 yes 128 11.5 even 5 inner
275.3.bk.c.207.1 yes 128 5.3 odd 4 inner
275.3.bk.c.207.16 yes 128 5.2 odd 4 inner
275.3.bk.c.218.1 yes 128 1.1 even 1 trivial
275.3.bk.c.218.16 yes 128 5.4 even 2 inner