Properties

Label 289.3.e.e.224.1
Level $289$
Weight $3$
Character 289.224
Analytic conductor $7.875$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [289,3,Mod(40,289)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("289.40"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(289, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([15])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 289 = 17^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 289.e (of order \(16\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-8,16,8,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.87467964001\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{16})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 17)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 224.1
Root \(0.923880 + 0.382683i\) of defining polynomial
Character \(\chi\) \(=\) 289.224
Dual form 289.3.e.e.40.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.63099 + 1.08979i) q^{2} +(5.09606 + 1.01367i) q^{3} +(2.90602 - 2.90602i) q^{4} +(2.02560 + 3.03153i) q^{5} +(-14.5124 + 2.88669i) q^{6} +(1.83409 - 2.74491i) q^{7} +(-0.119585 + 0.288703i) q^{8} +(16.6274 + 6.88730i) q^{9} +(-8.63307 - 5.76843i) q^{10} +(-0.474066 - 2.38329i) q^{11} +(17.7550 - 11.8635i) q^{12} +(7.73173 + 7.73173i) q^{13} +(-1.83409 + 9.22059i) q^{14} +(7.24963 + 17.5022i) q^{15} +15.5490i q^{16} -51.2522 q^{18} +(8.45745 - 3.50319i) q^{19} +(14.6961 + 2.92324i) q^{20} +(12.1291 - 12.1291i) q^{21} +(3.84455 + 5.75378i) q^{22} +(3.38849 - 0.674012i) q^{23} +(-0.902059 + 1.35003i) q^{24} +(4.47998 - 10.8156i) q^{25} +(-28.7680 - 11.9161i) q^{26} +(38.8707 + 25.9726i) q^{27} +(-2.64686 - 13.3067i) q^{28} +(-19.9953 + 13.3605i) q^{29} +(-38.1474 - 38.1474i) q^{30} +(5.40360 - 27.1657i) q^{31} +(-17.4235 - 42.0641i) q^{32} -12.6260i q^{33} +12.0364 q^{35} +(68.3342 - 28.3049i) q^{36} +(37.7780 + 7.51452i) q^{37} +(-18.4337 + 18.4337i) q^{38} +(31.5639 + 47.2388i) q^{39} +(-1.11744 + 0.222273i) q^{40} +(-42.7611 + 63.9965i) q^{41} +(-18.6933 + 45.1295i) q^{42} +(-50.0470 - 20.7301i) q^{43} +(-8.30354 - 5.54825i) q^{44} +(12.8015 + 64.3574i) q^{45} +(-8.18054 + 5.46606i) q^{46} +(5.13810 + 5.13810i) q^{47} +(-15.7616 + 79.2388i) q^{48} +(14.5808 + 35.2013i) q^{49} +33.3380i q^{50} +44.9371 q^{52} +(-52.6837 + 21.8223i) q^{53} +(-130.573 - 25.9726i) q^{54} +(6.26475 - 6.26475i) q^{55} +(0.573134 + 0.857755i) q^{56} +(46.6508 - 9.27942i) q^{57} +(38.0474 - 56.9419i) q^{58} +(-8.82213 + 21.2985i) q^{59} +(71.9292 + 29.7940i) q^{60} +(34.4943 + 23.0484i) q^{61} +(15.3882 + 77.3615i) q^{62} +(49.4011 - 33.0088i) q^{63} +(47.7028 + 47.7028i) q^{64} +(-7.77755 + 39.1004i) q^{65} +(13.7596 + 33.2187i) q^{66} +17.3637i q^{67} +17.9512 q^{69} +(-31.6676 + 13.1172i) q^{70} +(50.6009 + 10.0651i) q^{71} +(-3.97676 + 3.97676i) q^{72} +(-34.5368 - 51.6879i) q^{73} +(-107.583 + 21.3995i) q^{74} +(33.7937 - 50.5759i) q^{75} +(14.3972 - 34.7579i) q^{76} +(-7.41140 - 3.06990i) q^{77} +(-134.525 - 89.8865i) q^{78} +(-23.1267 - 116.266i) q^{79} +(-47.1374 + 31.4962i) q^{80} +(57.2255 + 57.2255i) q^{81} +(42.7611 - 214.975i) q^{82} +(-36.0104 - 86.9369i) q^{83} -70.4946i q^{84} +154.264 q^{86} +(-115.441 + 47.8171i) q^{87} +(0.744754 + 0.148141i) q^{88} +(-19.6021 + 19.6021i) q^{89} +(-103.817 - 155.373i) q^{90} +(35.4036 - 7.04221i) q^{91} +(7.88832 - 11.8057i) q^{92} +(55.0742 - 132.961i) q^{93} +(-19.1177 - 7.91883i) q^{94} +(27.7515 + 18.5429i) q^{95} +(-46.1522 - 232.023i) q^{96} +(12.6670 - 8.46379i) q^{97} +(-76.7240 - 76.7240i) q^{98} +(8.53195 - 42.8930i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{2} + 16 q^{3} + 8 q^{4} + 8 q^{5} - 40 q^{6} + 16 q^{7} - 8 q^{8} + 56 q^{9} - 16 q^{10} + 32 q^{12} - 16 q^{14} + 80 q^{15} - 136 q^{18} + 80 q^{19} + 48 q^{20} + 64 q^{21} + 40 q^{22} + 16 q^{23}+ \cdots + 144 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/289\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{1}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.63099 + 1.08979i −1.31549 + 0.544895i −0.926482 0.376338i \(-0.877183\pi\)
−0.389011 + 0.921233i \(0.627183\pi\)
\(3\) 5.09606 + 1.01367i 1.69869 + 0.337890i 0.946903 0.321519i \(-0.104193\pi\)
0.751784 + 0.659409i \(0.229193\pi\)
\(4\) 2.90602 2.90602i 0.726505 0.726505i
\(5\) 2.02560 + 3.03153i 0.405121 + 0.606306i 0.976795 0.214174i \(-0.0687061\pi\)
−0.571675 + 0.820480i \(0.693706\pi\)
\(6\) −14.5124 + 2.88669i −2.41873 + 0.481115i
\(7\) 1.83409 2.74491i 0.262013 0.392130i −0.677016 0.735968i \(-0.736727\pi\)
0.939029 + 0.343838i \(0.111727\pi\)
\(8\) −0.119585 + 0.288703i −0.0149481 + 0.0360878i
\(9\) 16.6274 + 6.88730i 1.84749 + 0.765255i
\(10\) −8.63307 5.76843i −0.863307 0.576843i
\(11\) −0.474066 2.38329i −0.0430969 0.216663i 0.953236 0.302228i \(-0.0977304\pi\)
−0.996333 + 0.0855651i \(0.972730\pi\)
\(12\) 17.7550 11.8635i 1.47958 0.988626i
\(13\) 7.73173 + 7.73173i 0.594748 + 0.594748i 0.938910 0.344162i \(-0.111837\pi\)
−0.344162 + 0.938910i \(0.611837\pi\)
\(14\) −1.83409 + 9.22059i −0.131006 + 0.658614i
\(15\) 7.24963 + 17.5022i 0.483309 + 1.16681i
\(16\) 15.5490i 0.971815i
\(17\) 0 0
\(18\) −51.2522 −2.84734
\(19\) 8.45745 3.50319i 0.445129 0.184379i −0.148849 0.988860i \(-0.547557\pi\)
0.593978 + 0.804481i \(0.297557\pi\)
\(20\) 14.6961 + 2.92324i 0.734806 + 0.146162i
\(21\) 12.1291 12.1291i 0.577574 0.577574i
\(22\) 3.84455 + 5.75378i 0.174752 + 0.261535i
\(23\) 3.38849 0.674012i 0.147326 0.0293049i −0.120877 0.992668i \(-0.538571\pi\)
0.268202 + 0.963363i \(0.413571\pi\)
\(24\) −0.902059 + 1.35003i −0.0375858 + 0.0562511i
\(25\) 4.47998 10.8156i 0.179199 0.432625i
\(26\) −28.7680 11.9161i −1.10646 0.458312i
\(27\) 38.8707 + 25.9726i 1.43966 + 0.961948i
\(28\) −2.64686 13.3067i −0.0945307 0.475238i
\(29\) −19.9953 + 13.3605i −0.689495 + 0.460706i −0.850312 0.526279i \(-0.823587\pi\)
0.160818 + 0.986984i \(0.448587\pi\)
\(30\) −38.1474 38.1474i −1.27158 1.27158i
\(31\) 5.40360 27.1657i 0.174310 0.876314i −0.790318 0.612697i \(-0.790085\pi\)
0.964627 0.263617i \(-0.0849155\pi\)
\(32\) −17.4235 42.0641i −0.544485 1.31450i
\(33\) 12.6260i 0.382605i
\(34\) 0 0
\(35\) 12.0364 0.343897
\(36\) 68.3342 28.3049i 1.89817 0.786248i
\(37\) 37.7780 + 7.51452i 1.02103 + 0.203095i 0.677092 0.735898i \(-0.263240\pi\)
0.343936 + 0.938993i \(0.388240\pi\)
\(38\) −18.4337 + 18.4337i −0.485097 + 0.485097i
\(39\) 31.5639 + 47.2388i 0.809332 + 1.21125i
\(40\) −1.11744 + 0.222273i −0.0279360 + 0.00555682i
\(41\) −42.7611 + 63.9965i −1.04295 + 1.56089i −0.234689 + 0.972070i \(0.575407\pi\)
−0.808264 + 0.588820i \(0.799593\pi\)
\(42\) −18.6933 + 45.1295i −0.445078 + 1.07451i
\(43\) −50.0470 20.7301i −1.16388 0.482096i −0.284717 0.958612i \(-0.591900\pi\)
−0.879166 + 0.476515i \(0.841900\pi\)
\(44\) −8.30354 5.54825i −0.188717 0.126097i
\(45\) 12.8015 + 64.3574i 0.284477 + 1.43016i
\(46\) −8.18054 + 5.46606i −0.177838 + 0.118827i
\(47\) 5.13810 + 5.13810i 0.109321 + 0.109321i 0.759652 0.650330i \(-0.225369\pi\)
−0.650330 + 0.759652i \(0.725369\pi\)
\(48\) −15.7616 + 79.2388i −0.328366 + 1.65081i
\(49\) 14.5808 + 35.2013i 0.297568 + 0.718394i
\(50\) 33.3380i 0.666760i
\(51\) 0 0
\(52\) 44.9371 0.864175
\(53\) −52.6837 + 21.8223i −0.994033 + 0.411742i −0.819606 0.572928i \(-0.805807\pi\)
−0.174427 + 0.984670i \(0.555807\pi\)
\(54\) −130.573 25.9726i −2.41802 0.480974i
\(55\) 6.26475 6.26475i 0.113905 0.113905i
\(56\) 0.573134 + 0.857755i 0.0102345 + 0.0153171i
\(57\) 46.6508 9.27942i 0.818435 0.162797i
\(58\) 38.0474 56.9419i 0.655989 0.981757i
\(59\) −8.82213 + 21.2985i −0.149528 + 0.360992i −0.980840 0.194813i \(-0.937590\pi\)
0.831313 + 0.555805i \(0.187590\pi\)
\(60\) 71.9292 + 29.7940i 1.19882 + 0.496567i
\(61\) 34.4943 + 23.0484i 0.565480 + 0.377842i 0.805203 0.593000i \(-0.202056\pi\)
−0.239722 + 0.970841i \(0.577056\pi\)
\(62\) 15.3882 + 77.3615i 0.248196 + 1.24777i
\(63\) 49.4011 33.0088i 0.784145 0.523949i
\(64\) 47.7028 + 47.7028i 0.745356 + 0.745356i
\(65\) −7.77755 + 39.1004i −0.119655 + 0.601544i
\(66\) 13.7596 + 33.2187i 0.208479 + 0.503314i
\(67\) 17.3637i 0.259160i 0.991569 + 0.129580i \(0.0413630\pi\)
−0.991569 + 0.129580i \(0.958637\pi\)
\(68\) 0 0
\(69\) 17.9512 0.260162
\(70\) −31.6676 + 13.1172i −0.452395 + 0.187388i
\(71\) 50.6009 + 10.0651i 0.712689 + 0.141763i 0.538103 0.842879i \(-0.319141\pi\)
0.174586 + 0.984642i \(0.444141\pi\)
\(72\) −3.97676 + 3.97676i −0.0552328 + 0.0552328i
\(73\) −34.5368 51.6879i −0.473106 0.708053i 0.515781 0.856720i \(-0.327502\pi\)
−0.988887 + 0.148667i \(0.952502\pi\)
\(74\) −107.583 + 21.3995i −1.45382 + 0.289183i
\(75\) 33.7937 50.5759i 0.450583 0.674345i
\(76\) 14.3972 34.7579i 0.189437 0.457340i
\(77\) −7.41140 3.06990i −0.0962520 0.0398689i
\(78\) −134.525 89.8865i −1.72468 1.15239i
\(79\) −23.1267 116.266i −0.292743 1.47172i −0.794793 0.606881i \(-0.792420\pi\)
0.502049 0.864839i \(-0.332580\pi\)
\(80\) −47.1374 + 31.4962i −0.589217 + 0.393702i
\(81\) 57.2255 + 57.2255i 0.706488 + 0.706488i
\(82\) 42.7611 214.975i 0.521477 2.62164i
\(83\) −36.0104 86.9369i −0.433861 1.04743i −0.978031 0.208458i \(-0.933156\pi\)
0.544171 0.838975i \(-0.316844\pi\)
\(84\) 70.4946i 0.839221i
\(85\) 0 0
\(86\) 154.264 1.79377
\(87\) −115.441 + 47.8171i −1.32690 + 0.549621i
\(88\) 0.744754 + 0.148141i 0.00846311 + 0.00168342i
\(89\) −19.6021 + 19.6021i −0.220248 + 0.220248i −0.808603 0.588355i \(-0.799776\pi\)
0.588355 + 0.808603i \(0.299776\pi\)
\(90\) −103.817 155.373i −1.15352 1.72636i
\(91\) 35.4036 7.04221i 0.389050 0.0773869i
\(92\) 7.88832 11.8057i 0.0857426 0.128323i
\(93\) 55.0742 132.961i 0.592195 1.42969i
\(94\) −19.1177 7.91883i −0.203380 0.0842428i
\(95\) 27.7515 + 18.5429i 0.292121 + 0.195189i
\(96\) −46.1522 232.023i −0.480752 2.41691i
\(97\) 12.6670 8.46379i 0.130587 0.0872555i −0.488561 0.872530i \(-0.662478\pi\)
0.619148 + 0.785274i \(0.287478\pi\)
\(98\) −76.7240 76.7240i −0.782898 0.782898i
\(99\) 8.53195 42.8930i 0.0861813 0.433263i
\(100\) −18.4115 44.4493i −0.184115 0.444493i
\(101\) 132.191i 1.30882i −0.756140 0.654410i \(-0.772917\pi\)
0.756140 0.654410i \(-0.227083\pi\)
\(102\) 0 0
\(103\) −185.135 −1.79743 −0.898713 0.438536i \(-0.855497\pi\)
−0.898713 + 0.438536i \(0.855497\pi\)
\(104\) −3.15676 + 1.30757i −0.0303535 + 0.0125728i
\(105\) 61.3383 + 12.2009i 0.584174 + 0.116199i
\(106\) 114.828 114.828i 1.08329 1.08329i
\(107\) 20.6116 + 30.8475i 0.192632 + 0.288294i 0.915195 0.403010i \(-0.132036\pi\)
−0.722563 + 0.691305i \(0.757036\pi\)
\(108\) 188.436 37.4823i 1.74478 0.347058i
\(109\) 25.3190 37.8925i 0.232284 0.347638i −0.696956 0.717114i \(-0.745463\pi\)
0.929240 + 0.369476i \(0.120463\pi\)
\(110\) −9.65521 + 23.3097i −0.0877747 + 0.211907i
\(111\) 184.902 + 76.5889i 1.66578 + 0.689990i
\(112\) 42.6807 + 28.5183i 0.381077 + 0.254628i
\(113\) 17.0495 + 85.7136i 0.150881 + 0.758528i 0.979928 + 0.199350i \(0.0638830\pi\)
−0.829048 + 0.559178i \(0.811117\pi\)
\(114\) −112.625 + 75.2536i −0.987938 + 0.660119i
\(115\) 8.90702 + 8.90702i 0.0774524 + 0.0774524i
\(116\) −19.2811 + 96.9326i −0.166216 + 0.835626i
\(117\) 75.3079 + 181.809i 0.643657 + 1.55393i
\(118\) 65.6503i 0.556359i
\(119\) 0 0
\(120\) −5.91986 −0.0493322
\(121\) 106.334 44.0450i 0.878794 0.364008i
\(122\) −115.872 23.0484i −0.949770 0.188921i
\(123\) −282.785 + 282.785i −2.29906 + 2.29906i
\(124\) −63.2412 94.6471i −0.510010 0.763283i
\(125\) 131.261 26.1094i 1.05009 0.208875i
\(126\) −94.0011 + 140.683i −0.746040 + 1.11653i
\(127\) 42.3590 102.264i 0.333535 0.805226i −0.664771 0.747047i \(-0.731471\pi\)
0.998306 0.0581782i \(-0.0185292\pi\)
\(128\) −9.23501 3.82526i −0.0721485 0.0298849i
\(129\) −234.029 156.373i −1.81418 1.21219i
\(130\) −22.1486 111.348i −0.170374 0.856527i
\(131\) −37.3157 + 24.9335i −0.284852 + 0.190332i −0.689785 0.724014i \(-0.742295\pi\)
0.404933 + 0.914347i \(0.367295\pi\)
\(132\) −36.6913 36.6913i −0.277964 0.277964i
\(133\) 5.89578 29.6401i 0.0443292 0.222858i
\(134\) −18.9228 45.6838i −0.141215 0.340924i
\(135\) 170.448i 1.26258i
\(136\) 0 0
\(137\) 61.5009 0.448911 0.224456 0.974484i \(-0.427940\pi\)
0.224456 + 0.974484i \(0.427940\pi\)
\(138\) −47.2293 + 19.5630i −0.342241 + 0.141761i
\(139\) −85.6793 17.0427i −0.616398 0.122609i −0.122991 0.992408i \(-0.539249\pi\)
−0.493407 + 0.869799i \(0.664249\pi\)
\(140\) 34.9780 34.9780i 0.249843 0.249843i
\(141\) 20.9758 + 31.3924i 0.148764 + 0.222641i
\(142\) −144.099 + 28.6631i −1.01478 + 0.201853i
\(143\) 14.7616 22.0923i 0.103228 0.154492i
\(144\) −107.091 + 258.540i −0.743686 + 1.79542i
\(145\) −81.0053 33.5535i −0.558657 0.231403i
\(146\) 147.195 + 98.3523i 1.00818 + 0.673646i
\(147\) 38.6224 + 194.168i 0.262738 + 1.32087i
\(148\) 131.621 87.9464i 0.889331 0.594232i
\(149\) −132.640 132.640i −0.890200 0.890200i 0.104342 0.994541i \(-0.466726\pi\)
−0.994541 + 0.104342i \(0.966726\pi\)
\(150\) −33.7937 + 169.893i −0.225292 + 1.13262i
\(151\) −82.7215 199.707i −0.547824 1.32257i −0.919093 0.394040i \(-0.871077\pi\)
0.371269 0.928525i \(-0.378923\pi\)
\(152\) 2.86062i 0.0188198i
\(153\) 0 0
\(154\) 22.8448 0.148343
\(155\) 93.2993 38.6458i 0.601931 0.249328i
\(156\) 229.002 + 45.5514i 1.46796 + 0.291996i
\(157\) 111.042 111.042i 0.707276 0.707276i −0.258686 0.965961i \(-0.583289\pi\)
0.965961 + 0.258686i \(0.0832895\pi\)
\(158\) 187.552 + 280.691i 1.18703 + 1.77652i
\(159\) −290.600 + 57.8040i −1.82767 + 0.363547i
\(160\) 92.2254 138.025i 0.576409 0.862657i
\(161\) 4.36469 10.5373i 0.0271099 0.0654490i
\(162\) −212.923 88.1957i −1.31434 0.544418i
\(163\) 138.740 + 92.7032i 0.851166 + 0.568731i 0.902861 0.429932i \(-0.141462\pi\)
−0.0516950 + 0.998663i \(0.516462\pi\)
\(164\) 61.7105 + 310.240i 0.376284 + 1.89171i
\(165\) 38.2760 25.5752i 0.231976 0.155001i
\(166\) 189.486 + 189.486i 1.14148 + 1.14148i
\(167\) 10.5057 52.8159i 0.0629086 0.316263i −0.936499 0.350669i \(-0.885954\pi\)
0.999408 + 0.0344064i \(0.0109541\pi\)
\(168\) 2.05124 + 4.95214i 0.0122098 + 0.0294770i
\(169\) 49.4408i 0.292549i
\(170\) 0 0
\(171\) 164.753 0.963468
\(172\) −205.680 + 85.1953i −1.19581 + 0.495321i
\(173\) −65.9632 13.1209i −0.381290 0.0758433i 0.000724270 1.00000i \(-0.499769\pi\)
−0.382014 + 0.924156i \(0.624769\pi\)
\(174\) 251.612 251.612i 1.44605 1.44605i
\(175\) −21.4712 32.1340i −0.122693 0.183623i
\(176\) 37.0579 7.37127i 0.210556 0.0418822i
\(177\) −66.5477 + 99.5957i −0.375976 + 0.562688i
\(178\) 30.2106 72.9349i 0.169723 0.409747i
\(179\) −231.811 96.0193i −1.29503 0.536421i −0.374552 0.927206i \(-0.622203\pi\)
−0.920482 + 0.390785i \(0.872203\pi\)
\(180\) 224.225 + 149.823i 1.24570 + 0.832347i
\(181\) 3.34168 + 16.7998i 0.0184623 + 0.0928163i 0.988918 0.148464i \(-0.0474328\pi\)
−0.970456 + 0.241280i \(0.922433\pi\)
\(182\) −85.4718 + 57.1104i −0.469625 + 0.313793i
\(183\) 152.422 + 152.422i 0.832905 + 0.832905i
\(184\) −0.210622 + 1.05887i −0.00114468 + 0.00575471i
\(185\) 53.7428 + 129.747i 0.290502 + 0.701333i
\(186\) 409.837i 2.20343i
\(187\) 0 0
\(188\) 29.8629 0.158845
\(189\) 142.585 59.0606i 0.754417 0.312490i
\(190\) −93.2217 18.5429i −0.490640 0.0975945i
\(191\) −79.7646 + 79.7646i −0.417615 + 0.417615i −0.884381 0.466766i \(-0.845419\pi\)
0.466766 + 0.884381i \(0.345419\pi\)
\(192\) 194.741 + 291.451i 1.01428 + 1.51798i
\(193\) 20.0905 3.99625i 0.104096 0.0207060i −0.142767 0.989756i \(-0.545600\pi\)
0.246863 + 0.969050i \(0.420600\pi\)
\(194\) −24.1028 + 36.0724i −0.124241 + 0.185940i
\(195\) −79.2697 + 191.374i −0.406511 + 0.981406i
\(196\) 144.668 + 59.9234i 0.738101 + 0.305732i
\(197\) −34.2801 22.9052i −0.174011 0.116270i 0.465515 0.885040i \(-0.345869\pi\)
−0.639526 + 0.768770i \(0.720869\pi\)
\(198\) 24.2969 + 122.149i 0.122712 + 0.616914i
\(199\) 304.369 203.373i 1.52949 1.02197i 0.546685 0.837338i \(-0.315890\pi\)
0.982807 0.184636i \(-0.0591105\pi\)
\(200\) 2.58676 + 2.58676i 0.0129338 + 0.0129338i
\(201\) −17.6011 + 88.4867i −0.0875677 + 0.440232i
\(202\) 144.060 + 347.792i 0.713170 + 1.72174i
\(203\) 79.3897i 0.391082i
\(204\) 0 0
\(205\) −280.624 −1.36890
\(206\) 487.088 201.758i 2.36450 0.979409i
\(207\) 60.9839 + 12.1305i 0.294608 + 0.0586012i
\(208\) −120.221 + 120.221i −0.577985 + 0.577985i
\(209\) −12.3585 18.4958i −0.0591317 0.0884969i
\(210\) −174.677 + 34.7454i −0.831794 + 0.165454i
\(211\) −178.204 + 266.702i −0.844570 + 1.26399i 0.118015 + 0.993012i \(0.462347\pi\)
−0.962586 + 0.270977i \(0.912653\pi\)
\(212\) −89.6839 + 216.516i −0.423037 + 1.02130i
\(213\) 247.663 + 102.585i 1.16274 + 0.481621i
\(214\) −87.8463 58.6970i −0.410497 0.274285i
\(215\) −38.5313 193.710i −0.179215 0.900976i
\(216\) −12.1467 + 8.11616i −0.0562347 + 0.0375748i
\(217\) −64.6568 64.6568i −0.297958 0.297958i
\(218\) −25.3190 + 127.287i −0.116142 + 0.583885i
\(219\) −123.607 298.414i −0.564415 1.36262i
\(220\) 36.4110i 0.165504i
\(221\) 0 0
\(222\) −569.940 −2.56730
\(223\) 100.397 41.5859i 0.450211 0.186484i −0.146045 0.989278i \(-0.546654\pi\)
0.596256 + 0.802794i \(0.296654\pi\)
\(224\) −147.418 29.3233i −0.658118 0.130908i
\(225\) 148.981 148.981i 0.662137 0.662137i
\(226\) −138.267 206.931i −0.611800 0.915624i
\(227\) 193.543 38.4981i 0.852612 0.169595i 0.250609 0.968089i \(-0.419369\pi\)
0.602004 + 0.798493i \(0.294369\pi\)
\(228\) 108.602 162.534i 0.476324 0.712870i
\(229\) −69.3072 + 167.322i −0.302651 + 0.730665i 0.697253 + 0.716825i \(0.254406\pi\)
−0.999904 + 0.0138399i \(0.995594\pi\)
\(230\) −33.1410 13.7275i −0.144091 0.0596847i
\(231\) −34.6571 23.1571i −0.150031 0.100247i
\(232\) −1.46607 7.37041i −0.00631925 0.0317690i
\(233\) 4.87031 3.25423i 0.0209026 0.0139667i −0.545075 0.838387i \(-0.683499\pi\)
0.565978 + 0.824421i \(0.308499\pi\)
\(234\) −396.268 396.268i −1.69345 1.69345i
\(235\) −5.16856 + 25.9841i −0.0219939 + 0.110571i
\(236\) 36.2566 + 87.5311i 0.153630 + 0.370895i
\(237\) 615.941i 2.59891i
\(238\) 0 0
\(239\) 68.9414 0.288458 0.144229 0.989544i \(-0.453930\pi\)
0.144229 + 0.989544i \(0.453930\pi\)
\(240\) −272.142 + 112.725i −1.13392 + 0.469686i
\(241\) 303.925 + 60.4544i 1.26110 + 0.250848i 0.779978 0.625806i \(-0.215230\pi\)
0.481120 + 0.876655i \(0.340230\pi\)
\(242\) −231.764 + 231.764i −0.957701 + 0.957701i
\(243\) −0.136443 0.204201i −0.000561493 0.000840334i
\(244\) 167.220 33.2621i 0.685328 0.136320i
\(245\) −77.1787 + 115.506i −0.315015 + 0.471454i
\(246\) 435.826 1052.18i 1.77165 4.27715i
\(247\) 92.4764 + 38.3050i 0.374399 + 0.155081i
\(248\) 7.19663 + 4.80864i 0.0290187 + 0.0193897i
\(249\) −95.3861 479.538i −0.383077 1.92586i
\(250\) −316.892 + 211.740i −1.26757 + 0.846962i
\(251\) −149.892 149.892i −0.597178 0.597178i 0.342382 0.939561i \(-0.388766\pi\)
−0.939561 + 0.342382i \(0.888766\pi\)
\(252\) 47.6365 239.485i 0.189034 0.950337i
\(253\) −3.21274 7.75623i −0.0126986 0.0306571i
\(254\) 315.217i 1.24101i
\(255\) 0 0
\(256\) −241.382 −0.942898
\(257\) −223.240 + 92.4689i −0.868637 + 0.359801i −0.772079 0.635526i \(-0.780783\pi\)
−0.0965575 + 0.995327i \(0.530783\pi\)
\(258\) 786.141 + 156.373i 3.04706 + 0.606097i
\(259\) 89.9150 89.9150i 0.347162 0.347162i
\(260\) 91.0247 + 136.228i 0.350095 + 0.523954i
\(261\) −424.488 + 84.4359i −1.62639 + 0.323509i
\(262\) 71.0047 106.266i 0.271010 0.405595i
\(263\) −91.5602 + 221.046i −0.348138 + 0.840479i 0.648702 + 0.761042i \(0.275312\pi\)
−0.996840 + 0.0794365i \(0.974688\pi\)
\(264\) 3.64515 + 1.50987i 0.0138074 + 0.00571920i
\(265\) −172.871 115.509i −0.652345 0.435883i
\(266\) 16.7898 + 84.4079i 0.0631194 + 0.317323i
\(267\) −119.763 + 80.0234i −0.448552 + 0.299713i
\(268\) 50.4594 + 50.4594i 0.188281 + 0.188281i
\(269\) −2.21012 + 11.1110i −0.00821606 + 0.0413049i −0.984676 0.174395i \(-0.944203\pi\)
0.976460 + 0.215700i \(0.0692032\pi\)
\(270\) −185.753 448.446i −0.687973 1.66091i
\(271\) 352.304i 1.30001i 0.759929 + 0.650007i \(0.225234\pi\)
−0.759929 + 0.650007i \(0.774766\pi\)
\(272\) 0 0
\(273\) 187.557 0.687023
\(274\) −161.808 + 67.0230i −0.590540 + 0.244610i
\(275\) −27.9006 5.54978i −0.101457 0.0201810i
\(276\) 52.1665 52.1665i 0.189009 0.189009i
\(277\) 51.8121 + 77.5423i 0.187047 + 0.279936i 0.913128 0.407674i \(-0.133660\pi\)
−0.726080 + 0.687610i \(0.758660\pi\)
\(278\) 243.994 48.5334i 0.877677 0.174581i
\(279\) 276.946 414.480i 0.992639 1.48559i
\(280\) −1.43937 + 3.47494i −0.00514060 + 0.0124105i
\(281\) −205.670 85.1913i −0.731922 0.303172i −0.0145802 0.999894i \(-0.504641\pi\)
−0.717341 + 0.696722i \(0.754641\pi\)
\(282\) −89.3981 59.7339i −0.317015 0.211822i
\(283\) −24.4057 122.696i −0.0862394 0.433555i −0.999648 0.0265119i \(-0.991560\pi\)
0.913409 0.407043i \(-0.133440\pi\)
\(284\) 176.297 117.798i 0.620763 0.414781i
\(285\) 122.627 + 122.627i 0.430270 + 0.430270i
\(286\) −14.7616 + 74.2117i −0.0516141 + 0.259481i
\(287\) 97.2369 + 234.751i 0.338804 + 0.817946i
\(288\) 819.418i 2.84520i
\(289\) 0 0
\(290\) 249.690 0.861000
\(291\) 73.1311 30.2919i 0.251309 0.104096i
\(292\) −250.570 49.8416i −0.858118 0.170690i
\(293\) 84.7101 84.7101i 0.289113 0.289113i −0.547617 0.836729i \(-0.684465\pi\)
0.836729 + 0.547617i \(0.184465\pi\)
\(294\) −313.218 468.763i −1.06537 1.59443i
\(295\) −82.4372 + 16.3978i −0.279448 + 0.0555857i
\(296\) −6.68713 + 10.0080i −0.0225917 + 0.0338108i
\(297\) 43.4730 104.953i 0.146374 0.353378i
\(298\) 493.523 + 204.424i 1.65612 + 0.685986i
\(299\) 31.4101 + 20.9876i 0.105051 + 0.0701926i
\(300\) −48.7693 245.180i −0.162564 0.817266i
\(301\) −148.693 + 99.3534i −0.493996 + 0.330078i
\(302\) 435.278 + 435.278i 1.44132 + 1.44132i
\(303\) 133.998 673.653i 0.442237 2.22328i
\(304\) 54.4712 + 131.505i 0.179182 + 0.432583i
\(305\) 151.257i 0.495926i
\(306\) 0 0
\(307\) 237.264 0.772846 0.386423 0.922322i \(-0.373711\pi\)
0.386423 + 0.922322i \(0.373711\pi\)
\(308\) −30.4589 + 12.6165i −0.0988924 + 0.0409626i
\(309\) −943.459 187.666i −3.05327 0.607332i
\(310\) −203.353 + 203.353i −0.655979 + 0.655979i
\(311\) −178.860 267.683i −0.575112 0.860716i 0.423875 0.905721i \(-0.360670\pi\)
−0.998987 + 0.0450046i \(0.985670\pi\)
\(312\) −17.4125 + 3.46356i −0.0558093 + 0.0111012i
\(313\) −175.035 + 261.959i −0.559218 + 0.836929i −0.998100 0.0616158i \(-0.980375\pi\)
0.438882 + 0.898545i \(0.355375\pi\)
\(314\) −171.138 + 413.163i −0.545025 + 1.31581i
\(315\) 200.134 + 82.8983i 0.635347 + 0.263169i
\(316\) −405.078 270.664i −1.28189 0.856532i
\(317\) 62.6351 + 314.888i 0.197587 + 0.993338i 0.944524 + 0.328443i \(0.106524\pi\)
−0.746937 + 0.664895i \(0.768476\pi\)
\(318\) 701.571 468.775i 2.20620 1.47413i
\(319\) 41.3210 + 41.3210i 0.129533 + 0.129533i
\(320\) −47.9855 + 241.239i −0.149955 + 0.753873i
\(321\) 73.7690 + 178.094i 0.229810 + 0.554811i
\(322\) 32.4801i 0.100870i
\(323\) 0 0
\(324\) 332.597 1.02653
\(325\) 118.262 48.9855i 0.363882 0.150725i
\(326\) −466.050 92.7032i −1.42960 0.284366i
\(327\) 167.437 167.437i 0.512041 0.512041i
\(328\) −13.3624 19.9982i −0.0407390 0.0609702i
\(329\) 23.5274 4.67989i 0.0715118 0.0142246i
\(330\) −72.8320 + 109.001i −0.220703 + 0.330305i
\(331\) 10.2295 24.6962i 0.0309049 0.0746109i −0.907674 0.419677i \(-0.862143\pi\)
0.938578 + 0.345066i \(0.112143\pi\)
\(332\) −357.287 147.993i −1.07617 0.445763i
\(333\) 576.396 + 385.135i 1.73092 + 1.15656i
\(334\) 29.9178 + 150.407i 0.0895743 + 0.450320i
\(335\) −52.6387 + 35.1721i −0.157130 + 0.104991i
\(336\) 188.595 + 188.595i 0.561295 + 0.561295i
\(337\) −95.4695 + 479.958i −0.283292 + 1.42421i 0.532778 + 0.846255i \(0.321148\pi\)
−0.816071 + 0.577952i \(0.803852\pi\)
\(338\) 53.8801 + 130.078i 0.159409 + 0.384846i
\(339\) 454.084i 1.33948i
\(340\) 0 0
\(341\) −67.3056 −0.197377
\(342\) −433.463 + 179.546i −1.26744 + 0.524989i
\(343\) 282.021 + 56.0975i 0.822219 + 0.163549i
\(344\) 11.9697 11.9697i 0.0347956 0.0347956i
\(345\) 36.3620 + 54.4195i 0.105397 + 0.157738i
\(346\) 187.847 37.3651i 0.542911 0.107992i
\(347\) 134.365 201.092i 0.387220 0.579516i −0.585737 0.810501i \(-0.699195\pi\)
0.972957 + 0.230985i \(0.0741948\pi\)
\(348\) −196.515 + 474.430i −0.564699 + 1.36330i
\(349\) 36.6909 + 15.1979i 0.105132 + 0.0435470i 0.434629 0.900609i \(-0.356879\pi\)
−0.329498 + 0.944156i \(0.606879\pi\)
\(350\) 91.5098 + 61.1449i 0.261457 + 0.174700i
\(351\) 99.7249 + 501.351i 0.284117 + 1.42835i
\(352\) −91.9912 + 61.4665i −0.261339 + 0.174621i
\(353\) 451.955 + 451.955i 1.28033 + 1.28033i 0.940482 + 0.339843i \(0.110374\pi\)
0.339843 + 0.940482i \(0.389626\pi\)
\(354\) 66.5477 334.558i 0.187988 0.945079i
\(355\) 71.9846 + 173.786i 0.202773 + 0.489538i
\(356\) 113.928i 0.320022i
\(357\) 0 0
\(358\) 714.533 1.99590
\(359\) −188.393 + 78.0349i −0.524771 + 0.217367i −0.629311 0.777153i \(-0.716663\pi\)
0.104540 + 0.994521i \(0.466663\pi\)
\(360\) −20.1110 4.00033i −0.0558639 0.0111120i
\(361\) −196.009 + 196.009i −0.542962 + 0.542962i
\(362\) −27.1001 40.5582i −0.0748622 0.112039i
\(363\) 586.532 116.668i 1.61579 0.321401i
\(364\) 82.4186 123.348i 0.226425 0.338869i
\(365\) 86.7357 209.398i 0.237632 0.573694i
\(366\) −567.127 234.912i −1.54953 0.641835i
\(367\) −234.454 156.657i −0.638840 0.426859i 0.193519 0.981097i \(-0.438010\pi\)
−0.832359 + 0.554238i \(0.813010\pi\)
\(368\) 10.4802 + 52.6877i 0.0284789 + 0.143173i
\(369\) −1151.77 + 769.587i −3.12133 + 2.08560i
\(370\) −282.793 282.793i −0.764306 0.764306i
\(371\) −36.7264 + 184.636i −0.0989930 + 0.497672i
\(372\) −226.340 546.433i −0.608441 1.46891i
\(373\) 340.976i 0.914144i −0.889430 0.457072i \(-0.848898\pi\)
0.889430 0.457072i \(-0.151102\pi\)
\(374\) 0 0
\(375\) 695.380 1.85435
\(376\) −2.09782 + 0.868946i −0.00557931 + 0.00231103i
\(377\) −257.898 51.2991i −0.684080 0.136072i
\(378\) −310.775 + 310.775i −0.822156 + 0.822156i
\(379\) 198.969 + 297.778i 0.524984 + 0.785695i 0.995304 0.0968017i \(-0.0308613\pi\)
−0.470319 + 0.882496i \(0.655861\pi\)
\(380\) 134.532 26.7602i 0.354033 0.0704215i
\(381\) 319.526 478.204i 0.838650 1.25513i
\(382\) 122.933 296.786i 0.321814 0.776927i
\(383\) −223.470 92.5645i −0.583474 0.241683i 0.0713664 0.997450i \(-0.477264\pi\)
−0.654840 + 0.755767i \(0.727264\pi\)
\(384\) −43.1846 28.8550i −0.112460 0.0751433i
\(385\) −5.70606 28.6863i −0.0148209 0.0745099i
\(386\) −48.5028 + 32.4085i −0.125655 + 0.0839599i
\(387\) −689.377 689.377i −1.78134 1.78134i
\(388\) 12.2145 61.4063i 0.0314806 0.158264i
\(389\) −256.470 619.174i −0.659307 1.59171i −0.798877 0.601495i \(-0.794572\pi\)
0.139570 0.990212i \(-0.455428\pi\)
\(390\) 589.890i 1.51254i
\(391\) 0 0
\(392\) −11.9063 −0.0303733
\(393\) −215.437 + 89.2370i −0.548186 + 0.227066i
\(394\) 115.152 + 22.9052i 0.292265 + 0.0581351i
\(395\) 305.618 305.618i 0.773716 0.773716i
\(396\) −99.8539 149.442i −0.252156 0.377379i
\(397\) −439.343 + 87.3907i −1.10666 + 0.220128i −0.714407 0.699731i \(-0.753303\pi\)
−0.392250 + 0.919858i \(0.628303\pi\)
\(398\) −579.157 + 866.769i −1.45517 + 2.17781i
\(399\) 60.0906 145.071i 0.150603 0.363588i
\(400\) 168.173 + 69.6594i 0.420431 + 0.174148i
\(401\) 115.578 + 77.2270i 0.288225 + 0.192586i 0.691274 0.722592i \(-0.257050\pi\)
−0.403049 + 0.915178i \(0.632050\pi\)
\(402\) −50.1237 251.989i −0.124686 0.626838i
\(403\) 251.817 168.259i 0.624857 0.417516i
\(404\) −384.149 384.149i −0.950864 0.950864i
\(405\) −57.5647 + 289.397i −0.142135 + 0.714561i
\(406\) −86.5181 208.873i −0.213099 0.514466i
\(407\) 93.5985i 0.229972i
\(408\) 0 0
\(409\) −404.559 −0.989142 −0.494571 0.869137i \(-0.664675\pi\)
−0.494571 + 0.869137i \(0.664675\pi\)
\(410\) 738.319 305.822i 1.80078 0.745907i
\(411\) 313.412 + 62.3416i 0.762560 + 0.151683i
\(412\) −538.006 + 538.006i −1.30584 + 1.30584i
\(413\) 42.2819 + 63.2793i 0.102377 + 0.153219i
\(414\) −173.667 + 34.5446i −0.419487 + 0.0834411i
\(415\) 190.609 285.266i 0.459299 0.687389i
\(416\) 190.514 459.942i 0.457967 1.10563i
\(417\) −419.352 173.701i −1.00564 0.416549i
\(418\) 52.6717 + 35.1941i 0.126009 + 0.0841964i
\(419\) 50.9740 + 256.264i 0.121656 + 0.611608i 0.992721 + 0.120439i \(0.0384303\pi\)
−0.871064 + 0.491169i \(0.836570\pi\)
\(420\) 213.706 142.794i 0.508825 0.339986i
\(421\) −429.955 429.955i −1.02127 1.02127i −0.999769 0.0215010i \(-0.993156\pi\)
−0.0215010 0.999769i \(-0.506844\pi\)
\(422\) 178.204 895.894i 0.422285 2.12297i
\(423\) 50.0457 + 120.821i 0.118311 + 0.285629i
\(424\) 17.8195i 0.0420272i
\(425\) 0 0
\(426\) −763.393 −1.79200
\(427\) 126.531 52.4110i 0.296326 0.122742i
\(428\) 149.541 + 29.7456i 0.349395 + 0.0694991i
\(429\) 97.6204 97.6204i 0.227553 0.227553i
\(430\) 312.479 + 467.657i 0.726694 + 1.08757i
\(431\) 628.034 124.924i 1.45715 0.289846i 0.597973 0.801516i \(-0.295973\pi\)
0.859182 + 0.511670i \(0.170973\pi\)
\(432\) −403.849 + 604.403i −0.934835 + 1.39908i
\(433\) −244.632 + 590.594i −0.564971 + 1.36396i 0.340778 + 0.940144i \(0.389310\pi\)
−0.905748 + 0.423816i \(0.860690\pi\)
\(434\) 240.573 + 99.6488i 0.554317 + 0.229605i
\(435\) −378.796 253.103i −0.870795 0.581847i
\(436\) −36.5390 183.694i −0.0838049 0.421316i
\(437\) 26.2968 17.5710i 0.0601757 0.0402081i
\(438\) 650.416 + 650.416i 1.48497 + 1.48497i
\(439\) −137.567 + 691.596i −0.313364 + 1.57539i 0.427678 + 0.903931i \(0.359332\pi\)
−0.741043 + 0.671458i \(0.765668\pi\)
\(440\) 1.05948 + 2.55782i 0.00240792 + 0.00581322i
\(441\) 685.729i 1.55494i
\(442\) 0 0
\(443\) −317.185 −0.715994 −0.357997 0.933723i \(-0.616540\pi\)
−0.357997 + 0.933723i \(0.616540\pi\)
\(444\) 759.898 314.760i 1.71148 0.708919i
\(445\) −99.1303 19.7182i −0.222765 0.0443107i
\(446\) −218.824 + 218.824i −0.490636 + 0.490636i
\(447\) −541.487 810.393i −1.21138 1.81296i
\(448\) 218.431 43.4486i 0.487569 0.0969835i
\(449\) 136.636 204.490i 0.304312 0.455434i −0.647523 0.762046i \(-0.724195\pi\)
0.951835 + 0.306611i \(0.0991951\pi\)
\(450\) −229.609 + 554.325i −0.510242 + 1.23183i
\(451\) 172.794 + 71.5736i 0.383135 + 0.158700i
\(452\) 298.632 + 199.539i 0.660689 + 0.441459i
\(453\) −219.117 1101.57i −0.483701 2.43173i
\(454\) −467.254 + 312.209i −1.02919 + 0.687685i
\(455\) 93.0622 + 93.0622i 0.204532 + 0.204532i
\(456\) −2.89972 + 14.5779i −0.00635904 + 0.0319690i
\(457\) 142.406 + 343.798i 0.311610 + 0.752293i 0.999646 + 0.0266163i \(0.00847324\pi\)
−0.688036 + 0.725677i \(0.741527\pi\)
\(458\) 515.753i 1.12610i
\(459\) 0 0
\(460\) 51.7680 0.112539
\(461\) −795.940 + 329.689i −1.72655 + 0.715161i −0.726957 + 0.686683i \(0.759066\pi\)
−0.999594 + 0.0284783i \(0.990934\pi\)
\(462\) 116.419 + 23.1571i 0.251989 + 0.0501237i
\(463\) 386.172 386.172i 0.834065 0.834065i −0.154005 0.988070i \(-0.549217\pi\)
0.988070 + 0.154005i \(0.0492172\pi\)
\(464\) −207.742 310.908i −0.447720 0.670061i
\(465\) 514.633 102.367i 1.10674 0.220144i
\(466\) −9.26727 + 13.8695i −0.0198869 + 0.0297628i
\(467\) 154.996 374.194i 0.331898 0.801272i −0.666544 0.745466i \(-0.732227\pi\)
0.998442 0.0558061i \(-0.0177729\pi\)
\(468\) 747.187 + 309.495i 1.59655 + 0.661314i
\(469\) 47.6619 + 31.8467i 0.101624 + 0.0679033i
\(470\) −14.7188 73.9964i −0.0313166 0.157439i
\(471\) 678.438 453.318i 1.44042 0.962459i
\(472\) −5.09394 5.09394i −0.0107922 0.0107922i
\(473\) −25.6804 + 129.104i −0.0542926 + 0.272947i
\(474\) 671.246 + 1620.53i 1.41613 + 3.41884i
\(475\) 107.167i 0.225615i
\(476\) 0 0
\(477\) −1026.29 −2.15155
\(478\) −181.384 + 75.1317i −0.379464 + 0.157179i
\(479\) −117.948 23.4613i −0.246238 0.0489798i 0.0704280 0.997517i \(-0.477564\pi\)
−0.316666 + 0.948537i \(0.602564\pi\)
\(480\) 609.898 609.898i 1.27062 1.27062i
\(481\) 233.989 + 350.190i 0.486464 + 0.728045i
\(482\) −865.505 + 172.160i −1.79565 + 0.357178i
\(483\) 32.9241 49.2743i 0.0681657 0.102017i
\(484\) 181.013 437.005i 0.373994 0.902902i
\(485\) 51.3164 + 21.2560i 0.105807 + 0.0438267i
\(486\) 0.581516 + 0.388556i 0.00119653 + 0.000799499i
\(487\) 158.120 + 794.921i 0.324681 + 1.63228i 0.706265 + 0.707947i \(0.250379\pi\)
−0.381584 + 0.924334i \(0.624621\pi\)
\(488\) −10.7791 + 7.20237i −0.0220883 + 0.0147590i
\(489\) 613.058 + 613.058i 1.25370 + 1.25370i
\(490\) 77.1787 388.004i 0.157508 0.791844i
\(491\) −57.6444 139.166i −0.117402 0.283433i 0.854245 0.519871i \(-0.174020\pi\)
−0.971647 + 0.236438i \(0.924020\pi\)
\(492\) 1643.55i 3.34056i
\(493\) 0 0
\(494\) −285.049 −0.577022
\(495\) 147.314 61.0194i 0.297604 0.123271i
\(496\) 422.401 + 84.0208i 0.851615 + 0.169397i
\(497\) 120.434 120.434i 0.242323 0.242323i
\(498\) 773.556 + 1157.71i 1.55333 + 2.32472i
\(499\) −808.149 + 160.751i −1.61954 + 0.322146i −0.919840 0.392294i \(-0.871682\pi\)
−0.699697 + 0.714440i \(0.746682\pi\)
\(500\) 305.572 457.321i 0.611145 0.914642i
\(501\) 107.076 258.504i 0.213724 0.515976i
\(502\) 557.714 + 231.013i 1.11098 + 0.460185i
\(503\) 562.798 + 376.050i 1.11888 + 0.747614i 0.970449 0.241308i \(-0.0775764\pi\)
0.148435 + 0.988922i \(0.452576\pi\)
\(504\) 3.62211 + 18.2096i 0.00718673 + 0.0361301i
\(505\) 400.740 267.766i 0.793545 0.530230i
\(506\) 16.9053 + 16.9053i 0.0334098 + 0.0334098i
\(507\) 50.1166 251.953i 0.0988494 0.496949i
\(508\) −174.084 420.276i −0.342685 0.827315i
\(509\) 340.603i 0.669161i −0.942367 0.334581i \(-0.891405\pi\)
0.942367 0.334581i \(-0.108595\pi\)
\(510\) 0 0
\(511\) −205.222 −0.401609
\(512\) 672.012 278.357i 1.31252 0.543665i
\(513\) 419.735 + 83.4904i 0.818196 + 0.162749i
\(514\) 486.569 486.569i 0.946632 0.946632i
\(515\) −375.010 561.242i −0.728175 1.08979i
\(516\) −1134.52 + 225.669i −2.19867 + 0.437344i
\(517\) 9.80981 14.6814i 0.0189745 0.0283973i
\(518\) −138.577 + 334.553i −0.267522 + 0.645856i
\(519\) −322.852 133.730i −0.622066 0.257668i
\(520\) −10.3583 6.92120i −0.0199198 0.0133100i
\(521\) −87.9243 442.025i −0.168761 0.848417i −0.968681 0.248310i \(-0.920125\pi\)
0.799920 0.600107i \(-0.204875\pi\)
\(522\) 1024.80 684.753i 1.96323 1.31179i
\(523\) −425.914 425.914i −0.814367 0.814367i 0.170918 0.985285i \(-0.445327\pi\)
−0.985285 + 0.170918i \(0.945327\pi\)
\(524\) −35.9827 + 180.897i −0.0686693 + 0.345224i
\(525\) −76.8455 185.521i −0.146372 0.353374i
\(526\) 681.350i 1.29534i
\(527\) 0 0
\(528\) 196.321 0.371821
\(529\) −477.705 + 197.872i −0.903033 + 0.374049i
\(530\) 580.703 + 115.509i 1.09567 + 0.217941i
\(531\) −293.378 + 293.378i −0.552501 + 0.552501i
\(532\) −69.0015 103.268i −0.129702 0.194113i
\(533\) −825.421 + 164.186i −1.54863 + 0.308042i
\(534\) 227.887 341.057i 0.426755 0.638684i
\(535\) −51.7641 + 124.970i −0.0967554 + 0.233588i
\(536\) −5.01296 2.07643i −0.00935253 0.00387395i
\(537\) −1083.99 724.300i −2.01861 1.34879i
\(538\) −6.29389 31.6415i −0.0116987 0.0588132i
\(539\) 76.9827 51.4382i 0.142825 0.0954326i
\(540\) 495.325 + 495.325i 0.917269 + 0.917269i
\(541\) 95.3109 479.160i 0.176175 0.885693i −0.787027 0.616918i \(-0.788381\pi\)
0.963203 0.268775i \(-0.0866190\pi\)
\(542\) −383.937 926.906i −0.708371 1.71016i
\(543\) 88.9999i 0.163904i
\(544\) 0 0
\(545\) 166.158 0.304878
\(546\) −493.460 + 204.398i −0.903774 + 0.374355i
\(547\) 369.427 + 73.4837i 0.675370 + 0.134339i 0.520847 0.853650i \(-0.325616\pi\)
0.154523 + 0.987989i \(0.450616\pi\)
\(548\) 178.723 178.723i 0.326136 0.326136i
\(549\) 414.810 + 620.807i 0.755574 + 1.13080i
\(550\) 79.4543 15.8044i 0.144462 0.0287353i
\(551\) −122.305 + 183.043i −0.221970 + 0.332201i
\(552\) −2.14668 + 5.18255i −0.00388892 + 0.00938868i
\(553\) −361.556 149.761i −0.653808 0.270816i
\(554\) −220.822 147.548i −0.398595 0.266333i
\(555\) 142.357 + 715.675i 0.256498 + 1.28950i
\(556\) −298.512 + 199.459i −0.536892 + 0.358740i
\(557\) −58.1418 58.1418i −0.104384 0.104384i 0.652986 0.757370i \(-0.273516\pi\)
−0.757370 + 0.652986i \(0.773516\pi\)
\(558\) −276.946 + 1392.30i −0.496320 + 2.49517i
\(559\) −226.670 547.229i −0.405492 0.978943i
\(560\) 187.155i 0.334205i
\(561\) 0 0
\(562\) 633.956 1.12803
\(563\) −226.413 + 93.7832i −0.402154 + 0.166578i −0.574587 0.818444i \(-0.694837\pi\)
0.172433 + 0.985021i \(0.444837\pi\)
\(564\) 152.183 + 30.2711i 0.269828 + 0.0536721i
\(565\) −225.308 + 225.308i −0.398775 + 0.398775i
\(566\) 197.924 + 296.214i 0.349689 + 0.523347i
\(567\) 262.036 52.1221i 0.462144 0.0919261i
\(568\) −8.95692 + 13.4050i −0.0157692 + 0.0236003i
\(569\) −14.5673 + 35.1685i −0.0256015 + 0.0618076i −0.936163 0.351565i \(-0.885649\pi\)
0.910562 + 0.413373i \(0.135649\pi\)
\(570\) −456.267 188.992i −0.800469 0.331565i
\(571\) −47.1646 31.5143i −0.0825999 0.0551915i 0.513584 0.858039i \(-0.328317\pi\)
−0.596184 + 0.802848i \(0.703317\pi\)
\(572\) −21.3032 107.098i −0.0372433 0.187235i
\(573\) −487.340 + 325.630i −0.850506 + 0.568290i
\(574\) −511.658 511.658i −0.891390 0.891390i
\(575\) 7.89050 39.6682i 0.0137226 0.0689882i
\(576\) 464.630 + 1121.72i 0.806650 + 1.94743i
\(577\) 711.158i 1.23251i 0.787547 + 0.616255i \(0.211351\pi\)
−0.787547 + 0.616255i \(0.788649\pi\)
\(578\) 0 0
\(579\) 106.433 0.183823
\(580\) −332.910 + 137.896i −0.573983 + 0.237751i
\(581\) −304.680 60.6047i −0.524407 0.104311i
\(582\) −159.395 + 159.395i −0.273875 + 0.273875i
\(583\) 76.9846 + 115.216i 0.132049 + 0.197625i
\(584\) 19.0525 3.78978i 0.0326241 0.00648934i
\(585\) −398.616 + 596.572i −0.681396 + 1.01978i
\(586\) −130.555 + 315.187i −0.222790 + 0.537862i
\(587\) 865.959 + 358.692i 1.47523 + 0.611060i 0.968045 0.250778i \(-0.0806864\pi\)
0.507184 + 0.861838i \(0.330686\pi\)
\(588\) 676.494 + 452.019i 1.15050 + 0.768739i
\(589\) −49.4661 248.683i −0.0839832 0.422212i
\(590\) 199.021 132.982i 0.337324 0.225392i
\(591\) −151.475 151.475i −0.256303 0.256303i
\(592\) −116.843 + 587.412i −0.197371 + 0.992250i
\(593\) 355.720 + 858.785i 0.599865 + 1.44820i 0.873719 + 0.486432i \(0.161702\pi\)
−0.273853 + 0.961772i \(0.588298\pi\)
\(594\) 323.507i 0.544624i
\(595\) 0 0
\(596\) −770.907 −1.29347
\(597\) 1757.24 727.871i 2.94344 1.21921i
\(598\) −105.512 20.9876i −0.176441 0.0350963i
\(599\) 278.647 278.647i 0.465187 0.465187i −0.435164 0.900351i \(-0.643310\pi\)
0.900351 + 0.435164i \(0.143310\pi\)
\(600\) 10.5602 + 15.8044i 0.0176003 + 0.0263407i
\(601\) −495.145 + 98.4905i −0.823869 + 0.163878i −0.588983 0.808145i \(-0.700472\pi\)
−0.234886 + 0.972023i \(0.575472\pi\)
\(602\) 282.935 423.442i 0.469991 0.703391i
\(603\) −119.589 + 288.714i −0.198324 + 0.478796i
\(604\) −820.744 339.963i −1.35885 0.562853i
\(605\) 348.914 + 233.137i 0.576718 + 0.385351i
\(606\) 381.594 + 1918.40i 0.629692 + 3.16568i
\(607\) −256.652 + 171.489i −0.422820 + 0.282519i −0.748722 0.662884i \(-0.769332\pi\)
0.325902 + 0.945404i \(0.394332\pi\)
\(608\) −294.717 294.717i −0.484732 0.484732i
\(609\) −80.4749 + 404.575i −0.132143 + 0.664326i
\(610\) −164.839 397.956i −0.270228 0.652387i
\(611\) 79.4528i 0.130037i
\(612\) 0 0
\(613\) 116.450 0.189967 0.0949835 0.995479i \(-0.469720\pi\)
0.0949835 + 0.995479i \(0.469720\pi\)
\(614\) −624.237 + 258.568i −1.01667 + 0.421120i
\(615\) −1430.08 284.460i −2.32533 0.462537i
\(616\) 1.77258 1.77258i 0.00287756 0.00287756i
\(617\) 353.298 + 528.748i 0.572606 + 0.856966i 0.998865 0.0476356i \(-0.0151686\pi\)
−0.426259 + 0.904601i \(0.640169\pi\)
\(618\) 2686.74 534.427i 4.34748 0.864768i
\(619\) −327.199 + 489.688i −0.528593 + 0.791095i −0.995654 0.0931298i \(-0.970313\pi\)
0.467061 + 0.884225i \(0.345313\pi\)
\(620\) 158.824 383.435i 0.256168 0.618444i
\(621\) 149.219 + 61.8085i 0.240288 + 0.0995306i
\(622\) 762.296 + 509.350i 1.22556 + 0.818891i
\(623\) 17.8539 + 89.7579i 0.0286580 + 0.144074i
\(624\) −734.517 + 490.789i −1.17711 + 0.786520i
\(625\) 138.086 + 138.086i 0.220938 + 0.220938i
\(626\) 175.035 879.962i 0.279609 1.40569i
\(627\) −44.2311 106.783i −0.0705441 0.170309i
\(628\) 645.382i 1.02768i
\(629\) 0 0
\(630\) −616.892 −0.979194
\(631\) 1001.16 414.694i 1.58662 0.657201i 0.597179 0.802108i \(-0.296288\pi\)
0.989445 + 0.144906i \(0.0462881\pi\)
\(632\) 36.3319 + 7.22686i 0.0574871 + 0.0114349i
\(633\) −1178.49 + 1178.49i −1.86175 + 1.86175i
\(634\) −507.954 760.207i −0.801189 1.19906i
\(635\) 395.818 78.7331i 0.623335 0.123989i
\(636\) −676.510 + 1012.47i −1.06370 + 1.59193i
\(637\) −159.432 + 384.902i −0.250285 + 0.604242i
\(638\) −153.746 63.6838i −0.240982 0.0998178i
\(639\) 772.040 + 515.861i 1.20820 + 0.807294i
\(640\) −7.11006 35.7447i −0.0111095 0.0558510i
\(641\) −462.591 + 309.094i −0.721671 + 0.482205i −0.861363 0.507990i \(-0.830389\pi\)
0.139692 + 0.990195i \(0.455389\pi\)
\(642\) −388.171 388.171i −0.604627 0.604627i
\(643\) 21.1993 106.576i 0.0329694 0.165748i −0.960793 0.277267i \(-0.910571\pi\)
0.993762 + 0.111518i \(0.0355714\pi\)
\(644\) −17.9377 43.3054i −0.0278536 0.0672445i
\(645\) 1026.22i 1.59103i
\(646\) 0 0
\(647\) 1175.55 1.81693 0.908463 0.417966i \(-0.137257\pi\)
0.908463 + 0.417966i \(0.137257\pi\)
\(648\) −23.3644 + 9.67787i −0.0360562 + 0.0149350i
\(649\) 54.9428 + 10.9288i 0.0846577 + 0.0168395i
\(650\) −257.760 + 257.760i −0.396555 + 0.396555i
\(651\) −263.954 395.036i −0.405460 0.606814i
\(652\) 672.579 133.784i 1.03156 0.205191i
\(653\) 378.122 565.900i 0.579054 0.866616i −0.420111 0.907473i \(-0.638009\pi\)
0.999165 + 0.0408570i \(0.0130088\pi\)
\(654\) −258.054 + 622.997i −0.394578 + 0.952596i
\(655\) −151.173 62.6181i −0.230799 0.0956001i
\(656\) −995.084 664.894i −1.51690 1.01356i
\(657\) −218.267 1097.30i −0.332217 1.67017i
\(658\) −56.8001 + 37.9526i −0.0863223 + 0.0576787i
\(659\) 542.829 + 542.829i 0.823716 + 0.823716i 0.986639 0.162923i \(-0.0520921\pi\)
−0.162923 + 0.986639i \(0.552092\pi\)
\(660\) 36.9087 185.553i 0.0559223 0.281140i
\(661\) 35.1050 + 84.7509i 0.0531089 + 0.128216i 0.948207 0.317653i \(-0.102895\pi\)
−0.895098 + 0.445869i \(0.852895\pi\)
\(662\) 76.1234i 0.114990i
\(663\) 0 0
\(664\) 29.4052 0.0442849
\(665\) 101.797 42.1659i 0.153079 0.0634073i
\(666\) −1936.21 385.135i −2.90722 0.578282i
\(667\) −58.7489 + 58.7489i −0.0880793 + 0.0880793i
\(668\) −122.954 184.014i −0.184063 0.275470i
\(669\) 553.784 110.155i 0.827779 0.164656i
\(670\) 100.162 149.902i 0.149495 0.223735i
\(671\) 38.5784 93.1365i 0.0574939 0.138803i
\(672\) −721.529 298.867i −1.07370 0.444743i
\(673\) −141.118 94.2920i −0.209685 0.140107i 0.446293 0.894887i \(-0.352744\pi\)
−0.655978 + 0.754780i \(0.727744\pi\)
\(674\) −271.874 1366.80i −0.403374 2.02790i
\(675\) 455.050 304.055i 0.674149 0.450452i
\(676\) −143.676 143.676i −0.212538 0.212538i
\(677\) 88.7111 445.981i 0.131036 0.658761i −0.858305 0.513140i \(-0.828482\pi\)
0.989341 0.145621i \(-0.0465179\pi\)
\(678\) −494.857 1194.69i −0.729877 1.76208i
\(679\) 50.2930i 0.0740692i
\(680\) 0 0
\(681\) 1025.33 1.50563
\(682\) 177.080 73.3490i 0.259648 0.107550i
\(683\) 1316.98 + 261.964i 1.92823 + 0.383548i 0.999931 + 0.0117083i \(0.00372694\pi\)
0.928297 + 0.371840i \(0.121273\pi\)
\(684\) 478.775 478.775i 0.699964 0.699964i
\(685\) 124.576 + 186.442i 0.181863 + 0.272178i
\(686\) −803.128 + 159.752i −1.17074 + 0.232875i
\(687\) −522.803 + 782.430i −0.760995 + 1.13891i
\(688\) 322.334 778.182i 0.468508 1.13108i
\(689\) −576.061 238.612i −0.836082 0.346317i
\(690\) −154.974 103.550i −0.224600 0.150073i
\(691\) 38.2589 + 192.341i 0.0553675 + 0.278351i 0.998544 0.0539406i \(-0.0171782\pi\)
−0.943177 + 0.332292i \(0.892178\pi\)
\(692\) −229.820 + 153.561i −0.332109 + 0.221908i
\(693\) −102.089 102.089i −0.147315 0.147315i
\(694\) −134.365 + 675.501i −0.193610 + 0.973344i
\(695\) −121.887 294.261i −0.175377 0.423397i
\(696\) 39.0462i 0.0561008i
\(697\) 0 0
\(698\) −113.096 −0.162028
\(699\) 28.1181 11.6469i 0.0402262 0.0166622i
\(700\) −155.778 30.9861i −0.222540 0.0442659i
\(701\) 164.717 164.717i 0.234975 0.234975i −0.579791 0.814766i \(-0.696866\pi\)
0.814766 + 0.579791i \(0.196866\pi\)
\(702\) −808.742 1210.37i −1.15205 1.72417i
\(703\) 345.831 68.7900i 0.491936 0.0978521i
\(704\) 91.0754 136.304i 0.129369 0.193614i
\(705\) −52.6786 + 127.177i −0.0747214 + 0.180393i
\(706\) −1681.62 696.551i −2.38190 0.986616i
\(707\) −362.852 242.450i −0.513227 0.342928i
\(708\) 96.0381 + 482.816i 0.135647 + 0.681944i
\(709\) 625.370 417.859i 0.882046 0.589364i −0.0299558 0.999551i \(-0.509537\pi\)
0.912001 + 0.410187i \(0.134537\pi\)
\(710\) −378.781 378.781i −0.533494 0.533494i
\(711\) 416.220 2092.48i 0.585401 2.94301i
\(712\) −3.31506 8.00327i −0.00465599 0.0112406i
\(713\) 95.6929i 0.134212i
\(714\) 0 0
\(715\) 96.8747 0.135489
\(716\) −952.681 + 394.613i −1.33056 + 0.551136i
\(717\) 351.330 + 69.8838i 0.490000 + 0.0974670i
\(718\) 410.618 410.618i 0.571891 0.571891i
\(719\) 297.051 + 444.568i 0.413144 + 0.618314i 0.978429 0.206582i \(-0.0662339\pi\)
−0.565285 + 0.824896i \(0.691234\pi\)
\(720\) −1000.70 + 199.051i −1.38985 + 0.276459i
\(721\) −339.554 + 508.179i −0.470949 + 0.704825i
\(722\) 302.089 729.307i 0.418406 1.01012i
\(723\) 1487.54 + 616.159i 2.05745 + 0.852225i
\(724\) 58.5314 + 39.1094i 0.0808444 + 0.0540185i
\(725\) 54.9231 + 276.117i 0.0757559 + 0.380851i
\(726\) −1416.01 + 946.150i −1.95043 + 1.30324i
\(727\) 883.793 + 883.793i 1.21567 + 1.21567i 0.969133 + 0.246538i \(0.0792932\pi\)
0.246538 + 0.969133i \(0.420707\pi\)
\(728\) −2.20062 + 11.0632i −0.00302282 + 0.0151968i
\(729\) −279.220 674.098i −0.383018 0.924688i
\(730\) 645.448i 0.884175i
\(731\) 0 0
\(732\) 885.881 1.21022
\(733\) −602.864 + 249.714i −0.822460 + 0.340674i −0.753914 0.656974i \(-0.771836\pi\)
−0.0685469 + 0.997648i \(0.521836\pi\)
\(734\) 787.569 + 156.657i 1.07298 + 0.213429i
\(735\) −510.393 + 510.393i −0.694412 + 0.694412i
\(736\) −87.3911 130.790i −0.118738 0.177704i
\(737\) 41.3829 8.23157i 0.0561504 0.0111690i
\(738\) 2191.60 3279.96i 2.96965 4.44439i
\(739\) 294.324 710.562i 0.398274 0.961518i −0.589802 0.807548i \(-0.700794\pi\)
0.988075 0.153970i \(-0.0492060\pi\)
\(740\) 533.224 + 220.869i 0.720573 + 0.298471i
\(741\) 432.437 + 288.945i 0.583586 + 0.389940i
\(742\) −104.588 525.799i −0.140954 0.708624i
\(743\) 56.1076 37.4899i 0.0755150 0.0504575i −0.517240 0.855841i \(-0.673040\pi\)
0.592755 + 0.805383i \(0.298040\pi\)
\(744\) 31.8001 + 31.8001i 0.0427421 + 0.0427421i
\(745\) 133.426 670.777i 0.179095 0.900372i
\(746\) 371.592 + 897.102i 0.498113 + 1.20255i
\(747\) 1693.55i 2.26713i
\(748\) 0 0
\(749\) 122.477 0.163521
\(750\) −1829.54 + 757.818i −2.43938 + 1.01042i
\(751\) −273.988 54.4996i −0.364831 0.0725694i 0.00927083 0.999957i \(-0.497049\pi\)
−0.374102 + 0.927388i \(0.622049\pi\)
\(752\) −79.8926 + 79.8926i −0.106240 + 0.106240i
\(753\) −611.917 915.799i −0.812639 1.21620i
\(754\) 734.431 146.087i 0.974047 0.193750i
\(755\) 437.858 655.301i 0.579944 0.867948i
\(756\) 242.723 585.985i 0.321062 0.775113i
\(757\) 537.150 + 222.495i 0.709577 + 0.293917i 0.708130 0.706082i \(-0.249539\pi\)
0.00144764 + 0.999999i \(0.499539\pi\)
\(758\) −848.001 566.616i −1.11873 0.747514i
\(759\) −8.51005 42.7829i −0.0112122 0.0563675i
\(760\) −8.67204 + 5.79447i −0.0114106 + 0.00762431i
\(761\) 64.7670 + 64.7670i 0.0851078 + 0.0851078i 0.748379 0.663271i \(-0.230832\pi\)
−0.663271 + 0.748379i \(0.730832\pi\)
\(762\) −319.526 + 1606.36i −0.419325 + 2.10809i
\(763\) −57.5742 138.996i −0.0754577 0.182171i
\(764\) 463.595i 0.606799i
\(765\) 0 0
\(766\) 688.823 0.899247
\(767\) −232.884 + 96.4639i −0.303630 + 0.125768i
\(768\) −1230.10 244.681i −1.60169 0.318596i
\(769\) 8.68658 8.68658i 0.0112959 0.0112959i −0.701436 0.712732i \(-0.747457\pi\)
0.712732 + 0.701436i \(0.247457\pi\)
\(770\) 46.2746 + 69.2548i 0.0600969 + 0.0899414i
\(771\) −1231.38 + 244.936i −1.59712 + 0.317686i
\(772\) 46.7702 69.9966i 0.0605832 0.0906691i
\(773\) −106.339 + 256.725i −0.137567 + 0.332115i −0.977617 0.210393i \(-0.932526\pi\)
0.840050 + 0.542509i \(0.182526\pi\)
\(774\) 2565.02 + 1062.46i 3.31397 + 1.37269i
\(775\) −269.607 180.145i −0.347879 0.232446i
\(776\) 0.928746 + 4.66912i 0.00119684 + 0.00601691i
\(777\) 549.356 367.068i 0.707022 0.472417i
\(778\) 1349.54 + 1349.54i 1.73463 + 1.73463i
\(779\) −137.458 + 691.048i −0.176454 + 0.887096i
\(780\) 325.777 + 786.496i 0.417663 + 1.00833i
\(781\) 125.368i 0.160523i
\(782\) 0 0
\(783\) −1124.24 −1.43581
\(784\) −547.346 + 226.718i −0.698145 + 0.289181i
\(785\) 561.556 + 111.700i 0.715357 + 0.142293i
\(786\) 469.563 469.563i 0.597408 0.597408i
\(787\) 73.6228 + 110.184i 0.0935486 + 0.140005i 0.875292 0.483595i \(-0.160669\pi\)
−0.781743 + 0.623600i \(0.785669\pi\)
\(788\) −166.182 + 33.0556i −0.210890 + 0.0419487i
\(789\) −690.664 + 1033.65i −0.875366 + 1.31008i
\(790\) −471.017 + 1137.14i −0.596224 + 1.43941i
\(791\) 266.546 + 110.407i 0.336974 + 0.139579i
\(792\) 11.3630 + 7.59254i 0.0143473 + 0.00958654i
\(793\) 88.4969 + 444.904i 0.111598 + 0.561039i
\(794\) 1060.67 708.715i 1.33585 0.892589i
\(795\) −763.875 763.875i −0.960850 0.960850i
\(796\) 293.497 1475.51i 0.368714 1.85365i
\(797\) 471.097 + 1137.33i 0.591087 + 1.42701i 0.882453 + 0.470400i \(0.155890\pi\)
−0.291366 + 0.956612i \(0.594110\pi\)
\(798\) 447.167i 0.560360i
\(799\) 0 0
\(800\) −533.007 −0.666259
\(801\) −460.937 + 190.926i −0.575452 + 0.238360i
\(802\) −388.246 77.2270i −0.484098 0.0962930i
\(803\) −106.815 + 106.815i −0.133020 + 0.133020i
\(804\) 205.995 + 308.293i 0.256213 + 0.383449i
\(805\) 40.7852 8.11269i 0.0506649 0.0100779i
\(806\) −479.161 + 717.115i −0.594492 + 0.889721i
\(807\) −22.5258 + 54.3821i −0.0279130 + 0.0673880i
\(808\) 38.1638 + 15.8080i 0.0472325 + 0.0195643i
\(809\) −1311.89 876.574i −1.62161 1.08353i −0.933892 0.357555i \(-0.883611\pi\)
−0.687722 0.725974i \(-0.741389\pi\)
\(810\) −163.930 824.133i −0.202383 1.01745i
\(811\) 500.179 334.209i 0.616744 0.412095i −0.207576 0.978219i \(-0.566558\pi\)
0.824320 + 0.566124i \(0.191558\pi\)
\(812\) 230.708 + 230.708i 0.284123 + 0.284123i
\(813\) −357.119 + 1795.36i −0.439261 + 2.20832i
\(814\) 102.003 + 246.256i 0.125310 + 0.302526i
\(815\) 608.375i 0.746472i
\(816\) 0 0
\(817\) −495.892 −0.606966
\(818\) 1064.39 440.884i 1.30121 0.538978i
\(819\) 637.171 + 126.741i 0.777987 + 0.154751i
\(820\) −815.500 + 815.500i −0.994512 + 0.994512i
\(821\) −436.732 653.616i −0.531952 0.796122i 0.464017 0.885827i \(-0.346408\pi\)
−0.995968 + 0.0897043i \(0.971408\pi\)
\(822\) −892.522 + 177.534i −1.08579 + 0.215978i
\(823\) 155.881 233.293i 0.189406 0.283466i −0.724598 0.689172i \(-0.757974\pi\)
0.914004 + 0.405706i \(0.132974\pi\)
\(824\) 22.1393 53.4489i 0.0268681 0.0648652i
\(825\) −136.558 56.5640i −0.165524 0.0685625i
\(826\) −180.204 120.409i −0.218165 0.145773i
\(827\) −288.440 1450.09i −0.348779 1.75343i −0.614059 0.789260i \(-0.710464\pi\)
0.265280 0.964171i \(-0.414536\pi\)
\(828\) 212.472 141.969i 0.256608 0.171460i
\(829\) 331.030 + 331.030i 0.399312 + 0.399312i 0.877990 0.478678i \(-0.158884\pi\)
−0.478678 + 0.877990i \(0.658884\pi\)
\(830\) −190.609 + 958.256i −0.229649 + 1.15453i
\(831\) 185.435 + 447.681i 0.223147 + 0.538725i
\(832\) 737.650i 0.886598i
\(833\) 0 0
\(834\) 1292.61 1.54989
\(835\) 181.394 75.1357i 0.217238 0.0899828i
\(836\) −89.6634 17.8352i −0.107253 0.0213339i
\(837\) 915.607 915.607i 1.09392 1.09392i
\(838\) −413.386 618.676i −0.493300 0.738276i
\(839\) 207.442 41.2627i 0.247249 0.0491809i −0.0699099 0.997553i \(-0.522271\pi\)
0.317159 + 0.948372i \(0.397271\pi\)
\(840\) −10.8576 + 16.2495i −0.0129257 + 0.0193446i
\(841\) −100.525 + 242.689i −0.119530 + 0.288572i
\(842\) 1599.76 + 662.644i 1.89996 + 0.786988i
\(843\) −961.751 642.622i −1.14087 0.762303i
\(844\) 257.175 + 1292.91i 0.304710 + 1.53188i
\(845\) 149.881 100.147i 0.177374 0.118518i
\(846\) −263.339 263.339i −0.311276 0.311276i
\(847\) 74.1266 372.660i 0.0875167 0.439976i
\(848\) −339.316 819.181i −0.400137 0.966016i
\(849\) 650.006i 0.765613i
\(850\) 0 0
\(851\) 133.075 0.156375
\(852\) 1017.83 421.598i 1.19463 0.494833i
\(853\) −981.657 195.264i −1.15083 0.228914i −0.417428 0.908710i \(-0.637068\pi\)
−0.733401 + 0.679796i \(0.762068\pi\)
\(854\) −275.785 + 275.785i −0.322933 + 0.322933i
\(855\) 333.724 + 499.454i 0.390321 + 0.584156i
\(856\) −11.3706 + 2.26175i −0.0132834 + 0.00264223i
\(857\) −413.523 + 618.882i −0.482524 + 0.722149i −0.990240 0.139376i \(-0.955490\pi\)
0.507715 + 0.861525i \(0.330490\pi\)
\(858\) −150.452 + 363.224i −0.175352 + 0.423338i
\(859\) −903.157 374.100i −1.05141 0.435506i −0.211012 0.977483i \(-0.567676\pi\)
−0.840393 + 0.541977i \(0.817676\pi\)
\(860\) −674.897 450.952i −0.784765 0.524363i
\(861\) 257.566 + 1294.87i 0.299147 + 1.50391i
\(862\) −1516.21 + 1013.10i −1.75894 + 1.17529i
\(863\) −799.269 799.269i −0.926152 0.926152i 0.0713024 0.997455i \(-0.477284\pi\)
−0.997455 + 0.0713024i \(0.977284\pi\)
\(864\) 415.249 2087.60i 0.480612 2.41620i
\(865\) −93.8388 226.547i −0.108484 0.261904i
\(866\) 1820.44i 2.10213i
\(867\) 0 0
\(868\) −375.788 −0.432935
\(869\) −266.132 + 110.236i −0.306251 + 0.126853i
\(870\) 1272.44 + 253.103i 1.46257 + 0.290923i
\(871\) −134.252 + 134.252i −0.154135 + 0.154135i
\(872\) 7.91191 + 11.8410i 0.00907329 + 0.0135791i
\(873\) 268.911 53.4898i 0.308031 0.0612712i
\(874\) −50.0378 + 74.8869i −0.0572515 + 0.0856830i
\(875\) 169.076 408.186i 0.193230 0.466499i
\(876\) −1226.40 507.991i −1.40000 0.579899i
\(877\) 1119.07 + 747.740i 1.27602 + 0.852611i 0.994272 0.106877i \(-0.0340851\pi\)
0.281750 + 0.959488i \(0.409085\pi\)
\(878\) −391.758 1969.50i −0.446193 2.24316i
\(879\) 517.556 345.820i 0.588801 0.393424i
\(880\) 97.4109 + 97.4109i 0.110694 + 0.110694i
\(881\) 206.693 1039.11i 0.234611 1.17947i −0.666373 0.745619i \(-0.732154\pi\)
0.900984 0.433852i \(-0.142846\pi\)
\(882\) −747.300 1804.14i −0.847279 2.04551i
\(883\) 658.553i 0.745813i 0.927869 + 0.372907i \(0.121639\pi\)
−0.927869 + 0.372907i \(0.878361\pi\)
\(884\) 0 0
\(885\) −436.727 −0.493477
\(886\) 834.510 345.665i 0.941885 0.390142i
\(887\) 654.269 + 130.142i 0.737620 + 0.146722i 0.549582 0.835440i \(-0.314787\pi\)
0.188038 + 0.982162i \(0.439787\pi\)
\(888\) −44.2228 + 44.2228i −0.0498005 + 0.0498005i
\(889\) −203.014 303.832i −0.228362 0.341769i
\(890\) 282.299 56.1528i 0.317190 0.0630930i
\(891\) 109.256 163.514i 0.122622 0.183517i
\(892\) 170.907 412.605i 0.191599 0.462562i
\(893\) 61.4550 + 25.4555i 0.0688186 + 0.0285056i
\(894\) 2307.80 + 1542.03i 2.58144 + 1.72486i
\(895\) −178.472 897.239i −0.199410 1.00250i
\(896\) −27.4378 + 18.3334i −0.0306226 + 0.0204614i
\(897\) 138.794 + 138.794i 0.154731 + 0.154731i
\(898\) −136.636 + 686.915i −0.152156 + 0.764939i
\(899\) 254.900 + 615.383i 0.283537 + 0.684519i
\(900\) 865.883i 0.962092i
\(901\) 0 0
\(902\) −532.619 −0.590487
\(903\) −858.460 + 355.586i −0.950676 + 0.393783i
\(904\) −26.7846 5.32779i −0.0296290 0.00589357i
\(905\) −44.1600 + 44.1600i −0.0487956 + 0.0487956i
\(906\) 1776.98 + 2659.43i 1.96134 + 2.93536i
\(907\) 176.970 35.2015i 0.195116 0.0388109i −0.0965649 0.995327i \(-0.530786\pi\)
0.291681 + 0.956516i \(0.405786\pi\)
\(908\) 450.563 674.316i 0.496215 0.742638i
\(909\) 910.437 2197.99i 1.00158 2.41803i
\(910\) −346.264 143.427i −0.380510 0.157612i
\(911\) 1373.95 + 918.042i 1.50817 + 1.00773i 0.988135 + 0.153588i \(0.0490829\pi\)
0.520040 + 0.854142i \(0.325917\pi\)
\(912\) 144.286 + 725.375i 0.158208 + 0.795367i
\(913\) −190.125 + 127.037i −0.208242 + 0.139143i
\(914\) −749.335 749.335i −0.819842 0.819842i
\(915\) −153.325 + 770.817i −0.167568 + 0.842423i
\(916\) 284.834 + 687.650i 0.310954 + 0.750709i
\(917\) 148.158i 0.161569i
\(918\) 0 0
\(919\) −630.155 −0.685697 −0.342848 0.939391i \(-0.611392\pi\)
−0.342848 + 0.939391i \(0.611392\pi\)
\(920\) −3.63662 + 1.50634i −0.00395285 + 0.00163732i
\(921\) 1209.11 + 240.507i 1.31282 + 0.261137i
\(922\) 1734.82 1734.82i 1.88158 1.88158i
\(923\) 313.411 + 469.053i 0.339557 + 0.508183i
\(924\) −168.009 + 33.4191i −0.181828 + 0.0361679i
\(925\) 250.519 374.928i 0.270832 0.405328i
\(926\) −595.167 + 1436.86i −0.642729 + 1.55169i
\(927\) −3078.31 1275.08i −3.32073 1.37549i
\(928\) 910.385 + 608.300i 0.981018 + 0.655496i
\(929\) 305.811 + 1537.42i 0.329183 + 1.65492i 0.691140 + 0.722721i \(0.257109\pi\)
−0.361956 + 0.932195i \(0.617891\pi\)
\(930\) −1242.43 + 830.168i −1.33595 + 0.892654i
\(931\) 246.634 + 246.634i 0.264913 + 0.264913i
\(932\) 4.69633 23.6101i 0.00503899 0.0253327i
\(933\) −640.139 1545.43i −0.686109 1.65641i
\(934\) 1153.41i 1.23492i
\(935\) 0 0
\(936\) −61.4945 −0.0656992
\(937\) 704.857 291.961i 0.752248 0.311591i 0.0265897 0.999646i \(-0.491535\pi\)
0.725659 + 0.688055i \(0.241535\pi\)
\(938\) −160.104 31.8467i −0.170686 0.0339517i
\(939\) −1157.53 + 1157.53i −1.23273 + 1.23273i
\(940\) 60.4903 + 90.5302i 0.0643514 + 0.0963087i
\(941\) 1158.57 230.453i 1.23121 0.244902i 0.463728 0.885977i \(-0.346511\pi\)
0.767478 + 0.641075i \(0.221511\pi\)
\(942\) −1290.94 + 1932.03i −1.37043 + 2.05099i
\(943\) −101.761 + 245.673i −0.107912 + 0.260523i
\(944\) −331.171 137.176i −0.350817 0.145313i
\(945\) 467.864 + 312.617i 0.495095 + 0.330812i
\(946\) −73.1316 367.657i −0.0773061 0.388644i
\(947\) −1449.59 + 968.584i −1.53072 + 1.02279i −0.548257 + 0.836310i \(0.684709\pi\)
−0.982458 + 0.186482i \(0.940291\pi\)
\(948\) −1789.94 1789.94i −1.88812 1.88812i
\(949\) 132.608 666.665i 0.139734 0.702493i
\(950\) 116.789 + 281.955i 0.122936 + 0.296794i
\(951\) 1668.18i 1.75413i
\(952\) 0 0
\(953\) −1007.14 −1.05681 −0.528405 0.848992i \(-0.677210\pi\)
−0.528405 + 0.848992i \(0.677210\pi\)
\(954\) 2700.16 1118.44i 2.83035 1.17237i
\(955\) −403.380 80.2373i −0.422387 0.0840181i
\(956\) 200.345 200.345i 0.209566 0.209566i
\(957\) 168.689 + 252.460i 0.176268 + 0.263804i
\(958\) 335.888 66.8122i 0.350614 0.0697414i
\(959\) 112.798 168.814i 0.117621 0.176032i
\(960\) −489.074 + 1180.73i −0.509452 + 1.22993i
\(961\) 179.070 + 74.1731i 0.186337 + 0.0771833i
\(962\) −997.256 666.345i −1.03665 0.692666i
\(963\) 130.262 + 654.872i 0.135267 + 0.680034i
\(964\) 1058.89 707.530i 1.09844 0.733952i
\(965\) 52.8101 + 52.8101i 0.0547255 + 0.0547255i
\(966\) −32.9241 + 165.520i −0.0340829 + 0.171346i
\(967\) 206.749 + 499.135i 0.213804 + 0.516169i 0.994002 0.109364i \(-0.0348815\pi\)
−0.780198 + 0.625533i \(0.784882\pi\)
\(968\) 35.9660i 0.0371550i
\(969\) 0 0
\(970\) −158.177 −0.163069
\(971\) −370.956 + 153.655i −0.382035 + 0.158244i −0.565432 0.824795i \(-0.691291\pi\)
0.183397 + 0.983039i \(0.441291\pi\)
\(972\) −0.989918 0.196907i −0.00101843 0.000202579i
\(973\) −203.924 + 203.924i −0.209583 + 0.209583i
\(974\) −1282.31 1919.11i −1.31654 1.97034i
\(975\) 652.323 129.755i 0.669049 0.133082i
\(976\) −358.380 + 536.353i −0.367192 + 0.549542i
\(977\) 364.881 880.902i 0.373471 0.901639i −0.619686 0.784850i \(-0.712740\pi\)
0.993157 0.116789i \(-0.0372601\pi\)
\(978\) −2281.05 944.842i −2.33236 0.966096i
\(979\) 56.0102 + 37.4248i 0.0572116 + 0.0382276i
\(980\) 111.380 + 559.946i 0.113653 + 0.571373i
\(981\) 681.966 455.675i 0.695174 0.464500i
\(982\) 303.323 + 303.323i 0.308883 + 0.308883i
\(983\) −278.393 + 1399.58i −0.283208 + 1.42378i 0.533045 + 0.846087i \(0.321048\pi\)
−0.816253 + 0.577695i \(0.803952\pi\)
\(984\) −47.8240 115.457i −0.0486016 0.117335i
\(985\) 150.318i 0.152607i
\(986\) 0 0
\(987\) 124.641 0.126282
\(988\) 380.053 157.423i 0.384669 0.159335i
\(989\) −183.556 36.5116i −0.185598 0.0369176i
\(990\) −321.082 + 321.082i −0.324326 + 0.324326i
\(991\) −156.350 233.995i −0.157770 0.236120i 0.744160 0.668001i \(-0.232850\pi\)
−0.901930 + 0.431881i \(0.857850\pi\)
\(992\) −1236.85 + 246.025i −1.24683 + 0.248009i
\(993\) 77.1640 115.484i 0.0777080 0.116298i
\(994\) −185.613 + 448.110i −0.186734 + 0.450815i
\(995\) 1233.06 + 510.751i 1.23926 + 0.513317i
\(996\) −1670.74 1116.35i −1.67745 1.12084i
\(997\) 104.917 + 527.453i 0.105233 + 0.529040i 0.997057 + 0.0766590i \(0.0244253\pi\)
−0.891825 + 0.452381i \(0.850575\pi\)
\(998\) 1951.04 1303.65i 1.95495 1.30626i
\(999\) 1273.29 + 1273.29i 1.27456 + 1.27456i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 289.3.e.e.224.1 8
17.2 even 8 289.3.e.h.131.1 8
17.3 odd 16 289.3.e.h.214.1 8
17.4 even 4 289.3.e.j.65.1 8
17.5 odd 16 17.3.e.b.7.1 yes 8
17.6 odd 16 inner 289.3.e.e.40.1 8
17.7 odd 16 289.3.e.n.249.1 8
17.8 even 8 17.3.e.b.5.1 8
17.9 even 8 289.3.e.g.158.1 8
17.10 odd 16 289.3.e.j.249.1 8
17.11 odd 16 289.3.e.a.40.1 8
17.12 odd 16 289.3.e.g.75.1 8
17.13 even 4 289.3.e.n.65.1 8
17.14 odd 16 289.3.e.f.214.1 8
17.15 even 8 289.3.e.f.131.1 8
17.16 even 2 289.3.e.a.224.1 8
51.5 even 16 153.3.p.a.109.1 8
51.8 odd 8 153.3.p.a.73.1 8
68.39 even 16 272.3.bh.b.177.1 8
68.59 odd 8 272.3.bh.b.209.1 8
85.8 odd 8 425.3.t.d.124.1 8
85.22 even 16 425.3.t.d.24.1 8
85.39 odd 16 425.3.u.a.126.1 8
85.42 odd 8 425.3.t.b.124.1 8
85.59 even 8 425.3.u.a.226.1 8
85.73 even 16 425.3.t.b.24.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
17.3.e.b.5.1 8 17.8 even 8
17.3.e.b.7.1 yes 8 17.5 odd 16
153.3.p.a.73.1 8 51.8 odd 8
153.3.p.a.109.1 8 51.5 even 16
272.3.bh.b.177.1 8 68.39 even 16
272.3.bh.b.209.1 8 68.59 odd 8
289.3.e.a.40.1 8 17.11 odd 16
289.3.e.a.224.1 8 17.16 even 2
289.3.e.e.40.1 8 17.6 odd 16 inner
289.3.e.e.224.1 8 1.1 even 1 trivial
289.3.e.f.131.1 8 17.15 even 8
289.3.e.f.214.1 8 17.14 odd 16
289.3.e.g.75.1 8 17.12 odd 16
289.3.e.g.158.1 8 17.9 even 8
289.3.e.h.131.1 8 17.2 even 8
289.3.e.h.214.1 8 17.3 odd 16
289.3.e.j.65.1 8 17.4 even 4
289.3.e.j.249.1 8 17.10 odd 16
289.3.e.n.65.1 8 17.13 even 4
289.3.e.n.249.1 8 17.7 odd 16
425.3.t.b.24.1 8 85.73 even 16
425.3.t.b.124.1 8 85.42 odd 8
425.3.t.d.24.1 8 85.22 even 16
425.3.t.d.124.1 8 85.8 odd 8
425.3.u.a.126.1 8 85.39 odd 16
425.3.u.a.226.1 8 85.59 even 8