Properties

Label 272.3.bh.b.209.1
Level $272$
Weight $3$
Character 272.209
Analytic conductor $7.411$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [272,3,Mod(65,272)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(272, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([0, 0, 9])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("272.65"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 272 = 2^{4} \cdot 17 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 272.bh (of order \(16\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.41146319060\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{16})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 17)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 209.1
Root \(-0.382683 + 0.923880i\) of defining polynomial
Character \(\chi\) \(=\) 272.209
Dual form 272.3.bh.b.177.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.88669 + 4.32023i) q^{3} +(-0.711297 + 3.57593i) q^{5} +(0.644047 + 3.23784i) q^{7} +(-6.88730 + 16.6274i) q^{9} +(-2.02046 - 1.35003i) q^{11} +(-7.73173 - 7.73173i) q^{13} +(-17.5022 + 7.24963i) q^{15} +(15.0347 - 7.93458i) q^{17} +(3.50319 + 8.45745i) q^{19} +(-12.1291 + 12.1291i) q^{21} +(1.91942 - 2.87262i) q^{23} +(10.8156 + 4.47998i) q^{25} +(-45.8512 + 9.12037i) q^{27} +(-23.5861 - 4.69157i) q^{29} +(23.0300 - 15.3882i) q^{31} -12.6260i q^{33} -12.0364 q^{35} +(-21.3995 - 32.0267i) q^{37} +(11.0838 - 55.7219i) q^{39} +(15.0157 + 75.4890i) q^{41} +(-20.7301 + 50.0470i) q^{43} +(-54.5596 - 36.4555i) q^{45} +(5.13810 + 5.13810i) q^{47} +(35.2013 - 14.5808i) q^{49} +(77.6797 + 42.0488i) q^{51} +(21.8223 + 52.6837i) q^{53} +(6.26475 - 6.26475i) q^{55} +(-26.4255 + 39.5486i) q^{57} +(21.2985 + 8.82213i) q^{59} +(40.6888 - 8.09351i) q^{61} +(-58.2726 - 11.5911i) q^{63} +(33.1477 - 22.1486i) q^{65} -17.3637i q^{67} +17.9512 q^{69} +(28.6631 + 42.8974i) q^{71} +(12.1277 - 60.9700i) q^{73} +(11.8668 + 59.6583i) q^{75} +(3.06990 - 7.41140i) q^{77} +(-98.5655 - 65.8593i) q^{79} +(-57.2255 - 57.2255i) q^{81} +(86.9369 - 36.0104i) q^{83} +(17.6794 + 59.4070i) q^{85} +(-47.8171 - 115.441i) q^{87} +(19.6021 - 19.6021i) q^{89} +(20.0545 - 30.0137i) q^{91} +(132.961 + 55.0742i) q^{93} +(-32.7351 + 6.51142i) q^{95} +(14.9417 + 2.97209i) q^{97} +(36.3629 - 24.2969i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 24 q^{5} + 16 q^{7} + 8 q^{9} - 40 q^{11} - 32 q^{15} - 16 q^{17} + 32 q^{19} - 64 q^{21} + 8 q^{23} + 16 q^{25} - 96 q^{27} + 24 q^{29} - 32 q^{31} - 80 q^{35} - 168 q^{37} + 72 q^{39} - 96 q^{43}+ \cdots - 136 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/272\mathbb{Z}\right)^\times\).

\(n\) \(69\) \(239\) \(241\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{5}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.88669 + 4.32023i 0.962229 + 1.44008i 0.896910 + 0.442213i \(0.145807\pi\)
0.0653191 + 0.997864i \(0.479193\pi\)
\(4\) 0 0
\(5\) −0.711297 + 3.57593i −0.142259 + 0.715187i 0.842143 + 0.539255i \(0.181294\pi\)
−0.984402 + 0.175932i \(0.943706\pi\)
\(6\) 0 0
\(7\) 0.644047 + 3.23784i 0.0920066 + 0.462549i 0.999131 + 0.0416855i \(0.0132727\pi\)
−0.907124 + 0.420863i \(0.861727\pi\)
\(8\) 0 0
\(9\) −6.88730 + 16.6274i −0.765255 + 1.84749i
\(10\) 0 0
\(11\) −2.02046 1.35003i −0.183678 0.122730i 0.460332 0.887747i \(-0.347730\pi\)
−0.644010 + 0.765017i \(0.722730\pi\)
\(12\) 0 0
\(13\) −7.73173 7.73173i −0.594748 0.594748i 0.344162 0.938910i \(-0.388163\pi\)
−0.938910 + 0.344162i \(0.888163\pi\)
\(14\) 0 0
\(15\) −17.5022 + 7.24963i −1.16681 + 0.483309i
\(16\) 0 0
\(17\) 15.0347 7.93458i 0.884395 0.466740i
\(18\) 0 0
\(19\) 3.50319 + 8.45745i 0.184379 + 0.445129i 0.988860 0.148849i \(-0.0475567\pi\)
−0.804481 + 0.593978i \(0.797557\pi\)
\(20\) 0 0
\(21\) −12.1291 + 12.1291i −0.577574 + 0.577574i
\(22\) 0 0
\(23\) 1.91942 2.87262i 0.0834532 0.124897i −0.787395 0.616449i \(-0.788571\pi\)
0.870848 + 0.491553i \(0.163571\pi\)
\(24\) 0 0
\(25\) 10.8156 + 4.47998i 0.432625 + 0.179199i
\(26\) 0 0
\(27\) −45.8512 + 9.12037i −1.69819 + 0.337791i
\(28\) 0 0
\(29\) −23.5861 4.69157i −0.813314 0.161778i −0.229126 0.973397i \(-0.573587\pi\)
−0.584188 + 0.811618i \(0.698587\pi\)
\(30\) 0 0
\(31\) 23.0300 15.3882i 0.742903 0.496392i −0.125597 0.992081i \(-0.540085\pi\)
0.868500 + 0.495689i \(0.165085\pi\)
\(32\) 0 0
\(33\) 12.6260i 0.382605i
\(34\) 0 0
\(35\) −12.0364 −0.343897
\(36\) 0 0
\(37\) −21.3995 32.0267i −0.578366 0.865586i 0.420769 0.907168i \(-0.361760\pi\)
−0.999135 + 0.0415820i \(0.986760\pi\)
\(38\) 0 0
\(39\) 11.0838 55.7219i 0.284200 1.42877i
\(40\) 0 0
\(41\) 15.0157 + 75.4890i 0.366237 + 1.84120i 0.521407 + 0.853308i \(0.325407\pi\)
−0.155171 + 0.987888i \(0.549593\pi\)
\(42\) 0 0
\(43\) −20.7301 + 50.0470i −0.482096 + 1.16388i 0.476515 + 0.879166i \(0.341900\pi\)
−0.958612 + 0.284717i \(0.908100\pi\)
\(44\) 0 0
\(45\) −54.5596 36.4555i −1.21244 0.810123i
\(46\) 0 0
\(47\) 5.13810 + 5.13810i 0.109321 + 0.109321i 0.759652 0.650330i \(-0.225369\pi\)
−0.650330 + 0.759652i \(0.725369\pi\)
\(48\) 0 0
\(49\) 35.2013 14.5808i 0.718394 0.297568i
\(50\) 0 0
\(51\) 77.6797 + 42.0488i 1.52313 + 0.824486i
\(52\) 0 0
\(53\) 21.8223 + 52.6837i 0.411742 + 0.994033i 0.984670 + 0.174427i \(0.0558074\pi\)
−0.572928 + 0.819606i \(0.694193\pi\)
\(54\) 0 0
\(55\) 6.26475 6.26475i 0.113905 0.113905i
\(56\) 0 0
\(57\) −26.4255 + 39.5486i −0.463606 + 0.693836i
\(58\) 0 0
\(59\) 21.2985 + 8.82213i 0.360992 + 0.149528i 0.555805 0.831313i \(-0.312410\pi\)
−0.194813 + 0.980840i \(0.562410\pi\)
\(60\) 0 0
\(61\) 40.6888 8.09351i 0.667030 0.132680i 0.150050 0.988678i \(-0.452056\pi\)
0.516979 + 0.855998i \(0.327056\pi\)
\(62\) 0 0
\(63\) −58.2726 11.5911i −0.924962 0.183986i
\(64\) 0 0
\(65\) 33.1477 22.1486i 0.509965 0.340747i
\(66\) 0 0
\(67\) 17.3637i 0.259160i −0.991569 0.129580i \(-0.958637\pi\)
0.991569 0.129580i \(-0.0413630\pi\)
\(68\) 0 0
\(69\) 17.9512 0.260162
\(70\) 0 0
\(71\) 28.6631 + 42.8974i 0.403706 + 0.604188i 0.976502 0.215510i \(-0.0691413\pi\)
−0.572796 + 0.819698i \(0.694141\pi\)
\(72\) 0 0
\(73\) 12.1277 60.9700i 0.166133 0.835206i −0.804372 0.594126i \(-0.797498\pi\)
0.970505 0.241080i \(-0.0775018\pi\)
\(74\) 0 0
\(75\) 11.8668 + 59.6583i 0.158224 + 0.795445i
\(76\) 0 0
\(77\) 3.06990 7.41140i 0.0398689 0.0962520i
\(78\) 0 0
\(79\) −98.5655 65.8593i −1.24766 0.833662i −0.256531 0.966536i \(-0.582580\pi\)
−0.991133 + 0.132874i \(0.957580\pi\)
\(80\) 0 0
\(81\) −57.2255 57.2255i −0.706488 0.706488i
\(82\) 0 0
\(83\) 86.9369 36.0104i 1.04743 0.433861i 0.208458 0.978031i \(-0.433156\pi\)
0.838975 + 0.544171i \(0.183156\pi\)
\(84\) 0 0
\(85\) 17.6794 + 59.4070i 0.207993 + 0.698905i
\(86\) 0 0
\(87\) −47.8171 115.441i −0.549621 1.32690i
\(88\) 0 0
\(89\) 19.6021 19.6021i 0.220248 0.220248i −0.588355 0.808603i \(-0.700224\pi\)
0.808603 + 0.588355i \(0.200224\pi\)
\(90\) 0 0
\(91\) 20.0545 30.0137i 0.220379 0.329821i
\(92\) 0 0
\(93\) 132.961 + 55.0742i 1.42969 + 0.592195i
\(94\) 0 0
\(95\) −32.7351 + 6.51142i −0.344580 + 0.0685412i
\(96\) 0 0
\(97\) 14.9417 + 2.97209i 0.154038 + 0.0306401i 0.271507 0.962437i \(-0.412478\pi\)
−0.117469 + 0.993077i \(0.537478\pi\)
\(98\) 0 0
\(99\) 36.3629 24.2969i 0.367302 0.245424i
\(100\) 0 0
\(101\) 132.191i 1.30882i −0.756140 0.654410i \(-0.772917\pi\)
0.756140 0.654410i \(-0.227083\pi\)
\(102\) 0 0
\(103\) 185.135 1.79743 0.898713 0.438536i \(-0.144503\pi\)
0.898713 + 0.438536i \(0.144503\pi\)
\(104\) 0 0
\(105\) −34.7454 52.0001i −0.330908 0.495239i
\(106\) 0 0
\(107\) 7.23785 36.3871i 0.0676434 0.340066i −0.932112 0.362169i \(-0.882036\pi\)
0.999756 + 0.0221030i \(0.00703617\pi\)
\(108\) 0 0
\(109\) −8.89084 44.6973i −0.0815673 0.410067i −0.999898 0.0142535i \(-0.995463\pi\)
0.918331 0.395813i \(-0.129537\pi\)
\(110\) 0 0
\(111\) 76.5889 184.902i 0.689990 1.66578i
\(112\) 0 0
\(113\) −72.6645 48.5529i −0.643049 0.429671i 0.190827 0.981624i \(-0.438883\pi\)
−0.833876 + 0.551952i \(0.813883\pi\)
\(114\) 0 0
\(115\) 8.90702 + 8.90702i 0.0774524 + 0.0774524i
\(116\) 0 0
\(117\) 181.809 75.3079i 1.55393 0.643657i
\(118\) 0 0
\(119\) 35.3739 + 43.5698i 0.297260 + 0.366132i
\(120\) 0 0
\(121\) −44.0450 106.334i −0.364008 0.878794i
\(122\) 0 0
\(123\) −282.785 + 282.785i −2.29906 + 2.29906i
\(124\) 0 0
\(125\) −74.3533 + 111.278i −0.594827 + 0.890221i
\(126\) 0 0
\(127\) −102.264 42.3590i −0.805226 0.333535i −0.0581782 0.998306i \(-0.518529\pi\)
−0.747047 + 0.664771i \(0.768529\pi\)
\(128\) 0 0
\(129\) −276.056 + 54.9109i −2.13997 + 0.425666i
\(130\) 0 0
\(131\) 44.0168 + 8.75549i 0.336006 + 0.0668358i 0.360210 0.932871i \(-0.382705\pi\)
−0.0242037 + 0.999707i \(0.507705\pi\)
\(132\) 0 0
\(133\) −25.1277 + 16.7898i −0.188930 + 0.126239i
\(134\) 0 0
\(135\) 170.448i 1.26258i
\(136\) 0 0
\(137\) 61.5009 0.448911 0.224456 0.974484i \(-0.427940\pi\)
0.224456 + 0.974484i \(0.427940\pi\)
\(138\) 0 0
\(139\) −48.5334 72.6354i −0.349161 0.522557i 0.614770 0.788706i \(-0.289249\pi\)
−0.963932 + 0.266149i \(0.914249\pi\)
\(140\) 0 0
\(141\) −7.36571 + 37.0299i −0.0522391 + 0.262623i
\(142\) 0 0
\(143\) 5.18359 + 26.0597i 0.0362489 + 0.182235i
\(144\) 0 0
\(145\) 33.5535 81.0053i 0.231403 0.558657i
\(146\) 0 0
\(147\) 164.608 + 109.987i 1.11978 + 0.748213i
\(148\) 0 0
\(149\) 132.640 + 132.640i 0.890200 + 0.890200i 0.994541 0.104342i \(-0.0332736\pi\)
−0.104342 + 0.994541i \(0.533274\pi\)
\(150\) 0 0
\(151\) 199.707 82.7215i 1.32257 0.547824i 0.394040 0.919093i \(-0.371077\pi\)
0.928525 + 0.371269i \(0.121077\pi\)
\(152\) 0 0
\(153\) 28.3829 + 304.636i 0.185509 + 1.99108i
\(154\) 0 0
\(155\) 38.6458 + 93.2993i 0.249328 + 0.601931i
\(156\) 0 0
\(157\) −111.042 + 111.042i −0.707276 + 0.707276i −0.965961 0.258686i \(-0.916711\pi\)
0.258686 + 0.965961i \(0.416711\pi\)
\(158\) 0 0
\(159\) −164.612 + 246.359i −1.03529 + 1.54943i
\(160\) 0 0
\(161\) 10.5373 + 4.36469i 0.0654490 + 0.0271099i
\(162\) 0 0
\(163\) −163.655 + 32.5530i −1.00402 + 0.199712i −0.669607 0.742715i \(-0.733538\pi\)
−0.334412 + 0.942427i \(0.608538\pi\)
\(164\) 0 0
\(165\) 45.1496 + 8.98081i 0.273634 + 0.0544291i
\(166\) 0 0
\(167\) 44.7752 29.9178i 0.268115 0.179149i −0.414244 0.910166i \(-0.635954\pi\)
0.682359 + 0.731017i \(0.260954\pi\)
\(168\) 0 0
\(169\) 49.4408i 0.292549i
\(170\) 0 0
\(171\) −164.753 −0.963468
\(172\) 0 0
\(173\) 37.3651 + 55.9209i 0.215983 + 0.323242i 0.923602 0.383352i \(-0.125231\pi\)
−0.707619 + 0.706594i \(0.750231\pi\)
\(174\) 0 0
\(175\) −7.53969 + 37.9046i −0.0430840 + 0.216598i
\(176\) 0 0
\(177\) 23.3685 + 117.481i 0.132025 + 0.663736i
\(178\) 0 0
\(179\) −96.0193 + 231.811i −0.536421 + 1.29503i 0.390785 + 0.920482i \(0.372203\pi\)
−0.927206 + 0.374552i \(0.877797\pi\)
\(180\) 0 0
\(181\) −14.2421 9.51629i −0.0786859 0.0525762i 0.515605 0.856826i \(-0.327567\pi\)
−0.594291 + 0.804250i \(0.702567\pi\)
\(182\) 0 0
\(183\) 152.422 + 152.422i 0.832905 + 0.832905i
\(184\) 0 0
\(185\) 129.747 53.7428i 0.701333 0.290502i
\(186\) 0 0
\(187\) −41.0889 4.26578i −0.219727 0.0228117i
\(188\) 0 0
\(189\) −59.0606 142.585i −0.312490 0.754417i
\(190\) 0 0
\(191\) −79.7646 + 79.7646i −0.417615 + 0.417615i −0.884381 0.466766i \(-0.845419\pi\)
0.466766 + 0.884381i \(0.345419\pi\)
\(192\) 0 0
\(193\) −11.3804 + 17.0319i −0.0589656 + 0.0882482i −0.859781 0.510663i \(-0.829400\pi\)
0.800815 + 0.598911i \(0.204400\pi\)
\(194\) 0 0
\(195\) 191.374 + 79.2697i 0.981406 + 0.406511i
\(196\) 0 0
\(197\) −40.4361 + 8.04325i −0.205260 + 0.0408287i −0.296649 0.954987i \(-0.595869\pi\)
0.0913895 + 0.995815i \(0.470869\pi\)
\(198\) 0 0
\(199\) −359.028 71.4150i −1.80416 0.358870i −0.825507 0.564392i \(-0.809110\pi\)
−0.978652 + 0.205523i \(0.934110\pi\)
\(200\) 0 0
\(201\) 75.0154 50.1237i 0.373211 0.249372i
\(202\) 0 0
\(203\) 79.3897i 0.391082i
\(204\) 0 0
\(205\) −280.624 −1.36890
\(206\) 0 0
\(207\) 34.5446 + 51.6997i 0.166882 + 0.249757i
\(208\) 0 0
\(209\) 4.33974 21.8173i 0.0207643 0.104389i
\(210\) 0 0
\(211\) −62.5770 314.596i −0.296574 1.49098i −0.785615 0.618716i \(-0.787653\pi\)
0.489041 0.872261i \(-0.337347\pi\)
\(212\) 0 0
\(213\) −102.585 + 247.663i −0.481621 + 1.16274i
\(214\) 0 0
\(215\) −164.219 109.728i −0.763811 0.510362i
\(216\) 0 0
\(217\) 64.6568 + 64.6568i 0.297958 + 0.297958i
\(218\) 0 0
\(219\) 298.414 123.607i 1.36262 0.564415i
\(220\) 0 0
\(221\) −177.592 54.8963i −0.803585 0.248399i
\(222\) 0 0
\(223\) 41.5859 + 100.397i 0.186484 + 0.450211i 0.989278 0.146045i \(-0.0466543\pi\)
−0.802794 + 0.596256i \(0.796654\pi\)
\(224\) 0 0
\(225\) −148.981 + 148.981i −0.662137 + 0.662137i
\(226\) 0 0
\(227\) 109.633 164.078i 0.482966 0.722810i −0.507335 0.861749i \(-0.669369\pi\)
0.990301 + 0.138939i \(0.0443693\pi\)
\(228\) 0 0
\(229\) −167.322 69.3072i −0.730665 0.302651i −0.0138399 0.999904i \(-0.504406\pi\)
−0.716825 + 0.697253i \(0.754406\pi\)
\(230\) 0 0
\(231\) 40.8808 8.13170i 0.176973 0.0352022i
\(232\) 0 0
\(233\) 5.74492 + 1.14274i 0.0246563 + 0.00490444i 0.207403 0.978256i \(-0.433499\pi\)
−0.182747 + 0.983160i \(0.558499\pi\)
\(234\) 0 0
\(235\) −22.0282 + 14.7188i −0.0937372 + 0.0626332i
\(236\) 0 0
\(237\) 615.941i 2.59891i
\(238\) 0 0
\(239\) −68.9414 −0.288458 −0.144229 0.989544i \(-0.546070\pi\)
−0.144229 + 0.989544i \(0.546070\pi\)
\(240\) 0 0
\(241\) −172.160 257.655i −0.714355 1.06911i −0.994040 0.109016i \(-0.965230\pi\)
0.279685 0.960092i \(-0.409770\pi\)
\(242\) 0 0
\(243\) −0.0479123 + 0.240872i −0.000197170 + 0.000991241i
\(244\) 0 0
\(245\) 27.1016 + 136.249i 0.110619 + 0.556117i
\(246\) 0 0
\(247\) 38.3050 92.4764i 0.155081 0.374399i
\(248\) 0 0
\(249\) 406.533 + 271.637i 1.63266 + 1.09091i
\(250\) 0 0
\(251\) −149.892 149.892i −0.597178 0.597178i 0.342382 0.939561i \(-0.388766\pi\)
−0.939561 + 0.342382i \(0.888766\pi\)
\(252\) 0 0
\(253\) −7.75623 + 3.21274i −0.0306571 + 0.0126986i
\(254\) 0 0
\(255\) −205.617 + 247.868i −0.806342 + 0.972033i
\(256\) 0 0
\(257\) 92.4689 + 223.240i 0.359801 + 0.868637i 0.995327 + 0.0965575i \(0.0307832\pi\)
−0.635526 + 0.772079i \(0.719217\pi\)
\(258\) 0 0
\(259\) 89.9150 89.9150i 0.347162 0.347162i
\(260\) 0 0
\(261\) 240.453 359.864i 0.921277 1.37879i
\(262\) 0 0
\(263\) 221.046 + 91.5602i 0.840479 + 0.348138i 0.761042 0.648702i \(-0.224688\pi\)
0.0794365 + 0.996840i \(0.474688\pi\)
\(264\) 0 0
\(265\) −203.916 + 40.5614i −0.769493 + 0.153062i
\(266\) 0 0
\(267\) 141.271 + 28.1005i 0.529103 + 0.105245i
\(268\) 0 0
\(269\) 9.41947 6.29389i 0.0350166 0.0233973i −0.537939 0.842984i \(-0.680797\pi\)
0.572955 + 0.819587i \(0.305797\pi\)
\(270\) 0 0
\(271\) 352.304i 1.30001i −0.759929 0.650007i \(-0.774766\pi\)
0.759929 0.650007i \(-0.225234\pi\)
\(272\) 0 0
\(273\) 187.557 0.687023
\(274\) 0 0
\(275\) −15.8044 23.6530i −0.0574707 0.0860109i
\(276\) 0 0
\(277\) −18.1940 + 91.4673i −0.0656823 + 0.330207i −0.999630 0.0272028i \(-0.991340\pi\)
0.933948 + 0.357410i \(0.116340\pi\)
\(278\) 0 0
\(279\) 97.2506 + 488.912i 0.348569 + 1.75237i
\(280\) 0 0
\(281\) 85.1913 205.670i 0.303172 0.731922i −0.696722 0.717341i \(-0.745359\pi\)
0.999894 0.0145802i \(-0.00464119\pi\)
\(282\) 0 0
\(283\) −104.017 69.5017i −0.367550 0.245589i 0.358055 0.933700i \(-0.383440\pi\)
−0.725605 + 0.688111i \(0.758440\pi\)
\(284\) 0 0
\(285\) −122.627 122.627i −0.430270 0.430270i
\(286\) 0 0
\(287\) −234.751 + 97.2369i −0.817946 + 0.338804i
\(288\) 0 0
\(289\) 163.085 238.588i 0.564308 0.825564i
\(290\) 0 0
\(291\) 30.2919 + 73.1311i 0.104096 + 0.251309i
\(292\) 0 0
\(293\) −84.7101 + 84.7101i −0.289113 + 0.289113i −0.836729 0.547617i \(-0.815535\pi\)
0.547617 + 0.836729i \(0.315535\pi\)
\(294\) 0 0
\(295\) −46.6969 + 69.8869i −0.158295 + 0.236905i
\(296\) 0 0
\(297\) 104.953 + 43.4730i 0.353378 + 0.146374i
\(298\) 0 0
\(299\) −37.0508 + 7.36986i −0.123916 + 0.0246484i
\(300\) 0 0
\(301\) −175.395 34.8883i −0.582709 0.115908i
\(302\) 0 0
\(303\) 571.095 381.594i 1.88480 1.25938i
\(304\) 0 0
\(305\) 151.257i 0.495926i
\(306\) 0 0
\(307\) −237.264 −0.772846 −0.386423 0.922322i \(-0.626289\pi\)
−0.386423 + 0.922322i \(0.626289\pi\)
\(308\) 0 0
\(309\) 534.427 + 799.826i 1.72954 + 2.58843i
\(310\) 0 0
\(311\) −62.8072 + 315.753i −0.201953 + 1.01528i 0.738213 + 0.674567i \(0.235670\pi\)
−0.940166 + 0.340717i \(0.889330\pi\)
\(312\) 0 0
\(313\) 61.4642 + 309.001i 0.196371 + 0.987225i 0.945703 + 0.325031i \(0.105375\pi\)
−0.749332 + 0.662194i \(0.769625\pi\)
\(314\) 0 0
\(315\) 82.8983 200.134i 0.263169 0.635347i
\(316\) 0 0
\(317\) −266.949 178.370i −0.842111 0.562681i 0.0580122 0.998316i \(-0.481524\pi\)
−0.900123 + 0.435635i \(0.856524\pi\)
\(318\) 0 0
\(319\) 41.3210 + 41.3210i 0.129533 + 0.129533i
\(320\) 0 0
\(321\) 178.094 73.7690i 0.554811 0.229810i
\(322\) 0 0
\(323\) 119.776 + 99.3590i 0.370823 + 0.307613i
\(324\) 0 0
\(325\) −48.9855 118.262i −0.150725 0.363882i
\(326\) 0 0
\(327\) 167.437 167.437i 0.512041 0.512041i
\(328\) 0 0
\(329\) −13.3272 + 19.9455i −0.0405082 + 0.0606247i
\(330\) 0 0
\(331\) −24.6962 10.2295i −0.0746109 0.0309049i 0.345066 0.938578i \(-0.387857\pi\)
−0.419677 + 0.907674i \(0.637857\pi\)
\(332\) 0 0
\(333\) 679.905 135.242i 2.04176 0.406131i
\(334\) 0 0
\(335\) 62.0916 + 12.3508i 0.185348 + 0.0368680i
\(336\) 0 0
\(337\) 406.888 271.874i 1.20738 0.806748i 0.221661 0.975124i \(-0.428852\pi\)
0.985723 + 0.168375i \(0.0538521\pi\)
\(338\) 0 0
\(339\) 454.084i 1.33948i
\(340\) 0 0
\(341\) −67.3056 −0.197377
\(342\) 0 0
\(343\) 159.752 + 239.086i 0.465750 + 0.697043i
\(344\) 0 0
\(345\) −12.7686 + 64.1922i −0.0370105 + 0.186064i
\(346\) 0 0
\(347\) 47.1829 + 237.204i 0.135974 + 0.683586i 0.987289 + 0.158932i \(0.0508052\pi\)
−0.851316 + 0.524654i \(0.824195\pi\)
\(348\) 0 0
\(349\) −15.1979 + 36.6909i −0.0435470 + 0.105132i −0.944156 0.329498i \(-0.893121\pi\)
0.900609 + 0.434629i \(0.143121\pi\)
\(350\) 0 0
\(351\) 425.025 + 283.993i 1.21090 + 0.809096i
\(352\) 0 0
\(353\) −451.955 451.955i −1.28033 1.28033i −0.940482 0.339843i \(-0.889626\pi\)
−0.339843 0.940482i \(-0.610374\pi\)
\(354\) 0 0
\(355\) −173.786 + 71.9846i −0.489538 + 0.202773i
\(356\) 0 0
\(357\) −86.1179 + 278.596i −0.241227 + 0.780381i
\(358\) 0 0
\(359\) −78.0349 188.393i −0.217367 0.524771i 0.777153 0.629311i \(-0.216663\pi\)
−0.994521 + 0.104540i \(0.966663\pi\)
\(360\) 0 0
\(361\) 196.009 196.009i 0.542962 0.542962i
\(362\) 0 0
\(363\) 332.244 497.238i 0.915272 1.36980i
\(364\) 0 0
\(365\) 209.398 + 86.7357i 0.573694 + 0.237632i
\(366\) 0 0
\(367\) 276.557 55.0107i 0.753563 0.149893i 0.196661 0.980472i \(-0.436990\pi\)
0.556901 + 0.830579i \(0.311990\pi\)
\(368\) 0 0
\(369\) −1358.60 270.243i −3.68185 0.732366i
\(370\) 0 0
\(371\) −156.527 + 104.588i −0.421906 + 0.281908i
\(372\) 0 0
\(373\) 340.976i 0.914144i −0.889430 0.457072i \(-0.848898\pi\)
0.889430 0.457072i \(-0.151102\pi\)
\(374\) 0 0
\(375\) −695.380 −1.85435
\(376\) 0 0
\(377\) 146.087 + 218.635i 0.387500 + 0.579935i
\(378\) 0 0
\(379\) 69.8686 351.253i 0.184350 0.926790i −0.772235 0.635337i \(-0.780861\pi\)
0.956585 0.291453i \(-0.0941387\pi\)
\(380\) 0 0
\(381\) −112.202 564.080i −0.294495 1.48052i
\(382\) 0 0
\(383\) −92.5645 + 223.470i −0.241683 + 0.583474i −0.997450 0.0713664i \(-0.977264\pi\)
0.755767 + 0.654840i \(0.227264\pi\)
\(384\) 0 0
\(385\) 24.3191 + 16.2495i 0.0631664 + 0.0422064i
\(386\) 0 0
\(387\) −689.377 689.377i −1.78134 1.78134i
\(388\) 0 0
\(389\) −619.174 + 256.470i −1.59171 + 0.659307i −0.990212 0.139570i \(-0.955428\pi\)
−0.601495 + 0.798877i \(0.705428\pi\)
\(390\) 0 0
\(391\) 6.06495 58.4189i 0.0155114 0.149409i
\(392\) 0 0
\(393\) 89.2370 + 215.437i 0.227066 + 0.548186i
\(394\) 0 0
\(395\) 305.618 305.618i 0.773716 0.773716i
\(396\) 0 0
\(397\) 248.868 372.457i 0.626871 0.938179i −0.373075 0.927801i \(-0.621697\pi\)
0.999946 0.0103776i \(-0.00330334\pi\)
\(398\) 0 0
\(399\) −145.071 60.0906i −0.363588 0.150603i
\(400\) 0 0
\(401\) 136.334 27.1185i 0.339985 0.0676272i −0.0221452 0.999755i \(-0.507050\pi\)
0.362130 + 0.932128i \(0.382050\pi\)
\(402\) 0 0
\(403\) −297.039 59.0847i −0.737069 0.146612i
\(404\) 0 0
\(405\) 245.339 163.930i 0.605775 0.404766i
\(406\) 0 0
\(407\) 93.5985i 0.229972i
\(408\) 0 0
\(409\) −404.559 −0.989142 −0.494571 0.869137i \(-0.664675\pi\)
−0.494571 + 0.869137i \(0.664675\pi\)
\(410\) 0 0
\(411\) 177.534 + 265.698i 0.431956 + 0.646467i
\(412\) 0 0
\(413\) −14.8474 + 74.6430i −0.0359502 + 0.180734i
\(414\) 0 0
\(415\) 66.9330 + 336.495i 0.161284 + 0.810831i
\(416\) 0 0
\(417\) 173.701 419.352i 0.416549 1.00564i
\(418\) 0 0
\(419\) 217.250 + 145.162i 0.518496 + 0.346448i 0.787123 0.616796i \(-0.211570\pi\)
−0.268627 + 0.963244i \(0.586570\pi\)
\(420\) 0 0
\(421\) 429.955 + 429.955i 1.02127 + 1.02127i 0.999769 + 0.0215010i \(0.00684449\pi\)
0.0215010 + 0.999769i \(0.493156\pi\)
\(422\) 0 0
\(423\) −120.821 + 50.0457i −0.285629 + 0.118311i
\(424\) 0 0
\(425\) 198.157 18.4623i 0.466251 0.0434406i
\(426\) 0 0
\(427\) 52.4110 + 126.531i 0.122742 + 0.296326i
\(428\) 0 0
\(429\) −97.6204 + 97.6204i −0.227553 + 0.227553i
\(430\) 0 0
\(431\) 355.752 532.421i 0.825412 1.23532i −0.143927 0.989588i \(-0.545973\pi\)
0.969339 0.245728i \(-0.0790269\pi\)
\(432\) 0 0
\(433\) −590.594 244.632i −1.36396 0.564971i −0.423816 0.905748i \(-0.639310\pi\)
−0.940144 + 0.340778i \(0.889310\pi\)
\(434\) 0 0
\(435\) 446.820 88.8780i 1.02717 0.204317i
\(436\) 0 0
\(437\) 31.0192 + 6.17010i 0.0709821 + 0.0141192i
\(438\) 0 0
\(439\) −586.307 + 391.758i −1.33555 + 0.892386i −0.998789 0.0492039i \(-0.984332\pi\)
−0.336761 + 0.941590i \(0.609332\pi\)
\(440\) 0 0
\(441\) 685.729i 1.55494i
\(442\) 0 0
\(443\) 317.185 0.715994 0.357997 0.933723i \(-0.383460\pi\)
0.357997 + 0.933723i \(0.383460\pi\)
\(444\) 0 0
\(445\) 56.1528 + 84.0386i 0.126186 + 0.188851i
\(446\) 0 0
\(447\) −190.145 + 955.924i −0.425381 + 2.13853i
\(448\) 0 0
\(449\) −47.9801 241.212i −0.106860 0.537222i −0.996716 0.0809796i \(-0.974195\pi\)
0.889856 0.456242i \(-0.150805\pi\)
\(450\) 0 0
\(451\) 71.5736 172.794i 0.158700 0.383135i
\(452\) 0 0
\(453\) 933.869 + 623.991i 2.06152 + 1.37746i
\(454\) 0 0
\(455\) 93.0622 + 93.0622i 0.204532 + 0.204532i
\(456\) 0 0
\(457\) 343.798 142.406i 0.752293 0.311610i 0.0266163 0.999646i \(-0.491527\pi\)
0.725677 + 0.688036i \(0.241527\pi\)
\(458\) 0 0
\(459\) −616.993 + 500.932i −1.34421 + 1.09135i
\(460\) 0 0
\(461\) 329.689 + 795.940i 0.715161 + 1.72655i 0.686683 + 0.726957i \(0.259066\pi\)
0.0284783 + 0.999594i \(0.490934\pi\)
\(462\) 0 0
\(463\) 386.172 386.172i 0.834065 0.834065i −0.154005 0.988070i \(-0.549217\pi\)
0.988070 + 0.154005i \(0.0492172\pi\)
\(464\) 0 0
\(465\) −291.516 + 436.285i −0.626917 + 0.938247i
\(466\) 0 0
\(467\) −374.194 154.996i −0.801272 0.331898i −0.0558061 0.998442i \(-0.517773\pi\)
−0.745466 + 0.666544i \(0.767773\pi\)
\(468\) 0 0
\(469\) 56.2210 11.1831i 0.119874 0.0238445i
\(470\) 0 0
\(471\) −800.273 159.184i −1.69909 0.337971i
\(472\) 0 0
\(473\) 109.449 73.1316i 0.231394 0.154612i
\(474\) 0 0
\(475\) 107.167i 0.225615i
\(476\) 0 0
\(477\) −1026.29 −2.15155
\(478\) 0 0
\(479\) −66.8122 99.9916i −0.139483 0.208751i 0.755151 0.655551i \(-0.227564\pi\)
−0.894634 + 0.446800i \(0.852564\pi\)
\(480\) 0 0
\(481\) −82.1661 + 413.077i −0.170823 + 0.858788i
\(482\) 0 0
\(483\) 11.5614 + 58.1230i 0.0239366 + 0.120338i
\(484\) 0 0
\(485\) −21.2560 + 51.3164i −0.0438267 + 0.105807i
\(486\) 0 0
\(487\) 673.901 + 450.287i 1.38378 + 0.924613i 0.999999 + 0.00118928i \(0.000378561\pi\)
0.383782 + 0.923424i \(0.374621\pi\)
\(488\) 0 0
\(489\) −613.058 613.058i −1.25370 1.25370i
\(490\) 0 0
\(491\) 139.166 57.6444i 0.283433 0.117402i −0.236438 0.971647i \(-0.575980\pi\)
0.519871 + 0.854245i \(0.325980\pi\)
\(492\) 0 0
\(493\) −391.836 + 116.609i −0.794799 + 0.236530i
\(494\) 0 0
\(495\) 61.0194 + 147.314i 0.123271 + 0.297604i
\(496\) 0 0
\(497\) −120.434 + 120.434i −0.242323 + 0.242323i
\(498\) 0 0
\(499\) −457.780 + 685.116i −0.917394 + 1.37298i 0.0104246 + 0.999946i \(0.496682\pi\)
−0.927819 + 0.373032i \(0.878318\pi\)
\(500\) 0 0
\(501\) 258.504 + 107.076i 0.515976 + 0.213724i
\(502\) 0 0
\(503\) −663.866 + 132.051i −1.31981 + 0.262527i −0.804233 0.594314i \(-0.797424\pi\)
−0.515580 + 0.856841i \(0.672424\pi\)
\(504\) 0 0
\(505\) 472.706 + 94.0270i 0.936051 + 0.186192i
\(506\) 0 0
\(507\) 213.596 142.720i 0.421293 0.281499i
\(508\) 0 0
\(509\) 340.603i 0.669161i −0.942367 0.334581i \(-0.891405\pi\)
0.942367 0.334581i \(-0.108595\pi\)
\(510\) 0 0
\(511\) 205.222 0.401609
\(512\) 0 0
\(513\) −237.761 355.834i −0.463471 0.693633i
\(514\) 0 0
\(515\) −131.686 + 662.030i −0.255701 + 1.28550i
\(516\) 0 0
\(517\) −3.44475 17.3179i −0.00666295 0.0334969i
\(518\) 0 0
\(519\) −133.730 + 322.852i −0.257668 + 0.622066i
\(520\) 0 0
\(521\) 374.731 + 250.387i 0.719253 + 0.480590i 0.860542 0.509379i \(-0.170125\pi\)
−0.141289 + 0.989968i \(0.545125\pi\)
\(522\) 0 0
\(523\) −425.914 425.914i −0.814367 0.814367i 0.170918 0.985285i \(-0.445327\pi\)
−0.985285 + 0.170918i \(0.945327\pi\)
\(524\) 0 0
\(525\) −185.521 + 76.8455i −0.353374 + 0.146372i
\(526\) 0 0
\(527\) 224.151 414.090i 0.425334 0.785749i
\(528\) 0 0
\(529\) 197.872 + 477.705i 0.374049 + 0.903033i
\(530\) 0 0
\(531\) −293.378 + 293.378i −0.552501 + 0.552501i
\(532\) 0 0
\(533\) 467.563 699.758i 0.877229 1.31287i
\(534\) 0 0
\(535\) 124.970 + 51.7641i 0.233588 + 0.0967554i
\(536\) 0 0
\(537\) −1278.66 + 254.340i −2.38111 + 0.473632i
\(538\) 0 0
\(539\) −90.8073 18.0627i −0.168474 0.0335115i
\(540\) 0 0
\(541\) −406.212 + 271.422i −0.750855 + 0.501705i −0.871140 0.491034i \(-0.836619\pi\)
0.120286 + 0.992739i \(0.461619\pi\)
\(542\) 0 0
\(543\) 88.9999i 0.163904i
\(544\) 0 0
\(545\) 166.158 0.304878
\(546\) 0 0
\(547\) 209.264 + 313.185i 0.382566 + 0.572551i 0.971916 0.235327i \(-0.0756161\pi\)
−0.589350 + 0.807878i \(0.700616\pi\)
\(548\) 0 0
\(549\) −145.662 + 732.292i −0.265322 + 1.33386i
\(550\) 0 0
\(551\) −42.9480 215.914i −0.0779455 0.391858i
\(552\) 0 0
\(553\) 149.761 361.556i 0.270816 0.653808i
\(554\) 0 0
\(555\) 606.720 + 405.397i 1.09319 + 0.730445i
\(556\) 0 0
\(557\) 58.1418 + 58.1418i 0.104384 + 0.104384i 0.757370 0.652986i \(-0.226484\pi\)
−0.652986 + 0.757370i \(0.726484\pi\)
\(558\) 0 0
\(559\) 547.229 226.670i 0.978943 0.405492i
\(560\) 0 0
\(561\) −100.182 189.828i −0.178577 0.338374i
\(562\) 0 0
\(563\) −93.7832 226.413i −0.166578 0.402154i 0.818444 0.574587i \(-0.194837\pi\)
−0.985021 + 0.172433i \(0.944837\pi\)
\(564\) 0 0
\(565\) 225.308 225.308i 0.398775 0.398775i
\(566\) 0 0
\(567\) 148.431 222.143i 0.261783 0.391787i
\(568\) 0 0
\(569\) −35.1685 14.5673i −0.0618076 0.0256015i 0.351565 0.936163i \(-0.385649\pi\)
−0.413373 + 0.910562i \(0.635649\pi\)
\(570\) 0 0
\(571\) 55.6344 11.0664i 0.0974332 0.0193807i −0.146133 0.989265i \(-0.546683\pi\)
0.243566 + 0.969884i \(0.421683\pi\)
\(572\) 0 0
\(573\) −574.857 114.346i −1.00324 0.199557i
\(574\) 0 0
\(575\) 33.6291 22.4702i 0.0584854 0.0390787i
\(576\) 0 0
\(577\) 711.158i 1.23251i 0.787547 + 0.616255i \(0.211351\pi\)
−0.787547 + 0.616255i \(0.788649\pi\)
\(578\) 0 0
\(579\) −106.433 −0.183823
\(580\) 0 0
\(581\) 172.587 + 258.295i 0.297052 + 0.444570i
\(582\) 0 0
\(583\) 27.0334 135.906i 0.0463694 0.233115i
\(584\) 0 0
\(585\) 139.975 + 703.704i 0.239274 + 1.20291i
\(586\) 0 0
\(587\) 358.692 865.959i 0.611060 1.47523i −0.250778 0.968045i \(-0.580686\pi\)
0.861838 0.507184i \(-0.169314\pi\)
\(588\) 0 0
\(589\) 210.823 + 140.868i 0.357934 + 0.239164i
\(590\) 0 0
\(591\) −151.475 151.475i −0.256303 0.256303i
\(592\) 0 0
\(593\) 858.785 355.720i 1.44820 0.599865i 0.486432 0.873719i \(-0.338298\pi\)
0.961772 + 0.273853i \(0.0882982\pi\)
\(594\) 0 0
\(595\) −180.964 + 95.5038i −0.304141 + 0.160511i
\(596\) 0 0
\(597\) −727.871 1757.24i −1.21921 2.94344i
\(598\) 0 0
\(599\) 278.647 278.647i 0.465187 0.465187i −0.435164 0.900351i \(-0.643310\pi\)
0.900351 + 0.435164i \(0.143310\pi\)
\(600\) 0 0
\(601\) 280.477 419.764i 0.466684 0.698442i −0.521235 0.853413i \(-0.674528\pi\)
0.987919 + 0.154971i \(0.0495284\pi\)
\(602\) 0 0
\(603\) 288.714 + 119.589i 0.478796 + 0.198324i
\(604\) 0 0
\(605\) 411.573 81.8669i 0.680285 0.135317i
\(606\) 0 0
\(607\) 302.742 + 60.2190i 0.498750 + 0.0992076i 0.438054 0.898949i \(-0.355668\pi\)
0.0606964 + 0.998156i \(0.480668\pi\)
\(608\) 0 0
\(609\) 342.982 229.173i 0.563189 0.376311i
\(610\) 0 0
\(611\) 79.4528i 0.130037i
\(612\) 0 0
\(613\) 116.450 0.189967 0.0949835 0.995479i \(-0.469720\pi\)
0.0949835 + 0.995479i \(0.469720\pi\)
\(614\) 0 0
\(615\) −810.075 1212.36i −1.31719 1.97132i
\(616\) 0 0
\(617\) −124.062 + 623.701i −0.201073 + 1.01086i 0.739987 + 0.672621i \(0.234831\pi\)
−0.941060 + 0.338239i \(0.890169\pi\)
\(618\) 0 0
\(619\) −114.897 577.626i −0.185617 0.933160i −0.955504 0.294980i \(-0.904687\pi\)
0.769886 0.638181i \(-0.220313\pi\)
\(620\) 0 0
\(621\) −61.8085 + 149.219i −0.0995306 + 0.240288i
\(622\) 0 0
\(623\) 76.0930 + 50.8437i 0.122140 + 0.0816111i
\(624\) 0 0
\(625\) −138.086 138.086i −0.220938 0.220938i
\(626\) 0 0
\(627\) 106.783 44.2311i 0.170309 0.0705441i
\(628\) 0 0
\(629\) −575.854 311.715i −0.915507 0.495573i
\(630\) 0 0
\(631\) 414.694 + 1001.16i 0.657201 + 1.58662i 0.802108 + 0.597179i \(0.203712\pi\)
−0.144906 + 0.989445i \(0.546288\pi\)
\(632\) 0 0
\(633\) 1178.49 1178.49i 1.86175 1.86175i
\(634\) 0 0
\(635\) 224.213 335.558i 0.353091 0.528438i
\(636\) 0 0
\(637\) −384.902 159.432i −0.604242 0.250285i
\(638\) 0 0
\(639\) −910.683 + 181.146i −1.42517 + 0.283484i
\(640\) 0 0
\(641\) −545.664 108.539i −0.851269 0.169328i −0.249873 0.968279i \(-0.580389\pi\)
−0.601397 + 0.798951i \(0.705389\pi\)
\(642\) 0 0
\(643\) 90.3509 60.3706i 0.140515 0.0938889i −0.483326 0.875440i \(-0.660571\pi\)
0.623841 + 0.781552i \(0.285571\pi\)
\(644\) 0 0
\(645\) 1026.22i 1.59103i
\(646\) 0 0
\(647\) −1175.55 −1.81693 −0.908463 0.417966i \(-0.862743\pi\)
−0.908463 + 0.417966i \(0.862743\pi\)
\(648\) 0 0
\(649\) −31.1226 46.5783i −0.0479547 0.0717693i
\(650\) 0 0
\(651\) −92.6884 + 465.976i −0.142379 + 0.715785i
\(652\) 0 0
\(653\) −132.779 667.525i −0.203337 1.02224i −0.938743 0.344617i \(-0.888009\pi\)
0.735407 0.677626i \(-0.236991\pi\)
\(654\) 0 0
\(655\) −62.6181 + 151.173i −0.0956001 + 0.230799i
\(656\) 0 0
\(657\) 930.246 + 621.571i 1.41590 + 0.946074i
\(658\) 0 0
\(659\) 542.829 + 542.829i 0.823716 + 0.823716i 0.986639 0.162923i \(-0.0520921\pi\)
−0.162923 + 0.986639i \(0.552092\pi\)
\(660\) 0 0
\(661\) 84.7509 35.1050i 0.128216 0.0531089i −0.317653 0.948207i \(-0.602895\pi\)
0.445869 + 0.895098i \(0.352895\pi\)
\(662\) 0 0
\(663\) −275.489 925.708i −0.415518 1.39624i
\(664\) 0 0
\(665\) −42.1659 101.797i −0.0634073 0.153079i
\(666\) 0 0
\(667\) −58.7489 + 58.7489i −0.0880793 + 0.0880793i
\(668\) 0 0
\(669\) −313.694 + 469.476i −0.468899 + 0.701757i
\(670\) 0 0
\(671\) −93.1365 38.5784i −0.138803 0.0574939i
\(672\) 0 0
\(673\) −166.460 + 33.1109i −0.247340 + 0.0491990i −0.317203 0.948358i \(-0.602744\pi\)
0.0698631 + 0.997557i \(0.477744\pi\)
\(674\) 0 0
\(675\) −536.768 106.770i −0.795213 0.158178i
\(676\) 0 0
\(677\) −378.084 + 252.628i −0.558470 + 0.373158i −0.802539 0.596600i \(-0.796518\pi\)
0.244068 + 0.969758i \(0.421518\pi\)
\(678\) 0 0
\(679\) 50.2930i 0.0740692i
\(680\) 0 0
\(681\) 1025.33 1.50563
\(682\) 0 0
\(683\) 746.009 + 1116.48i 1.09225 + 1.63467i 0.698779 + 0.715337i \(0.253727\pi\)
0.393474 + 0.919336i \(0.371273\pi\)
\(684\) 0 0
\(685\) −43.7454 + 219.923i −0.0638619 + 0.321055i
\(686\) 0 0
\(687\) −183.584 922.940i −0.267226 1.34343i
\(688\) 0 0
\(689\) 238.612 576.061i 0.346317 0.836082i
\(690\) 0 0
\(691\) 163.058 + 108.952i 0.235975 + 0.157673i 0.667936 0.744219i \(-0.267178\pi\)
−0.431961 + 0.901892i \(0.642178\pi\)
\(692\) 0 0
\(693\) 102.089 + 102.089i 0.147315 + 0.147315i
\(694\) 0 0
\(695\) 294.261 121.887i 0.423397 0.175377i
\(696\) 0 0
\(697\) 824.730 + 1015.81i 1.18326 + 1.45741i
\(698\) 0 0
\(699\) 11.6469 + 28.1181i 0.0166622 + 0.0402262i
\(700\) 0 0
\(701\) −164.717 + 164.717i −0.234975 + 0.234975i −0.814766 0.579791i \(-0.803134\pi\)
0.579791 + 0.814766i \(0.303134\pi\)
\(702\) 0 0
\(703\) 195.897 293.181i 0.278659 0.417043i
\(704\) 0 0
\(705\) −127.177 52.6786i −0.180393 0.0747214i
\(706\) 0 0
\(707\) 428.013 85.1370i 0.605393 0.120420i
\(708\) 0 0
\(709\) 737.675 + 146.733i 1.04044 + 0.206957i 0.685608 0.727971i \(-0.259537\pi\)
0.354836 + 0.934928i \(0.384537\pi\)
\(710\) 0 0
\(711\) 1773.92 1185.29i 2.49496 1.66708i
\(712\) 0 0
\(713\) 95.6929i 0.134212i
\(714\) 0 0
\(715\) −96.8747 −0.135489
\(716\) 0 0
\(717\) −199.012 297.843i −0.277562 0.415402i
\(718\) 0 0
\(719\) 104.310 524.403i 0.145077 0.729351i −0.837929 0.545779i \(-0.816234\pi\)
0.983006 0.183572i \(-0.0587661\pi\)
\(720\) 0 0
\(721\) 119.236 + 599.437i 0.165375 + 0.831397i
\(722\) 0 0
\(723\) 616.159 1487.54i 0.852225 2.05745i
\(724\) 0 0
\(725\) −234.081 156.408i −0.322870 0.215735i
\(726\) 0 0
\(727\) 883.793 + 883.793i 1.21567 + 1.21567i 0.969133 + 0.246538i \(0.0792932\pi\)
0.246538 + 0.969133i \(0.420707\pi\)
\(728\) 0 0
\(729\) −674.098 + 279.220i −0.924688 + 0.383018i
\(730\) 0 0
\(731\) 85.4300 + 916.927i 0.116867 + 1.25435i
\(732\) 0 0
\(733\) 249.714 + 602.864i 0.340674 + 0.822460i 0.997648 + 0.0685469i \(0.0218363\pi\)
−0.656974 + 0.753914i \(0.728164\pi\)
\(734\) 0 0
\(735\) −510.393 + 510.393i −0.694412 + 0.694412i
\(736\) 0 0
\(737\) −23.4415 + 35.0827i −0.0318067 + 0.0476021i
\(738\) 0 0
\(739\) −710.562 294.324i −0.961518 0.398274i −0.153970 0.988075i \(-0.549206\pi\)
−0.807548 + 0.589802i \(0.799206\pi\)
\(740\) 0 0
\(741\) 510.094 101.464i 0.688386 0.136929i
\(742\) 0 0
\(743\) −66.1835 13.1647i −0.0890760 0.0177183i 0.150351 0.988633i \(-0.451960\pi\)
−0.239427 + 0.970914i \(0.576960\pi\)
\(744\) 0 0
\(745\) −568.657 + 379.965i −0.763298 + 0.510020i
\(746\) 0 0
\(747\) 1693.55i 2.26713i
\(748\) 0 0
\(749\) 122.477 0.163521
\(750\) 0 0
\(751\) −155.202 232.276i −0.206660 0.309289i 0.713632 0.700521i \(-0.247049\pi\)
−0.920292 + 0.391232i \(0.872049\pi\)
\(752\) 0 0
\(753\) 214.877 1080.26i 0.285361 1.43461i
\(754\) 0 0
\(755\) 153.755 + 772.980i 0.203649 + 1.02381i
\(756\) 0 0
\(757\) −222.495 + 537.150i −0.293917 + 0.709577i 0.706082 + 0.708130i \(0.250461\pi\)
−0.999999 + 0.00144764i \(0.999539\pi\)
\(758\) 0 0
\(759\) −36.2696 24.2346i −0.0477860 0.0319296i
\(760\) 0 0
\(761\) −64.7670 64.7670i −0.0851078 0.0851078i 0.663271 0.748379i \(-0.269168\pi\)
−0.748379 + 0.663271i \(0.769168\pi\)
\(762\) 0 0
\(763\) 138.996 57.5742i 0.182171 0.0754577i
\(764\) 0 0
\(765\) −1109.55 115.191i −1.45039 0.150577i
\(766\) 0 0
\(767\) −96.4639 232.884i −0.125768 0.303630i
\(768\) 0 0
\(769\) −8.68658 + 8.68658i −0.0112959 + 0.0112959i −0.712732 0.701436i \(-0.752543\pi\)
0.701436 + 0.712732i \(0.252543\pi\)
\(770\) 0 0
\(771\) −697.518 + 1043.91i −0.904693 + 1.35397i
\(772\) 0 0
\(773\) −256.725 106.339i −0.332115 0.137567i 0.210393 0.977617i \(-0.432526\pi\)
−0.542509 + 0.840050i \(0.682526\pi\)
\(774\) 0 0
\(775\) 318.023 63.2586i 0.410352 0.0816240i
\(776\) 0 0
\(777\) 648.010 + 128.897i 0.833990 + 0.165891i
\(778\) 0 0
\(779\) −585.842 + 391.447i −0.752044 + 0.502500i
\(780\) 0 0
\(781\) 125.368i 0.160523i
\(782\) 0 0
\(783\) 1124.24 1.43581
\(784\) 0 0
\(785\) −318.096 476.064i −0.405217 0.606451i
\(786\) 0 0
\(787\) 25.8529 129.971i 0.0328499 0.165148i −0.960878 0.276971i \(-0.910669\pi\)
0.993728 + 0.111824i \(0.0356692\pi\)
\(788\) 0 0
\(789\) 242.529 + 1219.28i 0.307388 + 1.54534i
\(790\) 0 0
\(791\) 110.407 266.546i 0.139579 0.336974i
\(792\) 0 0
\(793\) −377.172 252.018i −0.475626 0.317803i
\(794\) 0 0
\(795\) −763.875 763.875i −0.960850 0.960850i
\(796\) 0 0
\(797\) 1137.33 471.097i 1.42701 0.591087i 0.470400 0.882453i \(-0.344110\pi\)
0.956612 + 0.291366i \(0.0941097\pi\)
\(798\) 0 0
\(799\) 118.019 + 36.4812i 0.147708 + 0.0456586i
\(800\) 0 0
\(801\) 190.926 + 460.937i 0.238360 + 0.575452i
\(802\) 0 0
\(803\) −106.815 + 106.815i −0.133020 + 0.133020i
\(804\) 0 0
\(805\) −23.1030 + 34.5761i −0.0286994 + 0.0429516i
\(806\) 0 0
\(807\) 54.3821 + 22.5258i 0.0673880 + 0.0279130i
\(808\) 0 0
\(809\) −1547.48 + 307.812i −1.91282 + 0.380485i −0.999634 0.0270477i \(-0.991389\pi\)
−0.913191 + 0.407532i \(0.866389\pi\)
\(810\) 0 0
\(811\) −590.002 117.359i −0.727499 0.144709i −0.182573 0.983192i \(-0.558442\pi\)
−0.544926 + 0.838484i \(0.683442\pi\)
\(812\) 0 0
\(813\) 1522.03 1016.99i 1.87212 1.25091i
\(814\) 0 0
\(815\) 608.375i 0.746472i
\(816\) 0 0
\(817\) −495.892 −0.606966
\(818\) 0 0
\(819\) 360.928 + 540.168i 0.440694 + 0.659545i
\(820\) 0 0
\(821\) 153.360 770.993i 0.186797 0.939090i −0.767687 0.640826i \(-0.778592\pi\)
0.954483 0.298265i \(-0.0964078\pi\)
\(822\) 0 0
\(823\) 54.7382 + 275.188i 0.0665106 + 0.334371i 0.999686 0.0250494i \(-0.00797432\pi\)
−0.933176 + 0.359421i \(0.882974\pi\)
\(824\) 0 0
\(825\) 56.5640 136.558i 0.0685625 0.165524i
\(826\) 0 0
\(827\) −1229.32 821.409i −1.48649 0.993239i −0.992297 0.123886i \(-0.960464\pi\)
−0.494191 0.869354i \(-0.664536\pi\)
\(828\) 0 0
\(829\) −331.030 331.030i −0.399312 0.399312i 0.478678 0.877990i \(-0.341116\pi\)
−0.877990 + 0.478678i \(0.841116\pi\)
\(830\) 0 0
\(831\) −447.681 + 185.435i −0.538725 + 0.223147i
\(832\) 0 0
\(833\) 413.548 498.526i 0.496456 0.598471i
\(834\) 0 0
\(835\) 75.1357 + 181.394i 0.0899828 + 0.217238i
\(836\) 0 0
\(837\) −915.607 + 915.607i −1.09392 + 1.09392i
\(838\) 0 0
\(839\) 117.506 175.861i 0.140055 0.209608i −0.754810 0.655943i \(-0.772271\pi\)
0.894866 + 0.446335i \(0.147271\pi\)
\(840\) 0 0
\(841\) −242.689 100.525i −0.288572 0.119530i
\(842\) 0 0
\(843\) 1134.46 225.659i 1.34574 0.267685i
\(844\) 0 0
\(845\) 176.797 + 35.1671i 0.209227 + 0.0416179i
\(846\) 0 0
\(847\) 315.926 211.095i 0.372994 0.249226i
\(848\) 0 0
\(849\) 650.006i 0.765613i
\(850\) 0 0
\(851\) −133.075 −0.156375
\(852\) 0 0
\(853\) 556.064 + 832.209i 0.651892 + 0.975626i 0.999281 + 0.0379048i \(0.0120684\pi\)
−0.347389 + 0.937721i \(0.612932\pi\)
\(854\) 0 0
\(855\) 117.188 589.146i 0.137062 0.689060i
\(856\) 0 0
\(857\) 145.210 + 730.021i 0.169440 + 0.851833i 0.968199 + 0.250181i \(0.0804903\pi\)
−0.798759 + 0.601651i \(0.794510\pi\)
\(858\) 0 0
\(859\) −374.100 + 903.157i −0.435506 + 1.05141i 0.541977 + 0.840393i \(0.317676\pi\)
−0.977483 + 0.211012i \(0.932324\pi\)
\(860\) 0 0
\(861\) −1097.74 733.485i −1.27496 0.851899i
\(862\) 0 0
\(863\) −799.269 799.269i −0.926152 0.926152i 0.0713024 0.997455i \(-0.477284\pi\)
−0.997455 + 0.0713024i \(0.977284\pi\)
\(864\) 0 0
\(865\) −226.547 + 93.8388i −0.261904 + 0.108484i
\(866\) 0 0
\(867\) 1501.53 + 15.8356i 1.73187 + 0.0182649i
\(868\) 0 0
\(869\) 110.236 + 266.132i 0.126853 + 0.306251i
\(870\) 0 0
\(871\) −134.252 + 134.252i −0.154135 + 0.154135i
\(872\) 0 0
\(873\) −152.326 + 227.972i −0.174486 + 0.261136i
\(874\) 0 0
\(875\) −408.186 169.076i −0.466499 0.193230i
\(876\) 0 0
\(877\) 1320.03 262.571i 1.50517 0.299397i 0.627483 0.778630i \(-0.284085\pi\)
0.877688 + 0.479233i \(0.159085\pi\)
\(878\) 0 0
\(879\) −610.499 121.436i −0.694538 0.138152i
\(880\) 0 0
\(881\) −880.918 + 588.611i −0.999907 + 0.668116i −0.943872 0.330312i \(-0.892846\pi\)
−0.0560352 + 0.998429i \(0.517846\pi\)
\(882\) 0 0
\(883\) 658.553i 0.745813i −0.927869 0.372907i \(-0.878361\pi\)
0.927869 0.372907i \(-0.121639\pi\)
\(884\) 0 0
\(885\) −436.727 −0.493477
\(886\) 0 0
\(887\) 370.614 + 554.662i 0.417828 + 0.625324i 0.979358 0.202132i \(-0.0647871\pi\)
−0.561530 + 0.827456i \(0.689787\pi\)
\(888\) 0 0
\(889\) 71.2891 358.395i 0.0801902 0.403143i
\(890\) 0 0
\(891\) 38.3658 + 192.878i 0.0430592 + 0.216473i
\(892\) 0 0
\(893\) −25.4555 + 61.4550i −0.0285056 + 0.0688186i
\(894\) 0 0
\(895\) −760.643 508.245i −0.849880 0.567872i
\(896\) 0 0
\(897\) −138.794 138.794i −0.154731 0.154731i
\(898\) 0 0
\(899\) −615.383 + 254.900i −0.684519 + 0.283537i
\(900\) 0 0
\(901\) 746.115 + 618.934i 0.828097 + 0.686941i
\(902\) 0 0
\(903\) −355.586 858.460i −0.393783 0.950676i
\(904\) 0 0
\(905\) 44.1600 44.1600i 0.0487956 0.0487956i
\(906\) 0 0
\(907\) 100.245 150.028i 0.110524 0.165411i −0.772084 0.635521i \(-0.780786\pi\)
0.882608 + 0.470109i \(0.155786\pi\)
\(908\) 0 0
\(909\) 2197.99 + 910.437i 2.41803 + 1.00158i
\(910\) 0 0
\(911\) −1620.68 + 322.374i −1.77901 + 0.353868i −0.971693 0.236246i \(-0.924083\pi\)
−0.807320 + 0.590114i \(0.799083\pi\)
\(912\) 0 0
\(913\) −224.267 44.6096i −0.245638 0.0488604i
\(914\) 0 0
\(915\) −653.467 + 436.633i −0.714172 + 0.477194i
\(916\) 0 0
\(917\) 148.158i 0.161569i
\(918\) 0 0
\(919\) 630.155 0.685697 0.342848 0.939391i \(-0.388608\pi\)
0.342848 + 0.939391i \(0.388608\pi\)
\(920\) 0 0
\(921\) −684.906 1025.03i −0.743655 1.11296i
\(922\) 0 0
\(923\) 110.055 553.286i 0.119237 0.599443i
\(924\) 0 0
\(925\) −87.9706 442.258i −0.0951034 0.478117i
\(926\) 0 0
\(927\) −1275.08 + 3078.31i −1.37549 + 3.32073i
\(928\) 0 0
\(929\) −1303.36 870.877i −1.40297 0.937435i −0.999751 0.0223314i \(-0.992891\pi\)
−0.403220 0.915103i \(-0.632109\pi\)
\(930\) 0 0
\(931\) 246.634 + 246.634i 0.264913 + 0.264913i
\(932\) 0 0
\(933\) −1545.43 + 640.139i −1.65641 + 0.686109i
\(934\) 0 0
\(935\) 44.4806 143.897i 0.0475728 0.153900i
\(936\) 0 0
\(937\) −291.961 704.857i −0.311591 0.752248i −0.999646 0.0265897i \(-0.991535\pi\)
0.688055 0.725659i \(-0.258465\pi\)
\(938\) 0 0
\(939\) −1157.53 + 1157.53i −1.23273 + 1.23273i
\(940\) 0 0
\(941\) −656.274 + 982.184i −0.697422 + 1.04377i 0.298575 + 0.954386i \(0.403489\pi\)
−0.995998 + 0.0893803i \(0.971511\pi\)
\(942\) 0 0
\(943\) 245.673 + 101.761i 0.260523 + 0.107912i
\(944\) 0 0
\(945\) 551.884 109.776i 0.584004 0.116166i
\(946\) 0 0
\(947\) 1709.91 + 340.121i 1.80560 + 0.359157i 0.979037 0.203684i \(-0.0652914\pi\)
0.826566 + 0.562840i \(0.190291\pi\)
\(948\) 0 0
\(949\) −565.172 + 377.636i −0.595544 + 0.397930i
\(950\) 0 0
\(951\) 1668.18i 1.75413i
\(952\) 0 0
\(953\) −1007.14 −1.05681 −0.528405 0.848992i \(-0.677210\pi\)
−0.528405 + 0.848992i \(0.677210\pi\)
\(954\) 0 0
\(955\) −228.496 341.969i −0.239263 0.358083i
\(956\) 0 0
\(957\) −59.2356 + 297.797i −0.0618971 + 0.311178i
\(958\) 0 0
\(959\) 39.6094 + 199.130i 0.0413028 + 0.207643i
\(960\) 0 0
\(961\) −74.1731 + 179.070i −0.0771833 + 0.186337i
\(962\) 0 0
\(963\) 555.174 + 370.955i 0.576505 + 0.385208i
\(964\) 0 0
\(965\) −52.8101 52.8101i −0.0547255 0.0547255i
\(966\) 0 0
\(967\) −499.135 + 206.749i −0.516169 + 0.213804i −0.625533 0.780198i \(-0.715118\pi\)
0.109364 + 0.994002i \(0.465118\pi\)
\(968\) 0 0
\(969\) −83.4988 + 804.278i −0.0861700 + 0.830008i
\(970\) 0 0
\(971\) −153.655 370.956i −0.158244 0.382035i 0.824795 0.565432i \(-0.191291\pi\)
−0.983039 + 0.183397i \(0.941291\pi\)
\(972\) 0 0
\(973\) 203.924 203.924i 0.209583 0.209583i
\(974\) 0 0
\(975\) 369.511 553.013i 0.378986 0.567193i
\(976\) 0 0
\(977\) 880.902 + 364.881i 0.901639 + 0.373471i 0.784850 0.619686i \(-0.212740\pi\)
0.116789 + 0.993157i \(0.462740\pi\)
\(978\) 0 0
\(979\) −66.0685 + 13.1418i −0.0674857 + 0.0134237i
\(980\) 0 0
\(981\) 804.433 + 160.012i 0.820014 + 0.163111i
\(982\) 0 0
\(983\) −1186.50 + 792.797i −1.20702 + 0.806507i −0.985670 0.168686i \(-0.946048\pi\)
−0.221354 + 0.975194i \(0.571048\pi\)
\(984\) 0 0
\(985\) 150.318i 0.152607i
\(986\) 0 0
\(987\) −124.641 −0.126282
\(988\) 0 0
\(989\) 103.976 + 155.611i 0.105133 + 0.157342i
\(990\) 0 0
\(991\) −54.9030 + 276.016i −0.0554016 + 0.278523i −0.998549 0.0538524i \(-0.982850\pi\)
0.943147 + 0.332375i \(0.107850\pi\)
\(992\) 0 0
\(993\) −27.0964 136.223i −0.0272874 0.137183i
\(994\) 0 0
\(995\) 510.751 1233.06i 0.513317 1.23926i
\(996\) 0 0
\(997\) −447.153 298.778i −0.448499 0.299677i 0.310734 0.950497i \(-0.399425\pi\)
−0.759232 + 0.650820i \(0.774425\pi\)
\(998\) 0 0
\(999\) 1273.29 + 1273.29i 1.27456 + 1.27456i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 272.3.bh.b.209.1 8
4.3 odd 2 17.3.e.b.5.1 8
12.11 even 2 153.3.p.a.73.1 8
17.7 odd 16 inner 272.3.bh.b.177.1 8
20.3 even 4 425.3.t.d.124.1 8
20.7 even 4 425.3.t.b.124.1 8
20.19 odd 2 425.3.u.a.226.1 8
68.3 even 16 289.3.e.n.249.1 8
68.7 even 16 17.3.e.b.7.1 yes 8
68.11 even 16 289.3.e.h.214.1 8
68.15 odd 8 289.3.e.e.224.1 8
68.19 odd 8 289.3.e.a.224.1 8
68.23 even 16 289.3.e.f.214.1 8
68.27 even 16 289.3.e.g.75.1 8
68.31 even 16 289.3.e.j.249.1 8
68.39 even 16 289.3.e.e.40.1 8
68.43 odd 8 289.3.e.j.65.1 8
68.47 odd 4 289.3.e.h.131.1 8
68.55 odd 4 289.3.e.f.131.1 8
68.59 odd 8 289.3.e.n.65.1 8
68.63 even 16 289.3.e.a.40.1 8
68.67 odd 2 289.3.e.g.158.1 8
204.143 odd 16 153.3.p.a.109.1 8
340.7 odd 16 425.3.t.d.24.1 8
340.143 odd 16 425.3.t.b.24.1 8
340.279 even 16 425.3.u.a.126.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
17.3.e.b.5.1 8 4.3 odd 2
17.3.e.b.7.1 yes 8 68.7 even 16
153.3.p.a.73.1 8 12.11 even 2
153.3.p.a.109.1 8 204.143 odd 16
272.3.bh.b.177.1 8 17.7 odd 16 inner
272.3.bh.b.209.1 8 1.1 even 1 trivial
289.3.e.a.40.1 8 68.63 even 16
289.3.e.a.224.1 8 68.19 odd 8
289.3.e.e.40.1 8 68.39 even 16
289.3.e.e.224.1 8 68.15 odd 8
289.3.e.f.131.1 8 68.55 odd 4
289.3.e.f.214.1 8 68.23 even 16
289.3.e.g.75.1 8 68.27 even 16
289.3.e.g.158.1 8 68.67 odd 2
289.3.e.h.131.1 8 68.47 odd 4
289.3.e.h.214.1 8 68.11 even 16
289.3.e.j.65.1 8 68.43 odd 8
289.3.e.j.249.1 8 68.31 even 16
289.3.e.n.65.1 8 68.59 odd 8
289.3.e.n.249.1 8 68.3 even 16
425.3.t.b.24.1 8 340.143 odd 16
425.3.t.b.124.1 8 20.7 even 4
425.3.t.d.24.1 8 340.7 odd 16
425.3.t.d.124.1 8 20.3 even 4
425.3.u.a.126.1 8 340.279 even 16
425.3.u.a.226.1 8 20.19 odd 2