Properties

Label 495.2.bj.a.118.4
Level $495$
Weight $2$
Character 495.118
Analytic conductor $3.953$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [495,2,Mod(28,495)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(495, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([0, 15, 18])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("495.28"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 495 = 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 495.bj (of order \(20\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,10,0,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.95259490005\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(4\) over \(\Q(\zeta_{20})\)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 118.4
Character \(\chi\) \(=\) 495.118
Dual form 495.2.bj.a.172.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.40264 + 0.380541i) q^{2} +(3.72576 + 1.21057i) q^{4} +(-1.85044 + 1.25533i) q^{5} +(2.30033 - 1.17208i) q^{7} +(4.15610 + 2.11764i) q^{8} +(-4.92366 + 2.31195i) q^{10} +(2.55440 + 2.11543i) q^{11} +(-0.439393 + 2.77422i) q^{13} +(5.97289 - 1.94071i) q^{14} +(2.84111 + 2.06419i) q^{16} +(-0.147723 - 0.932684i) q^{17} +(-1.28236 - 3.94669i) q^{19} +(-8.41399 + 2.43698i) q^{20} +(5.33231 + 6.05467i) q^{22} +(-0.104710 - 0.104710i) q^{23} +(1.84827 - 4.64585i) q^{25} +(-2.11141 + 6.49824i) q^{26} +(9.98937 - 1.58216i) q^{28} +(2.14459 - 6.60038i) q^{29} +(-7.33171 + 5.32680i) q^{31} +(-0.555921 - 0.555921i) q^{32} -2.29712i q^{34} +(-2.78528 + 5.05654i) q^{35} +(-3.44950 - 6.77002i) q^{37} +(-1.57917 - 9.97047i) q^{38} +(-10.3490 + 1.29873i) q^{40} +(-3.27880 + 1.06535i) q^{41} +(-3.91833 + 3.91833i) q^{43} +(6.95623 + 10.9739i) q^{44} +(-0.211733 - 0.291426i) q^{46} +(0.942051 + 0.479999i) q^{47} +(-0.196744 + 0.270795i) q^{49} +(6.20867 - 10.4590i) q^{50} +(-4.99547 + 9.80416i) q^{52} +(4.07187 + 0.644920i) q^{53} +(-7.38234 - 0.707841i) q^{55} +12.0424 q^{56} +(7.66441 - 15.0422i) q^{58} +(-6.16460 - 2.00300i) q^{59} +(5.59880 - 7.70609i) q^{61} +(-19.6426 + 10.0084i) q^{62} +(-5.25251 - 7.22946i) q^{64} +(-2.66950 - 5.68511i) q^{65} +(2.94509 - 2.94509i) q^{67} +(0.578703 - 3.65379i) q^{68} +(-8.61625 + 11.0891i) q^{70} +(1.02426 + 0.744171i) q^{71} +(0.804189 + 1.57831i) q^{73} +(-5.71163 - 17.5786i) q^{74} -16.2568i q^{76} +(8.35541 + 1.87222i) q^{77} +(3.51271 - 2.55214i) q^{79} +(-7.84857 - 0.253115i) q^{80} +(-8.28320 + 1.31193i) q^{82} +(8.18939 - 1.29707i) q^{83} +(1.44418 + 1.54044i) q^{85} +(-10.9054 + 7.92326i) q^{86} +(6.13664 + 14.2012i) q^{88} +4.23092i q^{89} +(2.24084 + 6.89661i) q^{91} +(-0.263364 - 0.516882i) q^{92} +(2.08075 + 1.51175i) q^{94} +(7.32735 + 5.69333i) q^{95} +(-2.25634 + 14.2460i) q^{97} +(-0.575755 + 0.575755i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 10 q^{2} + 2 q^{5} + 10 q^{8} + 24 q^{11} - 10 q^{13} - 8 q^{16} - 16 q^{20} + 10 q^{22} + 24 q^{23} + 16 q^{25} - 20 q^{26} + 50 q^{28} - 28 q^{31} + 10 q^{35} - 8 q^{37} - 10 q^{38} - 50 q^{40}+ \cdots - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/495\mathbb{Z}\right)^\times\).

\(n\) \(46\) \(56\) \(397\)
\(\chi(n)\) \(e\left(\frac{3}{10}\right)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.40264 + 0.380541i 1.69892 + 0.269083i 0.929276 0.369385i \(-0.120432\pi\)
0.769648 + 0.638468i \(0.220432\pi\)
\(3\) 0 0
\(4\) 3.72576 + 1.21057i 1.86288 + 0.605287i
\(5\) −1.85044 + 1.25533i −0.827543 + 0.561403i
\(6\) 0 0
\(7\) 2.30033 1.17208i 0.869443 0.443003i 0.0384331 0.999261i \(-0.487763\pi\)
0.831010 + 0.556258i \(0.187763\pi\)
\(8\) 4.15610 + 2.11764i 1.46940 + 0.748698i
\(9\) 0 0
\(10\) −4.92366 + 2.31195i −1.55700 + 0.731103i
\(11\) 2.55440 + 2.11543i 0.770182 + 0.637825i
\(12\) 0 0
\(13\) −0.439393 + 2.77422i −0.121866 + 0.769429i 0.848750 + 0.528794i \(0.177356\pi\)
−0.970616 + 0.240635i \(0.922644\pi\)
\(14\) 5.97289 1.94071i 1.59632 0.518677i
\(15\) 0 0
\(16\) 2.84111 + 2.06419i 0.710279 + 0.516048i
\(17\) −0.147723 0.932684i −0.0358280 0.226209i 0.963277 0.268510i \(-0.0865312\pi\)
−0.999105 + 0.0423009i \(0.986531\pi\)
\(18\) 0 0
\(19\) −1.28236 3.94669i −0.294193 0.905433i −0.983491 0.180955i \(-0.942081\pi\)
0.689298 0.724478i \(-0.257919\pi\)
\(20\) −8.41399 + 2.43698i −1.88142 + 0.544926i
\(21\) 0 0
\(22\) 5.33231 + 6.05467i 1.13685 + 1.29086i
\(23\) −0.104710 0.104710i −0.0218334 0.0218334i 0.696106 0.717939i \(-0.254914\pi\)
−0.717939 + 0.696106i \(0.754914\pi\)
\(24\) 0 0
\(25\) 1.84827 4.64585i 0.369654 0.929169i
\(26\) −2.11141 + 6.49824i −0.414081 + 1.27441i
\(27\) 0 0
\(28\) 9.98937 1.58216i 1.88781 0.299000i
\(29\) 2.14459 6.60038i 0.398241 1.22566i −0.528168 0.849140i \(-0.677121\pi\)
0.926409 0.376520i \(-0.122879\pi\)
\(30\) 0 0
\(31\) −7.33171 + 5.32680i −1.31681 + 0.956722i −0.316849 + 0.948476i \(0.602625\pi\)
−0.999966 + 0.00824590i \(0.997375\pi\)
\(32\) −0.555921 0.555921i −0.0982739 0.0982739i
\(33\) 0 0
\(34\) 2.29712i 0.393953i
\(35\) −2.78528 + 5.05654i −0.470798 + 0.854712i
\(36\) 0 0
\(37\) −3.44950 6.77002i −0.567094 1.11298i −0.979398 0.201938i \(-0.935276\pi\)
0.412305 0.911046i \(-0.364724\pi\)
\(38\) −1.57917 9.97047i −0.256175 1.61742i
\(39\) 0 0
\(40\) −10.3490 + 1.29873i −1.63631 + 0.205347i
\(41\) −3.27880 + 1.06535i −0.512063 + 0.166379i −0.553640 0.832756i \(-0.686762\pi\)
0.0415772 + 0.999135i \(0.486762\pi\)
\(42\) 0 0
\(43\) −3.91833 + 3.91833i −0.597540 + 0.597540i −0.939657 0.342117i \(-0.888856\pi\)
0.342117 + 0.939657i \(0.388856\pi\)
\(44\) 6.95623 + 10.9739i 1.04869 + 1.65437i
\(45\) 0 0
\(46\) −0.211733 0.291426i −0.0312184 0.0429684i
\(47\) 0.942051 + 0.479999i 0.137412 + 0.0700150i 0.521345 0.853346i \(-0.325431\pi\)
−0.383933 + 0.923361i \(0.625431\pi\)
\(48\) 0 0
\(49\) −0.196744 + 0.270795i −0.0281063 + 0.0386850i
\(50\) 6.20867 10.4590i 0.878038 1.47912i
\(51\) 0 0
\(52\) −4.99547 + 9.80416i −0.692747 + 1.35959i
\(53\) 4.07187 + 0.644920i 0.559314 + 0.0885866i 0.429690 0.902977i \(-0.358623\pi\)
0.129624 + 0.991563i \(0.458623\pi\)
\(54\) 0 0
\(55\) −7.38234 0.707841i −0.995435 0.0954452i
\(56\) 12.0424 1.60924
\(57\) 0 0
\(58\) 7.66441 15.0422i 1.00639 1.97514i
\(59\) −6.16460 2.00300i −0.802563 0.260768i −0.121118 0.992638i \(-0.538648\pi\)
−0.681445 + 0.731870i \(0.738648\pi\)
\(60\) 0 0
\(61\) 5.59880 7.70609i 0.716853 0.986663i −0.282769 0.959188i \(-0.591253\pi\)
0.999622 0.0274756i \(-0.00874685\pi\)
\(62\) −19.6426 + 10.0084i −2.49461 + 1.27107i
\(63\) 0 0
\(64\) −5.25251 7.22946i −0.656564 0.903682i
\(65\) −2.66950 5.68511i −0.331111 0.705151i
\(66\) 0 0
\(67\) 2.94509 2.94509i 0.359801 0.359801i −0.503939 0.863739i \(-0.668116\pi\)
0.863739 + 0.503939i \(0.168116\pi\)
\(68\) 0.578703 3.65379i 0.0701781 0.443087i
\(69\) 0 0
\(70\) −8.61625 + 11.0891i −1.02984 + 1.32541i
\(71\) 1.02426 + 0.744171i 0.121558 + 0.0883168i 0.646903 0.762572i \(-0.276064\pi\)
−0.525345 + 0.850889i \(0.676064\pi\)
\(72\) 0 0
\(73\) 0.804189 + 1.57831i 0.0941232 + 0.184727i 0.933268 0.359181i \(-0.116944\pi\)
−0.839145 + 0.543908i \(0.816944\pi\)
\(74\) −5.71163 17.5786i −0.663964 2.04347i
\(75\) 0 0
\(76\) 16.2568i 1.86479i
\(77\) 8.35541 + 1.87222i 0.952187 + 0.213359i
\(78\) 0 0
\(79\) 3.51271 2.55214i 0.395211 0.287138i −0.372376 0.928082i \(-0.621457\pi\)
0.767588 + 0.640944i \(0.221457\pi\)
\(80\) −7.84857 0.253115i −0.877497 0.0282991i
\(81\) 0 0
\(82\) −8.28320 + 1.31193i −0.914726 + 0.144878i
\(83\) 8.18939 1.29707i 0.898902 0.142372i 0.310152 0.950687i \(-0.399620\pi\)
0.588750 + 0.808315i \(0.299620\pi\)
\(84\) 0 0
\(85\) 1.44418 + 1.54044i 0.156644 + 0.167084i
\(86\) −10.9054 + 7.92326i −1.17596 + 0.854388i
\(87\) 0 0
\(88\) 6.13664 + 14.2012i 0.654168 + 1.51385i
\(89\) 4.23092i 0.448477i 0.974534 + 0.224238i \(0.0719894\pi\)
−0.974534 + 0.224238i \(0.928011\pi\)
\(90\) 0 0
\(91\) 2.24084 + 6.89661i 0.234904 + 0.722961i
\(92\) −0.263364 0.516882i −0.0274576 0.0538886i
\(93\) 0 0
\(94\) 2.08075 + 1.51175i 0.214613 + 0.155926i
\(95\) 7.32735 + 5.69333i 0.751770 + 0.584124i
\(96\) 0 0
\(97\) −2.25634 + 14.2460i −0.229097 + 1.44646i 0.558109 + 0.829768i \(0.311527\pi\)
−0.787205 + 0.616691i \(0.788473\pi\)
\(98\) −0.575755 + 0.575755i −0.0581600 + 0.0581600i
\(99\) 0 0
\(100\) 12.5104 15.0719i 1.25104 1.50719i
\(101\) −1.13747 1.56559i −0.113182 0.155782i 0.748668 0.662946i \(-0.230694\pi\)
−0.861850 + 0.507164i \(0.830694\pi\)
\(102\) 0 0
\(103\) 1.53187 0.780525i 0.150939 0.0769075i −0.376889 0.926258i \(-0.623006\pi\)
0.527829 + 0.849351i \(0.323006\pi\)
\(104\) −7.70094 + 10.5994i −0.755139 + 1.03936i
\(105\) 0 0
\(106\) 9.53782 + 3.09903i 0.926395 + 0.301004i
\(107\) −1.88816 + 3.70571i −0.182535 + 0.358245i −0.964083 0.265600i \(-0.914430\pi\)
0.781549 + 0.623844i \(0.214430\pi\)
\(108\) 0 0
\(109\) 3.22321 0.308728 0.154364 0.988014i \(-0.450667\pi\)
0.154364 + 0.988014i \(0.450667\pi\)
\(110\) −17.4678 4.50997i −1.66549 0.430009i
\(111\) 0 0
\(112\) 8.95489 + 1.41832i 0.846157 + 0.134018i
\(113\) −5.06345 + 9.93758i −0.476329 + 0.934849i 0.520391 + 0.853928i \(0.325786\pi\)
−0.996721 + 0.0809210i \(0.974214\pi\)
\(114\) 0 0
\(115\) 0.325204 + 0.0623134i 0.0303255 + 0.00581075i
\(116\) 15.9805 21.9953i 1.48375 2.04221i
\(117\) 0 0
\(118\) −14.0491 7.15838i −1.29333 0.658982i
\(119\) −1.43299 1.97234i −0.131362 0.180804i
\(120\) 0 0
\(121\) 2.04995 + 10.8073i 0.186359 + 0.982482i
\(122\) 16.3844 16.3844i 1.48337 1.48337i
\(123\) 0 0
\(124\) −33.7647 + 10.9708i −3.03216 + 0.985209i
\(125\) 2.41198 + 10.9171i 0.215734 + 0.976452i
\(126\) 0 0
\(127\) 0.371538 + 2.34580i 0.0329687 + 0.208156i 0.998674 0.0514856i \(-0.0163956\pi\)
−0.965705 + 0.259641i \(0.916396\pi\)
\(128\) −9.15495 17.9676i −0.809191 1.58813i
\(129\) 0 0
\(130\) −4.25043 14.6751i −0.372788 1.28709i
\(131\) 3.12466i 0.273003i −0.990640 0.136501i \(-0.956414\pi\)
0.990640 0.136501i \(-0.0435858\pi\)
\(132\) 0 0
\(133\) −7.57567 7.57567i −0.656894 0.656894i
\(134\) 8.19674 5.95528i 0.708090 0.514458i
\(135\) 0 0
\(136\) 1.36114 4.18915i 0.116716 0.359216i
\(137\) −16.3323 + 2.58679i −1.39537 + 0.221004i −0.808412 0.588617i \(-0.799673\pi\)
−0.586953 + 0.809621i \(0.699673\pi\)
\(138\) 0 0
\(139\) −1.33510 + 4.10901i −0.113242 + 0.348522i −0.991576 0.129524i \(-0.958655\pi\)
0.878335 + 0.478046i \(0.158655\pi\)
\(140\) −16.4986 + 15.4677i −1.39439 + 1.30726i
\(141\) 0 0
\(142\) 2.17775 + 2.17775i 0.182753 + 0.182753i
\(143\) −6.99103 + 6.15696i −0.584619 + 0.514871i
\(144\) 0 0
\(145\) 4.31724 + 14.9058i 0.358527 + 1.23786i
\(146\) 1.33157 + 4.09814i 0.110201 + 0.339164i
\(147\) 0 0
\(148\) −4.65640 29.3994i −0.382754 2.41661i
\(149\) 6.83188 + 4.96365i 0.559689 + 0.406638i 0.831345 0.555756i \(-0.187571\pi\)
−0.271656 + 0.962394i \(0.587571\pi\)
\(150\) 0 0
\(151\) 11.3483 3.68729i 0.923513 0.300068i 0.191606 0.981472i \(-0.438630\pi\)
0.731907 + 0.681404i \(0.238630\pi\)
\(152\) 3.02806 19.1184i 0.245608 1.55071i
\(153\) 0 0
\(154\) 19.3626 + 7.67785i 1.56028 + 0.618699i
\(155\) 6.87999 19.0607i 0.552614 1.53099i
\(156\) 0 0
\(157\) −1.21312 0.618117i −0.0968177 0.0493311i 0.404911 0.914356i \(-0.367302\pi\)
−0.501729 + 0.865025i \(0.667302\pi\)
\(158\) 9.41098 4.79514i 0.748698 0.381481i
\(159\) 0 0
\(160\) 1.72657 + 0.330833i 0.136497 + 0.0261546i
\(161\) −0.363594 0.118139i −0.0286552 0.00931064i
\(162\) 0 0
\(163\) 22.6610 + 3.58914i 1.77494 + 0.281123i 0.956131 0.292939i \(-0.0946333\pi\)
0.818812 + 0.574062i \(0.194633\pi\)
\(164\) −13.5057 −1.05462
\(165\) 0 0
\(166\) 20.1698 1.56548
\(167\) −14.1836 2.24646i −1.09756 0.173836i −0.418714 0.908118i \(-0.637519\pi\)
−0.678845 + 0.734282i \(0.737519\pi\)
\(168\) 0 0
\(169\) 4.86053 + 1.57928i 0.373887 + 0.121483i
\(170\) 2.88365 + 4.25069i 0.221166 + 0.326013i
\(171\) 0 0
\(172\) −19.3422 + 9.85535i −1.47483 + 0.751464i
\(173\) 19.8708 + 10.1247i 1.51075 + 0.769766i 0.996150 0.0876641i \(-0.0279402\pi\)
0.514601 + 0.857430i \(0.327940\pi\)
\(174\) 0 0
\(175\) −1.19366 12.8533i −0.0902321 0.971618i
\(176\) 2.89071 + 11.2829i 0.217896 + 0.850484i
\(177\) 0 0
\(178\) −1.61004 + 10.1654i −0.120678 + 0.761928i
\(179\) −4.15441 + 1.34985i −0.310516 + 0.100893i −0.460129 0.887852i \(-0.652197\pi\)
0.149614 + 0.988745i \(0.452197\pi\)
\(180\) 0 0
\(181\) −7.63694 5.54857i −0.567650 0.412422i 0.266601 0.963807i \(-0.414099\pi\)
−0.834251 + 0.551385i \(0.814099\pi\)
\(182\) 2.75950 + 17.4228i 0.204548 + 1.29147i
\(183\) 0 0
\(184\) −0.213446 0.656920i −0.0157355 0.0484287i
\(185\) 14.8817 + 8.19725i 1.09413 + 0.602674i
\(186\) 0 0
\(187\) 1.59568 2.69495i 0.116688 0.197074i
\(188\) 2.92879 + 2.92879i 0.213604 + 0.213604i
\(189\) 0 0
\(190\) 15.4384 + 16.4674i 1.12002 + 1.19467i
\(191\) 2.00020 6.15597i 0.144729 0.445430i −0.852247 0.523140i \(-0.824761\pi\)
0.996976 + 0.0777092i \(0.0247606\pi\)
\(192\) 0 0
\(193\) −0.994245 + 0.157473i −0.0715674 + 0.0113352i −0.192115 0.981372i \(-0.561535\pi\)
0.120548 + 0.992707i \(0.461535\pi\)
\(194\) −10.8424 + 33.3693i −0.778436 + 2.39578i
\(195\) 0 0
\(196\) −1.06084 + 0.770746i −0.0757744 + 0.0550533i
\(197\) 17.3425 + 17.3425i 1.23560 + 1.23560i 0.961781 + 0.273821i \(0.0882874\pi\)
0.273821 + 0.961781i \(0.411713\pi\)
\(198\) 0 0
\(199\) 3.25580i 0.230797i 0.993319 + 0.115399i \(0.0368146\pi\)
−0.993319 + 0.115399i \(0.963185\pi\)
\(200\) 17.5198 15.3946i 1.23884 1.08856i
\(201\) 0 0
\(202\) −2.13715 4.19440i −0.150370 0.295117i
\(203\) −2.80288 17.6967i −0.196723 1.24206i
\(204\) 0 0
\(205\) 4.72987 6.08736i 0.330348 0.425160i
\(206\) 3.97755 1.29238i 0.277129 0.0900447i
\(207\) 0 0
\(208\) −6.97487 + 6.97487i −0.483621 + 0.483621i
\(209\) 5.07327 12.7942i 0.350926 0.884991i
\(210\) 0 0
\(211\) −14.6014 20.0971i −1.00520 1.38354i −0.922080 0.387000i \(-0.873511\pi\)
−0.0831208 0.996539i \(-0.526489\pi\)
\(212\) 14.3901 + 7.33212i 0.988316 + 0.503572i
\(213\) 0 0
\(214\) −5.94674 + 8.18498i −0.406511 + 0.559514i
\(215\) 2.33183 12.1695i 0.159029 0.829951i
\(216\) 0 0
\(217\) −10.6219 + 20.8467i −0.721064 + 1.41517i
\(218\) 7.74423 + 1.22657i 0.524505 + 0.0830735i
\(219\) 0 0
\(220\) −26.6480 11.5741i −1.79661 0.780327i
\(221\) 2.65237 0.178418
\(222\) 0 0
\(223\) −8.89368 + 17.4548i −0.595565 + 1.16886i 0.374774 + 0.927116i \(0.377720\pi\)
−0.970339 + 0.241746i \(0.922280\pi\)
\(224\) −1.93038 0.627220i −0.128979 0.0419079i
\(225\) 0 0
\(226\) −15.9473 + 21.9496i −1.06080 + 1.46007i
\(227\) −0.911427 + 0.464395i −0.0604935 + 0.0308230i −0.483976 0.875081i \(-0.660808\pi\)
0.423482 + 0.905904i \(0.360808\pi\)
\(228\) 0 0
\(229\) −0.0598653 0.0823975i −0.00395601 0.00544498i 0.807034 0.590504i \(-0.201071\pi\)
−0.810990 + 0.585059i \(0.801071\pi\)
\(230\) 0.757637 + 0.273470i 0.0499571 + 0.0180321i
\(231\) 0 0
\(232\) 22.8903 22.8903i 1.50282 1.50282i
\(233\) −3.34771 + 21.1366i −0.219316 + 1.38470i 0.594740 + 0.803918i \(0.297255\pi\)
−0.814056 + 0.580786i \(0.802745\pi\)
\(234\) 0 0
\(235\) −2.34577 + 0.294379i −0.153021 + 0.0192032i
\(236\) −20.5431 14.9254i −1.33724 0.971562i
\(237\) 0 0
\(238\) −2.69240 5.28413i −0.174522 0.342519i
\(239\) −2.67723 8.23966i −0.173175 0.532979i 0.826370 0.563128i \(-0.190402\pi\)
−0.999545 + 0.0301483i \(0.990402\pi\)
\(240\) 0 0
\(241\) 10.6492i 0.685976i −0.939340 0.342988i \(-0.888561\pi\)
0.939340 0.342988i \(-0.111439\pi\)
\(242\) 0.812677 + 26.7462i 0.0522408 + 1.71931i
\(243\) 0 0
\(244\) 30.1886 21.9333i 1.93263 1.40414i
\(245\) 0.0241252 0.748071i 0.00154130 0.0477925i
\(246\) 0 0
\(247\) 11.5124 1.82339i 0.732518 0.116020i
\(248\) −41.7515 + 6.61279i −2.65123 + 0.419913i
\(249\) 0 0
\(250\) 1.64072 + 27.1477i 0.103769 + 1.71697i
\(251\) −7.59915 + 5.52110i −0.479654 + 0.348489i −0.801192 0.598408i \(-0.795800\pi\)
0.321538 + 0.946897i \(0.395800\pi\)
\(252\) 0 0
\(253\) −0.0459651 0.488975i −0.00288980 0.0307416i
\(254\) 5.77750i 0.362513i
\(255\) 0 0
\(256\) −9.63584 29.6561i −0.602240 1.85350i
\(257\) −8.37149 16.4300i −0.522199 1.02487i −0.990004 0.141042i \(-0.954955\pi\)
0.467804 0.883832i \(-0.345045\pi\)
\(258\) 0 0
\(259\) −15.8700 11.5302i −0.986111 0.716451i
\(260\) −3.06368 24.4130i −0.190001 1.51403i
\(261\) 0 0
\(262\) 1.18906 7.50744i 0.0734605 0.463811i
\(263\) −11.8928 + 11.8928i −0.733342 + 0.733342i −0.971280 0.237938i \(-0.923528\pi\)
0.237938 + 0.971280i \(0.423528\pi\)
\(264\) 0 0
\(265\) −8.34434 + 3.91817i −0.512589 + 0.240691i
\(266\) −15.3188 21.0845i −0.939254 1.29277i
\(267\) 0 0
\(268\) 14.5380 7.40747i 0.888049 0.452483i
\(269\) 16.7264 23.0219i 1.01983 1.40367i 0.107502 0.994205i \(-0.465715\pi\)
0.912325 0.409467i \(-0.134285\pi\)
\(270\) 0 0
\(271\) −28.2295 9.17232i −1.71482 0.557179i −0.723696 0.690118i \(-0.757558\pi\)
−0.991124 + 0.132939i \(0.957558\pi\)
\(272\) 1.50554 2.95479i 0.0912868 0.179160i
\(273\) 0 0
\(274\) −40.2251 −2.43009
\(275\) 14.5492 7.95749i 0.877348 0.479855i
\(276\) 0 0
\(277\) 12.2668 + 1.94287i 0.737041 + 0.116736i 0.513658 0.857995i \(-0.328290\pi\)
0.223383 + 0.974731i \(0.428290\pi\)
\(278\) −4.77141 + 9.36443i −0.286170 + 0.561641i
\(279\) 0 0
\(280\) −22.2838 + 15.1173i −1.33171 + 0.903430i
\(281\) −12.8578 + 17.6972i −0.767032 + 1.05573i 0.229564 + 0.973294i \(0.426270\pi\)
−0.996596 + 0.0824357i \(0.973730\pi\)
\(282\) 0 0
\(283\) 24.2332 + 12.3474i 1.44051 + 0.733978i 0.987514 0.157532i \(-0.0503538\pi\)
0.453000 + 0.891511i \(0.350354\pi\)
\(284\) 2.91529 + 4.01255i 0.172991 + 0.238101i
\(285\) 0 0
\(286\) −19.1399 + 12.1326i −1.13177 + 0.717416i
\(287\) −6.29366 + 6.29366i −0.371503 + 0.371503i
\(288\) 0 0
\(289\) 15.3199 4.97773i 0.901170 0.292808i
\(290\) 4.70051 + 37.4562i 0.276024 + 2.19950i
\(291\) 0 0
\(292\) 1.08556 + 6.85394i 0.0635274 + 0.401096i
\(293\) −9.13077 17.9201i −0.533425 1.04691i −0.987746 0.156068i \(-0.950118\pi\)
0.454321 0.890838i \(-0.349882\pi\)
\(294\) 0 0
\(295\) 13.9217 4.03220i 0.810551 0.234764i
\(296\) 35.4416i 2.06000i
\(297\) 0 0
\(298\) 14.5257 + 14.5257i 0.841450 + 0.841450i
\(299\) 0.336495 0.244478i 0.0194600 0.0141385i
\(300\) 0 0
\(301\) −4.42087 + 13.6060i −0.254815 + 0.784239i
\(302\) 28.6691 4.54074i 1.64972 0.261290i
\(303\) 0 0
\(304\) 4.50340 13.8600i 0.258288 0.794927i
\(305\) −0.686536 + 21.2880i −0.0393109 + 1.21895i
\(306\) 0 0
\(307\) 14.6921 + 14.6921i 0.838520 + 0.838520i 0.988664 0.150144i \(-0.0479738\pi\)
−0.150144 + 0.988664i \(0.547974\pi\)
\(308\) 28.8638 + 17.0903i 1.64467 + 0.973810i
\(309\) 0 0
\(310\) 23.7835 43.1779i 1.35081 2.45234i
\(311\) −7.19358 22.1396i −0.407911 1.25542i −0.918440 0.395560i \(-0.870551\pi\)
0.510530 0.859860i \(-0.329449\pi\)
\(312\) 0 0
\(313\) 2.19289 + 13.8454i 0.123950 + 0.782587i 0.968847 + 0.247659i \(0.0796612\pi\)
−0.844898 + 0.534928i \(0.820339\pi\)
\(314\) −2.67948 1.94676i −0.151212 0.109862i
\(315\) 0 0
\(316\) 16.1771 5.25626i 0.910032 0.295687i
\(317\) −4.61482 + 29.1369i −0.259194 + 1.63649i 0.423580 + 0.905859i \(0.360773\pi\)
−0.682774 + 0.730630i \(0.739227\pi\)
\(318\) 0 0
\(319\) 19.4408 12.3233i 1.08847 0.689972i
\(320\) 18.7949 + 6.78404i 1.05066 + 0.379239i
\(321\) 0 0
\(322\) −0.828629 0.422208i −0.0461777 0.0235287i
\(323\) −3.49158 + 1.77905i −0.194277 + 0.0989889i
\(324\) 0 0
\(325\) 12.0765 + 7.16885i 0.669882 + 0.397656i
\(326\) 53.0803 + 17.2468i 2.93985 + 0.955215i
\(327\) 0 0
\(328\) −15.8830 2.51563i −0.876994 0.138902i
\(329\) 2.72962 0.150489
\(330\) 0 0
\(331\) 2.18560 0.120131 0.0600657 0.998194i \(-0.480869\pi\)
0.0600657 + 0.998194i \(0.480869\pi\)
\(332\) 32.0819 + 5.08128i 1.76072 + 0.278871i
\(333\) 0 0
\(334\) −33.2232 10.7949i −1.81789 0.590670i
\(335\) −1.75265 + 9.14681i −0.0957573 + 0.499743i
\(336\) 0 0
\(337\) −1.60560 + 0.818095i −0.0874627 + 0.0445645i −0.497175 0.867650i \(-0.665629\pi\)
0.409712 + 0.912215i \(0.365629\pi\)
\(338\) 11.0771 + 5.64408i 0.602516 + 0.306997i
\(339\) 0 0
\(340\) 3.51587 + 7.48759i 0.190675 + 0.406072i
\(341\) −29.9966 1.90289i −1.62441 0.103047i
\(342\) 0 0
\(343\) −2.96227 + 18.7031i −0.159948 + 1.00987i
\(344\) −24.5826 + 7.98736i −1.32540 + 0.430650i
\(345\) 0 0
\(346\) 43.8896 + 31.8877i 2.35952 + 1.71429i
\(347\) −3.35900 21.2079i −0.180321 1.13850i −0.897305 0.441411i \(-0.854478\pi\)
0.716984 0.697090i \(-0.245522\pi\)
\(348\) 0 0
\(349\) −3.29300 10.1348i −0.176270 0.542505i 0.823419 0.567434i \(-0.192064\pi\)
−0.999689 + 0.0249295i \(0.992064\pi\)
\(350\) 2.02327 31.3361i 0.108148 1.67498i
\(351\) 0 0
\(352\) −0.244037 2.59606i −0.0130072 0.138370i
\(353\) 7.73857 + 7.73857i 0.411883 + 0.411883i 0.882394 0.470511i \(-0.155931\pi\)
−0.470511 + 0.882394i \(0.655931\pi\)
\(354\) 0 0
\(355\) −2.82952 0.0912516i −0.150175 0.00484313i
\(356\) −5.12185 + 15.7634i −0.271457 + 0.835460i
\(357\) 0 0
\(358\) −10.4952 + 1.66228i −0.554691 + 0.0878544i
\(359\) 1.01178 3.11394i 0.0533997 0.164347i −0.920800 0.390035i \(-0.872463\pi\)
0.974200 + 0.225688i \(0.0724629\pi\)
\(360\) 0 0
\(361\) 1.43940 1.04578i 0.0757578 0.0550412i
\(362\) −16.2374 16.2374i −0.853418 0.853418i
\(363\) 0 0
\(364\) 28.4079i 1.48898i
\(365\) −3.46941 1.91104i −0.181597 0.100029i
\(366\) 0 0
\(367\) −8.27615 16.2428i −0.432011 0.847870i −0.999697 0.0246243i \(-0.992161\pi\)
0.567686 0.823246i \(-0.307839\pi\)
\(368\) −0.0813513 0.513632i −0.00424073 0.0267749i
\(369\) 0 0
\(370\) 32.6361 + 25.3582i 1.69667 + 1.31831i
\(371\) 10.1225 3.28901i 0.525536 0.170757i
\(372\) 0 0
\(373\) −12.4917 + 12.4917i −0.646795 + 0.646795i −0.952217 0.305422i \(-0.901202\pi\)
0.305422 + 0.952217i \(0.401202\pi\)
\(374\) 4.85939 5.86777i 0.251273 0.303415i
\(375\) 0 0
\(376\) 2.89879 + 3.98984i 0.149494 + 0.205760i
\(377\) 17.3686 + 8.84972i 0.894526 + 0.455784i
\(378\) 0 0
\(379\) 12.9685 17.8496i 0.666146 0.916872i −0.333519 0.942743i \(-0.608236\pi\)
0.999665 + 0.0258717i \(0.00823614\pi\)
\(380\) 20.4078 + 30.0823i 1.04690 + 1.54319i
\(381\) 0 0
\(382\) 7.14836 14.0294i 0.365742 0.717809i
\(383\) 19.4473 + 3.08015i 0.993712 + 0.157389i 0.632056 0.774923i \(-0.282211\pi\)
0.361656 + 0.932311i \(0.382211\pi\)
\(384\) 0 0
\(385\) −17.8115 + 7.02440i −0.907756 + 0.357997i
\(386\) −2.44874 −0.124638
\(387\) 0 0
\(388\) −25.6524 + 50.3457i −1.30230 + 2.55591i
\(389\) −16.2827 5.29057i −0.825565 0.268242i −0.134389 0.990929i \(-0.542907\pi\)
−0.691176 + 0.722686i \(0.742907\pi\)
\(390\) 0 0
\(391\) −0.0821929 + 0.113129i −0.00415667 + 0.00572117i
\(392\) −1.39113 + 0.708818i −0.0702629 + 0.0358007i
\(393\) 0 0
\(394\) 35.0683 + 48.2673i 1.76671 + 2.43167i
\(395\) −3.29629 + 9.13221i −0.165854 + 0.459491i
\(396\) 0 0
\(397\) 5.24887 5.24887i 0.263433 0.263433i −0.563014 0.826447i \(-0.690358\pi\)
0.826447 + 0.563014i \(0.190358\pi\)
\(398\) −1.23896 + 7.82252i −0.0621037 + 0.392107i
\(399\) 0 0
\(400\) 14.8411 9.38420i 0.742053 0.469210i
\(401\) 9.93091 + 7.21523i 0.495926 + 0.360311i 0.807459 0.589924i \(-0.200842\pi\)
−0.311533 + 0.950235i \(0.600842\pi\)
\(402\) 0 0
\(403\) −11.5562 22.6803i −0.575655 1.12979i
\(404\) −2.34267 7.21000i −0.116552 0.358711i
\(405\) 0 0
\(406\) 43.5854i 2.16311i
\(407\) 5.51006 24.5905i 0.273124 1.21891i
\(408\) 0 0
\(409\) −21.6485 + 15.7286i −1.07045 + 0.777727i −0.975993 0.217802i \(-0.930111\pi\)
−0.0944563 + 0.995529i \(0.530111\pi\)
\(410\) 13.6807 12.8258i 0.675640 0.633423i
\(411\) 0 0
\(412\) 6.65226 1.05361i 0.327733 0.0519079i
\(413\) −16.5283 + 2.61782i −0.813304 + 0.128815i
\(414\) 0 0
\(415\) −13.5257 + 12.6806i −0.663952 + 0.622465i
\(416\) 1.78651 1.29798i 0.0875910 0.0636386i
\(417\) 0 0
\(418\) 17.0580 28.8092i 0.834332 1.40911i
\(419\) 14.2401i 0.695676i −0.937555 0.347838i \(-0.886916\pi\)
0.937555 0.347838i \(-0.113084\pi\)
\(420\) 0 0
\(421\) −2.13413 6.56818i −0.104011 0.320113i 0.885486 0.464666i \(-0.153826\pi\)
−0.989497 + 0.144553i \(0.953826\pi\)
\(422\) −27.4341 53.8425i −1.33547 2.62101i
\(423\) 0 0
\(424\) 15.5574 + 11.3031i 0.755532 + 0.548926i
\(425\) −4.60614 1.03755i −0.223430 0.0503288i
\(426\) 0 0
\(427\) 3.84696 24.2888i 0.186168 1.17542i
\(428\) −11.5209 + 11.5209i −0.556882 + 0.556882i
\(429\) 0 0
\(430\) 10.2335 28.3515i 0.493505 1.36723i
\(431\) 4.19638 + 5.77582i 0.202132 + 0.278211i 0.898034 0.439926i \(-0.144995\pi\)
−0.695902 + 0.718137i \(0.744995\pi\)
\(432\) 0 0
\(433\) 14.9712 7.62822i 0.719471 0.366589i −0.0556084 0.998453i \(-0.517710\pi\)
0.775079 + 0.631864i \(0.217710\pi\)
\(434\) −33.4538 + 46.0451i −1.60583 + 2.21024i
\(435\) 0 0
\(436\) 12.0089 + 3.90194i 0.575124 + 0.186869i
\(437\) −0.278981 + 0.547531i −0.0133455 + 0.0261920i
\(438\) 0 0
\(439\) −0.772934 −0.0368901 −0.0184451 0.999830i \(-0.505872\pi\)
−0.0184451 + 0.999830i \(0.505872\pi\)
\(440\) −29.1828 18.5750i −1.39123 0.885527i
\(441\) 0 0
\(442\) 6.37271 + 1.00934i 0.303119 + 0.0480093i
\(443\) 8.53040 16.7419i 0.405292 0.795430i −0.594672 0.803968i \(-0.702718\pi\)
0.999964 + 0.00853887i \(0.00271804\pi\)
\(444\) 0 0
\(445\) −5.31122 7.82908i −0.251776 0.371134i
\(446\) −28.0106 + 38.5533i −1.32634 + 1.82555i
\(447\) 0 0
\(448\) −20.5560 10.4738i −0.971179 0.494840i
\(449\) −0.419317 0.577140i −0.0197888 0.0272369i 0.799008 0.601320i \(-0.205358\pi\)
−0.818797 + 0.574084i \(0.805358\pi\)
\(450\) 0 0
\(451\) −10.6291 4.21474i −0.500502 0.198464i
\(452\) −30.8954 + 30.8954i −1.45320 + 1.45320i
\(453\) 0 0
\(454\) −2.36655 + 0.768940i −0.111068 + 0.0360882i
\(455\) −12.8041 9.94877i −0.600266 0.466405i
\(456\) 0 0
\(457\) 3.02622 + 19.1068i 0.141561 + 0.893780i 0.951586 + 0.307384i \(0.0994536\pi\)
−0.810025 + 0.586396i \(0.800546\pi\)
\(458\) −0.112479 0.220753i −0.00525581 0.0103151i
\(459\) 0 0
\(460\) 1.13620 + 0.625849i 0.0529756 + 0.0291804i
\(461\) 36.5277i 1.70126i −0.525761 0.850632i \(-0.676219\pi\)
0.525761 0.850632i \(-0.323781\pi\)
\(462\) 0 0
\(463\) −17.1422 17.1422i −0.796664 0.796664i 0.185904 0.982568i \(-0.440479\pi\)
−0.982568 + 0.185904i \(0.940479\pi\)
\(464\) 19.7175 14.3256i 0.915361 0.665049i
\(465\) 0 0
\(466\) −16.0867 + 49.5097i −0.745201 + 2.29349i
\(467\) 14.6373 2.31832i 0.677333 0.107279i 0.191715 0.981451i \(-0.438595\pi\)
0.485617 + 0.874172i \(0.338595\pi\)
\(468\) 0 0
\(469\) 3.32281 10.2266i 0.153433 0.472219i
\(470\) −5.74807 0.185374i −0.265139 0.00855068i
\(471\) 0 0
\(472\) −21.3791 21.3791i −0.984051 0.984051i
\(473\) −18.2979 + 1.72006i −0.841340 + 0.0790885i
\(474\) 0 0
\(475\) −20.7059 1.33691i −0.950050 0.0613417i
\(476\) −2.95131 9.08320i −0.135273 0.416328i
\(477\) 0 0
\(478\) −3.29689 20.8157i −0.150796 0.952090i
\(479\) 22.3176 + 16.2146i 1.01971 + 0.740866i 0.966224 0.257702i \(-0.0829653\pi\)
0.0534905 + 0.998568i \(0.482965\pi\)
\(480\) 0 0
\(481\) 20.2972 6.59495i 0.925471 0.300704i
\(482\) 4.05246 25.5862i 0.184585 1.16542i
\(483\) 0 0
\(484\) −5.44540 + 42.7471i −0.247518 + 1.94305i
\(485\) −13.7082 29.1938i −0.622459 1.32562i
\(486\) 0 0
\(487\) −34.6563 17.6583i −1.57043 0.800174i −0.570650 0.821193i \(-0.693309\pi\)
−0.999779 + 0.0210198i \(0.993309\pi\)
\(488\) 39.5879 20.1710i 1.79206 0.913099i
\(489\) 0 0
\(490\) 0.342636 1.78817i 0.0154787 0.0807811i
\(491\) −17.8811 5.80992i −0.806962 0.262198i −0.123652 0.992326i \(-0.539461\pi\)
−0.683311 + 0.730128i \(0.739461\pi\)
\(492\) 0 0
\(493\) −6.47287 1.02520i −0.291523 0.0461728i
\(494\) 28.3541 1.27571
\(495\) 0 0
\(496\) −31.8258 −1.42902
\(497\) 3.22837 + 0.511323i 0.144812 + 0.0229360i
\(498\) 0 0
\(499\) 4.98327 + 1.61916i 0.223082 + 0.0724837i 0.418425 0.908251i \(-0.362582\pi\)
−0.195343 + 0.980735i \(0.562582\pi\)
\(500\) −4.22946 + 43.5943i −0.189147 + 1.94960i
\(501\) 0 0
\(502\) −20.3590 + 10.3734i −0.908668 + 0.462990i
\(503\) −11.7545 5.98921i −0.524106 0.267046i 0.171858 0.985122i \(-0.445023\pi\)
−0.695965 + 0.718076i \(0.745023\pi\)
\(504\) 0 0
\(505\) 4.07015 + 1.46913i 0.181119 + 0.0653754i
\(506\) 0.0756375 1.19232i 0.00336250 0.0530053i
\(507\) 0 0
\(508\) −1.45550 + 9.18967i −0.0645774 + 0.407726i
\(509\) −5.32193 + 1.72920i −0.235890 + 0.0766454i −0.424577 0.905392i \(-0.639577\pi\)
0.188686 + 0.982037i \(0.439577\pi\)
\(510\) 0 0
\(511\) 3.69980 + 2.68806i 0.163669 + 0.118913i
\(512\) −5.55696 35.0853i −0.245585 1.55056i
\(513\) 0 0
\(514\) −13.8614 42.6611i −0.611401 1.88170i
\(515\) −1.85481 + 3.36732i −0.0817327 + 0.148382i
\(516\) 0 0
\(517\) 1.39098 + 3.21895i 0.0611751 + 0.141569i
\(518\) −33.7421 33.7421i −1.48254 1.48254i
\(519\) 0 0
\(520\) 0.944304 29.2809i 0.0414105 1.28405i
\(521\) −5.89515 + 18.1434i −0.258271 + 0.794877i 0.734896 + 0.678179i \(0.237231\pi\)
−0.993168 + 0.116697i \(0.962769\pi\)
\(522\) 0 0
\(523\) −34.6664 + 5.49061i −1.51585 + 0.240088i −0.858233 0.513261i \(-0.828437\pi\)
−0.657621 + 0.753349i \(0.728437\pi\)
\(524\) 3.78263 11.6417i 0.165245 0.508572i
\(525\) 0 0
\(526\) −33.0999 + 24.0485i −1.44322 + 1.04856i
\(527\) 6.05128 + 6.05128i 0.263598 + 0.263598i
\(528\) 0 0
\(529\) 22.9781i 0.999047i
\(530\) −21.5395 + 6.23859i −0.935616 + 0.270987i
\(531\) 0 0
\(532\) −19.0542 37.3961i −0.826106 1.62132i
\(533\) −1.51482 9.56421i −0.0656143 0.414272i
\(534\) 0 0
\(535\) −1.15799 9.22747i −0.0500642 0.398938i
\(536\) 18.4767 6.00346i 0.798074 0.259310i
\(537\) 0 0
\(538\) 48.9484 48.9484i 2.11031 2.11031i
\(539\) −1.07541 + 0.275523i −0.0463213 + 0.0118676i
\(540\) 0 0
\(541\) −1.49345 2.05556i −0.0642084 0.0883752i 0.775705 0.631095i \(-0.217394\pi\)
−0.839914 + 0.542720i \(0.817394\pi\)
\(542\) −64.3350 32.7803i −2.76342 1.40803i
\(543\) 0 0
\(544\) −0.436376 + 0.600621i −0.0187095 + 0.0257514i
\(545\) −5.96437 + 4.04621i −0.255486 + 0.173321i
\(546\) 0 0
\(547\) 6.73017 13.2087i 0.287761 0.564764i −0.701195 0.712969i \(-0.747350\pi\)
0.988957 + 0.148206i \(0.0473498\pi\)
\(548\) −63.9819 10.1337i −2.73317 0.432892i
\(549\) 0 0
\(550\) 37.9846 13.5824i 1.61967 0.579157i
\(551\) −28.7998 −1.22691
\(552\) 0 0
\(553\) 5.08910 9.98792i 0.216411 0.424730i
\(554\) 28.7334 + 9.33604i 1.22076 + 0.396650i
\(555\) 0 0
\(556\) −9.94853 + 13.6930i −0.421912 + 0.580712i
\(557\) −11.3704 + 5.79353i −0.481781 + 0.245480i −0.677974 0.735086i \(-0.737142\pi\)
0.196194 + 0.980565i \(0.437142\pi\)
\(558\) 0 0
\(559\) −9.14861 12.5920i −0.386945 0.532584i
\(560\) −18.3510 + 8.61687i −0.775470 + 0.364129i
\(561\) 0 0
\(562\) −37.6272 + 37.6272i −1.58721 + 1.58721i
\(563\) −5.24553 + 33.1190i −0.221073 + 1.39580i 0.588367 + 0.808594i \(0.299771\pi\)
−0.809439 + 0.587204i \(0.800229\pi\)
\(564\) 0 0
\(565\) −3.10537 24.7452i −0.130644 1.04104i
\(566\) 53.5250 + 38.8882i 2.24982 + 1.63459i
\(567\) 0 0
\(568\) 2.68105 + 5.26186i 0.112494 + 0.220783i
\(569\) 2.57065 + 7.91165i 0.107767 + 0.331674i 0.990370 0.138446i \(-0.0442107\pi\)
−0.882603 + 0.470120i \(0.844211\pi\)
\(570\) 0 0
\(571\) 45.2601i 1.89408i 0.321118 + 0.947039i \(0.395941\pi\)
−0.321118 + 0.947039i \(0.604059\pi\)
\(572\) −33.5004 + 14.4762i −1.40072 + 0.605282i
\(573\) 0 0
\(574\) −17.5164 + 12.7264i −0.731121 + 0.531190i
\(575\) −0.679996 + 0.292933i −0.0283578 + 0.0122161i
\(576\) 0 0
\(577\) −22.6517 + 3.58768i −0.943005 + 0.149357i −0.608961 0.793200i \(-0.708413\pi\)
−0.334044 + 0.942558i \(0.608413\pi\)
\(578\) 38.7024 6.12986i 1.60981 0.254969i
\(579\) 0 0
\(580\) −1.95956 + 60.7618i −0.0813663 + 2.52300i
\(581\) 17.3180 12.5823i 0.718472 0.522001i
\(582\) 0 0
\(583\) 9.03691 + 10.2611i 0.374270 + 0.424972i
\(584\) 8.26259i 0.341908i
\(585\) 0 0
\(586\) −15.1186 46.5303i −0.624545 1.92215i
\(587\) 4.58380 + 8.99622i 0.189194 + 0.371314i 0.966046 0.258369i \(-0.0831850\pi\)
−0.776853 + 0.629683i \(0.783185\pi\)
\(588\) 0 0
\(589\) 30.4251 + 22.1051i 1.25365 + 0.910827i
\(590\) 34.9832 4.39017i 1.44024 0.180740i
\(591\) 0 0
\(592\) 4.17419 26.3548i 0.171558 1.08318i
\(593\) 9.47168 9.47168i 0.388955 0.388955i −0.485359 0.874315i \(-0.661311\pi\)
0.874315 + 0.485359i \(0.161311\pi\)
\(594\) 0 0
\(595\) 5.12760 + 1.85082i 0.210211 + 0.0758761i
\(596\) 19.4451 + 26.7639i 0.796503 + 1.09629i
\(597\) 0 0
\(598\) 0.901512 0.459343i 0.0368656 0.0187839i
\(599\) 23.5167 32.3680i 0.960866 1.32252i 0.0143383 0.999897i \(-0.495436\pi\)
0.946528 0.322622i \(-0.104564\pi\)
\(600\) 0 0
\(601\) 34.5805 + 11.2359i 1.41057 + 0.458322i 0.912593 0.408869i \(-0.134077\pi\)
0.497976 + 0.867191i \(0.334077\pi\)
\(602\) −15.7994 + 31.0081i −0.643937 + 1.26380i
\(603\) 0 0
\(604\) 46.7449 1.90202
\(605\) −17.3601 17.4249i −0.705788 0.708423i
\(606\) 0 0
\(607\) 24.6231 + 3.89991i 0.999420 + 0.158293i 0.634646 0.772803i \(-0.281146\pi\)
0.364774 + 0.931096i \(0.381146\pi\)
\(608\) −1.48116 + 2.90694i −0.0600689 + 0.117892i
\(609\) 0 0
\(610\) −9.75047 + 50.8863i −0.394785 + 2.06033i
\(611\) −1.74555 + 2.40254i −0.0706174 + 0.0971965i
\(612\) 0 0
\(613\) −10.4167 5.30759i −0.420728 0.214372i 0.230792 0.973003i \(-0.425868\pi\)
−0.651520 + 0.758632i \(0.725868\pi\)
\(614\) 29.7088 + 40.8907i 1.19895 + 1.65021i
\(615\) 0 0
\(616\) 30.7612 + 25.4748i 1.23940 + 1.02641i
\(617\) −6.18386 + 6.18386i −0.248953 + 0.248953i −0.820541 0.571588i \(-0.806328\pi\)
0.571588 + 0.820541i \(0.306328\pi\)
\(618\) 0 0
\(619\) 1.04489 0.339504i 0.0419975 0.0136458i −0.287943 0.957648i \(-0.592971\pi\)
0.329940 + 0.944002i \(0.392971\pi\)
\(620\) 48.7076 62.6869i 1.95614 2.51757i
\(621\) 0 0
\(622\) −8.85859 55.9309i −0.355197 2.24263i
\(623\) 4.95896 + 9.73251i 0.198677 + 0.389925i
\(624\) 0 0
\(625\) −18.1678 17.1736i −0.726712 0.686942i
\(626\) 34.1000i 1.36291i
\(627\) 0 0
\(628\) −3.77153 3.77153i −0.150501 0.150501i
\(629\) −5.80472 + 4.21737i −0.231449 + 0.168158i
\(630\) 0 0
\(631\) −1.00765 + 3.10124i −0.0401140 + 0.123458i −0.969108 0.246636i \(-0.920675\pi\)
0.928994 + 0.370095i \(0.120675\pi\)
\(632\) 20.0037 3.16827i 0.795703 0.126027i
\(633\) 0 0
\(634\) −22.1755 + 68.2493i −0.880703 + 2.71053i
\(635\) −3.63227 3.87436i −0.144142 0.153749i
\(636\) 0 0
\(637\) −0.664797 0.664797i −0.0263402 0.0263402i
\(638\) 51.3987 22.2105i 2.03490 0.879321i
\(639\) 0 0
\(640\) 39.4960 + 21.7555i 1.56122 + 0.859960i
\(641\) 2.75407 + 8.47616i 0.108779 + 0.334788i 0.990599 0.136799i \(-0.0436814\pi\)
−0.881820 + 0.471587i \(0.843681\pi\)
\(642\) 0 0
\(643\) −5.80382 36.6439i −0.228880 1.44509i −0.787830 0.615893i \(-0.788796\pi\)
0.558950 0.829202i \(-0.311204\pi\)
\(644\) −1.21165 0.880315i −0.0477457 0.0346893i
\(645\) 0 0
\(646\) −9.06602 + 2.94573i −0.356698 + 0.115898i
\(647\) 3.44966 21.7803i 0.135620 0.856273i −0.822262 0.569110i \(-0.807288\pi\)
0.957882 0.287163i \(-0.0927121\pi\)
\(648\) 0 0
\(649\) −11.5097 18.1572i −0.451794 0.712734i
\(650\) 26.2874 + 21.8198i 1.03108 + 0.855842i
\(651\) 0 0
\(652\) 80.0844 + 40.8051i 3.13635 + 1.59805i
\(653\) 43.2861 22.0554i 1.69392 0.863093i 0.705980 0.708232i \(-0.250507\pi\)
0.987936 0.154861i \(-0.0494930\pi\)
\(654\) 0 0
\(655\) 3.92249 + 5.78200i 0.153265 + 0.225921i
\(656\) −11.5145 3.74130i −0.449567 0.146073i
\(657\) 0 0
\(658\) 6.55831 + 1.03873i 0.255669 + 0.0404941i
\(659\) −47.3029 −1.84266 −0.921329 0.388783i \(-0.872896\pi\)
−0.921329 + 0.388783i \(0.872896\pi\)
\(660\) 0 0
\(661\) −26.7159 −1.03913 −0.519564 0.854432i \(-0.673906\pi\)
−0.519564 + 0.854432i \(0.673906\pi\)
\(662\) 5.25121 + 0.831711i 0.204094 + 0.0323254i
\(663\) 0 0
\(664\) 36.7826 + 11.9514i 1.42744 + 0.463804i
\(665\) 23.5283 + 4.50833i 0.912389 + 0.174826i
\(666\) 0 0
\(667\) −0.915682 + 0.466563i −0.0354553 + 0.0180654i
\(668\) −50.1252 25.5401i −1.93940 0.988175i
\(669\) 0 0
\(670\) −7.69172 + 21.3095i −0.297157 + 0.823260i
\(671\) 30.6032 7.84061i 1.18143 0.302683i
\(672\) 0 0
\(673\) −2.07046 + 13.0723i −0.0798102 + 0.503902i 0.915107 + 0.403210i \(0.132106\pi\)
−0.994918 + 0.100692i \(0.967894\pi\)
\(674\) −4.16900 + 1.35459i −0.160584 + 0.0521769i
\(675\) 0 0
\(676\) 16.1973 + 11.7681i 0.622975 + 0.452618i
\(677\) 5.37982 + 33.9668i 0.206763 + 1.30545i 0.844649 + 0.535321i \(0.179809\pi\)
−0.637885 + 0.770131i \(0.720191\pi\)
\(678\) 0 0
\(679\) 11.5070 + 35.4150i 0.441600 + 1.35910i
\(680\) 2.74008 + 9.46045i 0.105077 + 0.362792i
\(681\) 0 0
\(682\) −71.3470 15.9869i −2.73202 0.612171i
\(683\) −27.9495 27.9495i −1.06946 1.06946i −0.997401 0.0720555i \(-0.977044\pi\)
−0.0720555 0.997401i \(-0.522956\pi\)
\(684\) 0 0
\(685\) 26.9747 25.2892i 1.03065 0.966252i
\(686\) −14.2346 + 43.8095i −0.543478 + 1.67265i
\(687\) 0 0
\(688\) −19.2206 + 3.04425i −0.732779 + 0.116061i
\(689\) −3.57830 + 11.0129i −0.136322 + 0.419557i
\(690\) 0 0
\(691\) −2.64892 + 1.92455i −0.100770 + 0.0732134i −0.637029 0.770840i \(-0.719837\pi\)
0.536259 + 0.844053i \(0.319837\pi\)
\(692\) 61.7773 + 61.7773i 2.34842 + 2.34842i
\(693\) 0 0
\(694\) 52.2333i 1.98275i
\(695\) −2.68766 9.27949i −0.101949 0.351991i
\(696\) 0 0
\(697\) 1.47799 + 2.90071i 0.0559827 + 0.109872i
\(698\) −4.05519 25.6035i −0.153491 0.969106i
\(699\) 0 0
\(700\) 11.1126 49.3334i 0.420016 1.86463i
\(701\) 5.55696 1.80557i 0.209883 0.0681953i −0.202188 0.979347i \(-0.564805\pi\)
0.412072 + 0.911151i \(0.364805\pi\)
\(702\) 0 0
\(703\) −22.2957 + 22.2957i −0.840897 + 0.840897i
\(704\) 1.87635 29.5782i 0.0707178 1.11477i
\(705\) 0 0
\(706\) 15.6482 + 21.5379i 0.588927 + 0.810588i
\(707\) −4.45154 2.26817i −0.167417 0.0853034i
\(708\) 0 0
\(709\) 23.5016 32.3472i 0.882623 1.21483i −0.0930647 0.995660i \(-0.529666\pi\)
0.975688 0.219166i \(-0.0703337\pi\)
\(710\) −6.76360 1.29599i −0.253834 0.0486378i
\(711\) 0 0
\(712\) −8.95956 + 17.5841i −0.335774 + 0.658993i
\(713\) 1.32547 + 0.209933i 0.0496391 + 0.00786207i
\(714\) 0 0
\(715\) 5.20745 20.1692i 0.194748 0.754285i
\(716\) −17.1125 −0.639523
\(717\) 0 0
\(718\) 3.61592 7.09665i 0.134945 0.264845i
\(719\) −19.2106 6.24190i −0.716434 0.232784i −0.0719577 0.997408i \(-0.522925\pi\)
−0.644477 + 0.764624i \(0.722925\pi\)
\(720\) 0 0
\(721\) 2.60896 3.59093i 0.0971629 0.133733i
\(722\) 3.85632 1.96489i 0.143517 0.0731258i
\(723\) 0 0
\(724\) −21.7365 29.9177i −0.807831 1.11188i
\(725\) −26.7006 22.1627i −0.991634 0.823103i
\(726\) 0 0
\(727\) 26.5141 26.5141i 0.983354 0.983354i −0.0165102 0.999864i \(-0.505256\pi\)
0.999864 + 0.0165102i \(0.00525558\pi\)
\(728\) −5.29135 + 33.4083i −0.196111 + 1.23819i
\(729\) 0 0
\(730\) −7.60852 5.91181i −0.281604 0.218806i
\(731\) 4.23339 + 3.07574i 0.156578 + 0.113760i
\(732\) 0 0
\(733\) 14.4811 + 28.4208i 0.534873 + 1.04975i 0.987437 + 0.158015i \(0.0505096\pi\)
−0.452563 + 0.891732i \(0.649490\pi\)
\(734\) −13.7035 42.1752i −0.505807 1.55671i
\(735\) 0 0
\(736\) 0.116420i 0.00429131i
\(737\) 13.7531 1.29283i 0.506601 0.0476220i
\(738\) 0 0
\(739\) −31.6871 + 23.0220i −1.16563 + 0.846879i −0.990479 0.137662i \(-0.956041\pi\)
−0.175150 + 0.984542i \(0.556041\pi\)
\(740\) 45.5224 + 48.5565i 1.67344 + 1.78497i
\(741\) 0 0
\(742\) 25.5724 4.05027i 0.938793 0.148690i
\(743\) 6.70139 1.06140i 0.245850 0.0389389i −0.0322930 0.999478i \(-0.510281\pi\)
0.278143 + 0.960540i \(0.410281\pi\)
\(744\) 0 0
\(745\) −18.8730 0.608652i −0.691455 0.0222993i
\(746\) −34.7666 + 25.2594i −1.27290 + 0.924814i
\(747\) 0 0
\(748\) 9.20756 8.10905i 0.336662 0.296496i
\(749\) 10.7374i 0.392337i
\(750\) 0 0
\(751\) −6.82703 21.0114i −0.249122 0.766718i −0.994931 0.100559i \(-0.967937\pi\)
0.745809 0.666160i \(-0.232063\pi\)
\(752\) 1.68567 + 3.30830i 0.0614699 + 0.120641i
\(753\) 0 0
\(754\) 38.3627 + 27.8722i 1.39709 + 1.01504i
\(755\) −16.3706 + 21.0691i −0.595788 + 0.766782i
\(756\) 0 0
\(757\) −5.23341 + 33.0425i −0.190212 + 1.20095i 0.689087 + 0.724678i \(0.258012\pi\)
−0.879299 + 0.476271i \(0.841988\pi\)
\(758\) 37.9511 37.9511i 1.37845 1.37845i
\(759\) 0 0
\(760\) 18.3967 + 39.1787i 0.667320 + 1.42116i
\(761\) 15.3149 + 21.0791i 0.555163 + 0.764117i 0.990701 0.136054i \(-0.0434419\pi\)
−0.435538 + 0.900170i \(0.643442\pi\)
\(762\) 0 0
\(763\) 7.41445 3.77785i 0.268421 0.136767i
\(764\) 14.9045 20.5143i 0.539227 0.742182i
\(765\) 0 0
\(766\) 45.5528 + 14.8010i 1.64589 + 0.534782i
\(767\) 8.26544 16.2218i 0.298448 0.585736i
\(768\) 0 0
\(769\) −51.2907 −1.84959 −0.924794 0.380468i \(-0.875763\pi\)
−0.924794 + 0.380468i \(0.875763\pi\)
\(770\) −45.4676 + 10.0991i −1.63854 + 0.363947i
\(771\) 0 0
\(772\) −3.89496 0.616901i −0.140183 0.0222027i
\(773\) 7.49740 14.7145i 0.269663 0.529243i −0.715973 0.698128i \(-0.754017\pi\)
0.985636 + 0.168885i \(0.0540167\pi\)
\(774\) 0 0
\(775\) 11.1965 + 43.9074i 0.402191 + 1.57720i
\(776\) −39.5453 + 54.4295i −1.41960 + 1.95391i
\(777\) 0 0
\(778\) −37.1082 18.9076i −1.33039 0.677869i
\(779\) 8.40920 + 11.5743i 0.301291 + 0.414691i
\(780\) 0 0
\(781\) 1.04214 + 4.06766i 0.0372908 + 0.145552i
\(782\) −0.240530 + 0.240530i −0.00860135 + 0.00860135i
\(783\) 0 0
\(784\) −1.11795 + 0.363243i −0.0399267 + 0.0129730i
\(785\) 3.02076 0.379085i 0.107815 0.0135301i
\(786\) 0 0
\(787\) −0.692641 4.37316i −0.0246900 0.155886i 0.972263 0.233890i \(-0.0751455\pi\)
−0.996953 + 0.0780034i \(0.975146\pi\)
\(788\) 43.6197 + 85.6084i 1.55389 + 3.04967i
\(789\) 0 0
\(790\) −11.3950 + 20.6871i −0.405415 + 0.736012i
\(791\) 28.7945i 1.02381i
\(792\) 0 0
\(793\) 18.9183 + 18.9183i 0.671808 + 0.671808i
\(794\) 14.6086 10.6137i 0.518438 0.376667i
\(795\) 0 0
\(796\) −3.94138 + 12.1303i −0.139699 + 0.429948i
\(797\) −18.9850 + 3.00692i −0.672482 + 0.106511i −0.483331 0.875437i \(-0.660573\pi\)
−0.189150 + 0.981948i \(0.560573\pi\)
\(798\) 0 0
\(799\) 0.308525 0.949542i 0.0109148 0.0335924i
\(800\) −3.61022 + 1.55523i −0.127640 + 0.0549858i
\(801\) 0 0
\(802\) 21.1147 + 21.1147i 0.745587 + 0.745587i
\(803\) −1.28457 + 5.73284i −0.0453316 + 0.202308i
\(804\) 0 0
\(805\) 0.821113 0.237823i 0.0289404 0.00838216i
\(806\) −19.1346 58.8903i −0.673988 2.07432i
\(807\) 0 0
\(808\) −1.41207 8.91548i −0.0496765 0.313645i
\(809\) 24.9923 + 18.1580i 0.878683 + 0.638401i 0.932903 0.360128i \(-0.117267\pi\)
−0.0542197 + 0.998529i \(0.517267\pi\)
\(810\) 0 0
\(811\) 23.8090 7.73601i 0.836047 0.271648i 0.140456 0.990087i \(-0.455143\pi\)
0.695590 + 0.718439i \(0.255143\pi\)
\(812\) 10.9803 69.3267i 0.385332 2.43289i
\(813\) 0 0
\(814\) 22.5964 56.9854i 0.792004 1.99734i
\(815\) −46.4383 + 21.8056i −1.62666 + 0.763816i
\(816\) 0 0
\(817\) 20.4891 + 10.4397i 0.716825 + 0.365240i
\(818\) −57.9990 + 29.5519i −2.02789 + 1.03326i
\(819\) 0 0
\(820\) 24.9916 16.9542i 0.872744 0.592067i
\(821\) 21.6750 + 7.04264i 0.756463 + 0.245790i 0.661760 0.749716i \(-0.269810\pi\)
0.0947032 + 0.995506i \(0.469810\pi\)
\(822\) 0 0
\(823\) 17.4278 + 2.76029i 0.607495 + 0.0962177i 0.452601 0.891713i \(-0.350496\pi\)
0.154894 + 0.987931i \(0.450496\pi\)
\(824\) 8.01946 0.279371
\(825\) 0 0
\(826\) −40.7077 −1.41640
\(827\) −16.4544 2.60613i −0.572177 0.0906239i −0.136360 0.990659i \(-0.543540\pi\)
−0.435817 + 0.900035i \(0.643540\pi\)
\(828\) 0 0
\(829\) 39.7855 + 12.9271i 1.38181 + 0.448976i 0.903263 0.429087i \(-0.141165\pi\)
0.478544 + 0.878064i \(0.341165\pi\)
\(830\) −37.3230 + 25.3198i −1.29550 + 0.878863i
\(831\) 0 0
\(832\) 22.3640 11.3950i 0.775332 0.395051i
\(833\) 0.281630 + 0.143498i 0.00975790 + 0.00497190i
\(834\) 0 0
\(835\) 29.0660 13.6482i 1.00587 0.472316i
\(836\) 34.3901 41.5265i 1.18941 1.43622i
\(837\) 0 0
\(838\) 5.41895 34.2139i 0.187195 1.18190i
\(839\) 49.3818 16.0451i 1.70485 0.553939i 0.715388 0.698728i \(-0.246250\pi\)
0.989463 + 0.144788i \(0.0462501\pi\)
\(840\) 0 0
\(841\) −15.5042 11.2645i −0.534629 0.388431i
\(842\) −2.62809 16.5931i −0.0905699 0.571836i
\(843\) 0 0
\(844\) −30.0723 92.5530i −1.03513 3.18581i
\(845\) −10.9767 + 3.17922i −0.377608 + 0.109369i
\(846\) 0 0
\(847\) 17.3825 + 22.4576i 0.597271 + 0.771654i
\(848\) 10.2374 + 10.2374i 0.351554 + 0.351554i
\(849\) 0 0
\(850\) −10.6721 4.24570i −0.366049 0.145626i
\(851\) −0.347690 + 1.07008i −0.0119187 + 0.0366819i
\(852\) 0 0
\(853\) 13.8327 2.19089i 0.473623 0.0750145i 0.0849401 0.996386i \(-0.472930\pi\)
0.388683 + 0.921372i \(0.372930\pi\)
\(854\) 18.4857 56.8933i 0.632569 1.94685i
\(855\) 0 0
\(856\) −15.6947 + 11.4029i −0.536434 + 0.389742i
\(857\) −10.2364 10.2364i −0.349669 0.349669i 0.510317 0.859986i \(-0.329528\pi\)
−0.859986 + 0.510317i \(0.829528\pi\)
\(858\) 0 0
\(859\) 56.0426i 1.91215i 0.293125 + 0.956074i \(0.405305\pi\)
−0.293125 + 0.956074i \(0.594695\pi\)
\(860\) 23.4199 42.5177i 0.798611 1.44984i
\(861\) 0 0
\(862\) 7.88446 + 15.4741i 0.268546 + 0.527050i
\(863\) 2.69640 + 17.0244i 0.0917867 + 0.579518i 0.990122 + 0.140208i \(0.0447771\pi\)
−0.898335 + 0.439310i \(0.855223\pi\)
\(864\) 0 0
\(865\) −49.4797 + 6.20938i −1.68236 + 0.211125i
\(866\) 38.8733 12.6307i 1.32097 0.429209i
\(867\) 0 0
\(868\) −64.8114 + 64.8114i −2.19984 + 2.19984i
\(869\) 14.3717 + 0.911700i 0.487528 + 0.0309273i
\(870\) 0 0
\(871\) 6.87628 + 9.46438i 0.232994 + 0.320688i
\(872\) 13.3960 + 6.82560i 0.453645 + 0.231144i
\(873\) 0 0
\(874\) −0.878650 + 1.20936i −0.0297208 + 0.0409071i
\(875\) 18.3440 + 22.2858i 0.620140 + 0.753399i
\(876\) 0 0
\(877\) 3.20066 6.28165i 0.108079 0.212116i −0.830633 0.556821i \(-0.812021\pi\)
0.938711 + 0.344705i \(0.112021\pi\)
\(878\) −1.85708 0.294133i −0.0626735 0.00992651i
\(879\) 0 0
\(880\) −19.5130 17.2496i −0.657782 0.581484i
\(881\) 46.6330 1.57111 0.785553 0.618794i \(-0.212378\pi\)
0.785553 + 0.618794i \(0.212378\pi\)
\(882\) 0 0
\(883\) −4.99714 + 9.80743i −0.168167 + 0.330046i −0.959675 0.281113i \(-0.909296\pi\)
0.791508 + 0.611159i \(0.209296\pi\)
\(884\) 9.88212 + 3.21090i 0.332372 + 0.107994i
\(885\) 0 0
\(886\) 26.8665 36.9785i 0.902597 1.24232i
\(887\) 34.7292 17.6954i 1.16609 0.594154i 0.239750 0.970835i \(-0.422934\pi\)
0.926343 + 0.376680i \(0.122934\pi\)
\(888\) 0 0
\(889\) 3.60411 + 4.96064i 0.120878 + 0.166374i
\(890\) −9.78168 20.8316i −0.327883 0.698277i
\(891\) 0 0
\(892\) −54.2662 + 54.2662i −1.81697 + 1.81697i
\(893\) 0.686361 4.33351i 0.0229682 0.145016i
\(894\) 0 0
\(895\) 5.99299 7.71300i 0.200323 0.257817i
\(896\) −42.1188 30.6011i −1.40709 1.02231i
\(897\) 0 0
\(898\) −0.787843 1.54623i −0.0262906 0.0515983i
\(899\) 19.4354 + 59.8159i 0.648206 + 1.99497i
\(900\) 0 0
\(901\) 3.89303i 0.129696i
\(902\) −23.9339 14.1713i −0.796912 0.471852i
\(903\) 0 0
\(904\) −42.0884 + 30.5790i −1.39984 + 1.01704i
\(905\) 21.0970 + 0.680376i 0.701289 + 0.0226165i
\(906\) 0 0
\(907\) −27.7688 + 4.39815i −0.922049 + 0.146038i −0.599372 0.800471i \(-0.704583\pi\)
−0.322677 + 0.946509i \(0.604583\pi\)
\(908\) −3.95795 + 0.626877i −0.131349 + 0.0208037i
\(909\) 0 0
\(910\) −26.9778 28.7758i −0.894305 0.953909i
\(911\) −23.8530 + 17.3302i −0.790285 + 0.574175i −0.908048 0.418866i \(-0.862428\pi\)
0.117763 + 0.993042i \(0.462428\pi\)
\(912\) 0 0
\(913\) 23.6628 + 14.0108i 0.783126 + 0.463689i
\(914\) 47.0585i 1.55656i
\(915\) 0 0
\(916\) −0.123296 0.379465i −0.00407380 0.0125379i
\(917\) −3.66234 7.18775i −0.120941 0.237360i
\(918\) 0 0
\(919\) 32.9943 + 23.9718i 1.08838 + 0.790755i 0.979125 0.203258i \(-0.0651532\pi\)
0.109256 + 0.994014i \(0.465153\pi\)
\(920\) 1.21962 + 0.947645i 0.0402098 + 0.0312429i
\(921\) 0 0
\(922\) 13.9003 87.7630i 0.457782 2.89032i
\(923\) −2.51454 + 2.51454i −0.0827672 + 0.0827672i
\(924\) 0 0
\(925\) −37.8281 + 3.51301i −1.24378 + 0.115507i
\(926\) −34.6632 47.7098i −1.13910 1.56784i
\(927\) 0 0
\(928\) −4.86151 + 2.47706i −0.159587 + 0.0813136i
\(929\) −30.1380 + 41.4814i −0.988795 + 1.36096i −0.0568413 + 0.998383i \(0.518103\pi\)
−0.931954 + 0.362577i \(0.881897\pi\)
\(930\) 0 0
\(931\) 1.32104 + 0.429233i 0.0432954 + 0.0140675i
\(932\) −38.0602 + 74.6973i −1.24670 + 2.44679i
\(933\) 0 0
\(934\) 36.0504 1.17960
\(935\) 0.430347 + 6.98995i 0.0140738 + 0.228596i
\(936\) 0 0
\(937\) −3.04254 0.481891i −0.0993955 0.0157427i 0.106539 0.994309i \(-0.466023\pi\)
−0.205934 + 0.978566i \(0.566023\pi\)
\(938\) 11.8752 23.3063i 0.387738 0.760978i
\(939\) 0 0
\(940\) −9.09615 1.74294i −0.296684 0.0568485i
\(941\) 16.7138 23.0045i 0.544854 0.749927i −0.444449 0.895804i \(-0.646601\pi\)
0.989303 + 0.145877i \(0.0466005\pi\)
\(942\) 0 0
\(943\) 0.454874 + 0.231770i 0.0148127 + 0.00754747i
\(944\) −13.3798 18.4157i −0.435474 0.599379i
\(945\) 0 0
\(946\) −44.6180 2.83043i −1.45065 0.0920252i
\(947\) 40.6526 40.6526i 1.32103 1.32103i 0.408091 0.912941i \(-0.366195\pi\)
0.912941 0.408091i \(-0.133805\pi\)
\(948\) 0 0
\(949\) −4.73193 + 1.53750i −0.153605 + 0.0499092i
\(950\) −49.2400 11.0916i −1.59756 0.359858i
\(951\) 0 0
\(952\) −1.77894 11.2318i −0.0576557 0.364024i
\(953\) 8.68746 + 17.0501i 0.281414 + 0.552307i 0.987839 0.155482i \(-0.0496930\pi\)
−0.706424 + 0.707788i \(0.749693\pi\)
\(954\) 0 0
\(955\) 4.02656 + 13.9022i 0.130296 + 0.449864i
\(956\) 33.9400i 1.09770i
\(957\) 0 0
\(958\) 47.4507 + 47.4507i 1.53306 + 1.53306i
\(959\) −34.5378 + 25.0932i −1.11528 + 0.810302i
\(960\) 0 0
\(961\) 15.7997 48.6264i 0.509667 1.56859i
\(962\) 51.2765 8.12140i 1.65322 0.261844i
\(963\) 0 0
\(964\) 12.8917 39.6764i 0.415212 1.27789i
\(965\) 1.64211 1.53951i 0.0528615 0.0495584i
\(966\) 0 0
\(967\) −12.6930 12.6930i −0.408178 0.408178i 0.472925 0.881103i \(-0.343198\pi\)
−0.881103 + 0.472925i \(0.843198\pi\)
\(968\) −14.3661 + 49.2572i −0.461745 + 1.58319i
\(969\) 0 0
\(970\) −21.8265 75.3588i −0.700808 2.41962i
\(971\) 1.07721 + 3.31533i 0.0345695 + 0.106394i 0.966852 0.255336i \(-0.0821862\pi\)
−0.932283 + 0.361730i \(0.882186\pi\)
\(972\) 0 0
\(973\) 1.74491 + 11.0169i 0.0559392 + 0.353186i
\(974\) −76.5471 55.6147i −2.45273 1.78201i
\(975\) 0 0
\(976\) 31.8137 10.3369i 1.01833 0.330876i
\(977\) −4.04170 + 25.5183i −0.129305 + 0.816402i 0.834736 + 0.550650i \(0.185620\pi\)
−0.964042 + 0.265752i \(0.914380\pi\)
\(978\) 0 0
\(979\) −8.95020 + 10.8075i −0.286050 + 0.345409i
\(980\) 0.995480 2.75793i 0.0317994 0.0880989i
\(981\) 0 0
\(982\) −40.7509 20.7636i −1.30042 0.662595i
\(983\) −27.8228 + 14.1764i −0.887409 + 0.452158i −0.837400 0.546591i \(-0.815925\pi\)
−0.0500096 + 0.998749i \(0.515925\pi\)
\(984\) 0 0
\(985\) −53.8619 10.3206i −1.71618 0.328843i
\(986\) −15.1619 4.92639i −0.482852 0.156888i
\(987\) 0 0
\(988\) 45.1000 + 7.14313i 1.43482 + 0.227253i
\(989\) 0.820573 0.0260927
\(990\) 0 0
\(991\) −19.5868 −0.622196 −0.311098 0.950378i \(-0.600697\pi\)
−0.311098 + 0.950378i \(0.600697\pi\)
\(992\) 7.03714 + 1.11457i 0.223429 + 0.0353877i
\(993\) 0 0
\(994\) 7.56203 + 2.45705i 0.239853 + 0.0779330i
\(995\) −4.08712 6.02466i −0.129570 0.190995i
\(996\) 0 0
\(997\) 25.2279 12.8543i 0.798976 0.407098i −0.00631392 0.999980i \(-0.502010\pi\)
0.805290 + 0.592882i \(0.202010\pi\)
\(998\) 11.3569 + 5.78661i 0.359495 + 0.183172i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 495.2.bj.a.118.4 32
3.2 odd 2 55.2.l.a.8.1 yes 32
5.2 odd 4 inner 495.2.bj.a.217.1 32
11.7 odd 10 inner 495.2.bj.a.73.1 32
12.11 even 2 880.2.cm.a.833.3 32
15.2 even 4 55.2.l.a.52.4 yes 32
15.8 even 4 275.2.bm.b.107.1 32
15.14 odd 2 275.2.bm.b.118.4 32
33.2 even 10 605.2.e.b.483.2 32
33.5 odd 10 605.2.m.d.233.4 32
33.8 even 10 605.2.m.d.578.4 32
33.14 odd 10 605.2.m.c.578.1 32
33.17 even 10 605.2.m.c.233.1 32
33.20 odd 10 605.2.e.b.483.15 32
33.26 odd 10 605.2.m.e.403.1 32
33.29 even 10 55.2.l.a.18.4 yes 32
33.32 even 2 605.2.m.e.118.4 32
55.7 even 20 inner 495.2.bj.a.172.4 32
60.47 odd 4 880.2.cm.a.657.2 32
132.95 odd 10 880.2.cm.a.513.2 32
165.2 odd 20 605.2.e.b.362.15 32
165.17 odd 20 605.2.m.c.112.1 32
165.29 even 10 275.2.bm.b.18.1 32
165.32 odd 4 605.2.m.e.602.1 32
165.47 even 20 605.2.m.c.457.1 32
165.62 odd 20 55.2.l.a.7.1 32
165.92 even 20 605.2.m.e.282.4 32
165.107 odd 20 605.2.m.d.457.4 32
165.128 odd 20 275.2.bm.b.7.4 32
165.137 even 20 605.2.m.d.112.4 32
165.152 even 20 605.2.e.b.362.2 32
660.227 even 20 880.2.cm.a.337.3 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.2.l.a.7.1 32 165.62 odd 20
55.2.l.a.8.1 yes 32 3.2 odd 2
55.2.l.a.18.4 yes 32 33.29 even 10
55.2.l.a.52.4 yes 32 15.2 even 4
275.2.bm.b.7.4 32 165.128 odd 20
275.2.bm.b.18.1 32 165.29 even 10
275.2.bm.b.107.1 32 15.8 even 4
275.2.bm.b.118.4 32 15.14 odd 2
495.2.bj.a.73.1 32 11.7 odd 10 inner
495.2.bj.a.118.4 32 1.1 even 1 trivial
495.2.bj.a.172.4 32 55.7 even 20 inner
495.2.bj.a.217.1 32 5.2 odd 4 inner
605.2.e.b.362.2 32 165.152 even 20
605.2.e.b.362.15 32 165.2 odd 20
605.2.e.b.483.2 32 33.2 even 10
605.2.e.b.483.15 32 33.20 odd 10
605.2.m.c.112.1 32 165.17 odd 20
605.2.m.c.233.1 32 33.17 even 10
605.2.m.c.457.1 32 165.47 even 20
605.2.m.c.578.1 32 33.14 odd 10
605.2.m.d.112.4 32 165.137 even 20
605.2.m.d.233.4 32 33.5 odd 10
605.2.m.d.457.4 32 165.107 odd 20
605.2.m.d.578.4 32 33.8 even 10
605.2.m.e.118.4 32 33.32 even 2
605.2.m.e.282.4 32 165.92 even 20
605.2.m.e.403.1 32 33.26 odd 10
605.2.m.e.602.1 32 165.32 odd 4
880.2.cm.a.337.3 32 660.227 even 20
880.2.cm.a.513.2 32 132.95 odd 10
880.2.cm.a.657.2 32 60.47 odd 4
880.2.cm.a.833.3 32 12.11 even 2