Properties

Label 495.2.bj.a.217.1
Level $495$
Weight $2$
Character 495.217
Analytic conductor $3.953$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [495,2,Mod(28,495)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(495, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([0, 15, 18])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("495.28"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 495 = 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 495.bj (of order \(20\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,10,0,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.95259490005\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(4\) over \(\Q(\zeta_{20})\)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 217.1
Character \(\chi\) \(=\) 495.217
Dual form 495.2.bj.a.73.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.380541 + 2.40264i) q^{2} +(-3.72576 - 1.21057i) q^{4} +(0.622076 - 2.14779i) q^{5} +(1.17208 + 2.30033i) q^{7} +(2.11764 - 4.15610i) q^{8} +(4.92366 + 2.31195i) q^{10} +(2.55440 + 2.11543i) q^{11} +(2.77422 + 0.439393i) q^{13} +(-5.97289 + 1.94071i) q^{14} +(2.84111 + 2.06419i) q^{16} +(0.932684 - 0.147723i) q^{17} +(1.28236 + 3.94669i) q^{19} +(-4.91777 + 7.24911i) q^{20} +(-6.05467 + 5.33231i) q^{22} +(-0.104710 + 0.104710i) q^{23} +(-4.22604 - 2.67218i) q^{25} +(-2.11141 + 6.49824i) q^{26} +(-1.58216 - 9.98937i) q^{28} +(-2.14459 + 6.60038i) q^{29} +(-7.33171 + 5.32680i) q^{31} +(0.555921 - 0.555921i) q^{32} +2.29712i q^{34} +(5.66976 - 1.08640i) q^{35} +(6.77002 - 3.44950i) q^{37} +(-9.97047 + 1.57917i) q^{38} +(-7.60911 - 7.13366i) q^{40} +(-3.27880 + 1.06535i) q^{41} +(3.91833 + 3.91833i) q^{43} +(-6.95623 - 10.9739i) q^{44} +(-0.211733 - 0.291426i) q^{46} +(-0.479999 + 0.942051i) q^{47} +(0.196744 - 0.270795i) q^{49} +(8.02848 - 9.13679i) q^{50} +(-9.80416 - 4.99547i) q^{52} +(0.644920 - 4.07187i) q^{53} +(6.13253 - 4.17038i) q^{55} +12.0424 q^{56} +(-15.0422 - 7.66441i) q^{58} +(6.16460 + 2.00300i) q^{59} +(5.59880 - 7.70609i) q^{61} +(-10.0084 - 19.6426i) q^{62} +(5.25251 + 7.22946i) q^{64} +(2.66950 - 5.68511i) q^{65} +(2.94509 + 2.94509i) q^{67} +(-3.65379 - 0.578703i) q^{68} +(0.452653 + 14.0358i) q^{70} +(1.02426 + 0.744171i) q^{71} +(1.57831 - 0.804189i) q^{73} +(5.71163 + 17.5786i) q^{74} -16.2568i q^{76} +(-1.87222 + 8.35541i) q^{77} +(-3.51271 + 2.55214i) q^{79} +(6.20085 - 4.81805i) q^{80} +(-1.31193 - 8.28320i) q^{82} +(-1.29707 - 8.18939i) q^{83} +(0.262923 - 2.09511i) q^{85} +(-10.9054 + 7.92326i) q^{86} +(14.2012 - 6.13664i) q^{88} -4.23092i q^{89} +(2.24084 + 6.89661i) q^{91} +(0.516882 - 0.263364i) q^{92} +(-2.08075 - 1.51175i) q^{94} +(9.27440 - 0.299098i) q^{95} +(-14.2460 - 2.25634i) q^{97} +(0.575755 + 0.575755i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 10 q^{2} + 2 q^{5} + 10 q^{8} + 24 q^{11} - 10 q^{13} - 8 q^{16} - 16 q^{20} + 10 q^{22} + 24 q^{23} + 16 q^{25} - 20 q^{26} + 50 q^{28} - 28 q^{31} + 10 q^{35} - 8 q^{37} - 10 q^{38} - 50 q^{40}+ \cdots - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/495\mathbb{Z}\right)^\times\).

\(n\) \(46\) \(56\) \(397\)
\(\chi(n)\) \(e\left(\frac{3}{10}\right)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.380541 + 2.40264i −0.269083 + 1.69892i 0.369385 + 0.929276i \(0.379568\pi\)
−0.638468 + 0.769648i \(0.720432\pi\)
\(3\) 0 0
\(4\) −3.72576 1.21057i −1.86288 0.605287i
\(5\) 0.622076 2.14779i 0.278201 0.960523i
\(6\) 0 0
\(7\) 1.17208 + 2.30033i 0.443003 + 0.869443i 0.999261 + 0.0384331i \(0.0122367\pi\)
−0.556258 + 0.831010i \(0.687763\pi\)
\(8\) 2.11764 4.15610i 0.748698 1.46940i
\(9\) 0 0
\(10\) 4.92366 + 2.31195i 1.55700 + 0.731103i
\(11\) 2.55440 + 2.11543i 0.770182 + 0.637825i
\(12\) 0 0
\(13\) 2.77422 + 0.439393i 0.769429 + 0.121866i 0.528794 0.848750i \(-0.322644\pi\)
0.240635 + 0.970616i \(0.422644\pi\)
\(14\) −5.97289 + 1.94071i −1.59632 + 0.518677i
\(15\) 0 0
\(16\) 2.84111 + 2.06419i 0.710279 + 0.516048i
\(17\) 0.932684 0.147723i 0.226209 0.0358280i −0.0423009 0.999105i \(-0.513469\pi\)
0.268510 + 0.963277i \(0.413469\pi\)
\(18\) 0 0
\(19\) 1.28236 + 3.94669i 0.294193 + 0.905433i 0.983491 + 0.180955i \(0.0579189\pi\)
−0.689298 + 0.724478i \(0.742081\pi\)
\(20\) −4.91777 + 7.24911i −1.09965 + 1.62095i
\(21\) 0 0
\(22\) −6.05467 + 5.33231i −1.29086 + 1.13685i
\(23\) −0.104710 + 0.104710i −0.0218334 + 0.0218334i −0.717939 0.696106i \(-0.754914\pi\)
0.696106 + 0.717939i \(0.254914\pi\)
\(24\) 0 0
\(25\) −4.22604 2.67218i −0.845208 0.534437i
\(26\) −2.11141 + 6.49824i −0.414081 + 1.27441i
\(27\) 0 0
\(28\) −1.58216 9.98937i −0.299000 1.88781i
\(29\) −2.14459 + 6.60038i −0.398241 + 1.22566i 0.528168 + 0.849140i \(0.322879\pi\)
−0.926409 + 0.376520i \(0.877121\pi\)
\(30\) 0 0
\(31\) −7.33171 + 5.32680i −1.31681 + 0.956722i −0.316849 + 0.948476i \(0.602625\pi\)
−0.999966 + 0.00824590i \(0.997375\pi\)
\(32\) 0.555921 0.555921i 0.0982739 0.0982739i
\(33\) 0 0
\(34\) 2.29712i 0.393953i
\(35\) 5.66976 1.08640i 0.958364 0.183635i
\(36\) 0 0
\(37\) 6.77002 3.44950i 1.11298 0.567094i 0.201938 0.979398i \(-0.435276\pi\)
0.911046 + 0.412305i \(0.135276\pi\)
\(38\) −9.97047 + 1.57917i −1.61742 + 0.256175i
\(39\) 0 0
\(40\) −7.60911 7.13366i −1.20311 1.12793i
\(41\) −3.27880 + 1.06535i −0.512063 + 0.166379i −0.553640 0.832756i \(-0.686762\pi\)
0.0415772 + 0.999135i \(0.486762\pi\)
\(42\) 0 0
\(43\) 3.91833 + 3.91833i 0.597540 + 0.597540i 0.939657 0.342117i \(-0.111144\pi\)
−0.342117 + 0.939657i \(0.611144\pi\)
\(44\) −6.95623 10.9739i −1.04869 1.65437i
\(45\) 0 0
\(46\) −0.211733 0.291426i −0.0312184 0.0429684i
\(47\) −0.479999 + 0.942051i −0.0700150 + 0.137412i −0.923361 0.383933i \(-0.874569\pi\)
0.853346 + 0.521345i \(0.174569\pi\)
\(48\) 0 0
\(49\) 0.196744 0.270795i 0.0281063 0.0386850i
\(50\) 8.02848 9.13679i 1.13540 1.29214i
\(51\) 0 0
\(52\) −9.80416 4.99547i −1.35959 0.692747i
\(53\) 0.644920 4.07187i 0.0885866 0.559314i −0.902977 0.429690i \(-0.858623\pi\)
0.991563 0.129624i \(-0.0413771\pi\)
\(54\) 0 0
\(55\) 6.13253 4.17038i 0.826911 0.562334i
\(56\) 12.0424 1.60924
\(57\) 0 0
\(58\) −15.0422 7.66441i −1.97514 1.00639i
\(59\) 6.16460 + 2.00300i 0.802563 + 0.260768i 0.681445 0.731870i \(-0.261352\pi\)
0.121118 + 0.992638i \(0.461352\pi\)
\(60\) 0 0
\(61\) 5.59880 7.70609i 0.716853 0.986663i −0.282769 0.959188i \(-0.591253\pi\)
0.999622 0.0274756i \(-0.00874685\pi\)
\(62\) −10.0084 19.6426i −1.27107 2.49461i
\(63\) 0 0
\(64\) 5.25251 + 7.22946i 0.656564 + 0.903682i
\(65\) 2.66950 5.68511i 0.331111 0.705151i
\(66\) 0 0
\(67\) 2.94509 + 2.94509i 0.359801 + 0.359801i 0.863739 0.503939i \(-0.168116\pi\)
−0.503939 + 0.863739i \(0.668116\pi\)
\(68\) −3.65379 0.578703i −0.443087 0.0701781i
\(69\) 0 0
\(70\) 0.452653 + 14.0358i 0.0541023 + 1.67760i
\(71\) 1.02426 + 0.744171i 0.121558 + 0.0883168i 0.646903 0.762572i \(-0.276064\pi\)
−0.525345 + 0.850889i \(0.676064\pi\)
\(72\) 0 0
\(73\) 1.57831 0.804189i 0.184727 0.0941232i −0.359181 0.933268i \(-0.616944\pi\)
0.543908 + 0.839145i \(0.316944\pi\)
\(74\) 5.71163 + 17.5786i 0.663964 + 2.04347i
\(75\) 0 0
\(76\) 16.2568i 1.86479i
\(77\) −1.87222 + 8.35541i −0.213359 + 0.952187i
\(78\) 0 0
\(79\) −3.51271 + 2.55214i −0.395211 + 0.287138i −0.767588 0.640944i \(-0.778543\pi\)
0.372376 + 0.928082i \(0.378543\pi\)
\(80\) 6.20085 4.81805i 0.693276 0.538674i
\(81\) 0 0
\(82\) −1.31193 8.28320i −0.144878 0.914726i
\(83\) −1.29707 8.18939i −0.142372 0.898902i −0.950687 0.310152i \(-0.899620\pi\)
0.808315 0.588750i \(-0.200380\pi\)
\(84\) 0 0
\(85\) 0.262923 2.09511i 0.0285180 0.227246i
\(86\) −10.9054 + 7.92326i −1.17596 + 0.854388i
\(87\) 0 0
\(88\) 14.2012 6.13664i 1.51385 0.654168i
\(89\) 4.23092i 0.448477i −0.974534 0.224238i \(-0.928011\pi\)
0.974534 0.224238i \(-0.0719894\pi\)
\(90\) 0 0
\(91\) 2.24084 + 6.89661i 0.234904 + 0.722961i
\(92\) 0.516882 0.263364i 0.0538886 0.0274576i
\(93\) 0 0
\(94\) −2.08075 1.51175i −0.214613 0.155926i
\(95\) 9.27440 0.299098i 0.951534 0.0306868i
\(96\) 0 0
\(97\) −14.2460 2.25634i −1.44646 0.229097i −0.616691 0.787205i \(-0.711527\pi\)
−0.829768 + 0.558109i \(0.811527\pi\)
\(98\) 0.575755 + 0.575755i 0.0581600 + 0.0581600i
\(99\) 0 0
\(100\) 12.5104 + 15.0719i 1.25104 + 1.50719i
\(101\) −1.13747 1.56559i −0.113182 0.155782i 0.748668 0.662946i \(-0.230694\pi\)
−0.861850 + 0.507164i \(0.830694\pi\)
\(102\) 0 0
\(103\) −0.780525 1.53187i −0.0769075 0.150939i 0.849351 0.527829i \(-0.176994\pi\)
−0.926258 + 0.376889i \(0.876994\pi\)
\(104\) 7.70094 10.5994i 0.755139 1.03936i
\(105\) 0 0
\(106\) 9.53782 + 3.09903i 0.926395 + 0.301004i
\(107\) −3.70571 1.88816i −0.358245 0.182535i 0.265600 0.964083i \(-0.414430\pi\)
−0.623844 + 0.781549i \(0.714430\pi\)
\(108\) 0 0
\(109\) −3.22321 −0.308728 −0.154364 0.988014i \(-0.549333\pi\)
−0.154364 + 0.988014i \(0.549333\pi\)
\(110\) 7.68624 + 16.3213i 0.732855 + 1.55617i
\(111\) 0 0
\(112\) −1.41832 + 8.95489i −0.134018 + 0.846157i
\(113\) 9.93758 + 5.06345i 0.934849 + 0.476329i 0.853928 0.520391i \(-0.174214\pi\)
0.0809210 + 0.996721i \(0.474214\pi\)
\(114\) 0 0
\(115\) 0.159757 + 0.290032i 0.0148974 + 0.0270456i
\(116\) 15.9805 21.9953i 1.48375 2.04221i
\(117\) 0 0
\(118\) −7.15838 + 14.0491i −0.658982 + 1.29333i
\(119\) 1.43299 + 1.97234i 0.131362 + 0.180804i
\(120\) 0 0
\(121\) 2.04995 + 10.8073i 0.186359 + 0.982482i
\(122\) 16.3844 + 16.3844i 1.48337 + 1.48337i
\(123\) 0 0
\(124\) 33.7647 10.9708i 3.03216 0.985209i
\(125\) −8.36822 + 7.41437i −0.748477 + 0.663161i
\(126\) 0 0
\(127\) −2.34580 + 0.371538i −0.208156 + 0.0329687i −0.259641 0.965705i \(-0.583604\pi\)
0.0514856 + 0.998674i \(0.483604\pi\)
\(128\) −17.9676 + 9.15495i −1.58813 + 0.809191i
\(129\) 0 0
\(130\) 12.6434 + 8.57727i 1.10890 + 0.752276i
\(131\) 3.12466i 0.273003i −0.990640 0.136501i \(-0.956414\pi\)
0.990640 0.136501i \(-0.0435858\pi\)
\(132\) 0 0
\(133\) −7.57567 + 7.57567i −0.656894 + 0.656894i
\(134\) −8.19674 + 5.95528i −0.708090 + 0.514458i
\(135\) 0 0
\(136\) 1.36114 4.18915i 0.116716 0.359216i
\(137\) −2.58679 16.3323i −0.221004 1.39537i −0.809621 0.586953i \(-0.800327\pi\)
0.588617 0.808412i \(-0.299673\pi\)
\(138\) 0 0
\(139\) 1.33510 4.10901i 0.113242 0.348522i −0.878335 0.478046i \(-0.841345\pi\)
0.991576 + 0.129524i \(0.0413451\pi\)
\(140\) −22.4393 2.81599i −1.89647 0.237995i
\(141\) 0 0
\(142\) −2.17775 + 2.17775i −0.182753 + 0.182753i
\(143\) 6.15696 + 6.99103i 0.514871 + 0.584619i
\(144\) 0 0
\(145\) 12.8422 + 8.71208i 1.06648 + 0.723499i
\(146\) 1.33157 + 4.09814i 0.110201 + 0.339164i
\(147\) 0 0
\(148\) −29.3994 + 4.65640i −2.41661 + 0.382754i
\(149\) −6.83188 4.96365i −0.559689 0.406638i 0.271656 0.962394i \(-0.412429\pi\)
−0.831345 + 0.555756i \(0.812429\pi\)
\(150\) 0 0
\(151\) 11.3483 3.68729i 0.923513 0.300068i 0.191606 0.981472i \(-0.438630\pi\)
0.731907 + 0.681404i \(0.238630\pi\)
\(152\) 19.1184 + 3.02806i 1.55071 + 0.245608i
\(153\) 0 0
\(154\) −19.3626 7.67785i −1.56028 0.618699i
\(155\) 6.87999 + 19.0607i 0.552614 + 1.53099i
\(156\) 0 0
\(157\) 0.618117 1.21312i 0.0493311 0.0968177i −0.865025 0.501729i \(-0.832698\pi\)
0.914356 + 0.404911i \(0.132698\pi\)
\(158\) −4.79514 9.41098i −0.381481 0.748698i
\(159\) 0 0
\(160\) −0.848179 1.53983i −0.0670544 0.121734i
\(161\) −0.363594 0.118139i −0.0286552 0.00931064i
\(162\) 0 0
\(163\) 3.58914 22.6610i 0.281123 1.77494i −0.292939 0.956131i \(-0.594633\pi\)
0.574062 0.818812i \(-0.305367\pi\)
\(164\) 13.5057 1.05462
\(165\) 0 0
\(166\) 20.1698 1.56548
\(167\) 2.24646 14.1836i 0.173836 1.09756i −0.734282 0.678845i \(-0.762481\pi\)
0.908118 0.418714i \(-0.137519\pi\)
\(168\) 0 0
\(169\) −4.86053 1.57928i −0.373887 0.121483i
\(170\) 4.93374 + 1.42898i 0.378401 + 0.109598i
\(171\) 0 0
\(172\) −9.85535 19.3422i −0.751464 1.47483i
\(173\) 10.1247 19.8708i 0.769766 1.51075i −0.0876641 0.996150i \(-0.527940\pi\)
0.857430 0.514601i \(-0.172060\pi\)
\(174\) 0 0
\(175\) 1.19366 12.8533i 0.0902321 0.971618i
\(176\) 2.89071 + 11.2829i 0.217896 + 0.850484i
\(177\) 0 0
\(178\) 10.1654 + 1.61004i 0.761928 + 0.120678i
\(179\) 4.15441 1.34985i 0.310516 0.100893i −0.149614 0.988745i \(-0.547803\pi\)
0.460129 + 0.887852i \(0.347803\pi\)
\(180\) 0 0
\(181\) −7.63694 5.54857i −0.567650 0.412422i 0.266601 0.963807i \(-0.414099\pi\)
−0.834251 + 0.551385i \(0.814099\pi\)
\(182\) −17.4228 + 2.75950i −1.29147 + 0.204548i
\(183\) 0 0
\(184\) 0.213446 + 0.656920i 0.0157355 + 0.0484287i
\(185\) −3.19734 16.6865i −0.235073 1.22681i
\(186\) 0 0
\(187\) 2.69495 + 1.59568i 0.197074 + 0.116688i
\(188\) 2.92879 2.92879i 0.213604 0.213604i
\(189\) 0 0
\(190\) −2.81067 + 22.3969i −0.203907 + 1.62484i
\(191\) 2.00020 6.15597i 0.144729 0.445430i −0.852247 0.523140i \(-0.824761\pi\)
0.996976 + 0.0777092i \(0.0247606\pi\)
\(192\) 0 0
\(193\) 0.157473 + 0.994245i 0.0113352 + 0.0715674i 0.992707 0.120548i \(-0.0384652\pi\)
−0.981372 + 0.192115i \(0.938465\pi\)
\(194\) 10.8424 33.3693i 0.778436 2.39578i
\(195\) 0 0
\(196\) −1.06084 + 0.770746i −0.0757744 + 0.0550533i
\(197\) −17.3425 + 17.3425i −1.23560 + 1.23560i −0.273821 + 0.961781i \(0.588287\pi\)
−0.961781 + 0.273821i \(0.911713\pi\)
\(198\) 0 0
\(199\) 3.25580i 0.230797i −0.993319 0.115399i \(-0.963185\pi\)
0.993319 0.115399i \(-0.0368146\pi\)
\(200\) −20.0551 + 11.9051i −1.41811 + 0.841819i
\(201\) 0 0
\(202\) 4.19440 2.13715i 0.295117 0.150370i
\(203\) −17.6967 + 2.80288i −1.24206 + 0.196723i
\(204\) 0 0
\(205\) 0.248483 + 7.70492i 0.0173548 + 0.538135i
\(206\) 3.97755 1.29238i 0.277129 0.0900447i
\(207\) 0 0
\(208\) 6.97487 + 6.97487i 0.483621 + 0.483621i
\(209\) −5.07327 + 12.7942i −0.350926 + 0.884991i
\(210\) 0 0
\(211\) −14.6014 20.0971i −1.00520 1.38354i −0.922080 0.387000i \(-0.873511\pi\)
−0.0831208 0.996539i \(-0.526489\pi\)
\(212\) −7.33212 + 14.3901i −0.503572 + 0.988316i
\(213\) 0 0
\(214\) 5.94674 8.18498i 0.406511 0.559514i
\(215\) 10.8533 5.97827i 0.740187 0.407715i
\(216\) 0 0
\(217\) −20.8467 10.6219i −1.41517 0.721064i
\(218\) 1.22657 7.74423i 0.0830735 0.524505i
\(219\) 0 0
\(220\) −27.8969 + 8.11396i −1.88081 + 0.547043i
\(221\) 2.65237 0.178418
\(222\) 0 0
\(223\) 17.4548 + 8.89368i 1.16886 + 0.595565i 0.927116 0.374774i \(-0.122280\pi\)
0.241746 + 0.970339i \(0.422280\pi\)
\(224\) 1.93038 + 0.627220i 0.128979 + 0.0419079i
\(225\) 0 0
\(226\) −15.9473 + 21.9496i −1.06080 + 1.46007i
\(227\) −0.464395 0.911427i −0.0308230 0.0604935i 0.875081 0.483976i \(-0.160808\pi\)
−0.905904 + 0.423482i \(0.860808\pi\)
\(228\) 0 0
\(229\) 0.0598653 + 0.0823975i 0.00395601 + 0.00544498i 0.810990 0.585059i \(-0.198929\pi\)
−0.807034 + 0.590504i \(0.798929\pi\)
\(230\) −0.757637 + 0.273470i −0.0499571 + 0.0180321i
\(231\) 0 0
\(232\) 22.8903 + 22.8903i 1.50282 + 1.50282i
\(233\) 21.1366 + 3.34771i 1.38470 + 0.219316i 0.803918 0.594740i \(-0.202745\pi\)
0.580786 + 0.814056i \(0.302745\pi\)
\(234\) 0 0
\(235\) 1.72474 + 1.61697i 0.112509 + 0.105479i
\(236\) −20.5431 14.9254i −1.33724 0.971562i
\(237\) 0 0
\(238\) −5.28413 + 2.69240i −0.342519 + 0.174522i
\(239\) 2.67723 + 8.23966i 0.173175 + 0.532979i 0.999545 0.0301483i \(-0.00959795\pi\)
−0.826370 + 0.563128i \(0.809598\pi\)
\(240\) 0 0
\(241\) 10.6492i 0.685976i −0.939340 0.342988i \(-0.888561\pi\)
0.939340 0.342988i \(-0.111439\pi\)
\(242\) −26.7462 + 0.812677i −1.71931 + 0.0522408i
\(243\) 0 0
\(244\) −30.1886 + 21.9333i −1.93263 + 1.40414i
\(245\) −0.459223 0.591022i −0.0293387 0.0377590i
\(246\) 0 0
\(247\) 1.82339 + 11.5124i 0.116020 + 0.732518i
\(248\) 6.61279 + 41.7515i 0.419913 + 2.65123i
\(249\) 0 0
\(250\) −14.6296 22.9273i −0.925259 1.45005i
\(251\) −7.59915 + 5.52110i −0.479654 + 0.348489i −0.801192 0.598408i \(-0.795800\pi\)
0.321538 + 0.946897i \(0.395800\pi\)
\(252\) 0 0
\(253\) −0.488975 + 0.0459651i −0.0307416 + 0.00288980i
\(254\) 5.77750i 0.362513i
\(255\) 0 0
\(256\) −9.63584 29.6561i −0.602240 1.85350i
\(257\) 16.4300 8.37149i 1.02487 0.522199i 0.141042 0.990004i \(-0.454955\pi\)
0.883832 + 0.467804i \(0.154955\pi\)
\(258\) 0 0
\(259\) 15.8700 + 11.5302i 0.986111 + 0.716451i
\(260\) −16.8282 + 17.9498i −1.04364 + 1.11320i
\(261\) 0 0
\(262\) 7.50744 + 1.18906i 0.463811 + 0.0734605i
\(263\) 11.8928 + 11.8928i 0.733342 + 0.733342i 0.971280 0.237938i \(-0.0764717\pi\)
−0.237938 + 0.971280i \(0.576472\pi\)
\(264\) 0 0
\(265\) −8.34434 3.91817i −0.512589 0.240691i
\(266\) −15.3188 21.0845i −0.939254 1.29277i
\(267\) 0 0
\(268\) −7.40747 14.5380i −0.452483 0.888049i
\(269\) −16.7264 + 23.0219i −1.01983 + 1.40367i −0.107502 + 0.994205i \(0.534285\pi\)
−0.912325 + 0.409467i \(0.865715\pi\)
\(270\) 0 0
\(271\) −28.2295 9.17232i −1.71482 0.557179i −0.723696 0.690118i \(-0.757558\pi\)
−0.991124 + 0.132939i \(0.957558\pi\)
\(272\) 2.95479 + 1.50554i 0.179160 + 0.0912868i
\(273\) 0 0
\(274\) 40.2251 2.43009
\(275\) −5.14221 15.7657i −0.310087 0.950708i
\(276\) 0 0
\(277\) −1.94287 + 12.2668i −0.116736 + 0.737041i 0.857995 + 0.513658i \(0.171710\pi\)
−0.974731 + 0.223383i \(0.928290\pi\)
\(278\) 9.36443 + 4.77141i 0.561641 + 0.286170i
\(279\) 0 0
\(280\) 7.49130 25.8646i 0.447691 1.54571i
\(281\) −12.8578 + 17.6972i −0.767032 + 1.05573i 0.229564 + 0.973294i \(0.426270\pi\)
−0.996596 + 0.0824357i \(0.973730\pi\)
\(282\) 0 0
\(283\) 12.3474 24.2332i 0.733978 1.44051i −0.157532 0.987514i \(-0.550354\pi\)
0.891511 0.453000i \(-0.149646\pi\)
\(284\) −2.91529 4.01255i −0.172991 0.238101i
\(285\) 0 0
\(286\) −19.1399 + 12.1326i −1.13177 + 0.717416i
\(287\) −6.29366 6.29366i −0.371503 0.371503i
\(288\) 0 0
\(289\) −15.3199 + 4.97773i −0.901170 + 0.292808i
\(290\) −25.8190 + 27.5398i −1.51614 + 1.61719i
\(291\) 0 0
\(292\) −6.85394 + 1.08556i −0.401096 + 0.0635274i
\(293\) −17.9201 + 9.13077i −1.04691 + 0.533425i −0.890838 0.454321i \(-0.849882\pi\)
−0.156068 + 0.987746i \(0.549882\pi\)
\(294\) 0 0
\(295\) 8.13689 11.9943i 0.473748 0.698334i
\(296\) 35.4416i 2.06000i
\(297\) 0 0
\(298\) 14.5257 14.5257i 0.841450 0.841450i
\(299\) −0.336495 + 0.244478i −0.0194600 + 0.0141385i
\(300\) 0 0
\(301\) −4.42087 + 13.6060i −0.254815 + 0.784239i
\(302\) 4.54074 + 28.6691i 0.261290 + 1.64972i
\(303\) 0 0
\(304\) −4.50340 + 13.8600i −0.258288 + 0.794927i
\(305\) −13.0682 16.8188i −0.748284 0.963044i
\(306\) 0 0
\(307\) −14.6921 + 14.6921i −0.838520 + 0.838520i −0.988664 0.150144i \(-0.952026\pi\)
0.150144 + 0.988664i \(0.452026\pi\)
\(308\) 17.0903 28.8638i 0.973810 1.64467i
\(309\) 0 0
\(310\) −48.4141 + 9.27678i −2.74974 + 0.526886i
\(311\) −7.19358 22.1396i −0.407911 1.25542i −0.918440 0.395560i \(-0.870551\pi\)
0.510530 0.859860i \(-0.329449\pi\)
\(312\) 0 0
\(313\) 13.8454 2.19289i 0.782587 0.123950i 0.247659 0.968847i \(-0.420339\pi\)
0.534928 + 0.844898i \(0.320339\pi\)
\(314\) 2.67948 + 1.94676i 0.151212 + 0.109862i
\(315\) 0 0
\(316\) 16.1771 5.25626i 0.910032 0.295687i
\(317\) −29.1369 4.61482i −1.63649 0.259194i −0.730630 0.682774i \(-0.760773\pi\)
−0.905859 + 0.423580i \(0.860773\pi\)
\(318\) 0 0
\(319\) −19.4408 + 12.3233i −1.08847 + 0.689972i
\(320\) 18.7949 6.78404i 1.05066 0.379239i
\(321\) 0 0
\(322\) 0.422208 0.828629i 0.0235287 0.0461777i
\(323\) 1.77905 + 3.49158i 0.0989889 + 0.194277i
\(324\) 0 0
\(325\) −10.5498 9.27011i −0.585198 0.514213i
\(326\) 53.0803 + 17.2468i 2.93985 + 0.955215i
\(327\) 0 0
\(328\) −2.51563 + 15.8830i −0.138902 + 0.876994i
\(329\) −2.72962 −0.150489
\(330\) 0 0
\(331\) 2.18560 0.120131 0.0600657 0.998194i \(-0.480869\pi\)
0.0600657 + 0.998194i \(0.480869\pi\)
\(332\) −5.08128 + 32.0819i −0.278871 + 1.76072i
\(333\) 0 0
\(334\) 33.2232 + 10.7949i 1.81789 + 0.590670i
\(335\) 8.15753 4.49338i 0.445694 0.245500i
\(336\) 0 0
\(337\) −0.818095 1.60560i −0.0445645 0.0874627i 0.867650 0.497175i \(-0.165629\pi\)
−0.912215 + 0.409712i \(0.865629\pi\)
\(338\) 5.64408 11.0771i 0.306997 0.602516i
\(339\) 0 0
\(340\) −3.51587 + 7.48759i −0.190675 + 0.406072i
\(341\) −29.9966 1.90289i −1.62441 0.103047i
\(342\) 0 0
\(343\) 18.7031 + 2.96227i 1.00987 + 0.159948i
\(344\) 24.5826 7.98736i 1.32540 0.430650i
\(345\) 0 0
\(346\) 43.8896 + 31.8877i 2.35952 + 1.71429i
\(347\) 21.2079 3.35900i 1.13850 0.180321i 0.441411 0.897305i \(-0.354478\pi\)
0.697090 + 0.716984i \(0.254478\pi\)
\(348\) 0 0
\(349\) 3.29300 + 10.1348i 0.176270 + 0.542505i 0.999689 0.0249295i \(-0.00793612\pi\)
−0.823419 + 0.567434i \(0.807936\pi\)
\(350\) 30.4276 + 7.75914i 1.62643 + 0.414744i
\(351\) 0 0
\(352\) 2.59606 0.244037i 0.138370 0.0130072i
\(353\) 7.73857 7.73857i 0.411883 0.411883i −0.470511 0.882394i \(-0.655931\pi\)
0.882394 + 0.470511i \(0.155931\pi\)
\(354\) 0 0
\(355\) 2.23550 1.73698i 0.118648 0.0921891i
\(356\) −5.12185 + 15.7634i −0.271457 + 0.835460i
\(357\) 0 0
\(358\) 1.66228 + 10.4952i 0.0878544 + 0.554691i
\(359\) −1.01178 + 3.11394i −0.0533997 + 0.164347i −0.974200 0.225688i \(-0.927537\pi\)
0.920800 + 0.390035i \(0.127537\pi\)
\(360\) 0 0
\(361\) 1.43940 1.04578i 0.0757578 0.0550412i
\(362\) 16.2374 16.2374i 0.853418 0.853418i
\(363\) 0 0
\(364\) 28.4079i 1.48898i
\(365\) −0.745404 3.89015i −0.0390162 0.203620i
\(366\) 0 0
\(367\) 16.2428 8.27615i 0.847870 0.432011i 0.0246243 0.999697i \(-0.492161\pi\)
0.823246 + 0.567686i \(0.192161\pi\)
\(368\) −0.513632 + 0.0813513i −0.0267749 + 0.00424073i
\(369\) 0 0
\(370\) 41.3083 1.33219i 2.14752 0.0692570i
\(371\) 10.1225 3.28901i 0.525536 0.170757i
\(372\) 0 0
\(373\) 12.4917 + 12.4917i 0.646795 + 0.646795i 0.952217 0.305422i \(-0.0987976\pi\)
−0.305422 + 0.952217i \(0.598798\pi\)
\(374\) −4.85939 + 5.86777i −0.251273 + 0.303415i
\(375\) 0 0
\(376\) 2.89879 + 3.98984i 0.149494 + 0.205760i
\(377\) −8.84972 + 17.3686i −0.455784 + 0.894526i
\(378\) 0 0
\(379\) −12.9685 + 17.8496i −0.666146 + 0.916872i −0.999665 0.0258717i \(-0.991764\pi\)
0.333519 + 0.942743i \(0.391764\pi\)
\(380\) −34.9163 10.1130i −1.79117 0.518785i
\(381\) 0 0
\(382\) 14.0294 + 7.14836i 0.717809 + 0.365742i
\(383\) 3.08015 19.4473i 0.157389 0.993712i −0.774923 0.632056i \(-0.782211\pi\)
0.932311 0.361656i \(-0.117789\pi\)
\(384\) 0 0
\(385\) 16.7810 + 9.21884i 0.855241 + 0.469836i
\(386\) −2.44874 −0.124638
\(387\) 0 0
\(388\) 50.3457 + 25.6524i 2.55591 + 1.30230i
\(389\) 16.2827 + 5.29057i 0.825565 + 0.268242i 0.691176 0.722686i \(-0.257093\pi\)
0.134389 + 0.990929i \(0.457093\pi\)
\(390\) 0 0
\(391\) −0.0821929 + 0.113129i −0.00415667 + 0.00572117i
\(392\) −0.708818 1.39113i −0.0358007 0.0702629i
\(393\) 0 0
\(394\) −35.0683 48.2673i −1.76671 2.43167i
\(395\) 3.29629 + 9.13221i 0.165854 + 0.459491i
\(396\) 0 0
\(397\) 5.24887 + 5.24887i 0.263433 + 0.263433i 0.826447 0.563014i \(-0.190358\pi\)
−0.563014 + 0.826447i \(0.690358\pi\)
\(398\) 7.82252 + 1.23896i 0.392107 + 0.0621037i
\(399\) 0 0
\(400\) −6.49077 16.3153i −0.324539 0.815767i
\(401\) 9.93091 + 7.21523i 0.495926 + 0.360311i 0.807459 0.589924i \(-0.200842\pi\)
−0.311533 + 0.950235i \(0.600842\pi\)
\(402\) 0 0
\(403\) −22.6803 + 11.5562i −1.12979 + 0.575655i
\(404\) 2.34267 + 7.21000i 0.116552 + 0.358711i
\(405\) 0 0
\(406\) 43.5854i 2.16311i
\(407\) 24.5905 + 5.51006i 1.21891 + 0.273124i
\(408\) 0 0
\(409\) 21.6485 15.7286i 1.07045 0.777727i 0.0944563 0.995529i \(-0.469889\pi\)
0.975993 + 0.217802i \(0.0698887\pi\)
\(410\) −18.6067 2.33503i −0.918921 0.115319i
\(411\) 0 0
\(412\) 1.05361 + 6.65226i 0.0519079 + 0.327733i
\(413\) 2.61782 + 16.5283i 0.128815 + 0.813304i
\(414\) 0 0
\(415\) −18.3960 2.30858i −0.903024 0.113324i
\(416\) 1.78651 1.29798i 0.0875910 0.0636386i
\(417\) 0 0
\(418\) −28.8092 17.0580i −1.40911 0.834332i
\(419\) 14.2401i 0.695676i 0.937555 + 0.347838i \(0.113084\pi\)
−0.937555 + 0.347838i \(0.886916\pi\)
\(420\) 0 0
\(421\) −2.13413 6.56818i −0.104011 0.320113i 0.885486 0.464666i \(-0.153826\pi\)
−0.989497 + 0.144553i \(0.953826\pi\)
\(422\) 53.8425 27.4341i 2.62101 1.33547i
\(423\) 0 0
\(424\) −15.5574 11.3031i −0.755532 0.548926i
\(425\) −4.33630 1.86802i −0.210342 0.0906123i
\(426\) 0 0
\(427\) 24.2888 + 3.84696i 1.17542 + 0.186168i
\(428\) 11.5209 + 11.5209i 0.556882 + 0.556882i
\(429\) 0 0
\(430\) 10.2335 + 28.3515i 0.493505 + 1.36723i
\(431\) 4.19638 + 5.77582i 0.202132 + 0.278211i 0.898034 0.439926i \(-0.144995\pi\)
−0.695902 + 0.718137i \(0.744995\pi\)
\(432\) 0 0
\(433\) −7.62822 14.9712i −0.366589 0.719471i 0.631864 0.775079i \(-0.282290\pi\)
−0.998453 + 0.0556084i \(0.982290\pi\)
\(434\) 33.4538 46.0451i 1.60583 2.21024i
\(435\) 0 0
\(436\) 12.0089 + 3.90194i 0.575124 + 0.186869i
\(437\) −0.547531 0.278981i −0.0261920 0.0133455i
\(438\) 0 0
\(439\) 0.772934 0.0368901 0.0184451 0.999830i \(-0.494128\pi\)
0.0184451 + 0.999830i \(0.494128\pi\)
\(440\) −4.34601 34.3187i −0.207188 1.63608i
\(441\) 0 0
\(442\) −1.00934 + 6.37271i −0.0480093 + 0.303119i
\(443\) −16.7419 8.53040i −0.795430 0.405292i 0.00853887 0.999964i \(-0.497282\pi\)
−0.803968 + 0.594672i \(0.797282\pi\)
\(444\) 0 0
\(445\) −9.08715 2.63196i −0.430772 0.124767i
\(446\) −28.0106 + 38.5533i −1.32634 + 1.82555i
\(447\) 0 0
\(448\) −10.4738 + 20.5560i −0.494840 + 0.971179i
\(449\) 0.419317 + 0.577140i 0.0197888 + 0.0272369i 0.818797 0.574084i \(-0.194642\pi\)
−0.799008 + 0.601320i \(0.794642\pi\)
\(450\) 0 0
\(451\) −10.6291 4.21474i −0.500502 0.198464i
\(452\) −30.8954 30.8954i −1.45320 1.45320i
\(453\) 0 0
\(454\) 2.36655 0.768940i 0.111068 0.0360882i
\(455\) 16.2065 0.522656i 0.759772 0.0245025i
\(456\) 0 0
\(457\) −19.1068 + 3.02622i −0.893780 + 0.141561i −0.586396 0.810025i \(-0.699454\pi\)
−0.307384 + 0.951586i \(0.599454\pi\)
\(458\) −0.220753 + 0.112479i −0.0103151 + 0.00525581i
\(459\) 0 0
\(460\) −0.244113 1.27399i −0.0113818 0.0594000i
\(461\) 36.5277i 1.70126i −0.525761 0.850632i \(-0.676219\pi\)
0.525761 0.850632i \(-0.323781\pi\)
\(462\) 0 0
\(463\) −17.1422 + 17.1422i −0.796664 + 0.796664i −0.982568 0.185904i \(-0.940479\pi\)
0.185904 + 0.982568i \(0.440479\pi\)
\(464\) −19.7175 + 14.3256i −0.915361 + 0.665049i
\(465\) 0 0
\(466\) −16.0867 + 49.5097i −0.745201 + 2.29349i
\(467\) 2.31832 + 14.6373i 0.107279 + 0.677333i 0.981451 + 0.191715i \(0.0614051\pi\)
−0.874172 + 0.485617i \(0.838595\pi\)
\(468\) 0 0
\(469\) −3.32281 + 10.2266i −0.153433 + 0.472219i
\(470\) −4.54132 + 3.52860i −0.209476 + 0.162762i
\(471\) 0 0
\(472\) 21.3791 21.3791i 0.984051 0.984051i
\(473\) 1.72006 + 18.2979i 0.0790885 + 0.841340i
\(474\) 0 0
\(475\) 5.12699 20.1056i 0.235242 0.922507i
\(476\) −2.95131 9.08320i −0.135273 0.416328i
\(477\) 0 0
\(478\) −20.8157 + 3.29689i −0.952090 + 0.150796i
\(479\) −22.3176 16.2146i −1.01971 0.740866i −0.0534905 0.998568i \(-0.517035\pi\)
−0.966224 + 0.257702i \(0.917035\pi\)
\(480\) 0 0
\(481\) 20.2972 6.59495i 0.925471 0.300704i
\(482\) 25.5862 + 4.05246i 1.16542 + 0.184585i
\(483\) 0 0
\(484\) 5.44540 42.7471i 0.247518 1.94305i
\(485\) −13.7082 + 29.1938i −0.622459 + 1.32562i
\(486\) 0 0
\(487\) 17.6583 34.6563i 0.800174 1.57043i −0.0210198 0.999779i \(-0.506691\pi\)
0.821193 0.570650i \(-0.193309\pi\)
\(488\) −20.1710 39.5879i −0.913099 1.79206i
\(489\) 0 0
\(490\) 1.59477 0.878440i 0.0720442 0.0396839i
\(491\) −17.8811 5.80992i −0.806962 0.262198i −0.123652 0.992326i \(-0.539461\pi\)
−0.683311 + 0.730128i \(0.739461\pi\)
\(492\) 0 0
\(493\) −1.02520 + 6.47287i −0.0461728 + 0.291523i
\(494\) −28.3541 −1.27571
\(495\) 0 0
\(496\) −31.8258 −1.42902
\(497\) −0.511323 + 3.22837i −0.0229360 + 0.144812i
\(498\) 0 0
\(499\) −4.98327 1.61916i −0.223082 0.0724837i 0.195343 0.980735i \(-0.437418\pi\)
−0.418425 + 0.908251i \(0.637418\pi\)
\(500\) 40.1537 17.4938i 1.79573 0.782348i
\(501\) 0 0
\(502\) −10.3734 20.3590i −0.462990 0.908668i
\(503\) −5.98921 + 11.7545i −0.267046 + 0.524106i −0.985122 0.171858i \(-0.945023\pi\)
0.718076 + 0.695965i \(0.245023\pi\)
\(504\) 0 0
\(505\) −4.07015 + 1.46913i −0.181119 + 0.0653754i
\(506\) 0.0756375 1.19232i 0.00336250 0.0530053i
\(507\) 0 0
\(508\) 9.18967 + 1.45550i 0.407726 + 0.0645774i
\(509\) 5.32193 1.72920i 0.235890 0.0766454i −0.188686 0.982037i \(-0.560423\pi\)
0.424577 + 0.905392i \(0.360423\pi\)
\(510\) 0 0
\(511\) 3.69980 + 2.68806i 0.163669 + 0.118913i
\(512\) 35.0853 5.55696i 1.55056 0.245585i
\(513\) 0 0
\(514\) 13.8614 + 42.6611i 0.611401 + 1.88170i
\(515\) −3.77568 + 0.723470i −0.166376 + 0.0318799i
\(516\) 0 0
\(517\) −3.21895 + 1.39098i −0.141569 + 0.0611751i
\(518\) −33.7421 + 33.7421i −1.48254 + 1.48254i
\(519\) 0 0
\(520\) −17.9748 23.1337i −0.788249 1.01448i
\(521\) −5.89515 + 18.1434i −0.258271 + 0.794877i 0.734896 + 0.678179i \(0.237231\pi\)
−0.993168 + 0.116697i \(0.962769\pi\)
\(522\) 0 0
\(523\) 5.49061 + 34.6664i 0.240088 + 1.51585i 0.753349 + 0.657621i \(0.228437\pi\)
−0.513261 + 0.858233i \(0.671563\pi\)
\(524\) −3.78263 + 11.6417i −0.165245 + 0.508572i
\(525\) 0 0
\(526\) −33.0999 + 24.0485i −1.44322 + 1.04856i
\(527\) −6.05128 + 6.05128i −0.263598 + 0.263598i
\(528\) 0 0
\(529\) 22.9781i 0.999047i
\(530\) 12.5893 18.5574i 0.546845 0.806084i
\(531\) 0 0
\(532\) 37.3961 19.0542i 1.62132 0.826106i
\(533\) −9.56421 + 1.51482i −0.414272 + 0.0656143i
\(534\) 0 0
\(535\) −6.36060 + 6.78453i −0.274993 + 0.293321i
\(536\) 18.4767 6.00346i 0.798074 0.259310i
\(537\) 0 0
\(538\) −48.9484 48.9484i −2.11031 2.11031i
\(539\) 1.07541 0.275523i 0.0463213 0.0118676i
\(540\) 0 0
\(541\) −1.49345 2.05556i −0.0642084 0.0883752i 0.775705 0.631095i \(-0.217394\pi\)
−0.839914 + 0.542720i \(0.817394\pi\)
\(542\) 32.7803 64.3350i 1.40803 2.76342i
\(543\) 0 0
\(544\) 0.436376 0.600621i 0.0187095 0.0257514i
\(545\) −2.00508 + 6.92280i −0.0858884 + 0.296540i
\(546\) 0 0
\(547\) 13.2087 + 6.73017i 0.564764 + 0.287761i 0.712969 0.701195i \(-0.247350\pi\)
−0.148206 + 0.988957i \(0.547350\pi\)
\(548\) −10.1337 + 63.9819i −0.432892 + 2.73317i
\(549\) 0 0
\(550\) 39.8362 6.35539i 1.69862 0.270995i
\(551\) −28.7998 −1.22691
\(552\) 0 0
\(553\) −9.98792 5.08910i −0.424730 0.216411i
\(554\) −28.7334 9.33604i −1.22076 0.396650i
\(555\) 0 0
\(556\) −9.94853 + 13.6930i −0.421912 + 0.580712i
\(557\) −5.79353 11.3704i −0.245480 0.481781i 0.735086 0.677974i \(-0.237142\pi\)
−0.980565 + 0.196194i \(0.937142\pi\)
\(558\) 0 0
\(559\) 9.14861 + 12.5920i 0.386945 + 0.532584i
\(560\) 18.3510 + 8.61687i 0.775470 + 0.364129i
\(561\) 0 0
\(562\) −37.6272 37.6272i −1.58721 1.58721i
\(563\) 33.1190 + 5.24553i 1.39580 + 0.221073i 0.808594 0.588367i \(-0.200229\pi\)
0.587204 + 0.809439i \(0.300229\pi\)
\(564\) 0 0
\(565\) 17.0572 18.1940i 0.717601 0.765429i
\(566\) 53.5250 + 38.8882i 2.24982 + 1.63459i
\(567\) 0 0
\(568\) 5.26186 2.68105i 0.220783 0.112494i
\(569\) −2.57065 7.91165i −0.107767 0.331674i 0.882603 0.470120i \(-0.155789\pi\)
−0.990370 + 0.138446i \(0.955789\pi\)
\(570\) 0 0
\(571\) 45.2601i 1.89408i 0.321118 + 0.947039i \(0.395941\pi\)
−0.321118 + 0.947039i \(0.604059\pi\)
\(572\) −14.4762 33.5004i −0.605282 1.40072i
\(573\) 0 0
\(574\) 17.5164 12.7264i 0.731121 0.531190i
\(575\) 0.722310 0.162704i 0.0301224 0.00678522i
\(576\) 0 0
\(577\) −3.58768 22.6517i −0.149357 0.943005i −0.942558 0.334044i \(-0.891587\pi\)
0.793200 0.608961i \(-0.208413\pi\)
\(578\) −6.12986 38.7024i −0.254969 1.60981i
\(579\) 0 0
\(580\) −37.3002 48.0056i −1.54881 1.99332i
\(581\) 17.3180 12.5823i 0.718472 0.522001i
\(582\) 0 0
\(583\) 10.2611 9.03691i 0.424972 0.374270i
\(584\) 8.26259i 0.341908i
\(585\) 0 0
\(586\) −15.1186 46.5303i −0.624545 1.92215i
\(587\) −8.99622 + 4.58380i −0.371314 + 0.189194i −0.629683 0.776853i \(-0.716815\pi\)
0.258369 + 0.966046i \(0.416815\pi\)
\(588\) 0 0
\(589\) −30.4251 22.1051i −1.25365 0.910827i
\(590\) 25.7215 + 24.1143i 1.05894 + 0.992772i
\(591\) 0 0
\(592\) 26.3548 + 4.17419i 1.08318 + 0.171558i
\(593\) −9.47168 9.47168i −0.388955 0.388955i 0.485359 0.874315i \(-0.338689\pi\)
−0.874315 + 0.485359i \(0.838689\pi\)
\(594\) 0 0
\(595\) 5.12760 1.85082i 0.210211 0.0758761i
\(596\) 19.4451 + 26.7639i 0.796503 + 1.09629i
\(597\) 0 0
\(598\) −0.459343 0.901512i −0.0187839 0.0368656i
\(599\) −23.5167 + 32.3680i −0.960866 + 1.32252i −0.0143383 + 0.999897i \(0.504564\pi\)
−0.946528 + 0.322622i \(0.895436\pi\)
\(600\) 0 0
\(601\) 34.5805 + 11.2359i 1.41057 + 0.458322i 0.912593 0.408869i \(-0.134077\pi\)
0.497976 + 0.867191i \(0.334077\pi\)
\(602\) −31.0081 15.7994i −1.26380 0.643937i
\(603\) 0 0
\(604\) −46.7449 −1.90202
\(605\) 24.4871 + 2.32009i 0.995541 + 0.0943251i
\(606\) 0 0
\(607\) −3.89991 + 24.6231i −0.158293 + 0.999420i 0.772803 + 0.634646i \(0.218854\pi\)
−0.931096 + 0.364774i \(0.881146\pi\)
\(608\) 2.90694 + 1.48116i 0.117892 + 0.0600689i
\(609\) 0 0
\(610\) 45.3827 24.9980i 1.83749 1.01214i
\(611\) −1.74555 + 2.40254i −0.0706174 + 0.0971965i
\(612\) 0 0
\(613\) −5.30759 + 10.4167i −0.214372 + 0.420728i −0.973003 0.230792i \(-0.925868\pi\)
0.758632 + 0.651520i \(0.225868\pi\)
\(614\) −29.7088 40.8907i −1.19895 1.65021i
\(615\) 0 0
\(616\) 30.7612 + 25.4748i 1.23940 + 1.02641i
\(617\) −6.18386 6.18386i −0.248953 0.248953i 0.571588 0.820541i \(-0.306328\pi\)
−0.820541 + 0.571588i \(0.806328\pi\)
\(618\) 0 0
\(619\) −1.04489 + 0.339504i −0.0419975 + 0.0136458i −0.329940 0.944002i \(-0.607029\pi\)
0.287943 + 0.957648i \(0.407029\pi\)
\(620\) −2.55884 79.3444i −0.102766 3.18655i
\(621\) 0 0
\(622\) 55.9309 8.85859i 2.24263 0.355197i
\(623\) 9.73251 4.95896i 0.389925 0.198677i
\(624\) 0 0
\(625\) 10.7189 + 22.5855i 0.428755 + 0.903421i
\(626\) 34.1000i 1.36291i
\(627\) 0 0
\(628\) −3.77153 + 3.77153i −0.150501 + 0.150501i
\(629\) 5.80472 4.21737i 0.231449 0.168158i
\(630\) 0 0
\(631\) −1.00765 + 3.10124i −0.0401140 + 0.123458i −0.969108 0.246636i \(-0.920675\pi\)
0.928994 + 0.370095i \(0.120675\pi\)
\(632\) 3.16827 + 20.0037i 0.126027 + 0.795703i
\(633\) 0 0
\(634\) 22.1755 68.2493i 0.880703 2.71053i
\(635\) −0.661278 + 5.26942i −0.0262420 + 0.209110i
\(636\) 0 0
\(637\) 0.664797 0.664797i 0.0263402 0.0263402i
\(638\) −22.2105 51.3987i −0.879321 2.03490i
\(639\) 0 0
\(640\) 8.48573 + 44.2858i 0.335428 + 1.75055i
\(641\) 2.75407 + 8.47616i 0.108779 + 0.334788i 0.990599 0.136799i \(-0.0436814\pi\)
−0.881820 + 0.471587i \(0.843681\pi\)
\(642\) 0 0
\(643\) −36.6439 + 5.80382i −1.44509 + 0.228880i −0.829202 0.558950i \(-0.811204\pi\)
−0.615893 + 0.787830i \(0.711204\pi\)
\(644\) 1.21165 + 0.880315i 0.0477457 + 0.0346893i
\(645\) 0 0
\(646\) −9.06602 + 2.94573i −0.356698 + 0.115898i
\(647\) 21.7803 + 3.44966i 0.856273 + 0.135620i 0.569110 0.822262i \(-0.307288\pi\)
0.287163 + 0.957882i \(0.407288\pi\)
\(648\) 0 0
\(649\) 11.5097 + 18.1572i 0.451794 + 0.712734i
\(650\) 26.2874 21.8198i 1.03108 0.855842i
\(651\) 0 0
\(652\) −40.8051 + 80.0844i −1.59805 + 3.13635i
\(653\) −22.0554 43.2861i −0.863093 1.69392i −0.708232 0.705980i \(-0.750507\pi\)
−0.154861 0.987936i \(-0.549493\pi\)
\(654\) 0 0
\(655\) −6.71113 1.94378i −0.262225 0.0759496i
\(656\) −11.5145 3.74130i −0.449567 0.146073i
\(657\) 0 0
\(658\) 1.03873 6.55831i 0.0404941 0.255669i
\(659\) 47.3029 1.84266 0.921329 0.388783i \(-0.127104\pi\)
0.921329 + 0.388783i \(0.127104\pi\)
\(660\) 0 0
\(661\) −26.7159 −1.03913 −0.519564 0.854432i \(-0.673906\pi\)
−0.519564 + 0.854432i \(0.673906\pi\)
\(662\) −0.831711 + 5.25121i −0.0323254 + 0.204094i
\(663\) 0 0
\(664\) −36.7826 11.9514i −1.42744 0.463804i
\(665\) 11.5583 + 20.9836i 0.448213 + 0.813710i
\(666\) 0 0
\(667\) −0.466563 0.915682i −0.0180654 0.0354553i
\(668\) −25.5401 + 50.1252i −0.988175 + 1.93940i
\(669\) 0 0
\(670\) 7.69172 + 21.3095i 0.297157 + 0.823260i
\(671\) 30.6032 7.84061i 1.18143 0.302683i
\(672\) 0 0
\(673\) 13.0723 + 2.07046i 0.503902 + 0.0798102i 0.403210 0.915107i \(-0.367894\pi\)
0.100692 + 0.994918i \(0.467894\pi\)
\(674\) 4.16900 1.35459i 0.160584 0.0521769i
\(675\) 0 0
\(676\) 16.1973 + 11.7681i 0.622975 + 0.452618i
\(677\) −33.9668 + 5.37982i −1.30545 + 0.206763i −0.770131 0.637885i \(-0.779809\pi\)
−0.535321 + 0.844649i \(0.679809\pi\)
\(678\) 0 0
\(679\) −11.5070 35.4150i −0.441600 1.35910i
\(680\) −8.15069 5.52941i −0.312565 0.212043i
\(681\) 0 0
\(682\) 15.9869 71.3470i 0.612171 2.73202i
\(683\) −27.9495 + 27.9495i −1.06946 + 1.06946i −0.0720555 + 0.997401i \(0.522956\pi\)
−0.997401 + 0.0720555i \(0.977044\pi\)
\(684\) 0 0
\(685\) −36.6877 4.60407i −1.40176 0.175912i
\(686\) −14.2346 + 43.8095i −0.543478 + 1.67265i
\(687\) 0 0
\(688\) 3.04425 + 19.2206i 0.116061 + 0.732779i
\(689\) 3.57830 11.0129i 0.136322 0.419557i
\(690\) 0 0
\(691\) −2.64892 + 1.92455i −0.100770 + 0.0732134i −0.637029 0.770840i \(-0.719837\pi\)
0.536259 + 0.844053i \(0.319837\pi\)
\(692\) −61.7773 + 61.7773i −2.34842 + 2.34842i
\(693\) 0 0
\(694\) 52.2333i 1.98275i
\(695\) −7.99478 5.42364i −0.303259 0.205730i
\(696\) 0 0
\(697\) −2.90071 + 1.47799i −0.109872 + 0.0559827i
\(698\) −25.6035 + 4.05519i −0.969106 + 0.153491i
\(699\) 0 0
\(700\) −20.0072 + 46.4433i −0.756199 + 1.75539i
\(701\) 5.55696 1.80557i 0.209883 0.0681953i −0.202188 0.979347i \(-0.564805\pi\)
0.412072 + 0.911151i \(0.364805\pi\)
\(702\) 0 0
\(703\) 22.2957 + 22.2957i 0.840897 + 0.840897i
\(704\) −1.87635 + 29.5782i −0.0707178 + 1.11477i
\(705\) 0 0
\(706\) 15.6482 + 21.5379i 0.588927 + 0.810588i
\(707\) 2.26817 4.45154i 0.0853034 0.167417i
\(708\) 0 0
\(709\) −23.5016 + 32.3472i −0.882623 + 1.21483i 0.0930647 + 0.995660i \(0.470334\pi\)
−0.975688 + 0.219166i \(0.929666\pi\)
\(710\) 3.32263 + 6.03209i 0.124696 + 0.226380i
\(711\) 0 0
\(712\) −17.5841 8.95956i −0.658993 0.335774i
\(713\) 0.209933 1.32547i 0.00786207 0.0496391i
\(714\) 0 0
\(715\) 18.8454 8.87494i 0.704778 0.331904i
\(716\) −17.1125 −0.639523
\(717\) 0 0
\(718\) −7.09665 3.61592i −0.264845 0.134945i
\(719\) 19.2106 + 6.24190i 0.716434 + 0.232784i 0.644477 0.764624i \(-0.277075\pi\)
0.0719577 + 0.997408i \(0.477075\pi\)
\(720\) 0 0
\(721\) 2.60896 3.59093i 0.0971629 0.133733i
\(722\) 1.96489 + 3.85632i 0.0731258 + 0.143517i
\(723\) 0 0
\(724\) 21.7365 + 29.9177i 0.807831 + 1.11188i
\(725\) 26.7006 22.1627i 0.991634 0.823103i
\(726\) 0 0
\(727\) 26.5141 + 26.5141i 0.983354 + 0.983354i 0.999864 0.0165102i \(-0.00525558\pi\)
−0.0165102 + 0.999864i \(0.505256\pi\)
\(728\) 33.4083 + 5.29135i 1.23819 + 0.196111i
\(729\) 0 0
\(730\) 9.63030 0.310576i 0.356433 0.0114949i
\(731\) 4.23339 + 3.07574i 0.156578 + 0.113760i
\(732\) 0 0
\(733\) 28.4208 14.4811i 1.04975 0.534873i 0.158015 0.987437i \(-0.449490\pi\)
0.891732 + 0.452563i \(0.149490\pi\)
\(734\) 13.7035 + 42.1752i 0.505807 + 1.55671i
\(735\) 0 0
\(736\) 0.116420i 0.00429131i
\(737\) 1.29283 + 13.7531i 0.0476220 + 0.506601i
\(738\) 0 0
\(739\) 31.6871 23.0220i 1.16563 0.846879i 0.175150 0.984542i \(-0.443959\pi\)
0.990479 + 0.137662i \(0.0439589\pi\)
\(740\) −8.28765 + 66.0404i −0.304660 + 2.42769i
\(741\) 0 0
\(742\) 4.05027 + 25.5724i 0.148690 + 0.938793i
\(743\) −1.06140 6.70139i −0.0389389 0.245850i 0.960540 0.278143i \(-0.0897190\pi\)
−0.999478 + 0.0322930i \(0.989719\pi\)
\(744\) 0 0
\(745\) −14.9109 + 11.5857i −0.546291 + 0.424467i
\(746\) −34.7666 + 25.2594i −1.27290 + 0.924814i
\(747\) 0 0
\(748\) −8.10905 9.20756i −0.296496 0.336662i
\(749\) 10.7374i 0.392337i
\(750\) 0 0
\(751\) −6.82703 21.0114i −0.249122 0.766718i −0.994931 0.100559i \(-0.967937\pi\)
0.745809 0.666160i \(-0.232063\pi\)
\(752\) −3.30830 + 1.68567i −0.120641 + 0.0614699i
\(753\) 0 0
\(754\) −38.3627 27.8722i −1.39709 1.01504i
\(755\) −0.860027 26.6676i −0.0312996 0.970535i
\(756\) 0 0
\(757\) −33.0425 5.23341i −1.20095 0.190212i −0.476271 0.879299i \(-0.658012\pi\)
−0.724678 + 0.689087i \(0.758012\pi\)
\(758\) −37.9511 37.9511i −1.37845 1.37845i
\(759\) 0 0
\(760\) 18.3967 39.1787i 0.667320 1.42116i
\(761\) 15.3149 + 21.0791i 0.555163 + 0.764117i 0.990701 0.136054i \(-0.0434419\pi\)
−0.435538 + 0.900170i \(0.643442\pi\)
\(762\) 0 0
\(763\) −3.77785 7.41445i −0.136767 0.268421i
\(764\) −14.9045 + 20.5143i −0.539227 + 0.742182i
\(765\) 0 0
\(766\) 45.5528 + 14.8010i 1.64589 + 0.534782i
\(767\) 16.2218 + 8.26544i 0.585736 + 0.298448i
\(768\) 0 0
\(769\) 51.2907 1.84959 0.924794 0.380468i \(-0.124237\pi\)
0.924794 + 0.380468i \(0.124237\pi\)
\(770\) −28.5355 + 36.8107i −1.02835 + 1.32656i
\(771\) 0 0
\(772\) 0.616901 3.89496i 0.0222027 0.140183i
\(773\) −14.7145 7.49740i −0.529243 0.269663i 0.168885 0.985636i \(-0.445983\pi\)
−0.698128 + 0.715973i \(0.745983\pi\)
\(774\) 0 0
\(775\) 45.2183 2.91960i 1.62429 0.104875i
\(776\) −39.5453 + 54.4295i −1.41960 + 1.95391i
\(777\) 0 0
\(778\) −18.9076 + 37.1082i −0.677869 + 1.33039i
\(779\) −8.40920 11.5743i −0.301291 0.414691i
\(780\) 0 0
\(781\) 1.04214 + 4.06766i 0.0372908 + 0.145552i
\(782\) −0.240530 0.240530i −0.00860135 0.00860135i
\(783\) 0 0
\(784\) 1.11795 0.363243i 0.0399267 0.0129730i
\(785\) −2.22102 2.08224i −0.0792717 0.0743184i
\(786\) 0 0
\(787\) 4.37316 0.692641i 0.155886 0.0246900i −0.0780034 0.996953i \(-0.524854\pi\)
0.233890 + 0.972263i \(0.424854\pi\)
\(788\) 85.6084 43.6197i 3.04967 1.55389i
\(789\) 0 0
\(790\) −23.1958 + 4.44462i −0.825270 + 0.158132i
\(791\) 28.7945i 1.02381i
\(792\) 0 0
\(793\) 18.9183 18.9183i 0.671808 0.671808i
\(794\) −14.6086 + 10.6137i −0.518438 + 0.376667i
\(795\) 0 0
\(796\) −3.94138 + 12.1303i −0.139699 + 0.429948i
\(797\) −3.00692 18.9850i −0.106511 0.672482i −0.981948 0.189150i \(-0.939427\pi\)
0.875437 0.483331i \(-0.160573\pi\)
\(798\) 0 0
\(799\) −0.308525 + 0.949542i −0.0109148 + 0.0335924i
\(800\) −3.83487 + 0.863823i −0.135583 + 0.0305407i
\(801\) 0 0
\(802\) −21.1147 + 21.1147i −0.745587 + 0.745587i
\(803\) 5.73284 + 1.28457i 0.202308 + 0.0453316i
\(804\) 0 0
\(805\) −0.479921 + 0.707434i −0.0169150 + 0.0249338i
\(806\) −19.1346 58.8903i −0.673988 2.07432i
\(807\) 0 0
\(808\) −8.91548 + 1.41207i −0.313645 + 0.0496765i
\(809\) −24.9923 18.1580i −0.878683 0.638401i 0.0542197 0.998529i \(-0.482733\pi\)
−0.932903 + 0.360128i \(0.882733\pi\)
\(810\) 0 0
\(811\) 23.8090 7.73601i 0.836047 0.271648i 0.140456 0.990087i \(-0.455143\pi\)
0.695590 + 0.718439i \(0.255143\pi\)
\(812\) 69.3267 + 10.9803i 2.43289 + 0.385332i
\(813\) 0 0
\(814\) −22.5964 + 56.9854i −0.792004 + 1.99734i
\(815\) −46.4383 21.8056i −1.62666 0.763816i
\(816\) 0 0
\(817\) −10.4397 + 20.4891i −0.365240 + 0.716825i
\(818\) 29.5519 + 57.9990i 1.03326 + 2.02789i
\(819\) 0 0
\(820\) 8.40160 29.0075i 0.293396 1.01299i
\(821\) 21.6750 + 7.04264i 0.756463 + 0.245790i 0.661760 0.749716i \(-0.269810\pi\)
0.0947032 + 0.995506i \(0.469810\pi\)
\(822\) 0 0
\(823\) 2.76029 17.4278i 0.0962177 0.607495i −0.891713 0.452601i \(-0.850496\pi\)
0.987931 0.154894i \(-0.0495036\pi\)
\(824\) −8.01946 −0.279371
\(825\) 0 0
\(826\) −40.7077 −1.41640
\(827\) 2.60613 16.4544i 0.0906239 0.572177i −0.900035 0.435817i \(-0.856460\pi\)
0.990659 0.136360i \(-0.0435404\pi\)
\(828\) 0 0
\(829\) −39.7855 12.9271i −1.38181 0.448976i −0.478544 0.878064i \(-0.658835\pi\)
−0.903263 + 0.429087i \(0.858835\pi\)
\(830\) 12.5471 43.3205i 0.435517 1.50368i
\(831\) 0 0
\(832\) 11.3950 + 22.3640i 0.395051 + 0.775332i
\(833\) 0.143498 0.281630i 0.00497190 0.00975790i
\(834\) 0 0
\(835\) −29.0660 13.6482i −1.00587 0.472316i
\(836\) 34.3901 41.5265i 1.18941 1.43622i
\(837\) 0 0
\(838\) −34.2139 5.41895i −1.18190 0.187195i
\(839\) −49.3818 + 16.0451i −1.70485 + 0.553939i −0.989463 0.144788i \(-0.953750\pi\)
−0.715388 + 0.698728i \(0.753750\pi\)
\(840\) 0 0
\(841\) −15.5042 11.2645i −0.534629 0.388431i
\(842\) 16.5931 2.62809i 0.571836 0.0905699i
\(843\) 0 0
\(844\) 30.0723 + 92.5530i 1.03513 + 3.18581i
\(845\) −6.41559 + 9.45698i −0.220703 + 0.325330i
\(846\) 0 0
\(847\) −22.4576 + 17.3825i −0.771654 + 0.597271i
\(848\) 10.2374 10.2374i 0.351554 0.351554i
\(849\) 0 0
\(850\) 6.13833 9.70773i 0.210543 0.332972i
\(851\) −0.347690 + 1.07008i −0.0119187 + 0.0366819i
\(852\) 0 0
\(853\) −2.19089 13.8327i −0.0750145 0.473623i −0.996386 0.0849401i \(-0.972930\pi\)
0.921372 0.388683i \(-0.127070\pi\)
\(854\) −18.4857 + 56.8933i −0.632569 + 1.94685i
\(855\) 0 0
\(856\) −15.6947 + 11.4029i −0.536434 + 0.389742i
\(857\) 10.2364 10.2364i 0.349669 0.349669i −0.510317 0.859986i \(-0.670472\pi\)
0.859986 + 0.510317i \(0.170472\pi\)
\(858\) 0 0
\(859\) 56.0426i 1.91215i −0.293125 0.956074i \(-0.594695\pi\)
0.293125 0.956074i \(-0.405305\pi\)
\(860\) −47.6739 + 9.13494i −1.62567 + 0.311499i
\(861\) 0 0
\(862\) −15.4741 + 7.88446i −0.527050 + 0.268546i
\(863\) 17.0244 2.69640i 0.579518 0.0917867i 0.140208 0.990122i \(-0.455223\pi\)
0.439310 + 0.898335i \(0.355223\pi\)
\(864\) 0 0
\(865\) −36.3801 34.1069i −1.23696 1.15967i
\(866\) 38.8733 12.6307i 1.32097 0.429209i
\(867\) 0 0
\(868\) 64.8114 + 64.8114i 2.19984 + 2.19984i
\(869\) −14.3717 0.911700i −0.487528 0.0309273i
\(870\) 0 0
\(871\) 6.87628 + 9.46438i 0.232994 + 0.320688i
\(872\) −6.82560 + 13.3960i −0.231144 + 0.453645i
\(873\) 0 0
\(874\) 0.878650 1.20936i 0.0297208 0.0409071i
\(875\) −26.8637 10.5595i −0.908158 0.356975i
\(876\) 0 0
\(877\) 6.28165 + 3.20066i 0.212116 + 0.108079i 0.556821 0.830633i \(-0.312021\pi\)
−0.344705 + 0.938711i \(0.612021\pi\)
\(878\) −0.294133 + 1.85708i −0.00992651 + 0.0626735i
\(879\) 0 0
\(880\) 26.0317 + 0.810196i 0.877528 + 0.0273117i
\(881\) 46.6330 1.57111 0.785553 0.618794i \(-0.212378\pi\)
0.785553 + 0.618794i \(0.212378\pi\)
\(882\) 0 0
\(883\) 9.80743 + 4.99714i 0.330046 + 0.168167i 0.611159 0.791508i \(-0.290704\pi\)
−0.281113 + 0.959675i \(0.590704\pi\)
\(884\) −9.88212 3.21090i −0.332372 0.107994i
\(885\) 0 0
\(886\) 26.8665 36.9785i 0.902597 1.24232i
\(887\) 17.6954 + 34.7292i 0.594154 + 1.16609i 0.970835 + 0.239750i \(0.0770655\pi\)
−0.376680 + 0.926343i \(0.622934\pi\)
\(888\) 0 0
\(889\) −3.60411 4.96064i −0.120878 0.166374i
\(890\) 9.78168 20.8316i 0.327883 0.698277i
\(891\) 0 0
\(892\) −54.2662 54.2662i −1.81697 1.81697i
\(893\) −4.33351 0.686361i −0.145016 0.0229682i
\(894\) 0 0
\(895\) −0.314840 9.76254i −0.0105240 0.326326i
\(896\) −42.1188 30.6011i −1.40709 1.02231i
\(897\) 0 0
\(898\) −1.54623 + 0.787843i −0.0515983 + 0.0262906i
\(899\) −19.4354 59.8159i −0.648206 1.99497i
\(900\) 0 0
\(901\) 3.89303i 0.129696i
\(902\) 14.1713 23.9339i 0.471852 0.796912i
\(903\) 0 0
\(904\) 42.0884 30.5790i 1.39984 1.01704i
\(905\) −16.6679 + 12.9510i −0.554061 + 0.430504i
\(906\) 0 0
\(907\) −4.39815 27.7688i −0.146038 0.922049i −0.946509 0.322677i \(-0.895417\pi\)
0.800471 0.599372i \(-0.204583\pi\)
\(908\) 0.626877 + 3.95795i 0.0208037 + 0.131349i
\(909\) 0 0
\(910\) −4.91148 + 39.1373i −0.162814 + 1.29739i
\(911\) −23.8530 + 17.3302i −0.790285 + 0.574175i −0.908048 0.418866i \(-0.862428\pi\)
0.117763 + 0.993042i \(0.462428\pi\)
\(912\) 0 0
\(913\) 14.0108 23.6628i 0.463689 0.783126i
\(914\) 47.0585i 1.55656i
\(915\) 0 0
\(916\) −0.123296 0.379465i −0.00407380 0.0125379i
\(917\) 7.18775 3.66234i 0.237360 0.120941i
\(918\) 0 0
\(919\) −32.9943 23.9718i −1.08838 0.790755i −0.109256 0.994014i \(-0.534847\pi\)
−0.979125 + 0.203258i \(0.934847\pi\)
\(920\) 1.54371 0.0497843i 0.0508945 0.00164134i
\(921\) 0 0
\(922\) 87.7630 + 13.9003i 2.89032 + 0.457782i
\(923\) 2.51454 + 2.51454i 0.0827672 + 0.0827672i
\(924\) 0 0
\(925\) −37.8281 3.51301i −1.24378 0.115507i
\(926\) −34.6632 47.7098i −1.13910 1.56784i
\(927\) 0 0
\(928\) 2.47706 + 4.86151i 0.0813136 + 0.159587i
\(929\) 30.1380 41.4814i 0.988795 1.36096i 0.0568413 0.998383i \(-0.481897\pi\)
0.931954 0.362577i \(-0.118103\pi\)
\(930\) 0 0
\(931\) 1.32104 + 0.429233i 0.0432954 + 0.0140675i
\(932\) −74.6973 38.0602i −2.44679 1.24670i
\(933\) 0 0
\(934\) −36.0504 −1.17960
\(935\) 5.10365 4.79556i 0.166907 0.156831i
\(936\) 0 0
\(937\) 0.481891 3.04254i 0.0157427 0.0993955i −0.978566 0.205934i \(-0.933977\pi\)
0.994309 + 0.106539i \(0.0339768\pi\)
\(938\) −23.3063 11.8752i −0.760978 0.387738i
\(939\) 0 0
\(940\) −4.46850 8.11236i −0.145746 0.264596i
\(941\) 16.7138 23.0045i 0.544854 0.749927i −0.444449 0.895804i \(-0.646601\pi\)
0.989303 + 0.145877i \(0.0466005\pi\)
\(942\) 0 0
\(943\) 0.231770 0.454874i 0.00754747 0.0148127i
\(944\) 13.3798 + 18.4157i 0.435474 + 0.599379i
\(945\) 0 0
\(946\) −44.6180 2.83043i −1.45065 0.0920252i
\(947\) 40.6526 + 40.6526i 1.32103 + 1.32103i 0.912941 + 0.408091i \(0.133805\pi\)
0.408091 + 0.912941i \(0.366195\pi\)
\(948\) 0 0
\(949\) 4.73193 1.53750i 0.153605 0.0499092i
\(950\) 46.3555 + 19.9693i 1.50397 + 0.647890i
\(951\) 0 0
\(952\) 11.2318 1.77894i 0.364024 0.0576557i
\(953\) 17.0501 8.68746i 0.552307 0.281414i −0.155482 0.987839i \(-0.549693\pi\)
0.707788 + 0.706424i \(0.249693\pi\)
\(954\) 0 0
\(955\) −11.9775 8.12549i −0.387582 0.262935i
\(956\) 33.9400i 1.09770i
\(957\) 0 0
\(958\) 47.4507 47.4507i 1.53306 1.53306i
\(959\) 34.5378 25.0932i 1.11528 0.810302i
\(960\) 0 0
\(961\) 15.7997 48.6264i 0.509667 1.56859i
\(962\) 8.12140 + 51.2765i 0.261844 + 1.65322i
\(963\) 0 0
\(964\) −12.8917 + 39.6764i −0.415212 + 1.27789i
\(965\) 2.23340 + 0.280277i 0.0718955 + 0.00902243i
\(966\) 0 0
\(967\) 12.6930 12.6930i 0.408178 0.408178i −0.472925 0.881103i \(-0.656802\pi\)
0.881103 + 0.472925i \(0.156802\pi\)
\(968\) 49.2572 + 14.3661i 1.58319 + 0.461745i
\(969\) 0 0
\(970\) −64.9257 44.0454i −2.08464 1.41421i
\(971\) 1.07721 + 3.31533i 0.0345695 + 0.106394i 0.966852 0.255336i \(-0.0821862\pi\)
−0.932283 + 0.361730i \(0.882186\pi\)
\(972\) 0 0
\(973\) 11.0169 1.74491i 0.353186 0.0559392i
\(974\) 76.5471 + 55.6147i 2.45273 + 1.78201i
\(975\) 0 0
\(976\) 31.8137 10.3369i 1.01833 0.330876i
\(977\) −25.5183 4.04170i −0.816402 0.129305i −0.265752 0.964042i \(-0.585620\pi\)
−0.550650 + 0.834736i \(0.685620\pi\)
\(978\) 0 0
\(979\) 8.95020 10.8075i 0.286050 0.345409i
\(980\) 0.995480 + 2.75793i 0.0317994 + 0.0880989i
\(981\) 0 0
\(982\) 20.7636 40.7509i 0.662595 1.30042i
\(983\) 14.1764 + 27.8228i 0.452158 + 0.887409i 0.998749 + 0.0500096i \(0.0159252\pi\)
−0.546591 + 0.837400i \(0.684075\pi\)
\(984\) 0 0
\(985\) 26.4598 + 48.0365i 0.843078 + 1.53057i
\(986\) −15.1619 4.92639i −0.482852 0.156888i
\(987\) 0 0
\(988\) 7.14313 45.1000i 0.227253 1.43482i
\(989\) −0.820573 −0.0260927
\(990\) 0 0
\(991\) −19.5868 −0.622196 −0.311098 0.950378i \(-0.600697\pi\)
−0.311098 + 0.950378i \(0.600697\pi\)
\(992\) −1.11457 + 7.03714i −0.0353877 + 0.223429i
\(993\) 0 0
\(994\) −7.56203 2.45705i −0.239853 0.0779330i
\(995\) −6.99278 2.02535i −0.221686 0.0642080i
\(996\) 0 0
\(997\) 12.8543 + 25.2279i 0.407098 + 0.798976i 0.999980 0.00631392i \(-0.00200980\pi\)
−0.592882 + 0.805290i \(0.702010\pi\)
\(998\) 5.78661 11.3569i 0.183172 0.359495i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 495.2.bj.a.217.1 32
3.2 odd 2 55.2.l.a.52.4 yes 32
5.3 odd 4 inner 495.2.bj.a.118.4 32
11.7 odd 10 inner 495.2.bj.a.172.4 32
12.11 even 2 880.2.cm.a.657.2 32
15.2 even 4 275.2.bm.b.118.4 32
15.8 even 4 55.2.l.a.8.1 yes 32
15.14 odd 2 275.2.bm.b.107.1 32
33.2 even 10 605.2.e.b.362.15 32
33.5 odd 10 605.2.m.d.112.4 32
33.8 even 10 605.2.m.d.457.4 32
33.14 odd 10 605.2.m.c.457.1 32
33.17 even 10 605.2.m.c.112.1 32
33.20 odd 10 605.2.e.b.362.2 32
33.26 odd 10 605.2.m.e.282.4 32
33.29 even 10 55.2.l.a.7.1 32
33.32 even 2 605.2.m.e.602.1 32
55.18 even 20 inner 495.2.bj.a.73.1 32
60.23 odd 4 880.2.cm.a.833.3 32
132.95 odd 10 880.2.cm.a.337.3 32
165.8 odd 20 605.2.m.d.578.4 32
165.29 even 10 275.2.bm.b.7.4 32
165.38 even 20 605.2.m.d.233.4 32
165.53 even 20 605.2.e.b.483.15 32
165.62 odd 20 275.2.bm.b.18.1 32
165.68 odd 20 605.2.e.b.483.2 32
165.83 odd 20 605.2.m.c.233.1 32
165.98 odd 4 605.2.m.e.118.4 32
165.113 even 20 605.2.m.c.578.1 32
165.128 odd 20 55.2.l.a.18.4 yes 32
165.158 even 20 605.2.m.e.403.1 32
660.623 even 20 880.2.cm.a.513.2 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.2.l.a.7.1 32 33.29 even 10
55.2.l.a.8.1 yes 32 15.8 even 4
55.2.l.a.18.4 yes 32 165.128 odd 20
55.2.l.a.52.4 yes 32 3.2 odd 2
275.2.bm.b.7.4 32 165.29 even 10
275.2.bm.b.18.1 32 165.62 odd 20
275.2.bm.b.107.1 32 15.14 odd 2
275.2.bm.b.118.4 32 15.2 even 4
495.2.bj.a.73.1 32 55.18 even 20 inner
495.2.bj.a.118.4 32 5.3 odd 4 inner
495.2.bj.a.172.4 32 11.7 odd 10 inner
495.2.bj.a.217.1 32 1.1 even 1 trivial
605.2.e.b.362.2 32 33.20 odd 10
605.2.e.b.362.15 32 33.2 even 10
605.2.e.b.483.2 32 165.68 odd 20
605.2.e.b.483.15 32 165.53 even 20
605.2.m.c.112.1 32 33.17 even 10
605.2.m.c.233.1 32 165.83 odd 20
605.2.m.c.457.1 32 33.14 odd 10
605.2.m.c.578.1 32 165.113 even 20
605.2.m.d.112.4 32 33.5 odd 10
605.2.m.d.233.4 32 165.38 even 20
605.2.m.d.457.4 32 33.8 even 10
605.2.m.d.578.4 32 165.8 odd 20
605.2.m.e.118.4 32 165.98 odd 4
605.2.m.e.282.4 32 33.26 odd 10
605.2.m.e.403.1 32 165.158 even 20
605.2.m.e.602.1 32 33.32 even 2
880.2.cm.a.337.3 32 132.95 odd 10
880.2.cm.a.513.2 32 660.623 even 20
880.2.cm.a.657.2 32 12.11 even 2
880.2.cm.a.833.3 32 60.23 odd 4