Properties

Label 275.2.bm.b.18.1
Level $275$
Weight $2$
Character 275.18
Analytic conductor $2.196$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,2,Mod(7,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.7"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([5, 14])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 275.bm (of order \(20\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.19588605559\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(4\) over \(\Q(\zeta_{20})\)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 18.1
Character \(\chi\) \(=\) 275.18
Dual form 275.2.bm.b.107.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.380541 - 2.40264i) q^{2} +(-0.532840 + 0.271495i) q^{3} +(-3.72576 + 1.21057i) q^{4} +(0.855073 + 1.17691i) q^{6} +(-1.17208 + 2.30033i) q^{7} +(2.11764 + 4.15610i) q^{8} +(-1.55315 + 2.13772i) q^{9} +(-2.55440 + 2.11543i) q^{11} +(1.65657 - 1.65657i) q^{12} +(-2.77422 + 0.439393i) q^{13} +(5.97289 + 1.94071i) q^{14} +(2.84111 - 2.06419i) q^{16} +(0.932684 + 0.147723i) q^{17} +(5.72722 + 2.91817i) q^{18} +(1.28236 - 3.94669i) q^{19} -1.54392i q^{21} +(6.05467 + 5.33231i) q^{22} +(-0.104710 - 0.104710i) q^{23} +(-2.25672 - 1.63960i) q^{24} +(2.11141 + 6.49824i) q^{26} +(0.527849 - 3.33271i) q^{27} +(1.58216 - 9.98937i) q^{28} +(2.14459 + 6.60038i) q^{29} +(-7.33171 - 5.32680i) q^{31} +(0.555921 + 0.555921i) q^{32} +(0.786759 - 1.82069i) q^{33} -2.29712i q^{34} +(3.19879 - 9.84486i) q^{36} +(-6.77002 - 3.44950i) q^{37} +(-9.97047 - 1.57917i) q^{38} +(1.35892 - 0.987312i) q^{39} +(3.27880 + 1.06535i) q^{41} +(-3.70949 + 0.587525i) q^{42} +(-3.91833 + 3.91833i) q^{43} +(6.95623 - 10.9739i) q^{44} +(-0.211733 + 0.291426i) q^{46} +(-0.479999 - 0.942051i) q^{47} +(-0.953440 + 1.87123i) q^{48} +(0.196744 + 0.270795i) q^{49} +(-0.537077 + 0.174507i) q^{51} +(9.80416 - 4.99547i) q^{52} +(0.644920 + 4.07187i) q^{53} -8.20817 q^{54} -12.0424 q^{56} +(0.388217 + 2.45111i) q^{57} +(15.0422 - 7.66441i) q^{58} +(-6.16460 + 2.00300i) q^{59} +(5.59880 + 7.70609i) q^{61} +(-10.0084 + 19.6426i) q^{62} +(-3.09706 - 6.07833i) q^{63} +(5.25251 - 7.22946i) q^{64} +(-4.67386 - 1.19745i) q^{66} +(-2.94509 + 2.94509i) q^{67} +(-3.65379 + 0.578703i) q^{68} +(0.0842215 + 0.0273652i) q^{69} +(-1.02426 + 0.744171i) q^{71} +(-12.1736 - 1.92811i) q^{72} +(-1.57831 - 0.804189i) q^{73} +(-5.71163 + 17.5786i) q^{74} +16.2568i q^{76} +(-1.87222 - 8.35541i) q^{77} +(-2.88928 - 2.88928i) q^{78} +(-3.51271 - 2.55214i) q^{79} +(-1.82606 - 5.62003i) q^{81} +(1.31193 - 8.28320i) q^{82} +(-1.29707 + 8.18939i) q^{83} +(1.86903 + 5.75228i) q^{84} +(10.9054 + 7.92326i) q^{86} +(-2.93470 - 2.93470i) q^{87} +(-14.2012 - 6.13664i) q^{88} -4.23092i q^{89} +(2.24084 - 6.89661i) q^{91} +(0.516882 + 0.263364i) q^{92} +(5.35283 + 0.847805i) q^{93} +(-2.08075 + 1.51175i) q^{94} +(-0.447147 - 0.145287i) q^{96} +(14.2460 - 2.25634i) q^{97} +(0.575755 - 0.575755i) q^{98} +(-0.554831 - 8.74618i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 10 q^{2} + 4 q^{3} - 20 q^{6} + 10 q^{8} - 24 q^{11} - 12 q^{12} + 10 q^{13} - 8 q^{16} + 10 q^{18} - 10 q^{22} + 24 q^{23} + 20 q^{26} + 16 q^{27} - 50 q^{28} - 28 q^{31} - 66 q^{33} + 24 q^{36}+ \cdots + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.380541 2.40264i −0.269083 1.69892i −0.638468 0.769648i \(-0.720432\pi\)
0.369385 0.929276i \(-0.379568\pi\)
\(3\) −0.532840 + 0.271495i −0.307635 + 0.156748i −0.600992 0.799255i \(-0.705228\pi\)
0.293357 + 0.956003i \(0.405228\pi\)
\(4\) −3.72576 + 1.21057i −1.86288 + 0.605287i
\(5\) 0 0
\(6\) 0.855073 + 1.17691i 0.349082 + 0.480470i
\(7\) −1.17208 + 2.30033i −0.443003 + 0.869443i 0.556258 + 0.831010i \(0.312237\pi\)
−0.999261 + 0.0384331i \(0.987763\pi\)
\(8\) 2.11764 + 4.15610i 0.748698 + 1.46940i
\(9\) −1.55315 + 2.13772i −0.517716 + 0.712575i
\(10\) 0 0
\(11\) −2.55440 + 2.11543i −0.770182 + 0.637825i
\(12\) 1.65657 1.65657i 0.478210 0.478210i
\(13\) −2.77422 + 0.439393i −0.769429 + 0.121866i −0.528794 0.848750i \(-0.677356\pi\)
−0.240635 + 0.970616i \(0.577356\pi\)
\(14\) 5.97289 + 1.94071i 1.59632 + 0.518677i
\(15\) 0 0
\(16\) 2.84111 2.06419i 0.710279 0.516048i
\(17\) 0.932684 + 0.147723i 0.226209 + 0.0358280i 0.268510 0.963277i \(-0.413469\pi\)
−0.0423009 + 0.999105i \(0.513469\pi\)
\(18\) 5.72722 + 2.91817i 1.34992 + 0.687818i
\(19\) 1.28236 3.94669i 0.294193 0.905433i −0.689298 0.724478i \(-0.742081\pi\)
0.983491 0.180955i \(-0.0579189\pi\)
\(20\) 0 0
\(21\) 1.54392i 0.336911i
\(22\) 6.05467 + 5.33231i 1.29086 + 1.13685i
\(23\) −0.104710 0.104710i −0.0218334 0.0218334i 0.696106 0.717939i \(-0.254914\pi\)
−0.717939 + 0.696106i \(0.754914\pi\)
\(24\) −2.25672 1.63960i −0.460651 0.334683i
\(25\) 0 0
\(26\) 2.11141 + 6.49824i 0.414081 + 1.27441i
\(27\) 0.527849 3.33271i 0.101585 0.641380i
\(28\) 1.58216 9.98937i 0.299000 1.88781i
\(29\) 2.14459 + 6.60038i 0.398241 + 1.22566i 0.926409 + 0.376520i \(0.122879\pi\)
−0.528168 + 0.849140i \(0.677121\pi\)
\(30\) 0 0
\(31\) −7.33171 5.32680i −1.31681 0.956722i −0.999966 0.00824590i \(-0.997375\pi\)
−0.316849 0.948476i \(-0.602625\pi\)
\(32\) 0.555921 + 0.555921i 0.0982739 + 0.0982739i
\(33\) 0.786759 1.82069i 0.136957 0.316942i
\(34\) 2.29712i 0.393953i
\(35\) 0 0
\(36\) 3.19879 9.84486i 0.533131 1.64081i
\(37\) −6.77002 3.44950i −1.11298 0.567094i −0.201938 0.979398i \(-0.564724\pi\)
−0.911046 + 0.412305i \(0.864724\pi\)
\(38\) −9.97047 1.57917i −1.61742 0.256175i
\(39\) 1.35892 0.987312i 0.217601 0.158096i
\(40\) 0 0
\(41\) 3.27880 + 1.06535i 0.512063 + 0.166379i 0.553640 0.832756i \(-0.313238\pi\)
−0.0415772 + 0.999135i \(0.513238\pi\)
\(42\) −3.70949 + 0.587525i −0.572386 + 0.0906571i
\(43\) −3.91833 + 3.91833i −0.597540 + 0.597540i −0.939657 0.342117i \(-0.888856\pi\)
0.342117 + 0.939657i \(0.388856\pi\)
\(44\) 6.95623 10.9739i 1.04869 1.65437i
\(45\) 0 0
\(46\) −0.211733 + 0.291426i −0.0312184 + 0.0429684i
\(47\) −0.479999 0.942051i −0.0700150 0.137412i 0.853346 0.521345i \(-0.174569\pi\)
−0.923361 + 0.383933i \(0.874569\pi\)
\(48\) −0.953440 + 1.87123i −0.137617 + 0.270089i
\(49\) 0.196744 + 0.270795i 0.0281063 + 0.0386850i
\(50\) 0 0
\(51\) −0.537077 + 0.174507i −0.0752058 + 0.0244358i
\(52\) 9.80416 4.99547i 1.35959 0.692747i
\(53\) 0.644920 + 4.07187i 0.0885866 + 0.559314i 0.991563 + 0.129624i \(0.0413771\pi\)
−0.902977 + 0.429690i \(0.858623\pi\)
\(54\) −8.20817 −1.11699
\(55\) 0 0
\(56\) −12.0424 −1.60924
\(57\) 0.388217 + 2.45111i 0.0514206 + 0.324657i
\(58\) 15.0422 7.66441i 1.97514 1.00639i
\(59\) −6.16460 + 2.00300i −0.802563 + 0.260768i −0.681445 0.731870i \(-0.738648\pi\)
−0.121118 + 0.992638i \(0.538648\pi\)
\(60\) 0 0
\(61\) 5.59880 + 7.70609i 0.716853 + 0.986663i 0.999622 + 0.0274756i \(0.00874685\pi\)
−0.282769 + 0.959188i \(0.591253\pi\)
\(62\) −10.0084 + 19.6426i −1.27107 + 2.49461i
\(63\) −3.09706 6.07833i −0.390193 0.765797i
\(64\) 5.25251 7.22946i 0.656564 0.903682i
\(65\) 0 0
\(66\) −4.67386 1.19745i −0.575313 0.147396i
\(67\) −2.94509 + 2.94509i −0.359801 + 0.359801i −0.863739 0.503939i \(-0.831884\pi\)
0.503939 + 0.863739i \(0.331884\pi\)
\(68\) −3.65379 + 0.578703i −0.443087 + 0.0701781i
\(69\) 0.0842215 + 0.0273652i 0.0101391 + 0.00329439i
\(70\) 0 0
\(71\) −1.02426 + 0.744171i −0.121558 + 0.0883168i −0.646903 0.762572i \(-0.723936\pi\)
0.525345 + 0.850889i \(0.323936\pi\)
\(72\) −12.1736 1.92811i −1.43467 0.227230i
\(73\) −1.57831 0.804189i −0.184727 0.0941232i 0.359181 0.933268i \(-0.383056\pi\)
−0.543908 + 0.839145i \(0.683056\pi\)
\(74\) −5.71163 + 17.5786i −0.663964 + 2.04347i
\(75\) 0 0
\(76\) 16.2568i 1.86479i
\(77\) −1.87222 8.35541i −0.213359 0.952187i
\(78\) −2.88928 2.88928i −0.327147 0.327147i
\(79\) −3.51271 2.55214i −0.395211 0.287138i 0.372376 0.928082i \(-0.378543\pi\)
−0.767588 + 0.640944i \(0.778543\pi\)
\(80\) 0 0
\(81\) −1.82606 5.62003i −0.202895 0.624448i
\(82\) 1.31193 8.28320i 0.144878 0.914726i
\(83\) −1.29707 + 8.18939i −0.142372 + 0.898902i 0.808315 + 0.588750i \(0.200380\pi\)
−0.950687 + 0.310152i \(0.899620\pi\)
\(84\) 1.86903 + 5.75228i 0.203928 + 0.627625i
\(85\) 0 0
\(86\) 10.9054 + 7.92326i 1.17596 + 0.854388i
\(87\) −2.93470 2.93470i −0.314632 0.314632i
\(88\) −14.2012 6.13664i −1.51385 0.654168i
\(89\) 4.23092i 0.448477i −0.974534 0.224238i \(-0.928011\pi\)
0.974534 0.224238i \(-0.0719894\pi\)
\(90\) 0 0
\(91\) 2.24084 6.89661i 0.234904 0.722961i
\(92\) 0.516882 + 0.263364i 0.0538886 + 0.0274576i
\(93\) 5.35283 + 0.847805i 0.555063 + 0.0879133i
\(94\) −2.08075 + 1.51175i −0.214613 + 0.155926i
\(95\) 0 0
\(96\) −0.447147 0.145287i −0.0456367 0.0148283i
\(97\) 14.2460 2.25634i 1.44646 0.229097i 0.616691 0.787205i \(-0.288473\pi\)
0.829768 + 0.558109i \(0.188473\pi\)
\(98\) 0.575755 0.575755i 0.0581600 0.0581600i
\(99\) −0.554831 8.74618i −0.0557626 0.879024i
\(100\) 0 0
\(101\) 1.13747 1.56559i 0.113182 0.155782i −0.748668 0.662946i \(-0.769306\pi\)
0.861850 + 0.507164i \(0.169306\pi\)
\(102\) 0.623657 + 1.22400i 0.0617513 + 0.121194i
\(103\) 0.780525 1.53187i 0.0769075 0.150939i −0.849351 0.527829i \(-0.823006\pi\)
0.926258 + 0.376889i \(0.123006\pi\)
\(104\) −7.70094 10.5994i −0.755139 1.03936i
\(105\) 0 0
\(106\) 9.53782 3.09903i 0.926395 0.301004i
\(107\) −3.70571 + 1.88816i −0.358245 + 0.182535i −0.623844 0.781549i \(-0.714430\pi\)
0.265600 + 0.964083i \(0.414430\pi\)
\(108\) 2.06785 + 13.0559i 0.198979 + 1.25630i
\(109\) −3.22321 −0.308728 −0.154364 0.988014i \(-0.549333\pi\)
−0.154364 + 0.988014i \(0.549333\pi\)
\(110\) 0 0
\(111\) 4.54385 0.431284
\(112\) 1.41832 + 8.95489i 0.134018 + 0.846157i
\(113\) 9.93758 5.06345i 0.934849 0.476329i 0.0809210 0.996721i \(-0.474214\pi\)
0.853928 + 0.520391i \(0.174214\pi\)
\(114\) 5.74140 1.86549i 0.537731 0.174720i
\(115\) 0 0
\(116\) −15.9805 21.9953i −1.48375 2.04221i
\(117\) 3.36947 6.61295i 0.311507 0.611367i
\(118\) 7.15838 + 14.0491i 0.658982 + 1.29333i
\(119\) −1.43299 + 1.97234i −0.131362 + 0.180804i
\(120\) 0 0
\(121\) 2.04995 10.8073i 0.186359 0.982482i
\(122\) 16.3844 16.3844i 1.48337 1.48337i
\(123\) −2.03631 + 0.322520i −0.183608 + 0.0290807i
\(124\) 33.7647 + 10.9708i 3.03216 + 0.985209i
\(125\) 0 0
\(126\) −13.4255 + 9.75419i −1.19604 + 0.868972i
\(127\) 2.34580 + 0.371538i 0.208156 + 0.0329687i 0.259641 0.965705i \(-0.416396\pi\)
−0.0514856 + 0.998674i \(0.516396\pi\)
\(128\) −17.9676 9.15495i −1.58813 0.809191i
\(129\) 1.02403 3.15165i 0.0901611 0.277487i
\(130\) 0 0
\(131\) 3.12466i 0.273003i −0.990640 0.136501i \(-0.956414\pi\)
0.990640 0.136501i \(-0.0435858\pi\)
\(132\) −0.727197 + 7.73590i −0.0632944 + 0.673323i
\(133\) 7.57567 + 7.57567i 0.656894 + 0.656894i
\(134\) 8.19674 + 5.95528i 0.708090 + 0.514458i
\(135\) 0 0
\(136\) 1.36114 + 4.18915i 0.116716 + 0.359216i
\(137\) −2.58679 + 16.3323i −0.221004 + 1.39537i 0.588617 + 0.808412i \(0.299673\pi\)
−0.809621 + 0.586953i \(0.800327\pi\)
\(138\) 0.0336991 0.212768i 0.00286866 0.0181120i
\(139\) 1.33510 + 4.10901i 0.113242 + 0.348522i 0.991576 0.129524i \(-0.0413451\pi\)
−0.878335 + 0.478046i \(0.841345\pi\)
\(140\) 0 0
\(141\) 0.511525 + 0.371645i 0.0430782 + 0.0312981i
\(142\) 2.17775 + 2.17775i 0.182753 + 0.182753i
\(143\) 6.15696 6.99103i 0.514871 0.584619i
\(144\) 9.27951i 0.773293i
\(145\) 0 0
\(146\) −1.33157 + 4.09814i −0.110201 + 0.339164i
\(147\) −0.178353 0.0908753i −0.0147103 0.00749527i
\(148\) 29.3994 + 4.65640i 2.41661 + 0.382754i
\(149\) 6.83188 4.96365i 0.559689 0.406638i −0.271656 0.962394i \(-0.587571\pi\)
0.831345 + 0.555756i \(0.187571\pi\)
\(150\) 0 0
\(151\) 11.3483 + 3.68729i 0.923513 + 0.300068i 0.731907 0.681404i \(-0.238630\pi\)
0.191606 + 0.981472i \(0.438630\pi\)
\(152\) 19.1184 3.02806i 1.55071 0.245608i
\(153\) −1.76439 + 1.76439i −0.142642 + 0.142642i
\(154\) −19.3626 + 7.67785i −1.56028 + 0.618699i
\(155\) 0 0
\(156\) −3.86780 + 5.32357i −0.309672 + 0.426226i
\(157\) −0.618117 1.21312i −0.0493311 0.0968177i 0.865025 0.501729i \(-0.167302\pi\)
−0.914356 + 0.404911i \(0.867302\pi\)
\(158\) −4.79514 + 9.41098i −0.381481 + 0.748698i
\(159\) −1.44913 1.99456i −0.114924 0.158179i
\(160\) 0 0
\(161\) 0.363594 0.118139i 0.0286552 0.00931064i
\(162\) −12.8080 + 6.52602i −1.00629 + 0.512732i
\(163\) −3.58914 22.6610i −0.281123 1.77494i −0.574062 0.818812i \(-0.694633\pi\)
0.292939 0.956131i \(-0.405367\pi\)
\(164\) −13.5057 −1.05462
\(165\) 0 0
\(166\) 20.1698 1.56548
\(167\) 2.24646 + 14.1836i 0.173836 + 1.09756i 0.908118 + 0.418714i \(0.137519\pi\)
−0.734282 + 0.678845i \(0.762481\pi\)
\(168\) 6.41668 3.26946i 0.495058 0.252244i
\(169\) −4.86053 + 1.57928i −0.373887 + 0.121483i
\(170\) 0 0
\(171\) 6.44525 + 8.87112i 0.492880 + 0.678391i
\(172\) 9.85535 19.3422i 0.751464 1.47483i
\(173\) 10.1247 + 19.8708i 0.769766 + 1.51075i 0.857430 + 0.514601i \(0.172060\pi\)
−0.0876641 + 0.996150i \(0.527940\pi\)
\(174\) −5.93425 + 8.16780i −0.449874 + 0.619199i
\(175\) 0 0
\(176\) −2.89071 + 11.2829i −0.217896 + 0.850484i
\(177\) 2.74094 2.74094i 0.206022 0.206022i
\(178\) −10.1654 + 1.61004i −0.761928 + 0.120678i
\(179\) −4.15441 1.34985i −0.310516 0.100893i 0.149614 0.988745i \(-0.452197\pi\)
−0.460129 + 0.887852i \(0.652197\pi\)
\(180\) 0 0
\(181\) −7.63694 + 5.54857i −0.567650 + 0.412422i −0.834251 0.551385i \(-0.814099\pi\)
0.266601 + 0.963807i \(0.414099\pi\)
\(182\) −17.4228 2.75950i −1.29147 0.204548i
\(183\) −5.07543 2.58606i −0.375187 0.191167i
\(184\) 0.213446 0.656920i 0.0157355 0.0484287i
\(185\) 0 0
\(186\) 13.1836i 0.966665i
\(187\) −2.69495 + 1.59568i −0.197074 + 0.116688i
\(188\) 2.92879 + 2.92879i 0.213604 + 0.213604i
\(189\) 7.04765 + 5.12041i 0.512641 + 0.372455i
\(190\) 0 0
\(191\) −2.00020 6.15597i −0.144729 0.445430i 0.852247 0.523140i \(-0.175239\pi\)
−0.996976 + 0.0777092i \(0.975239\pi\)
\(192\) −0.835981 + 5.27817i −0.0603317 + 0.380919i
\(193\) −0.157473 + 0.994245i −0.0113352 + 0.0715674i −0.992707 0.120548i \(-0.961535\pi\)
0.981372 + 0.192115i \(0.0615348\pi\)
\(194\) −10.8424 33.3693i −0.778436 2.39578i
\(195\) 0 0
\(196\) −1.06084 0.770746i −0.0757744 0.0550533i
\(197\) −17.3425 17.3425i −1.23560 1.23560i −0.961781 0.273821i \(-0.911713\pi\)
−0.273821 0.961781i \(-0.588287\pi\)
\(198\) −20.8028 + 4.66134i −1.47839 + 0.331267i
\(199\) 3.25580i 0.230797i 0.993319 + 0.115399i \(0.0368146\pi\)
−0.993319 + 0.115399i \(0.963185\pi\)
\(200\) 0 0
\(201\) 0.769684 2.36884i 0.0542893 0.167085i
\(202\) −4.19440 2.13715i −0.295117 0.150370i
\(203\) −17.6967 2.80288i −1.24206 0.196723i
\(204\) 1.78977 1.30034i 0.125309 0.0910422i
\(205\) 0 0
\(206\) −3.97755 1.29238i −0.277129 0.0900447i
\(207\) 0.386469 0.0612107i 0.0268615 0.00425444i
\(208\) −6.97487 + 6.97487i −0.483621 + 0.483621i
\(209\) 5.07327 + 12.7942i 0.350926 + 0.884991i
\(210\) 0 0
\(211\) −14.6014 + 20.0971i −1.00520 + 1.38354i −0.0831208 + 0.996539i \(0.526489\pi\)
−0.922080 + 0.387000i \(0.873511\pi\)
\(212\) −7.33212 14.3901i −0.503572 0.988316i
\(213\) 0.343729 0.674606i 0.0235519 0.0462232i
\(214\) 5.94674 + 8.18498i 0.406511 + 0.559514i
\(215\) 0 0
\(216\) 14.9688 4.86367i 1.01850 0.330931i
\(217\) 20.8467 10.6219i 1.41517 0.721064i
\(218\) 1.22657 + 7.74423i 0.0830735 + 0.524505i
\(219\) 1.05932 0.0715822
\(220\) 0 0
\(221\) −2.65237 −0.178418
\(222\) −1.72912 10.9173i −0.116051 0.732718i
\(223\) −17.4548 + 8.89368i −1.16886 + 0.595565i −0.927116 0.374774i \(-0.877720\pi\)
−0.241746 + 0.970339i \(0.577720\pi\)
\(224\) −1.93038 + 0.627220i −0.128979 + 0.0419079i
\(225\) 0 0
\(226\) −15.9473 21.9496i −1.06080 1.46007i
\(227\) −0.464395 + 0.911427i −0.0308230 + 0.0604935i −0.905904 0.423482i \(-0.860808\pi\)
0.875081 + 0.483976i \(0.160808\pi\)
\(228\) −4.41365 8.66228i −0.292301 0.573674i
\(229\) 0.0598653 0.0823975i 0.00395601 0.00544498i −0.807034 0.590504i \(-0.798929\pi\)
0.810990 + 0.585059i \(0.198929\pi\)
\(230\) 0 0
\(231\) 3.26605 + 3.94379i 0.214890 + 0.259483i
\(232\) −22.8903 + 22.8903i −1.50282 + 1.50282i
\(233\) 21.1366 3.34771i 1.38470 0.219316i 0.580786 0.814056i \(-0.302745\pi\)
0.803918 + 0.594740i \(0.202745\pi\)
\(234\) −17.1708 5.57912i −1.12249 0.364719i
\(235\) 0 0
\(236\) 20.5431 14.9254i 1.33724 0.971562i
\(237\) 2.56461 + 0.406194i 0.166589 + 0.0263851i
\(238\) 5.28413 + 2.69240i 0.342519 + 0.174522i
\(239\) −2.67723 + 8.23966i −0.173175 + 0.532979i −0.999545 0.0301483i \(-0.990402\pi\)
0.826370 + 0.563128i \(0.190402\pi\)
\(240\) 0 0
\(241\) 10.6492i 0.685976i 0.939340 + 0.342988i \(0.111439\pi\)
−0.939340 + 0.342988i \(0.888561\pi\)
\(242\) −26.7462 0.812677i −1.71931 0.0522408i
\(243\) 9.65667 + 9.65667i 0.619476 + 0.619476i
\(244\) −30.1886 21.9333i −1.93263 1.40414i
\(245\) 0 0
\(246\) 1.54980 + 4.76980i 0.0988118 + 0.304111i
\(247\) −1.82339 + 11.5124i −0.116020 + 0.732518i
\(248\) 6.61279 41.7515i 0.419913 2.65123i
\(249\) −1.53225 4.71578i −0.0971023 0.298850i
\(250\) 0 0
\(251\) 7.59915 + 5.52110i 0.479654 + 0.348489i 0.801192 0.598408i \(-0.204200\pi\)
−0.321538 + 0.946897i \(0.604200\pi\)
\(252\) 18.8972 + 18.8972i 1.19041 + 1.19041i
\(253\) 0.488975 + 0.0459651i 0.0307416 + 0.00288980i
\(254\) 5.77750i 0.362513i
\(255\) 0 0
\(256\) −9.63584 + 29.6561i −0.602240 + 1.85350i
\(257\) 16.4300 + 8.37149i 1.02487 + 0.522199i 0.883832 0.467804i \(-0.154955\pi\)
0.141042 + 0.990004i \(0.454955\pi\)
\(258\) −7.96198 1.26105i −0.495691 0.0785097i
\(259\) 15.8700 11.5302i 0.986111 0.716451i
\(260\) 0 0
\(261\) −17.4407 5.66681i −1.07955 0.350767i
\(262\) −7.50744 + 1.18906i −0.463811 + 0.0734605i
\(263\) 11.8928 11.8928i 0.733342 0.733342i −0.237938 0.971280i \(-0.576472\pi\)
0.971280 + 0.237938i \(0.0764717\pi\)
\(264\) 9.23304 0.585716i 0.568254 0.0360483i
\(265\) 0 0
\(266\) 15.3188 21.0845i 0.939254 1.29277i
\(267\) 1.14868 + 2.25440i 0.0702978 + 0.137967i
\(268\) 7.40747 14.5380i 0.452483 0.888049i
\(269\) 16.7264 + 23.0219i 1.01983 + 1.40367i 0.912325 + 0.409467i \(0.134285\pi\)
0.107502 + 0.994205i \(0.465715\pi\)
\(270\) 0 0
\(271\) −28.2295 + 9.17232i −1.71482 + 0.557179i −0.991124 0.132939i \(-0.957558\pi\)
−0.723696 + 0.690118i \(0.757558\pi\)
\(272\) 2.95479 1.50554i 0.179160 0.0912868i
\(273\) 0.678387 + 4.28317i 0.0410578 + 0.259229i
\(274\) 40.2251 2.43009
\(275\) 0 0
\(276\) −0.346917 −0.0208820
\(277\) 1.94287 + 12.2668i 0.116736 + 0.737041i 0.974731 + 0.223383i \(0.0717099\pi\)
−0.857995 + 0.513658i \(0.828290\pi\)
\(278\) 9.36443 4.77141i 0.561641 0.286170i
\(279\) 22.7745 7.39987i 1.36347 0.443019i
\(280\) 0 0
\(281\) 12.8578 + 17.6972i 0.767032 + 1.05573i 0.996596 + 0.0824357i \(0.0262699\pi\)
−0.229564 + 0.973294i \(0.573730\pi\)
\(282\) 0.698273 1.37044i 0.0415815 0.0816083i
\(283\) −12.3474 24.2332i −0.733978 1.44051i −0.891511 0.453000i \(-0.850354\pi\)
0.157532 0.987514i \(-0.449646\pi\)
\(284\) 2.91529 4.01255i 0.172991 0.238101i
\(285\) 0 0
\(286\) −19.1399 12.1326i −1.13177 0.717416i
\(287\) −6.29366 + 6.29366i −0.371503 + 0.371503i
\(288\) −2.05183 + 0.324978i −0.120905 + 0.0191495i
\(289\) −15.3199 4.97773i −0.901170 0.292808i
\(290\) 0 0
\(291\) −6.97823 + 5.06998i −0.409071 + 0.297207i
\(292\) 6.85394 + 1.08556i 0.401096 + 0.0635274i
\(293\) −17.9201 9.13077i −1.04691 0.533425i −0.156068 0.987746i \(-0.549882\pi\)
−0.890838 + 0.454321i \(0.849882\pi\)
\(294\) −0.150470 + 0.463100i −0.00877560 + 0.0270085i
\(295\) 0 0
\(296\) 35.4416i 2.06000i
\(297\) 5.70176 + 9.62970i 0.330849 + 0.558772i
\(298\) −14.5257 14.5257i −0.841450 0.841450i
\(299\) 0.336495 + 0.244478i 0.0194600 + 0.0141385i
\(300\) 0 0
\(301\) −4.42087 13.6060i −0.254815 0.784239i
\(302\) 4.54074 28.6691i 0.261290 1.64972i
\(303\) −0.181037 + 1.14302i −0.0104003 + 0.0656650i
\(304\) −4.50340 13.8600i −0.258288 0.794927i
\(305\) 0 0
\(306\) 4.91061 + 3.56777i 0.280721 + 0.203956i
\(307\) 14.6921 + 14.6921i 0.838520 + 0.838520i 0.988664 0.150144i \(-0.0479738\pi\)
−0.150144 + 0.988664i \(0.547974\pi\)
\(308\) 17.0903 + 28.8638i 0.973810 + 1.64467i
\(309\) 1.02815i 0.0584893i
\(310\) 0 0
\(311\) 7.19358 22.1396i 0.407911 1.25542i −0.510530 0.859860i \(-0.670551\pi\)
0.918440 0.395560i \(-0.129449\pi\)
\(312\) 6.98106 + 3.55703i 0.395225 + 0.201377i
\(313\) −13.8454 2.19289i −0.782587 0.123950i −0.247659 0.968847i \(-0.579661\pi\)
−0.534928 + 0.844898i \(0.679661\pi\)
\(314\) −2.67948 + 1.94676i −0.151212 + 0.109862i
\(315\) 0 0
\(316\) 16.1771 + 5.25626i 0.910032 + 0.295687i
\(317\) −29.1369 + 4.61482i −1.63649 + 0.259194i −0.905859 0.423580i \(-0.860773\pi\)
−0.730630 + 0.682774i \(0.760773\pi\)
\(318\) −4.24076 + 4.24076i −0.237810 + 0.237810i
\(319\) −19.4408 12.3233i −1.08847 0.689972i
\(320\) 0 0
\(321\) 1.46193 2.01217i 0.0815967 0.112308i
\(322\) −0.422208 0.828629i −0.0235287 0.0461777i
\(323\) 1.77905 3.49158i 0.0989889 0.194277i
\(324\) 13.6069 + 18.7283i 0.755940 + 1.04046i
\(325\) 0 0
\(326\) −53.0803 + 17.2468i −2.93985 + 0.955215i
\(327\) 1.71746 0.875087i 0.0949755 0.0483924i
\(328\) 2.51563 + 15.8830i 0.138902 + 0.876994i
\(329\) 2.72962 0.150489
\(330\) 0 0
\(331\) 2.18560 0.120131 0.0600657 0.998194i \(-0.480869\pi\)
0.0600657 + 0.998194i \(0.480869\pi\)
\(332\) −5.08128 32.0819i −0.278871 1.76072i
\(333\) 17.8889 9.11485i 0.980306 0.499491i
\(334\) 33.2232 10.7949i 1.81789 0.590670i
\(335\) 0 0
\(336\) −3.18694 4.38645i −0.173862 0.239301i
\(337\) 0.818095 1.60560i 0.0445645 0.0874627i −0.867650 0.497175i \(-0.834371\pi\)
0.912215 + 0.409712i \(0.134371\pi\)
\(338\) 5.64408 + 11.0771i 0.306997 + 0.602516i
\(339\) −3.92043 + 5.39601i −0.212929 + 0.293071i
\(340\) 0 0
\(341\) 29.9966 1.90289i 1.62441 0.103047i
\(342\) 18.8614 18.8614i 1.01991 1.01991i
\(343\) −18.7031 + 2.96227i −1.00987 + 0.159948i
\(344\) −24.5826 7.98736i −1.32540 0.430650i
\(345\) 0 0
\(346\) 43.8896 31.8877i 2.35952 1.71429i
\(347\) 21.2079 + 3.35900i 1.13850 + 0.180321i 0.697090 0.716984i \(-0.254478\pi\)
0.441411 + 0.897305i \(0.354478\pi\)
\(348\) 14.4867 + 7.38132i 0.776566 + 0.395680i
\(349\) 3.29300 10.1348i 0.176270 0.542505i −0.823419 0.567434i \(-0.807936\pi\)
0.999689 + 0.0249295i \(0.00793612\pi\)
\(350\) 0 0
\(351\) 9.47758i 0.505876i
\(352\) −2.59606 0.244037i −0.138370 0.0130072i
\(353\) 7.73857 + 7.73857i 0.411883 + 0.411883i 0.882394 0.470511i \(-0.155931\pi\)
−0.470511 + 0.882394i \(0.655931\pi\)
\(354\) −7.62853 5.54245i −0.405452 0.294578i
\(355\) 0 0
\(356\) 5.12185 + 15.7634i 0.271457 + 0.835460i
\(357\) 0.228072 1.43999i 0.0120708 0.0762123i
\(358\) −1.66228 + 10.4952i −0.0878544 + 0.554691i
\(359\) 1.01178 + 3.11394i 0.0533997 + 0.164347i 0.974200 0.225688i \(-0.0724629\pi\)
−0.920800 + 0.390035i \(0.872463\pi\)
\(360\) 0 0
\(361\) 1.43940 + 1.04578i 0.0757578 + 0.0550412i
\(362\) 16.2374 + 16.2374i 0.853418 + 0.853418i
\(363\) 1.84184 + 6.31511i 0.0966713 + 0.331457i
\(364\) 28.4079i 1.48898i
\(365\) 0 0
\(366\) −4.28197 + 13.1785i −0.223822 + 0.688853i
\(367\) −16.2428 8.27615i −0.847870 0.432011i −0.0246243 0.999697i \(-0.507839\pi\)
−0.823246 + 0.567686i \(0.807839\pi\)
\(368\) −0.513632 0.0813513i −0.0267749 0.00424073i
\(369\) −7.36989 + 5.35454i −0.383661 + 0.278746i
\(370\) 0 0
\(371\) −10.1225 3.28901i −0.525536 0.170757i
\(372\) −20.9697 + 3.32128i −1.08723 + 0.172200i
\(373\) −12.4917 + 12.4917i −0.646795 + 0.646795i −0.952217 0.305422i \(-0.901202\pi\)
0.305422 + 0.952217i \(0.401202\pi\)
\(374\) 4.85939 + 5.86777i 0.251273 + 0.303415i
\(375\) 0 0
\(376\) 2.89879 3.98984i 0.149494 0.205760i
\(377\) −8.84972 17.3686i −0.455784 0.894526i
\(378\) 9.62060 18.8815i 0.494831 0.971160i
\(379\) −12.9685 17.8496i −0.666146 0.916872i 0.333519 0.942743i \(-0.391764\pi\)
−0.999665 + 0.0258717i \(0.991764\pi\)
\(380\) 0 0
\(381\) −1.35080 + 0.438903i −0.0692038 + 0.0224857i
\(382\) −14.0294 + 7.14836i −0.717809 + 0.365742i
\(383\) 3.08015 + 19.4473i 0.157389 + 0.993712i 0.932311 + 0.361656i \(0.117789\pi\)
−0.774923 + 0.632056i \(0.782211\pi\)
\(384\) 12.0594 0.615402
\(385\) 0 0
\(386\) 2.44874 0.124638
\(387\) −2.29057 14.4621i −0.116436 0.735148i
\(388\) −50.3457 + 25.6524i −2.55591 + 1.30230i
\(389\) −16.2827 + 5.29057i −0.825565 + 0.268242i −0.691176 0.722686i \(-0.742907\pi\)
−0.134389 + 0.990929i \(0.542907\pi\)
\(390\) 0 0
\(391\) −0.0821929 0.113129i −0.00415667 0.00572117i
\(392\) −0.708818 + 1.39113i −0.0358007 + 0.0702629i
\(393\) 0.848330 + 1.66494i 0.0427926 + 0.0839852i
\(394\) −35.0683 + 48.2673i −1.76671 + 2.43167i
\(395\) 0 0
\(396\) 12.6551 + 31.9145i 0.635941 + 1.60377i
\(397\) −5.24887 + 5.24887i −0.263433 + 0.263433i −0.826447 0.563014i \(-0.809642\pi\)
0.563014 + 0.826447i \(0.309642\pi\)
\(398\) 7.82252 1.23896i 0.392107 0.0621037i
\(399\) −6.09337 1.97986i −0.305050 0.0991168i
\(400\) 0 0
\(401\) −9.93091 + 7.21523i −0.495926 + 0.360311i −0.807459 0.589924i \(-0.799158\pi\)
0.311533 + 0.950235i \(0.399158\pi\)
\(402\) −5.98438 0.947832i −0.298474 0.0472736i
\(403\) 22.6803 + 11.5562i 1.12979 + 0.575655i
\(404\) −2.34267 + 7.21000i −0.116552 + 0.358711i
\(405\) 0 0
\(406\) 43.5854i 2.16311i
\(407\) 24.5905 5.51006i 1.21891 0.273124i
\(408\) −1.86260 1.86260i −0.0922125 0.0922125i
\(409\) 21.6485 + 15.7286i 1.07045 + 0.777727i 0.975993 0.217802i \(-0.0698887\pi\)
0.0944563 + 0.995529i \(0.469889\pi\)
\(410\) 0 0
\(411\) −3.05581 9.40481i −0.150732 0.463905i
\(412\) −1.05361 + 6.65226i −0.0519079 + 0.327733i
\(413\) 2.61782 16.5283i 0.128815 0.813304i
\(414\) −0.294135 0.905254i −0.0144559 0.0444908i
\(415\) 0 0
\(416\) −1.78651 1.29798i −0.0875910 0.0636386i
\(417\) −1.82697 1.82697i −0.0894672 0.0894672i
\(418\) 28.8092 17.0580i 1.40911 0.834332i
\(419\) 14.2401i 0.695676i 0.937555 + 0.347838i \(0.113084\pi\)
−0.937555 + 0.347838i \(0.886916\pi\)
\(420\) 0 0
\(421\) −2.13413 + 6.56818i −0.104011 + 0.320113i −0.989497 0.144553i \(-0.953826\pi\)
0.885486 + 0.464666i \(0.153826\pi\)
\(422\) 53.8425 + 27.4341i 2.62101 + 1.33547i
\(423\) 2.75935 + 0.437039i 0.134164 + 0.0212496i
\(424\) −15.5574 + 11.3031i −0.755532 + 0.548926i
\(425\) 0 0
\(426\) −1.75164 0.569142i −0.0848672 0.0275750i
\(427\) −24.2888 + 3.84696i −1.17542 + 0.186168i
\(428\) 11.5209 11.5209i 0.556882 0.556882i
\(429\) −1.38264 + 5.39668i −0.0667545 + 0.260554i
\(430\) 0 0
\(431\) −4.19638 + 5.77582i −0.202132 + 0.278211i −0.898034 0.439926i \(-0.855005\pi\)
0.695902 + 0.718137i \(0.255005\pi\)
\(432\) −5.37966 10.5582i −0.258829 0.507981i
\(433\) 7.62822 14.9712i 0.366589 0.719471i −0.631864 0.775079i \(-0.717710\pi\)
0.998453 + 0.0556084i \(0.0177098\pi\)
\(434\) −33.4538 46.0451i −1.60583 2.21024i
\(435\) 0 0
\(436\) 12.0089 3.90194i 0.575124 0.186869i
\(437\) −0.547531 + 0.278981i −0.0261920 + 0.0133455i
\(438\) −0.403114 2.54516i −0.0192616 0.121613i
\(439\) 0.772934 0.0368901 0.0184451 0.999830i \(-0.494128\pi\)
0.0184451 + 0.999830i \(0.494128\pi\)
\(440\) 0 0
\(441\) −0.884459 −0.0421171
\(442\) 1.00934 + 6.37271i 0.0480093 + 0.303119i
\(443\) −16.7419 + 8.53040i −0.795430 + 0.405292i −0.803968 0.594672i \(-0.797282\pi\)
0.00853887 + 0.999964i \(0.497282\pi\)
\(444\) −16.9293 + 5.50067i −0.803430 + 0.261050i
\(445\) 0 0
\(446\) 28.0106 + 38.5533i 1.32634 + 1.82555i
\(447\) −2.29269 + 4.49965i −0.108440 + 0.212826i
\(448\) 10.4738 + 20.5560i 0.494840 + 0.971179i
\(449\) −0.419317 + 0.577140i −0.0197888 + 0.0272369i −0.818797 0.574084i \(-0.805358\pi\)
0.799008 + 0.601320i \(0.205358\pi\)
\(450\) 0 0
\(451\) −10.6291 + 4.21474i −0.500502 + 0.198464i
\(452\) −30.8954 + 30.8954i −1.45320 + 1.45320i
\(453\) −7.04792 + 1.11628i −0.331140 + 0.0524474i
\(454\) 2.36655 + 0.768940i 0.111068 + 0.0360882i
\(455\) 0 0
\(456\) −9.36493 + 6.80402i −0.438553 + 0.318628i
\(457\) 19.1068 + 3.02622i 0.893780 + 0.141561i 0.586396 0.810025i \(-0.300546\pi\)
0.307384 + 0.951586i \(0.400546\pi\)
\(458\) −0.220753 0.112479i −0.0103151 0.00525581i
\(459\) 0.984632 3.03039i 0.0459587 0.141446i
\(460\) 0 0
\(461\) 36.5277i 1.70126i −0.525761 0.850632i \(-0.676219\pi\)
0.525761 0.850632i \(-0.323781\pi\)
\(462\) 8.23266 9.34792i 0.383018 0.434904i
\(463\) 17.1422 + 17.1422i 0.796664 + 0.796664i 0.982568 0.185904i \(-0.0595213\pi\)
−0.185904 + 0.982568i \(0.559521\pi\)
\(464\) 19.7175 + 14.3256i 0.915361 + 0.665049i
\(465\) 0 0
\(466\) −16.0867 49.5097i −0.745201 2.29349i
\(467\) 2.31832 14.6373i 0.107279 0.677333i −0.874172 0.485617i \(-0.838595\pi\)
0.981451 0.191715i \(-0.0614051\pi\)
\(468\) −4.54837 + 28.7173i −0.210249 + 1.32746i
\(469\) −3.32281 10.2266i −0.153433 0.472219i
\(470\) 0 0
\(471\) 0.658714 + 0.478584i 0.0303519 + 0.0220520i
\(472\) −21.3791 21.3791i −0.984051 0.984051i
\(473\) 1.72006 18.2979i 0.0790885 0.841340i
\(474\) 6.31640i 0.290122i
\(475\) 0 0
\(476\) 2.95131 9.08320i 0.135273 0.416328i
\(477\) −9.70618 4.94555i −0.444416 0.226441i
\(478\) 20.8157 + 3.29689i 0.952090 + 0.150796i
\(479\) 22.3176 16.2146i 1.01971 0.740866i 0.0534905 0.998568i \(-0.482965\pi\)
0.966224 + 0.257702i \(0.0829653\pi\)
\(480\) 0 0
\(481\) 20.2972 + 6.59495i 0.925471 + 0.300704i
\(482\) 25.5862 4.05246i 1.16542 0.184585i
\(483\) −0.161663 + 0.161663i −0.00735592 + 0.00735592i
\(484\) 5.44540 + 42.7471i 0.247518 + 1.94305i
\(485\) 0 0
\(486\) 19.5268 26.8763i 0.885752 1.21913i
\(487\) −17.6583 34.6563i −0.800174 1.57043i −0.821193 0.570650i \(-0.806691\pi\)
0.0210198 0.999779i \(-0.493309\pi\)
\(488\) −20.1710 + 39.5879i −0.913099 + 1.79206i
\(489\) 8.06478 + 11.1002i 0.364702 + 0.501969i
\(490\) 0 0
\(491\) 17.8811 5.80992i 0.806962 0.262198i 0.123652 0.992326i \(-0.460539\pi\)
0.683311 + 0.730128i \(0.260539\pi\)
\(492\) 7.19639 3.66674i 0.324438 0.165310i
\(493\) 1.02520 + 6.47287i 0.0461728 + 0.291523i
\(494\) 28.3541 1.27571
\(495\) 0 0
\(496\) −31.8258 −1.42902
\(497\) −0.511323 3.22837i −0.0229360 0.144812i
\(498\) −10.7472 + 5.47599i −0.481595 + 0.245385i
\(499\) −4.98327 + 1.61916i −0.223082 + 0.0724837i −0.418425 0.908251i \(-0.637418\pi\)
0.195343 + 0.980735i \(0.437418\pi\)
\(500\) 0 0
\(501\) −5.04778 6.94768i −0.225518 0.310399i
\(502\) 10.3734 20.3590i 0.462990 0.908668i
\(503\) −5.98921 11.7545i −0.267046 0.524106i 0.718076 0.695965i \(-0.245023\pi\)
−0.985122 + 0.171858i \(0.945023\pi\)
\(504\) 18.7037 25.7434i 0.833127 1.14670i
\(505\) 0 0
\(506\) −0.0756375 1.19232i −0.00336250 0.0530053i
\(507\) 2.16111 2.16111i 0.0959784 0.0959784i
\(508\) −9.18967 + 1.45550i −0.407726 + 0.0645774i
\(509\) −5.32193 1.72920i −0.235890 0.0766454i 0.188686 0.982037i \(-0.439577\pi\)
−0.424577 + 0.905392i \(0.639577\pi\)
\(510\) 0 0
\(511\) 3.69980 2.68806i 0.163669 0.118913i
\(512\) 35.0853 + 5.55696i 1.55056 + 0.245585i
\(513\) −12.4763 6.35698i −0.550841 0.280667i
\(514\) 13.8614 42.6611i 0.611401 1.88170i
\(515\) 0 0
\(516\) 12.9820i 0.571500i
\(517\) 3.21895 + 1.39098i 0.141569 + 0.0611751i
\(518\) −33.7421 33.7421i −1.48254 1.48254i
\(519\) −10.7897 7.83915i −0.473614 0.344101i
\(520\) 0 0
\(521\) 5.89515 + 18.1434i 0.258271 + 0.794877i 0.993168 + 0.116697i \(0.0372308\pi\)
−0.734896 + 0.678179i \(0.762769\pi\)
\(522\) −6.97844 + 44.0601i −0.305438 + 1.92846i
\(523\) −5.49061 + 34.6664i −0.240088 + 1.51585i 0.513261 + 0.858233i \(0.328437\pi\)
−0.753349 + 0.657621i \(0.771563\pi\)
\(524\) 3.78263 + 11.6417i 0.165245 + 0.508572i
\(525\) 0 0
\(526\) −33.0999 24.0485i −1.44322 1.04856i
\(527\) −6.05128 6.05128i −0.263598 0.263598i
\(528\) −1.52298 6.79681i −0.0662792 0.295793i
\(529\) 22.9781i 0.999047i
\(530\) 0 0
\(531\) 5.29267 16.2892i 0.229682 0.706890i
\(532\) −37.3961 19.0542i −1.62132 0.826106i
\(533\) −9.56421 1.51482i −0.414272 0.0656143i
\(534\) 4.97940 3.61775i 0.215480 0.156555i
\(535\) 0 0
\(536\) −18.4767 6.00346i −0.798074 0.259310i
\(537\) 2.58011 0.408650i 0.111340 0.0176345i
\(538\) 48.9484 48.9484i 2.11031 2.11031i
\(539\) −1.07541 0.275523i −0.0463213 0.0118676i
\(540\) 0 0
\(541\) −1.49345 + 2.05556i −0.0642084 + 0.0883752i −0.839914 0.542720i \(-0.817394\pi\)
0.775705 + 0.631095i \(0.217394\pi\)
\(542\) 32.7803 + 64.3350i 1.40803 + 2.76342i
\(543\) 2.56286 5.02989i 0.109983 0.215853i
\(544\) 0.436376 + 0.600621i 0.0187095 + 0.0257514i
\(545\) 0 0
\(546\) 10.0328 3.25984i 0.429363 0.139508i
\(547\) −13.2087 + 6.73017i −0.564764 + 0.287761i −0.712969 0.701195i \(-0.752650\pi\)
0.148206 + 0.988957i \(0.452650\pi\)
\(548\) −10.1337 63.9819i −0.432892 2.73317i
\(549\) −25.1693 −1.07420
\(550\) 0 0
\(551\) 28.7998 1.22691
\(552\) 0.0646180 + 0.407982i 0.00275033 + 0.0173649i
\(553\) 9.98792 5.08910i 0.424730 0.216411i
\(554\) 28.7334 9.33604i 1.22076 0.396650i
\(555\) 0 0
\(556\) −9.94853 13.6930i −0.421912 0.580712i
\(557\) −5.79353 + 11.3704i −0.245480 + 0.481781i −0.980565 0.196194i \(-0.937142\pi\)
0.735086 + 0.677974i \(0.237142\pi\)
\(558\) −26.4459 51.9029i −1.11954 2.19723i
\(559\) 9.14861 12.5920i 0.386945 0.532584i
\(560\) 0 0
\(561\) 1.00275 1.58191i 0.0423363 0.0667881i
\(562\) 37.6272 37.6272i 1.58721 1.58721i
\(563\) 33.1190 5.24553i 1.39580 0.221073i 0.587204 0.809439i \(-0.300229\pi\)
0.808594 + 0.588367i \(0.200229\pi\)
\(564\) −2.35572 0.765421i −0.0991939 0.0322300i
\(565\) 0 0
\(566\) −53.5250 + 38.8882i −2.24982 + 1.63459i
\(567\) 15.0682 + 2.38657i 0.632805 + 0.100226i
\(568\) −5.26186 2.68105i −0.220783 0.112494i
\(569\) 2.57065 7.91165i 0.107767 0.331674i −0.882603 0.470120i \(-0.844211\pi\)
0.990370 + 0.138446i \(0.0442107\pi\)
\(570\) 0 0
\(571\) 45.2601i 1.89408i −0.321118 0.947039i \(-0.604059\pi\)
0.321118 0.947039i \(-0.395941\pi\)
\(572\) −14.4762 + 33.5004i −0.605282 + 1.40072i
\(573\) 2.73710 + 2.73710i 0.114344 + 0.114344i
\(574\) 17.5164 + 12.7264i 0.731121 + 0.531190i
\(575\) 0 0
\(576\) 7.29667 + 22.4568i 0.304028 + 0.935701i
\(577\) 3.58768 22.6517i 0.149357 0.943005i −0.793200 0.608961i \(-0.791587\pi\)
0.942558 0.334044i \(-0.108413\pi\)
\(578\) −6.12986 + 38.7024i −0.254969 + 1.60981i
\(579\) −0.186025 0.572526i −0.00773094 0.0237934i
\(580\) 0 0
\(581\) −17.3180 12.5823i −0.718472 0.522001i
\(582\) 14.8369 + 14.8369i 0.615007 + 0.615007i
\(583\) −10.2611 9.03691i −0.424972 0.374270i
\(584\) 8.26259i 0.341908i
\(585\) 0 0
\(586\) −15.1186 + 46.5303i −0.624545 + 1.92215i
\(587\) −8.99622 4.58380i −0.371314 0.189194i 0.258369 0.966046i \(-0.416815\pi\)
−0.629683 + 0.776853i \(0.716815\pi\)
\(588\) 0.774512 + 0.122671i 0.0319403 + 0.00505885i
\(589\) −30.4251 + 22.1051i −1.25365 + 0.910827i
\(590\) 0 0
\(591\) 13.9492 + 4.53236i 0.573792 + 0.186436i
\(592\) −26.3548 + 4.17419i −1.08318 + 0.171558i
\(593\) −9.47168 + 9.47168i −0.388955 + 0.388955i −0.874315 0.485359i \(-0.838689\pi\)
0.485359 + 0.874315i \(0.338689\pi\)
\(594\) 20.9670 17.3638i 0.860286 0.712444i
\(595\) 0 0
\(596\) −19.4451 + 26.7639i −0.796503 + 1.09629i
\(597\) −0.883934 1.73482i −0.0361770 0.0710014i
\(598\) 0.459343 0.901512i 0.0187839 0.0368656i
\(599\) 23.5167 + 32.3680i 0.960866 + 1.32252i 0.946528 + 0.322622i \(0.104564\pi\)
0.0143383 + 0.999897i \(0.495436\pi\)
\(600\) 0 0
\(601\) 34.5805 11.2359i 1.41057 0.458322i 0.497976 0.867191i \(-0.334077\pi\)
0.912593 + 0.408869i \(0.134077\pi\)
\(602\) −31.0081 + 15.7994i −1.26380 + 0.643937i
\(603\) −1.72163 10.8700i −0.0701103 0.442659i
\(604\) −46.7449 −1.90202
\(605\) 0 0
\(606\) 2.81517 0.114358
\(607\) 3.89991 + 24.6231i 0.158293 + 0.999420i 0.931096 + 0.364774i \(0.118854\pi\)
−0.772803 + 0.634646i \(0.781146\pi\)
\(608\) 2.90694 1.48116i 0.117892 0.0600689i
\(609\) 10.1905 3.31108i 0.412938 0.134172i
\(610\) 0 0
\(611\) 1.74555 + 2.40254i 0.0706174 + 0.0971965i
\(612\) 4.43777 8.70960i 0.179386 0.352065i
\(613\) 5.30759 + 10.4167i 0.214372 + 0.420728i 0.973003 0.230792i \(-0.0741317\pi\)
−0.758632 + 0.651520i \(0.774132\pi\)
\(614\) 29.7088 40.8907i 1.19895 1.65021i
\(615\) 0 0
\(616\) 30.7612 25.4748i 1.23940 1.02641i
\(617\) −6.18386 + 6.18386i −0.248953 + 0.248953i −0.820541 0.571588i \(-0.806328\pi\)
0.571588 + 0.820541i \(0.306328\pi\)
\(618\) 2.47027 0.391253i 0.0993689 0.0157385i
\(619\) −1.04489 0.339504i −0.0419975 0.0136458i 0.287943 0.957648i \(-0.407029\pi\)
−0.329940 + 0.944002i \(0.607029\pi\)
\(620\) 0 0
\(621\) −0.404237 + 0.293695i −0.0162215 + 0.0117856i
\(622\) −55.9309 8.85859i −2.24263 0.355197i
\(623\) 9.73251 + 4.95896i 0.389925 + 0.198677i
\(624\) 1.82284 5.61013i 0.0729721 0.224585i
\(625\) 0 0
\(626\) 34.1000i 1.36291i
\(627\) −6.17680 5.43987i −0.246677 0.217247i
\(628\) 3.77153 + 3.77153i 0.150501 + 0.150501i
\(629\) −5.80472 4.21737i −0.231449 0.168158i
\(630\) 0 0
\(631\) −1.00765 3.10124i −0.0401140 0.123458i 0.928994 0.370095i \(-0.120675\pi\)
−0.969108 + 0.246636i \(0.920675\pi\)
\(632\) 3.16827 20.0037i 0.126027 0.795703i
\(633\) 2.32393 14.6727i 0.0923680 0.583188i
\(634\) 22.1755 + 68.2493i 0.880703 + 2.71053i
\(635\) 0 0
\(636\) 7.81368 + 5.67697i 0.309833 + 0.225107i
\(637\) −0.664797 0.664797i −0.0263402 0.0263402i
\(638\) −22.2105 + 51.3987i −0.879321 + 2.03490i
\(639\) 3.34540i 0.132342i
\(640\) 0 0
\(641\) −2.75407 + 8.47616i −0.108779 + 0.334788i −0.990599 0.136799i \(-0.956319\pi\)
0.881820 + 0.471587i \(0.156319\pi\)
\(642\) −5.39084 2.74677i −0.212760 0.108406i
\(643\) 36.6439 + 5.80382i 1.44509 + 0.228880i 0.829202 0.558950i \(-0.188796\pi\)
0.615893 + 0.787830i \(0.288796\pi\)
\(644\) −1.21165 + 0.880315i −0.0477457 + 0.0346893i
\(645\) 0 0
\(646\) −9.06602 2.94573i −0.356698 0.115898i
\(647\) 21.7803 3.44966i 0.856273 0.135620i 0.287163 0.957882i \(-0.407288\pi\)
0.569110 + 0.822262i \(0.307288\pi\)
\(648\) 19.4905 19.4905i 0.765657 0.765657i
\(649\) 11.5097 18.1572i 0.451794 0.712734i
\(650\) 0 0
\(651\) −8.22416 + 11.3196i −0.322330 + 0.443649i
\(652\) 40.8051 + 80.0844i 1.59805 + 3.13635i
\(653\) −22.0554 + 43.2861i −0.863093 + 1.69392i −0.154861 + 0.987936i \(0.549493\pi\)
−0.708232 + 0.705980i \(0.750507\pi\)
\(654\) −2.75608 3.79342i −0.107771 0.148335i
\(655\) 0 0
\(656\) 11.5145 3.74130i 0.449567 0.146073i
\(657\) 4.17048 2.12497i 0.162706 0.0829028i
\(658\) −1.03873 6.55831i −0.0404941 0.255669i
\(659\) −47.3029 −1.84266 −0.921329 0.388783i \(-0.872896\pi\)
−0.921329 + 0.388783i \(0.872896\pi\)
\(660\) 0 0
\(661\) −26.7159 −1.03913 −0.519564 0.854432i \(-0.673906\pi\)
−0.519564 + 0.854432i \(0.673906\pi\)
\(662\) −0.831711 5.25121i −0.0323254 0.204094i
\(663\) 1.41329 0.720107i 0.0548876 0.0279666i
\(664\) −36.7826 + 11.9514i −1.42744 + 0.463804i
\(665\) 0 0
\(666\) −28.7072 39.5121i −1.11238 1.53106i
\(667\) 0.466563 0.915682i 0.0180654 0.0354553i
\(668\) −25.5401 50.1252i −0.988175 1.93940i
\(669\) 6.88603 9.47781i 0.266229 0.366433i
\(670\) 0 0
\(671\) −30.6032 7.84061i −1.18143 0.302683i
\(672\) 0.858297 0.858297i 0.0331095 0.0331095i
\(673\) −13.0723 + 2.07046i −0.503902 + 0.0798102i −0.403210 0.915107i \(-0.632106\pi\)
−0.100692 + 0.994918i \(0.532106\pi\)
\(674\) −4.16900 1.35459i −0.160584 0.0521769i
\(675\) 0 0
\(676\) 16.1973 11.7681i 0.622975 0.452618i
\(677\) −33.9668 5.37982i −1.30545 0.206763i −0.535321 0.844649i \(-0.679809\pi\)
−0.770131 + 0.637885i \(0.779809\pi\)
\(678\) 14.4566 + 7.36599i 0.555201 + 0.282889i
\(679\) −11.5070 + 35.4150i −0.441600 + 1.35910i
\(680\) 0 0
\(681\) 0.611726i 0.0234414i
\(682\) −15.9869 71.3470i −0.612171 2.73202i
\(683\) −27.9495 27.9495i −1.06946 1.06946i −0.997401 0.0720555i \(-0.977044\pi\)
−0.0720555 0.997401i \(-0.522956\pi\)
\(684\) −34.7526 25.2493i −1.32880 0.965429i
\(685\) 0 0
\(686\) 14.2346 + 43.8095i 0.543478 + 1.67265i
\(687\) −0.00952805 + 0.0601578i −0.000363518 + 0.00229516i
\(688\) −3.04425 + 19.2206i −0.116061 + 0.732779i
\(689\) −3.57830 11.0129i −0.136322 0.419557i
\(690\) 0 0
\(691\) −2.64892 1.92455i −0.100770 0.0732134i 0.536259 0.844053i \(-0.319837\pi\)
−0.637029 + 0.770840i \(0.719837\pi\)
\(692\) −61.7773 61.7773i −2.34842 2.34842i
\(693\) 20.7694 + 8.97489i 0.788964 + 0.340928i
\(694\) 52.2333i 1.98275i
\(695\) 0 0
\(696\) 5.98226 18.4115i 0.226757 0.697886i
\(697\) 2.90071 + 1.47799i 0.109872 + 0.0559827i
\(698\) −25.6035 4.05519i −0.969106 0.153491i
\(699\) −10.3535 + 7.52228i −0.391606 + 0.284519i
\(700\) 0 0
\(701\) −5.55696 1.80557i −0.209883 0.0681953i 0.202188 0.979347i \(-0.435195\pi\)
−0.412072 + 0.911151i \(0.635195\pi\)
\(702\) 22.7712 3.60661i 0.859445 0.136123i
\(703\) −22.2957 + 22.2957i −0.840897 + 0.840897i
\(704\) 1.87635 + 29.5782i 0.0707178 + 1.11477i
\(705\) 0 0
\(706\) 15.6482 21.5379i 0.588927 0.810588i
\(707\) 2.26817 + 4.45154i 0.0853034 + 0.167417i
\(708\) −6.89398 + 13.5302i −0.259092 + 0.508496i
\(709\) −23.5016 32.3472i −0.882623 1.21483i −0.975688 0.219166i \(-0.929666\pi\)
0.0930647 0.995660i \(-0.470334\pi\)
\(710\) 0 0
\(711\) 10.9115 3.54537i 0.409214 0.132962i
\(712\) 17.5841 8.95956i 0.658993 0.335774i
\(713\) 0.209933 + 1.32547i 0.00786207 + 0.0496391i
\(714\) −3.54657 −0.132727
\(715\) 0 0
\(716\) 17.1125 0.639523
\(717\) −0.810496 5.11727i −0.0302685 0.191108i
\(718\) 7.09665 3.61592i 0.264845 0.134945i
\(719\) −19.2106 + 6.24190i −0.716434 + 0.232784i −0.644477 0.764624i \(-0.722925\pi\)
−0.0719577 + 0.997408i \(0.522925\pi\)
\(720\) 0 0
\(721\) 2.60896 + 3.59093i 0.0971629 + 0.133733i
\(722\) 1.96489 3.85632i 0.0731258 0.143517i
\(723\) −2.89121 5.67432i −0.107525 0.211030i
\(724\) 21.7365 29.9177i 0.807831 1.11188i
\(725\) 0 0
\(726\) 14.4720 6.82843i 0.537108 0.253427i
\(727\) −26.5141 + 26.5141i −0.983354 + 0.983354i −0.999864 0.0165102i \(-0.994744\pi\)
0.0165102 + 0.999864i \(0.494744\pi\)
\(728\) 33.4083 5.29135i 1.23819 0.196111i
\(729\) 9.09289 + 2.95446i 0.336774 + 0.109424i
\(730\) 0 0
\(731\) −4.23339 + 3.07574i −0.156578 + 0.113760i
\(732\) 22.0405 + 3.49087i 0.814639 + 0.129026i
\(733\) −28.4208 14.4811i −1.04975 0.534873i −0.158015 0.987437i \(-0.550510\pi\)
−0.891732 + 0.452563i \(0.850510\pi\)
\(734\) −13.7035 + 42.1752i −0.505807 + 1.55671i
\(735\) 0 0
\(736\) 0.116420i 0.00429131i
\(737\) 1.29283 13.7531i 0.0476220 0.506601i
\(738\) 15.6696 + 15.6696i 0.576805 + 0.576805i
\(739\) 31.6871 + 23.0220i 1.16563 + 0.846879i 0.990479 0.137662i \(-0.0439589\pi\)
0.175150 + 0.984542i \(0.443959\pi\)
\(740\) 0 0
\(741\) −2.15400 6.62932i −0.0791290 0.243534i
\(742\) −4.05027 + 25.5724i −0.148690 + 0.938793i
\(743\) −1.06140 + 6.70139i −0.0389389 + 0.245850i −0.999478 0.0322930i \(-0.989719\pi\)
0.960540 + 0.278143i \(0.0897190\pi\)
\(744\) 7.81179 + 24.0422i 0.286394 + 0.881430i
\(745\) 0 0
\(746\) 34.7666 + 25.2594i 1.27290 + 0.924814i
\(747\) −15.4921 15.4921i −0.566826 0.566826i
\(748\) 8.10905 9.20756i 0.296496 0.336662i
\(749\) 10.7374i 0.392337i
\(750\) 0 0
\(751\) −6.82703 + 21.0114i −0.249122 + 0.766718i 0.745809 + 0.666160i \(0.232063\pi\)
−0.994931 + 0.100559i \(0.967937\pi\)
\(752\) −3.30830 1.68567i −0.120641 0.0614699i
\(753\) −5.54808 0.878729i −0.202183 0.0320227i
\(754\) −38.3627 + 27.8722i −1.39709 + 1.01504i
\(755\) 0 0
\(756\) −32.4565 10.5458i −1.18043 0.383546i
\(757\) 33.0425 5.23341i 1.20095 0.190212i 0.476271 0.879299i \(-0.341988\pi\)
0.724678 + 0.689087i \(0.241988\pi\)
\(758\) −37.9511 + 37.9511i −1.37845 + 1.37845i
\(759\) −0.273025 + 0.108262i −0.00991017 + 0.00392968i
\(760\) 0 0
\(761\) −15.3149 + 21.0791i −0.555163 + 0.764117i −0.990701 0.136054i \(-0.956558\pi\)
0.435538 + 0.900170i \(0.356558\pi\)
\(762\) 1.56856 + 3.07848i 0.0568231 + 0.111522i
\(763\) 3.77785 7.41445i 0.136767 0.268421i
\(764\) 14.9045 + 20.5143i 0.539227 + 0.742182i
\(765\) 0 0
\(766\) 45.5528 14.8010i 1.64589 0.534782i
\(767\) 16.2218 8.26544i 0.585736 0.298448i
\(768\) −2.91713 18.4180i −0.105263 0.664603i
\(769\) 51.2907 1.84959 0.924794 0.380468i \(-0.124237\pi\)
0.924794 + 0.380468i \(0.124237\pi\)
\(770\) 0 0
\(771\) −11.0274 −0.397141
\(772\) −0.616901 3.89496i −0.0222027 0.140183i
\(773\) −14.7145 + 7.49740i −0.529243 + 0.269663i −0.698128 0.715973i \(-0.745983\pi\)
0.168885 + 0.985636i \(0.445983\pi\)
\(774\) −33.8755 + 11.0068i −1.21763 + 0.395632i
\(775\) 0 0
\(776\) 39.5453 + 54.4295i 1.41960 + 1.95391i
\(777\) −5.32574 + 10.4524i −0.191060 + 0.374976i
\(778\) 18.9076 + 37.1082i 0.677869 + 1.33039i
\(779\) 8.40920 11.5743i 0.301291 0.414691i
\(780\) 0 0
\(781\) 1.04214 4.06766i 0.0372908 0.145552i
\(782\) −0.240530 + 0.240530i −0.00860135 + 0.00860135i
\(783\) 23.1292 3.66330i 0.826569 0.130916i
\(784\) 1.11795 + 0.363243i 0.0399267 + 0.0129730i
\(785\) 0 0
\(786\) 3.67744 2.67181i 0.131170 0.0953004i
\(787\) −4.37316 0.692641i −0.155886 0.0246900i 0.0780034 0.996953i \(-0.475146\pi\)
−0.233890 + 0.972263i \(0.575146\pi\)
\(788\) 85.6084 + 43.6197i 3.04967 + 1.55389i
\(789\) −3.10812 + 9.56580i −0.110652 + 0.340551i
\(790\) 0 0
\(791\) 28.7945i 1.02381i
\(792\) 35.1750 20.8272i 1.24989 0.740061i
\(793\) −18.9183 18.9183i −0.671808 0.671808i
\(794\) 14.6086 + 10.6137i 0.518438 + 0.376667i
\(795\) 0 0
\(796\) −3.94138 12.1303i −0.139699 0.429948i
\(797\) −3.00692 + 18.9850i −0.106511 + 0.672482i 0.875437 + 0.483331i \(0.160573\pi\)
−0.981948 + 0.189150i \(0.939427\pi\)
\(798\) −2.43811 + 15.3936i −0.0863081 + 0.544928i
\(799\) −0.308525 0.949542i −0.0109148 0.0335924i
\(800\) 0 0
\(801\) 9.04454 + 6.57125i 0.319573 + 0.232184i
\(802\) 21.1147 + 21.1147i 0.745587 + 0.745587i
\(803\) 5.73284 1.28457i 0.202308 0.0453316i
\(804\) 9.75751i 0.344121i
\(805\) 0 0
\(806\) 19.1346 58.8903i 0.673988 2.07432i
\(807\) −15.1628 7.72585i −0.533757 0.271963i
\(808\) 8.91548 + 1.41207i 0.313645 + 0.0496765i
\(809\) 24.9923 18.1580i 0.878683 0.638401i −0.0542197 0.998529i \(-0.517267\pi\)
0.932903 + 0.360128i \(0.117267\pi\)
\(810\) 0 0
\(811\) 23.8090 + 7.73601i 0.836047 + 0.271648i 0.695590 0.718439i \(-0.255143\pi\)
0.140456 + 0.990087i \(0.455143\pi\)
\(812\) 69.3267 10.9803i 2.43289 0.385332i
\(813\) 12.5516 12.5516i 0.440202 0.440202i
\(814\) −22.5964 56.9854i −0.792004 1.99734i
\(815\) 0 0
\(816\) −1.16568 + 1.60442i −0.0408070 + 0.0561660i
\(817\) 10.4397 + 20.4891i 0.365240 + 0.716825i
\(818\) 29.5519 57.9990i 1.03326 2.02789i
\(819\) 11.2627 + 15.5018i 0.393550 + 0.541675i
\(820\) 0 0
\(821\) −21.6750 + 7.04264i −0.756463 + 0.245790i −0.661760 0.749716i \(-0.730190\pi\)
−0.0947032 + 0.995506i \(0.530190\pi\)
\(822\) −21.4335 + 10.9209i −0.747580 + 0.380911i
\(823\) −2.76029 17.4278i −0.0962177 0.607495i −0.987931 0.154894i \(-0.950496\pi\)
0.891713 0.452601i \(-0.149504\pi\)
\(824\) 8.01946 0.279371
\(825\) 0 0
\(826\) −40.7077 −1.41640
\(827\) 2.60613 + 16.4544i 0.0906239 + 0.572177i 0.990659 + 0.136360i \(0.0435404\pi\)
−0.900035 + 0.435817i \(0.856460\pi\)
\(828\) −1.36579 + 0.695907i −0.0474646 + 0.0241844i
\(829\) −39.7855 + 12.9271i −1.38181 + 0.448976i −0.903263 0.429087i \(-0.858835\pi\)
−0.478544 + 0.878064i \(0.658835\pi\)
\(830\) 0 0
\(831\) −4.36562 6.00876i −0.151442 0.208441i
\(832\) −11.3950 + 22.3640i −0.395051 + 0.775332i
\(833\) 0.143498 + 0.281630i 0.00497190 + 0.00975790i
\(834\) −3.69432 + 5.08480i −0.127924 + 0.176072i
\(835\) 0 0
\(836\) −34.3901 41.5265i −1.18941 1.43622i
\(837\) −21.6227 + 21.6227i −0.747390 + 0.747390i
\(838\) 34.2139 5.41895i 1.18190 0.187195i
\(839\) 49.3818 + 16.0451i 1.70485 + 0.553939i 0.989463 0.144788i \(-0.0462501\pi\)
0.715388 + 0.698728i \(0.246250\pi\)
\(840\) 0 0
\(841\) −15.5042 + 11.2645i −0.534629 + 0.388431i
\(842\) 16.5931 + 2.62809i 0.571836 + 0.0905699i
\(843\) −11.6559 5.93896i −0.401449 0.204549i
\(844\) 30.0723 92.5530i 1.03513 3.18581i
\(845\) 0 0
\(846\) 6.79605i 0.233653i
\(847\) 22.4576 + 17.3825i 0.771654 + 0.597271i
\(848\) 10.2374 + 10.2374i 0.351554 + 0.351554i
\(849\) 13.1584 + 9.56013i 0.451595 + 0.328103i
\(850\) 0 0
\(851\) 0.347690 + 1.07008i 0.0119187 + 0.0366819i
\(852\) −0.463992 + 2.92953i −0.0158961 + 0.100364i
\(853\) 2.19089 13.8327i 0.0750145 0.473623i −0.921372 0.388683i \(-0.872930\pi\)
0.996386 0.0849401i \(-0.0270699\pi\)
\(854\) 18.4857 + 56.8933i 0.632569 + 1.94685i
\(855\) 0 0
\(856\) −15.6947 11.4029i −0.536434 0.389742i
\(857\) 10.2364 + 10.2364i 0.349669 + 0.349669i 0.859986 0.510317i \(-0.170472\pi\)
−0.510317 + 0.859986i \(0.670472\pi\)
\(858\) 13.4925 + 1.26833i 0.460625 + 0.0433001i
\(859\) 56.0426i 1.91215i 0.293125 + 0.956074i \(0.405305\pi\)
−0.293125 + 0.956074i \(0.594695\pi\)
\(860\) 0 0
\(861\) 1.64481 5.06221i 0.0560550 0.172520i
\(862\) 15.4741 + 7.88446i 0.527050 + 0.268546i
\(863\) 17.0244 + 2.69640i 0.579518 + 0.0917867i 0.439310 0.898335i \(-0.355223\pi\)
0.140208 + 0.990122i \(0.455223\pi\)
\(864\) 2.14616 1.55928i 0.0730140 0.0530478i
\(865\) 0 0
\(866\) −38.8733 12.6307i −1.32097 0.429209i
\(867\) 9.51447 1.50694i 0.323128 0.0511785i
\(868\) −64.8114 + 64.8114i −2.19984 + 2.19984i
\(869\) 14.3717 0.911700i 0.487528 0.0309273i
\(870\) 0 0
\(871\) 6.87628 9.46438i 0.232994 0.320688i
\(872\) −6.82560 13.3960i −0.231144 0.453645i
\(873\) −17.3027 + 33.9584i −0.585606 + 1.14932i
\(874\) 0.878650 + 1.20936i 0.0297208 + 0.0409071i
\(875\) 0 0
\(876\) −3.94677 + 1.28238i −0.133349 + 0.0433278i
\(877\) −6.28165 + 3.20066i −0.212116 + 0.108079i −0.556821 0.830633i \(-0.687979\pi\)
0.344705 + 0.938711i \(0.387979\pi\)
\(878\) −0.294133 1.85708i −0.00992651 0.0626735i
\(879\) 12.0275 0.405678
\(880\) 0 0
\(881\) −46.6330 −1.57111 −0.785553 0.618794i \(-0.787622\pi\)
−0.785553 + 0.618794i \(0.787622\pi\)
\(882\) 0.336573 + 2.12504i 0.0113330 + 0.0715537i
\(883\) −9.80743 + 4.99714i −0.330046 + 0.168167i −0.611159 0.791508i \(-0.709296\pi\)
0.281113 + 0.959675i \(0.409296\pi\)
\(884\) 9.88212 3.21090i 0.332372 0.107994i
\(885\) 0 0
\(886\) 26.8665 + 36.9785i 0.902597 + 1.24232i
\(887\) 17.6954 34.7292i 0.594154 1.16609i −0.376680 0.926343i \(-0.622934\pi\)
0.970835 0.239750i \(-0.0770655\pi\)
\(888\) 9.62223 + 18.8847i 0.322901 + 0.633729i
\(889\) −3.60411 + 4.96064i −0.120878 + 0.166374i
\(890\) 0 0
\(891\) 16.5532 + 10.4929i 0.554554 + 0.351526i
\(892\) 54.2662 54.2662i 1.81697 1.81697i
\(893\) −4.33351 + 0.686361i −0.145016 + 0.0229682i
\(894\) 11.6835 + 3.79620i 0.390755 + 0.126964i
\(895\) 0 0
\(896\) 42.1188 30.6011i 1.40709 1.02231i
\(897\) −0.245673 0.0389107i −0.00820277 0.00129919i
\(898\) 1.54623 + 0.787843i 0.0515983 + 0.0262906i
\(899\) 19.4354 59.8159i 0.648206 1.99497i
\(900\) 0 0
\(901\) 3.89303i 0.129696i
\(902\) 14.1713 + 23.9339i 0.471852 + 0.796912i
\(903\) 6.04959 + 6.04959i 0.201318 + 0.201318i
\(904\) 42.0884 + 30.5790i 1.39984 + 1.01704i
\(905\) 0 0
\(906\) 5.36404 + 16.5088i 0.178208 + 0.548469i
\(907\) 4.39815 27.7688i 0.146038 0.922049i −0.800471 0.599372i \(-0.795417\pi\)
0.946509 0.322677i \(-0.104583\pi\)
\(908\) 0.626877 3.95795i 0.0208037 0.131349i
\(909\) 1.58014 + 4.86318i 0.0524100 + 0.161301i
\(910\) 0 0
\(911\) 23.8530 + 17.3302i 0.790285 + 0.574175i 0.908048 0.418866i \(-0.137572\pi\)
−0.117763 + 0.993042i \(0.537572\pi\)
\(912\) 6.16252 + 6.16252i 0.204061 + 0.204061i
\(913\) −14.0108 23.6628i −0.463689 0.783126i
\(914\) 47.0585i 1.55656i
\(915\) 0 0
\(916\) −0.123296 + 0.379465i −0.00407380 + 0.0125379i
\(917\) 7.18775 + 3.66234i 0.237360 + 0.120941i
\(918\) −7.65563 1.21253i −0.252673 0.0400195i
\(919\) −32.9943 + 23.9718i −1.08838 + 0.790755i −0.979125 0.203258i \(-0.934847\pi\)
−0.109256 + 0.994014i \(0.534847\pi\)
\(920\) 0 0
\(921\) −11.8173 3.83968i −0.389394 0.126522i
\(922\) −87.7630 + 13.9003i −2.89032 + 0.457782i
\(923\) 2.51454 2.51454i 0.0827672 0.0827672i
\(924\) −16.9428 10.7399i −0.557376 0.353315i
\(925\) 0 0
\(926\) 34.6632 47.7098i 1.13910 1.56784i
\(927\) 2.06244 + 4.04776i 0.0677394 + 0.132946i
\(928\) −2.47706 + 4.86151i −0.0813136 + 0.159587i
\(929\) −30.1380 41.4814i −0.988795 1.36096i −0.931954 0.362577i \(-0.881897\pi\)
−0.0568413 0.998383i \(-0.518103\pi\)
\(930\) 0 0
\(931\) 1.32104 0.429233i 0.0432954 0.0140675i
\(932\) −74.6973 + 38.0602i −2.44679 + 1.24670i
\(933\) 2.17776 + 13.7499i 0.0712968 + 0.450150i
\(934\) −36.0504 −1.17960
\(935\) 0 0
\(936\) 34.6194 1.13157
\(937\) −0.481891 3.04254i −0.0157427 0.0993955i 0.978566 0.205934i \(-0.0660232\pi\)
−0.994309 + 0.106539i \(0.966023\pi\)
\(938\) −23.3063 + 11.8752i −0.760978 + 0.387738i
\(939\) 7.97272 2.59049i 0.260180 0.0845376i
\(940\) 0 0
\(941\) −16.7138 23.0045i −0.544854 0.749927i 0.444449 0.895804i \(-0.353399\pi\)
−0.989303 + 0.145877i \(0.953399\pi\)
\(942\) 0.899198 1.76477i 0.0292974 0.0574995i
\(943\) −0.231770 0.454874i −0.00754747 0.0148127i
\(944\) −13.3798 + 18.4157i −0.435474 + 0.599379i
\(945\) 0 0
\(946\) −44.6180 + 2.83043i −1.45065 + 0.0920252i
\(947\) 40.6526 40.6526i 1.32103 1.32103i 0.408091 0.912941i \(-0.366195\pi\)
0.912941 0.408091i \(-0.133805\pi\)
\(948\) −10.0468 + 1.59126i −0.326306 + 0.0516818i
\(949\) 4.73193 + 1.53750i 0.153605 + 0.0499092i
\(950\) 0 0
\(951\) 14.2724 10.3695i 0.462813 0.336253i
\(952\) −11.2318 1.77894i −0.364024 0.0576557i
\(953\) 17.0501 + 8.68746i 0.552307 + 0.281414i 0.707788 0.706424i \(-0.249693\pi\)
−0.155482 + 0.987839i \(0.549693\pi\)
\(954\) −8.18878 + 25.2025i −0.265122 + 0.815960i
\(955\) 0 0
\(956\) 33.9400i 1.09770i
\(957\) 13.7045 + 1.28827i 0.443004 + 0.0416437i
\(958\) −47.4507 47.4507i −1.53306 1.53306i
\(959\) −34.5378 25.0932i −1.11528 0.810302i
\(960\) 0 0
\(961\) 15.7997 + 48.6264i 0.509667 + 1.56859i
\(962\) 8.12140 51.2765i 0.261844 1.65322i
\(963\) 1.71916 10.8544i 0.0553993 0.349777i
\(964\) −12.8917 39.6764i −0.415212 1.27789i
\(965\) 0 0
\(966\) 0.449938 + 0.326899i 0.0144765 + 0.0105178i
\(967\) −12.6930 12.6930i −0.408178 0.408178i 0.472925 0.881103i \(-0.343198\pi\)
−0.881103 + 0.472925i \(0.843198\pi\)
\(968\) 49.2572 14.3661i 1.58319 0.461745i
\(969\) 2.34346i 0.0752826i
\(970\) 0 0
\(971\) −1.07721 + 3.31533i −0.0345695 + 0.106394i −0.966852 0.255336i \(-0.917814\pi\)
0.932283 + 0.361730i \(0.117814\pi\)
\(972\) −47.6686 24.2884i −1.52897 0.779050i
\(973\) −11.0169 1.74491i −0.353186 0.0559392i
\(974\) −76.5471 + 55.6147i −2.45273 + 1.78201i
\(975\) 0 0
\(976\) 31.8137 + 10.3369i 1.01833 + 0.330876i
\(977\) −25.5183 + 4.04170i −0.816402 + 0.129305i −0.550650 0.834736i \(-0.685620\pi\)
−0.265752 + 0.964042i \(0.585620\pi\)
\(978\) 23.6009 23.6009i 0.754672 0.754672i
\(979\) 8.95020 + 10.8075i 0.286050 + 0.345409i
\(980\) 0 0
\(981\) 5.00613 6.89034i 0.159833 0.219992i
\(982\) −20.7636 40.7509i −0.662595 1.30042i
\(983\) 14.1764 27.8228i 0.452158 0.887409i −0.546591 0.837400i \(-0.684075\pi\)
0.998749 0.0500096i \(-0.0159252\pi\)
\(984\) −5.65260 7.78013i −0.180198 0.248022i
\(985\) 0 0
\(986\) 15.1619 4.92639i 0.482852 0.156888i
\(987\) −1.45445 + 0.741080i −0.0462957 + 0.0235888i
\(988\) −7.14313 45.1000i −0.227253 1.43482i
\(989\) 0.820573 0.0260927
\(990\) 0 0
\(991\) −19.5868 −0.622196 −0.311098 0.950378i \(-0.600697\pi\)
−0.311098 + 0.950378i \(0.600697\pi\)
\(992\) −1.11457 7.03714i −0.0353877 0.223429i
\(993\) −1.16457 + 0.593380i −0.0369566 + 0.0188303i
\(994\) −7.56203 + 2.45705i −0.239853 + 0.0779330i
\(995\) 0 0
\(996\) 11.4176 + 15.7150i 0.361780 + 0.497948i
\(997\) −12.8543 + 25.2279i −0.407098 + 0.798976i −0.999980 0.00631392i \(-0.997990\pi\)
0.592882 + 0.805290i \(0.297990\pi\)
\(998\) 5.78661 + 11.3569i 0.183172 + 0.359495i
\(999\) −15.0697 + 20.7417i −0.476784 + 0.656237i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.2.bm.b.18.1 32
5.2 odd 4 inner 275.2.bm.b.7.4 32
5.3 odd 4 55.2.l.a.7.1 32
5.4 even 2 55.2.l.a.18.4 yes 32
11.8 odd 10 inner 275.2.bm.b.118.4 32
15.8 even 4 495.2.bj.a.172.4 32
15.14 odd 2 495.2.bj.a.73.1 32
20.3 even 4 880.2.cm.a.337.3 32
20.19 odd 2 880.2.cm.a.513.2 32
55.3 odd 20 605.2.m.e.602.1 32
55.4 even 10 605.2.m.c.233.1 32
55.8 even 20 55.2.l.a.52.4 yes 32
55.9 even 10 605.2.m.d.578.4 32
55.13 even 20 605.2.m.c.457.1 32
55.14 even 10 605.2.m.e.118.4 32
55.18 even 20 605.2.m.d.112.4 32
55.19 odd 10 55.2.l.a.8.1 yes 32
55.24 odd 10 605.2.m.c.578.1 32
55.28 even 20 605.2.e.b.362.2 32
55.29 odd 10 605.2.m.d.233.4 32
55.38 odd 20 605.2.e.b.362.15 32
55.39 odd 10 605.2.e.b.483.15 32
55.43 even 4 605.2.m.e.282.4 32
55.48 odd 20 605.2.m.c.112.1 32
55.49 even 10 605.2.e.b.483.2 32
55.52 even 20 inner 275.2.bm.b.107.1 32
55.53 odd 20 605.2.m.d.457.4 32
55.54 odd 2 605.2.m.e.403.1 32
165.8 odd 20 495.2.bj.a.217.1 32
165.74 even 10 495.2.bj.a.118.4 32
220.19 even 10 880.2.cm.a.833.3 32
220.63 odd 20 880.2.cm.a.657.2 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.2.l.a.7.1 32 5.3 odd 4
55.2.l.a.8.1 yes 32 55.19 odd 10
55.2.l.a.18.4 yes 32 5.4 even 2
55.2.l.a.52.4 yes 32 55.8 even 20
275.2.bm.b.7.4 32 5.2 odd 4 inner
275.2.bm.b.18.1 32 1.1 even 1 trivial
275.2.bm.b.107.1 32 55.52 even 20 inner
275.2.bm.b.118.4 32 11.8 odd 10 inner
495.2.bj.a.73.1 32 15.14 odd 2
495.2.bj.a.118.4 32 165.74 even 10
495.2.bj.a.172.4 32 15.8 even 4
495.2.bj.a.217.1 32 165.8 odd 20
605.2.e.b.362.2 32 55.28 even 20
605.2.e.b.362.15 32 55.38 odd 20
605.2.e.b.483.2 32 55.49 even 10
605.2.e.b.483.15 32 55.39 odd 10
605.2.m.c.112.1 32 55.48 odd 20
605.2.m.c.233.1 32 55.4 even 10
605.2.m.c.457.1 32 55.13 even 20
605.2.m.c.578.1 32 55.24 odd 10
605.2.m.d.112.4 32 55.18 even 20
605.2.m.d.233.4 32 55.29 odd 10
605.2.m.d.457.4 32 55.53 odd 20
605.2.m.d.578.4 32 55.9 even 10
605.2.m.e.118.4 32 55.14 even 10
605.2.m.e.282.4 32 55.43 even 4
605.2.m.e.403.1 32 55.54 odd 2
605.2.m.e.602.1 32 55.3 odd 20
880.2.cm.a.337.3 32 20.3 even 4
880.2.cm.a.513.2 32 20.19 odd 2
880.2.cm.a.657.2 32 220.63 odd 20
880.2.cm.a.833.3 32 220.19 even 10