Properties

Label 289.3.e.g.158.1
Level $289$
Weight $3$
Character 289.158
Analytic conductor $7.875$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [289,3,Mod(40,289)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("289.40"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(289, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([15])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 289 = 17^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 289.e (of order \(16\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,-8,24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.87467964001\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{16})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 17)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 158.1
Root \(-0.382683 + 0.923880i\) of defining polynomial
Character \(\chi\) \(=\) 289.158
Dual form 289.3.e.g.75.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.08979 + 2.63099i) q^{2} +(2.88669 + 4.32023i) q^{3} +(-2.90602 + 2.90602i) q^{4} +(0.711297 - 3.57593i) q^{5} +(-8.22059 + 12.3030i) q^{6} +(0.644047 + 3.23784i) q^{7} +(-0.288703 - 0.119585i) q^{8} +(-6.88730 + 16.6274i) q^{9} +(10.1834 - 2.02560i) q^{10} +(-2.02046 - 1.35003i) q^{11} +(-20.9434 - 4.16591i) q^{12} +(-7.73173 - 7.73173i) q^{13} +(-7.81684 + 5.22304i) q^{14} +(17.5022 - 7.24963i) q^{15} +15.5490i q^{16} -51.2522 q^{18} +(-3.50319 - 8.45745i) q^{19} +(8.32469 + 12.4588i) q^{20} +(-12.1291 + 12.1291i) q^{21} +(1.35003 - 6.78704i) q^{22} +(1.91942 - 2.87262i) q^{23} +(-0.316761 - 1.59247i) q^{24} +(10.8156 + 4.47998i) q^{25} +(11.9161 - 28.7680i) q^{26} +(-45.8512 + 9.12037i) q^{27} +(-11.2808 - 7.53762i) q^{28} +(23.5861 + 4.69157i) q^{29} +(38.1474 + 38.1474i) q^{30} +(23.0300 - 15.3882i) q^{31} +(-42.0641 + 17.4235i) q^{32} -12.6260i q^{33} +12.0364 q^{35} +(-28.3049 - 68.3342i) q^{36} +(21.3995 + 32.0267i) q^{37} +(18.4337 - 18.4337i) q^{38} +(11.0838 - 55.7219i) q^{39} +(-0.632980 + 0.947321i) q^{40} +(-15.0157 - 75.4890i) q^{41} +(-45.1295 - 18.6933i) q^{42} +(20.7301 - 50.0470i) q^{43} +(9.79469 - 1.94829i) q^{44} +(54.5596 + 36.4555i) q^{45} +(9.64960 + 1.91942i) q^{46} +(-5.13810 - 5.13810i) q^{47} +(-67.1754 + 44.8852i) q^{48} +(35.2013 - 14.5808i) q^{49} +33.3380i q^{50} +44.9371 q^{52} +(21.8223 + 52.6837i) q^{53} +(-73.9637 - 110.695i) q^{54} +(-6.26475 + 6.26475i) q^{55} +(0.201258 - 1.01179i) q^{56} +(26.4255 - 39.5486i) q^{57} +(13.3605 + 67.1676i) q^{58} +(-21.2985 - 8.82213i) q^{59} +(-29.7940 + 71.9292i) q^{60} +(-40.6888 + 8.09351i) q^{61} +(65.5839 + 43.8218i) q^{62} +(-58.2726 - 11.5911i) q^{63} +(-47.7028 - 47.7028i) q^{64} +(-33.1477 + 22.1486i) q^{65} +(33.2187 - 13.7596i) q^{66} +17.3637i q^{67} +17.9512 q^{69} +(13.1172 + 31.6676i) q^{70} +(28.6631 + 42.8974i) q^{71} +(3.97676 - 3.97676i) q^{72} +(-12.1277 + 60.9700i) q^{73} +(-60.9407 + 91.2042i) q^{74} +(11.8668 + 59.6583i) q^{75} +(34.7579 + 14.3972i) q^{76} +(3.06990 - 7.41140i) q^{77} +(158.683 - 31.5639i) q^{78} +(-98.5655 - 65.8593i) q^{79} +(55.6023 + 11.0600i) q^{80} +(-57.2255 - 57.2255i) q^{81} +(182.247 - 121.773i) q^{82} +(-86.9369 + 36.0104i) q^{83} -70.4946i q^{84} +154.264 q^{86} +(47.8171 + 115.441i) q^{87} +(0.421869 + 0.631372i) q^{88} +(19.6021 - 19.6021i) q^{89} +(-36.4555 + 183.274i) q^{90} +(20.0545 - 30.0137i) q^{91} +(2.77001 + 13.9258i) q^{92} +(132.961 + 55.0742i) q^{93} +(7.91883 - 19.1177i) q^{94} +(-32.7351 + 6.51142i) q^{95} +(-196.700 - 131.430i) q^{96} +(-14.9417 - 2.97209i) q^{97} +(76.7240 + 76.7240i) q^{98} +(36.3629 - 24.2969i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{4} + 24 q^{5} + 16 q^{7} + 16 q^{8} + 8 q^{9} - 40 q^{11} - 40 q^{12} - 16 q^{14} + 32 q^{15} - 136 q^{18} - 32 q^{19} + 40 q^{20} - 64 q^{21} + 8 q^{23} - 24 q^{24} + 16 q^{25} - 96 q^{27} - 80 q^{28}+ \cdots - 136 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/289\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{5}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.08979 + 2.63099i 0.544895 + 1.31549i 0.921233 + 0.389011i \(0.127183\pi\)
−0.376338 + 0.926482i \(0.622817\pi\)
\(3\) 2.88669 + 4.32023i 0.962229 + 1.44008i 0.896910 + 0.442213i \(0.145807\pi\)
0.0653191 + 0.997864i \(0.479193\pi\)
\(4\) −2.90602 + 2.90602i −0.726505 + 0.726505i
\(5\) 0.711297 3.57593i 0.142259 0.715187i −0.842143 0.539255i \(-0.818706\pi\)
0.984402 0.175932i \(-0.0562939\pi\)
\(6\) −8.22059 + 12.3030i −1.37010 + 2.05050i
\(7\) 0.644047 + 3.23784i 0.0920066 + 0.462549i 0.999131 + 0.0416855i \(0.0132727\pi\)
−0.907124 + 0.420863i \(0.861727\pi\)
\(8\) −0.288703 0.119585i −0.0360878 0.0149481i
\(9\) −6.88730 + 16.6274i −0.765255 + 1.84749i
\(10\) 10.1834 2.02560i 1.01834 0.202560i
\(11\) −2.02046 1.35003i −0.183678 0.122730i 0.460332 0.887747i \(-0.347730\pi\)
−0.644010 + 0.765017i \(0.722730\pi\)
\(12\) −20.9434 4.16591i −1.74529 0.347159i
\(13\) −7.73173 7.73173i −0.594748 0.594748i 0.344162 0.938910i \(-0.388163\pi\)
−0.938910 + 0.344162i \(0.888163\pi\)
\(14\) −7.81684 + 5.22304i −0.558346 + 0.373075i
\(15\) 17.5022 7.24963i 1.16681 0.483309i
\(16\) 15.5490i 0.971815i
\(17\) 0 0
\(18\) −51.2522 −2.84734
\(19\) −3.50319 8.45745i −0.184379 0.445129i 0.804481 0.593978i \(-0.202443\pi\)
−0.988860 + 0.148849i \(0.952443\pi\)
\(20\) 8.32469 + 12.4588i 0.416234 + 0.622939i
\(21\) −12.1291 + 12.1291i −0.577574 + 0.577574i
\(22\) 1.35003 6.78704i 0.0613649 0.308502i
\(23\) 1.91942 2.87262i 0.0834532 0.124897i −0.787395 0.616449i \(-0.788571\pi\)
0.870848 + 0.491553i \(0.163571\pi\)
\(24\) −0.316761 1.59247i −0.0131984 0.0663527i
\(25\) 10.8156 + 4.47998i 0.432625 + 0.179199i
\(26\) 11.9161 28.7680i 0.458312 1.10646i
\(27\) −45.8512 + 9.12037i −1.69819 + 0.337791i
\(28\) −11.2808 7.53762i −0.402887 0.269201i
\(29\) 23.5861 + 4.69157i 0.813314 + 0.161778i 0.584188 0.811618i \(-0.301413\pi\)
0.229126 + 0.973397i \(0.426413\pi\)
\(30\) 38.1474 + 38.1474i 1.27158 + 1.27158i
\(31\) 23.0300 15.3882i 0.742903 0.496392i −0.125597 0.992081i \(-0.540085\pi\)
0.868500 + 0.495689i \(0.165085\pi\)
\(32\) −42.0641 + 17.4235i −1.31450 + 0.544485i
\(33\) 12.6260i 0.382605i
\(34\) 0 0
\(35\) 12.0364 0.343897
\(36\) −28.3049 68.3342i −0.786248 1.89817i
\(37\) 21.3995 + 32.0267i 0.578366 + 0.865586i 0.999135 0.0415820i \(-0.0132398\pi\)
−0.420769 + 0.907168i \(0.638240\pi\)
\(38\) 18.4337 18.4337i 0.485097 0.485097i
\(39\) 11.0838 55.7219i 0.284200 1.42877i
\(40\) −0.632980 + 0.947321i −0.0158245 + 0.0236830i
\(41\) −15.0157 75.4890i −0.366237 1.84120i −0.521407 0.853308i \(-0.674593\pi\)
0.155171 0.987888i \(-0.450407\pi\)
\(42\) −45.1295 18.6933i −1.07451 0.445078i
\(43\) 20.7301 50.0470i 0.482096 1.16388i −0.476515 0.879166i \(-0.658100\pi\)
0.958612 0.284717i \(-0.0918996\pi\)
\(44\) 9.79469 1.94829i 0.222607 0.0442792i
\(45\) 54.5596 + 36.4555i 1.21244 + 0.810123i
\(46\) 9.64960 + 1.91942i 0.209774 + 0.0417266i
\(47\) −5.13810 5.13810i −0.109321 0.109321i 0.650330 0.759652i \(-0.274631\pi\)
−0.759652 + 0.650330i \(0.774631\pi\)
\(48\) −67.1754 + 44.8852i −1.39949 + 0.935108i
\(49\) 35.2013 14.5808i 0.718394 0.297568i
\(50\) 33.3380i 0.666760i
\(51\) 0 0
\(52\) 44.9371 0.864175
\(53\) 21.8223 + 52.6837i 0.411742 + 0.994033i 0.984670 + 0.174427i \(0.0558074\pi\)
−0.572928 + 0.819606i \(0.694193\pi\)
\(54\) −73.9637 110.695i −1.36970 2.04990i
\(55\) −6.26475 + 6.26475i −0.113905 + 0.113905i
\(56\) 0.201258 1.01179i 0.00359389 0.0180677i
\(57\) 26.4255 39.5486i 0.463606 0.693836i
\(58\) 13.3605 + 67.1676i 0.230353 + 1.15806i
\(59\) −21.2985 8.82213i −0.360992 0.149528i 0.194813 0.980840i \(-0.437590\pi\)
−0.555805 + 0.831313i \(0.687590\pi\)
\(60\) −29.7940 + 71.9292i −0.496567 + 1.19882i
\(61\) −40.6888 + 8.09351i −0.667030 + 0.132680i −0.516979 0.855998i \(-0.672944\pi\)
−0.150050 + 0.988678i \(0.547944\pi\)
\(62\) 65.5839 + 43.8218i 1.05780 + 0.706803i
\(63\) −58.2726 11.5911i −0.924962 0.183986i
\(64\) −47.7028 47.7028i −0.745356 0.745356i
\(65\) −33.1477 + 22.1486i −0.509965 + 0.340747i
\(66\) 33.2187 13.7596i 0.503314 0.208479i
\(67\) 17.3637i 0.259160i 0.991569 + 0.129580i \(0.0413630\pi\)
−0.991569 + 0.129580i \(0.958637\pi\)
\(68\) 0 0
\(69\) 17.9512 0.260162
\(70\) 13.1172 + 31.6676i 0.187388 + 0.452395i
\(71\) 28.6631 + 42.8974i 0.403706 + 0.604188i 0.976502 0.215510i \(-0.0691413\pi\)
−0.572796 + 0.819698i \(0.694141\pi\)
\(72\) 3.97676 3.97676i 0.0552328 0.0552328i
\(73\) −12.1277 + 60.9700i −0.166133 + 0.835206i 0.804372 + 0.594126i \(0.202502\pi\)
−0.970505 + 0.241080i \(0.922498\pi\)
\(74\) −60.9407 + 91.2042i −0.823523 + 1.23249i
\(75\) 11.8668 + 59.6583i 0.158224 + 0.795445i
\(76\) 34.7579 + 14.3972i 0.457340 + 0.189437i
\(77\) 3.06990 7.41140i 0.0398689 0.0962520i
\(78\) 158.683 31.5639i 2.03439 0.404666i
\(79\) −98.5655 65.8593i −1.24766 0.833662i −0.256531 0.966536i \(-0.582580\pi\)
−0.991133 + 0.132874i \(0.957580\pi\)
\(80\) 55.6023 + 11.0600i 0.695029 + 0.138250i
\(81\) −57.2255 57.2255i −0.706488 0.706488i
\(82\) 182.247 121.773i 2.22252 1.48504i
\(83\) −86.9369 + 36.0104i −1.04743 + 0.433861i −0.838975 0.544171i \(-0.816844\pi\)
−0.208458 + 0.978031i \(0.566844\pi\)
\(84\) 70.4946i 0.839221i
\(85\) 0 0
\(86\) 154.264 1.79377
\(87\) 47.8171 + 115.441i 0.549621 + 1.32690i
\(88\) 0.421869 + 0.631372i 0.00479397 + 0.00717468i
\(89\) 19.6021 19.6021i 0.220248 0.220248i −0.588355 0.808603i \(-0.700224\pi\)
0.808603 + 0.588355i \(0.200224\pi\)
\(90\) −36.4555 + 183.274i −0.405062 + 2.03638i
\(91\) 20.0545 30.0137i 0.220379 0.329821i
\(92\) 2.77001 + 13.9258i 0.0301088 + 0.151367i
\(93\) 132.961 + 55.0742i 1.42969 + 0.592195i
\(94\) 7.91883 19.1177i 0.0842428 0.203380i
\(95\) −32.7351 + 6.51142i −0.344580 + 0.0685412i
\(96\) −196.700 131.430i −2.04895 1.36907i
\(97\) −14.9417 2.97209i −0.154038 0.0306401i 0.117469 0.993077i \(-0.462522\pi\)
−0.271507 + 0.962437i \(0.587522\pi\)
\(98\) 76.7240 + 76.7240i 0.782898 + 0.782898i
\(99\) 36.3629 24.2969i 0.367302 0.245424i
\(100\) −44.4493 + 18.4115i −0.444493 + 0.184115i
\(101\) 132.191i 1.30882i −0.756140 0.654410i \(-0.772917\pi\)
0.756140 0.654410i \(-0.227083\pi\)
\(102\) 0 0
\(103\) −185.135 −1.79743 −0.898713 0.438536i \(-0.855497\pi\)
−0.898713 + 0.438536i \(0.855497\pi\)
\(104\) 1.30757 + 3.15676i 0.0125728 + 0.0303535i
\(105\) 34.7454 + 52.0001i 0.330908 + 0.495239i
\(106\) −114.828 + 114.828i −1.08329 + 1.08329i
\(107\) 7.23785 36.3871i 0.0676434 0.340066i −0.932112 0.362169i \(-0.882036\pi\)
0.999756 + 0.0221030i \(0.00703617\pi\)
\(108\) 106.740 159.748i 0.988337 1.47915i
\(109\) 8.89084 + 44.6973i 0.0815673 + 0.410067i 0.999898 + 0.0142535i \(0.00453719\pi\)
−0.918331 + 0.395813i \(0.870463\pi\)
\(110\) −23.3097 9.65521i −0.211907 0.0877747i
\(111\) −76.5889 + 184.902i −0.689990 + 1.66578i
\(112\) −50.3453 + 10.0143i −0.449511 + 0.0894134i
\(113\) 72.6645 + 48.5529i 0.643049 + 0.429671i 0.833876 0.551952i \(-0.186117\pi\)
−0.190827 + 0.981624i \(0.561117\pi\)
\(114\) 132.850 + 26.4255i 1.16535 + 0.231803i
\(115\) −8.90702 8.90702i −0.0774524 0.0774524i
\(116\) −82.1755 + 54.9079i −0.708409 + 0.473344i
\(117\) 181.809 75.3079i 1.55393 0.643657i
\(118\) 65.6503i 0.556359i
\(119\) 0 0
\(120\) −5.91986 −0.0493322
\(121\) −44.0450 106.334i −0.364008 0.878794i
\(122\) −65.6362 98.2315i −0.538001 0.805176i
\(123\) 282.785 282.785i 2.29906 2.29906i
\(124\) −22.2074 + 111.644i −0.179092 + 0.900354i
\(125\) 74.3533 111.278i 0.594827 0.890221i
\(126\) −33.0088 165.946i −0.261975 1.31703i
\(127\) 102.264 + 42.3590i 0.805226 + 0.333535i 0.747047 0.664771i \(-0.231471\pi\)
0.0581782 + 0.998306i \(0.481471\pi\)
\(128\) 3.82526 9.23501i 0.0298849 0.0721485i
\(129\) 276.056 54.9109i 2.13997 0.425666i
\(130\) −94.3967 63.0738i −0.726128 0.485183i
\(131\) 44.0168 + 8.75549i 0.336006 + 0.0668358i 0.360210 0.932871i \(-0.382705\pi\)
−0.0242037 + 0.999707i \(0.507705\pi\)
\(132\) 36.6913 + 36.6913i 0.277964 + 0.277964i
\(133\) 25.1277 16.7898i 0.188930 0.126239i
\(134\) −45.6838 + 18.9228i −0.340924 + 0.141215i
\(135\) 170.448i 1.26258i
\(136\) 0 0
\(137\) 61.5009 0.448911 0.224456 0.974484i \(-0.427940\pi\)
0.224456 + 0.974484i \(0.427940\pi\)
\(138\) 19.5630 + 47.2293i 0.141761 + 0.342241i
\(139\) −48.5334 72.6354i −0.349161 0.522557i 0.614770 0.788706i \(-0.289249\pi\)
−0.963932 + 0.266149i \(0.914249\pi\)
\(140\) −34.9780 + 34.9780i −0.249843 + 0.249843i
\(141\) 7.36571 37.0299i 0.0522391 0.262623i
\(142\) −81.6256 + 122.161i −0.574828 + 0.860291i
\(143\) 5.18359 + 26.0597i 0.0362489 + 0.182235i
\(144\) −258.540 107.091i −1.79542 0.743686i
\(145\) 33.5535 81.0053i 0.231403 0.558657i
\(146\) −173.628 + 34.5368i −1.18923 + 0.236553i
\(147\) 164.608 + 109.987i 1.11978 + 0.748213i
\(148\) −155.258 30.8827i −1.04904 0.208667i
\(149\) 132.640 + 132.640i 0.890200 + 0.890200i 0.994541 0.104342i \(-0.0332736\pi\)
−0.104342 + 0.994541i \(0.533274\pi\)
\(150\) −144.028 + 96.2364i −0.960187 + 0.641576i
\(151\) −199.707 + 82.7215i −1.32257 + 0.547824i −0.928525 0.371269i \(-0.878923\pi\)
−0.394040 + 0.919093i \(0.628923\pi\)
\(152\) 2.86062i 0.0188198i
\(153\) 0 0
\(154\) 22.8448 0.148343
\(155\) −38.6458 93.2993i −0.249328 0.601931i
\(156\) 129.719 + 194.139i 0.831534 + 1.24448i
\(157\) −111.042 + 111.042i −0.707276 + 0.707276i −0.965961 0.258686i \(-0.916711\pi\)
0.258686 + 0.965961i \(0.416711\pi\)
\(158\) 65.8593 331.097i 0.416831 2.09555i
\(159\) −164.612 + 246.359i −1.03529 + 1.54943i
\(160\) 32.3853 + 162.812i 0.202408 + 1.01757i
\(161\) 10.5373 + 4.36469i 0.0654490 + 0.0271099i
\(162\) 88.1957 212.923i 0.544418 1.31434i
\(163\) −163.655 + 32.5530i −1.00402 + 0.199712i −0.669607 0.742715i \(-0.733538\pi\)
−0.334412 + 0.942427i \(0.608538\pi\)
\(164\) 263.008 + 175.737i 1.60371 + 1.07156i
\(165\) −45.1496 8.98081i −0.273634 0.0544291i
\(166\) −189.486 189.486i −1.14148 1.14148i
\(167\) 44.7752 29.9178i 0.268115 0.179149i −0.414244 0.910166i \(-0.635954\pi\)
0.682359 + 0.731017i \(0.260954\pi\)
\(168\) 4.95214 2.05124i 0.0294770 0.0122098i
\(169\) 49.4408i 0.292549i
\(170\) 0 0
\(171\) 164.753 0.963468
\(172\) 85.1953 + 205.680i 0.495321 + 1.19581i
\(173\) −37.3651 55.9209i −0.215983 0.323242i 0.707619 0.706594i \(-0.249769\pi\)
−0.923602 + 0.383352i \(0.874769\pi\)
\(174\) −251.612 + 251.612i −1.44605 + 1.44605i
\(175\) −7.53969 + 37.9046i −0.0430840 + 0.216598i
\(176\) 20.9916 31.4162i 0.119271 0.178501i
\(177\) −23.3685 117.481i −0.132025 0.663736i
\(178\) 72.9349 + 30.2106i 0.409747 + 0.169723i
\(179\) 96.0193 231.811i 0.536421 1.29503i −0.390785 0.920482i \(-0.627797\pi\)
0.927206 0.374552i \(-0.122203\pi\)
\(180\) −264.492 + 52.6107i −1.46940 + 0.292282i
\(181\) 14.2421 + 9.51629i 0.0786859 + 0.0525762i 0.594291 0.804250i \(-0.297433\pi\)
−0.515605 + 0.856826i \(0.672433\pi\)
\(182\) 100.821 + 20.0545i 0.553961 + 0.110190i
\(183\) −152.422 152.422i −0.832905 0.832905i
\(184\) −0.897664 + 0.599800i −0.00487861 + 0.00325978i
\(185\) 129.747 53.7428i 0.701333 0.290502i
\(186\) 409.837i 2.20343i
\(187\) 0 0
\(188\) 29.8629 0.158845
\(189\) −59.0606 142.585i −0.312490 0.754417i
\(190\) −52.8058 79.0295i −0.277925 0.415945i
\(191\) 79.7646 79.7646i 0.417615 0.417615i −0.466766 0.884381i \(-0.654581\pi\)
0.884381 + 0.466766i \(0.154581\pi\)
\(192\) 68.3841 343.790i 0.356167 1.79057i
\(193\) 11.3804 17.0319i 0.0589656 0.0882482i −0.800815 0.598911i \(-0.795600\pi\)
0.859781 + 0.510663i \(0.170600\pi\)
\(194\) −8.46379 42.5503i −0.0436278 0.219332i
\(195\) −191.374 79.2697i −0.981406 0.406511i
\(196\) −59.9234 + 144.668i −0.305732 + 0.738101i
\(197\) 40.4361 8.04325i 0.205260 0.0408287i −0.0913895 0.995815i \(-0.529131\pi\)
0.296649 + 0.954987i \(0.404131\pi\)
\(198\) 103.553 + 69.1918i 0.522994 + 0.349454i
\(199\) −359.028 71.4150i −1.80416 0.358870i −0.825507 0.564392i \(-0.809110\pi\)
−0.978652 + 0.205523i \(0.934110\pi\)
\(200\) −2.58676 2.58676i −0.0129338 0.0129338i
\(201\) −75.0154 + 50.1237i −0.373211 + 0.249372i
\(202\) 347.792 144.060i 1.72174 0.713170i
\(203\) 79.3897i 0.391082i
\(204\) 0 0
\(205\) −280.624 −1.36890
\(206\) −201.758 487.088i −0.979409 2.36450i
\(207\) 34.5446 + 51.6997i 0.166882 + 0.249757i
\(208\) 120.221 120.221i 0.577985 0.577985i
\(209\) −4.33974 + 21.8173i −0.0207643 + 0.104389i
\(210\) −98.9464 + 148.084i −0.471173 + 0.705161i
\(211\) −62.5770 314.596i −0.296574 1.49098i −0.785615 0.618716i \(-0.787653\pi\)
0.489041 0.872261i \(-0.337347\pi\)
\(212\) −216.516 89.6839i −1.02130 0.423037i
\(213\) −102.585 + 247.663i −0.481621 + 1.16274i
\(214\) 103.622 20.6116i 0.484214 0.0963161i
\(215\) −164.219 109.728i −0.763811 0.510362i
\(216\) 14.3280 + 2.85002i 0.0663334 + 0.0131945i
\(217\) 64.6568 + 64.6568i 0.297958 + 0.297958i
\(218\) −107.909 + 72.1023i −0.494994 + 0.330745i
\(219\) −298.414 + 123.607i −1.36262 + 0.564415i
\(220\) 36.4110i 0.165504i
\(221\) 0 0
\(222\) −569.940 −2.56730
\(223\) −41.5859 100.397i −0.186484 0.450211i 0.802794 0.596256i \(-0.203346\pi\)
−0.989278 + 0.146045i \(0.953346\pi\)
\(224\) −83.5058 124.975i −0.372794 0.557925i
\(225\) −148.981 + 148.981i −0.662137 + 0.662137i
\(226\) −48.5529 + 244.092i −0.214836 + 1.08005i
\(227\) 109.633 164.078i 0.482966 0.722810i −0.507335 0.861749i \(-0.669369\pi\)
0.990301 + 0.138939i \(0.0443693\pi\)
\(228\) 38.1359 + 191.722i 0.167263 + 0.840887i
\(229\) −167.322 69.3072i −0.730665 0.302651i −0.0138399 0.999904i \(-0.504406\pi\)
−0.716825 + 0.697253i \(0.754406\pi\)
\(230\) 13.7275 33.1410i 0.0596847 0.144091i
\(231\) 40.8808 8.13170i 0.176973 0.0352022i
\(232\) −6.24833 4.17500i −0.0269325 0.0179957i
\(233\) −5.74492 1.14274i −0.0246563 0.00490444i 0.182747 0.983160i \(-0.441501\pi\)
−0.207403 + 0.978256i \(0.566501\pi\)
\(234\) 396.268 + 396.268i 1.69345 + 1.69345i
\(235\) −22.0282 + 14.7188i −0.0937372 + 0.0626332i
\(236\) 87.5311 36.2566i 0.370895 0.153630i
\(237\) 615.941i 2.59891i
\(238\) 0 0
\(239\) 68.9414 0.288458 0.144229 0.989544i \(-0.453930\pi\)
0.144229 + 0.989544i \(0.453930\pi\)
\(240\) 112.725 + 272.142i 0.469686 + 1.13392i
\(241\) 172.160 + 257.655i 0.714355 + 1.06911i 0.994040 + 0.109016i \(0.0347700\pi\)
−0.279685 + 0.960092i \(0.590230\pi\)
\(242\) 231.764 231.764i 0.957701 0.957701i
\(243\) −0.0479123 + 0.240872i −0.000197170 + 0.000991241i
\(244\) 94.7226 141.762i 0.388207 0.580993i
\(245\) −27.1016 136.249i −0.110619 0.556117i
\(246\) 1052.18 + 435.826i 4.27715 + 1.77165i
\(247\) −38.3050 + 92.4764i −0.155081 + 0.374399i
\(248\) −8.48901 + 1.68857i −0.0342299 + 0.00680874i
\(249\) −406.533 271.637i −1.63266 1.09091i
\(250\) 373.799 + 74.3533i 1.49520 + 0.297413i
\(251\) 149.892 + 149.892i 0.597178 + 0.597178i 0.939561 0.342382i \(-0.111234\pi\)
−0.342382 + 0.939561i \(0.611234\pi\)
\(252\) 203.025 135.657i 0.805657 0.538323i
\(253\) −7.75623 + 3.21274i −0.0306571 + 0.0126986i
\(254\) 315.217i 1.24101i
\(255\) 0 0
\(256\) −241.382 −0.942898
\(257\) 92.4689 + 223.240i 0.359801 + 0.868637i 0.995327 + 0.0965575i \(0.0307832\pi\)
−0.635526 + 0.772079i \(0.719217\pi\)
\(258\) 445.313 + 666.458i 1.72602 + 2.58317i
\(259\) −89.9150 + 89.9150i −0.347162 + 0.347162i
\(260\) 31.9636 160.692i 0.122937 0.618046i
\(261\) −240.453 + 359.864i −0.921277 + 1.37879i
\(262\) 24.9335 + 125.349i 0.0951661 + 0.478432i
\(263\) −221.046 91.5602i −0.840479 0.348138i −0.0794365 0.996840i \(-0.525312\pi\)
−0.761042 + 0.648702i \(0.775312\pi\)
\(264\) −1.50987 + 3.64515i −0.00571920 + 0.0138074i
\(265\) 203.916 40.5614i 0.769493 0.153062i
\(266\) 71.5575 + 47.8132i 0.269013 + 0.179749i
\(267\) 141.271 + 28.1005i 0.529103 + 0.105245i
\(268\) −50.4594 50.4594i −0.188281 0.188281i
\(269\) −9.41947 + 6.29389i −0.0350166 + 0.0233973i −0.572955 0.819587i \(-0.694203\pi\)
0.537939 + 0.842984i \(0.319203\pi\)
\(270\) −448.446 + 185.753i −1.66091 + 0.687973i
\(271\) 352.304i 1.30001i 0.759929 + 0.650007i \(0.225234\pi\)
−0.759929 + 0.650007i \(0.774766\pi\)
\(272\) 0 0
\(273\) 187.557 0.687023
\(274\) 67.0230 + 161.808i 0.244610 + 0.590540i
\(275\) −15.8044 23.6530i −0.0574707 0.0860109i
\(276\) −52.1665 + 52.1665i −0.189009 + 0.189009i
\(277\) 18.1940 91.4673i 0.0656823 0.330207i −0.933948 0.357410i \(-0.883660\pi\)
0.999630 + 0.0272028i \(0.00865997\pi\)
\(278\) 138.212 206.848i 0.497164 0.744058i
\(279\) 97.2506 + 488.912i 0.348569 + 1.75237i
\(280\) −3.47494 1.43937i −0.0124105 0.00514060i
\(281\) 85.1913 205.670i 0.303172 0.731922i −0.696722 0.717341i \(-0.745359\pi\)
0.999894 0.0145802i \(-0.00464119\pi\)
\(282\) 105.452 20.9758i 0.373944 0.0743821i
\(283\) −104.017 69.5017i −0.367550 0.245589i 0.358055 0.933700i \(-0.383440\pi\)
−0.725605 + 0.688111i \(0.758440\pi\)
\(284\) −207.956 41.3650i −0.732240 0.145652i
\(285\) −122.627 122.627i −0.430270 0.430270i
\(286\) −62.9136 + 42.0375i −0.219978 + 0.146984i
\(287\) 234.751 97.2369i 0.817946 0.338804i
\(288\) 819.418i 2.84520i
\(289\) 0 0
\(290\) 249.690 0.861000
\(291\) −30.2919 73.1311i −0.104096 0.251309i
\(292\) −141.937 212.423i −0.486085 0.727477i
\(293\) −84.7101 + 84.7101i −0.289113 + 0.289113i −0.836729 0.547617i \(-0.815535\pi\)
0.547617 + 0.836729i \(0.315535\pi\)
\(294\) −109.987 + 552.944i −0.374107 + 1.88076i
\(295\) −46.6969 + 69.8869i −0.158295 + 0.236905i
\(296\) −2.34821 11.8052i −0.00793313 0.0398826i
\(297\) 104.953 + 43.4730i 0.353378 + 0.146374i
\(298\) −204.424 + 493.523i −0.685986 + 1.65612i
\(299\) −37.0508 + 7.36986i −0.123916 + 0.0246484i
\(300\) −207.853 138.883i −0.692845 0.462944i
\(301\) 175.395 + 34.8883i 0.582709 + 0.115908i
\(302\) −435.278 435.278i −1.44132 1.44132i
\(303\) 571.095 381.594i 1.88480 1.25938i
\(304\) 131.505 54.4712i 0.432583 0.179182i
\(305\) 151.257i 0.495926i
\(306\) 0 0
\(307\) 237.264 0.772846 0.386423 0.922322i \(-0.373711\pi\)
0.386423 + 0.922322i \(0.373711\pi\)
\(308\) 12.6165 + 30.4589i 0.0409626 + 0.0988924i
\(309\) −534.427 799.826i −1.72954 2.58843i
\(310\) 203.353 203.353i 0.655979 0.655979i
\(311\) −62.8072 + 315.753i −0.201953 + 1.01528i 0.738213 + 0.674567i \(0.235670\pi\)
−0.940166 + 0.340717i \(0.889330\pi\)
\(312\) −9.86340 + 14.7616i −0.0316135 + 0.0473129i
\(313\) −61.4642 309.001i −0.196371 0.987225i −0.945703 0.325031i \(-0.894625\pi\)
0.749332 0.662194i \(-0.230375\pi\)
\(314\) −413.163 171.138i −1.31581 0.545025i
\(315\) −82.8983 + 200.134i −0.263169 + 0.635347i
\(316\) 477.822 95.0446i 1.51209 0.300774i
\(317\) 266.949 + 178.370i 0.842111 + 0.562681i 0.900123 0.435635i \(-0.143476\pi\)
−0.0580122 + 0.998316i \(0.518476\pi\)
\(318\) −827.559 164.612i −2.60239 0.517647i
\(319\) −41.3210 41.3210i −0.129533 0.129533i
\(320\) −204.513 + 136.651i −0.639103 + 0.427035i
\(321\) 178.094 73.7690i 0.554811 0.229810i
\(322\) 32.4801i 0.100870i
\(323\) 0 0
\(324\) 332.597 1.02653
\(325\) −48.9855 118.262i −0.150725 0.363882i
\(326\) −263.996 395.098i −0.809805 1.21196i
\(327\) −167.437 + 167.437i −0.512041 + 0.512041i
\(328\) −4.69225 + 23.5895i −0.0143056 + 0.0719193i
\(329\) 13.3272 19.9455i 0.0405082 0.0606247i
\(330\) −25.5752 128.575i −0.0775006 0.389622i
\(331\) 24.6962 + 10.2295i 0.0746109 + 0.0309049i 0.419677 0.907674i \(-0.362143\pi\)
−0.345066 + 0.938578i \(0.612143\pi\)
\(332\) 147.993 357.287i 0.445763 1.07617i
\(333\) −679.905 + 135.242i −2.04176 + 0.406131i
\(334\) 127.509 + 85.1987i 0.381763 + 0.255086i
\(335\) 62.0916 + 12.3508i 0.185348 + 0.0368680i
\(336\) −188.595 188.595i −0.561295 0.561295i
\(337\) −406.888 + 271.874i −1.20738 + 0.806748i −0.985723 0.168375i \(-0.946148\pi\)
−0.221661 + 0.975124i \(0.571148\pi\)
\(338\) 130.078 53.8801i 0.384846 0.159409i
\(339\) 454.084i 1.33948i
\(340\) 0 0
\(341\) −67.3056 −0.197377
\(342\) 179.546 + 433.463i 0.524989 + 1.26744i
\(343\) 159.752 + 239.086i 0.465750 + 0.697043i
\(344\) −11.9697 + 11.9697i −0.0347956 + 0.0347956i
\(345\) 12.7686 64.1922i 0.0370105 0.186064i
\(346\) 106.407 159.249i 0.307534 0.460258i
\(347\) 47.1829 + 237.204i 0.135974 + 0.683586i 0.987289 + 0.158932i \(0.0508052\pi\)
−0.851316 + 0.524654i \(0.824195\pi\)
\(348\) −474.430 196.515i −1.36330 0.564699i
\(349\) −15.1979 + 36.6909i −0.0435470 + 0.105132i −0.944156 0.329498i \(-0.893121\pi\)
0.900609 + 0.434629i \(0.143121\pi\)
\(350\) −107.943 + 21.4712i −0.308409 + 0.0613464i
\(351\) 425.025 + 283.993i 1.21090 + 0.809096i
\(352\) 108.511 + 21.5842i 0.308270 + 0.0613187i
\(353\) −451.955 451.955i −1.28033 1.28033i −0.940482 0.339843i \(-0.889626\pi\)
−0.339843 0.940482i \(-0.610374\pi\)
\(354\) 283.625 189.512i 0.801200 0.535345i
\(355\) 173.786 71.9846i 0.489538 0.202773i
\(356\) 113.928i 0.320022i
\(357\) 0 0
\(358\) 714.533 1.99590
\(359\) 78.0349 + 188.393i 0.217367 + 0.524771i 0.994521 0.104540i \(-0.0333370\pi\)
−0.777153 + 0.629311i \(0.783337\pi\)
\(360\) −11.3920 17.0493i −0.0316444 0.0473591i
\(361\) 196.009 196.009i 0.542962 0.542962i
\(362\) −9.51629 + 47.8416i −0.0262881 + 0.132159i
\(363\) 332.244 497.238i 0.915272 1.36980i
\(364\) 28.9416 + 145.499i 0.0795098 + 0.399723i
\(365\) 209.398 + 86.7357i 0.573694 + 0.237632i
\(366\) 234.912 567.127i 0.641835 1.54953i
\(367\) 276.557 55.0107i 0.753563 0.149893i 0.196661 0.980472i \(-0.436990\pi\)
0.556901 + 0.830579i \(0.311990\pi\)
\(368\) 44.6665 + 29.8452i 0.121376 + 0.0811011i
\(369\) 1358.60 + 270.243i 3.68185 + 0.732366i
\(370\) 282.793 + 282.793i 0.764306 + 0.764306i
\(371\) −156.527 + 104.588i −0.421906 + 0.281908i
\(372\) −546.433 + 226.340i −1.46891 + 0.608441i
\(373\) 340.976i 0.914144i −0.889430 0.457072i \(-0.848898\pi\)
0.889430 0.457072i \(-0.151102\pi\)
\(374\) 0 0
\(375\) 695.380 1.85435
\(376\) 0.868946 + 2.09782i 0.00231103 + 0.00557931i
\(377\) −146.087 218.635i −0.387500 0.579935i
\(378\) 310.775 310.775i 0.822156 0.822156i
\(379\) 69.8686 351.253i 0.184350 0.926790i −0.772235 0.635337i \(-0.780861\pi\)
0.956585 0.291453i \(-0.0941387\pi\)
\(380\) 76.2065 114.051i 0.200544 0.300135i
\(381\) 112.202 + 564.080i 0.294495 + 1.48052i
\(382\) 296.786 + 122.933i 0.776927 + 0.321814i
\(383\) 92.5645 223.470i 0.241683 0.583474i −0.755767 0.654840i \(-0.772736\pi\)
0.997450 + 0.0713664i \(0.0227360\pi\)
\(384\) 50.9397 10.1325i 0.132656 0.0263868i
\(385\) −24.3191 16.2495i −0.0631664 0.0422064i
\(386\) 57.2129 + 11.3804i 0.148220 + 0.0294828i
\(387\) 689.377 + 689.377i 1.78134 + 1.78134i
\(388\) 52.0578 34.7839i 0.134170 0.0896492i
\(389\) −619.174 + 256.470i −1.59171 + 0.659307i −0.990212 0.139570i \(-0.955428\pi\)
−0.601495 + 0.798877i \(0.705428\pi\)
\(390\) 589.890i 1.51254i
\(391\) 0 0
\(392\) −11.9063 −0.0303733
\(393\) 89.2370 + 215.437i 0.227066 + 0.548186i
\(394\) 65.2286 + 97.6215i 0.165555 + 0.247770i
\(395\) −305.618 + 305.618i −0.773716 + 0.773716i
\(396\) −35.0640 + 176.279i −0.0885455 + 0.445148i
\(397\) −248.868 + 372.457i −0.626871 + 0.938179i 0.373075 + 0.927801i \(0.378303\pi\)
−0.999946 + 0.0103776i \(0.996697\pi\)
\(398\) −203.373 1022.42i −0.510987 2.56890i
\(399\) 145.071 + 60.0906i 0.363588 + 0.150603i
\(400\) −69.6594 + 168.173i −0.174148 + 0.420431i
\(401\) −136.334 + 27.1185i −0.339985 + 0.0676272i −0.362130 0.932128i \(-0.617950\pi\)
0.0221452 + 0.999755i \(0.492950\pi\)
\(402\) −213.626 142.740i −0.531407 0.355075i
\(403\) −297.039 59.0847i −0.737069 0.146612i
\(404\) 384.149 + 384.149i 0.950864 + 0.950864i
\(405\) −245.339 + 163.930i −0.605775 + 0.404766i
\(406\) −208.873 + 86.5181i −0.514466 + 0.213099i
\(407\) 93.5985i 0.229972i
\(408\) 0 0
\(409\) −404.559 −0.989142 −0.494571 0.869137i \(-0.664675\pi\)
−0.494571 + 0.869137i \(0.664675\pi\)
\(410\) −305.822 738.319i −0.745907 1.80078i
\(411\) 177.534 + 265.698i 0.431956 + 0.646467i
\(412\) 538.006 538.006i 1.30584 1.30584i
\(413\) 14.8474 74.6430i 0.0359502 0.180734i
\(414\) −98.3747 + 147.228i −0.237620 + 0.355624i
\(415\) 66.9330 + 336.495i 0.161284 + 0.810831i
\(416\) 459.942 + 190.514i 1.10563 + 0.457967i
\(417\) 173.701 419.352i 0.416549 1.00564i
\(418\) −62.1305 + 12.3585i −0.148638 + 0.0295659i
\(419\) 217.250 + 145.162i 0.518496 + 0.346448i 0.787123 0.616796i \(-0.211570\pi\)
−0.268627 + 0.963244i \(0.586570\pi\)
\(420\) −252.084 50.1426i −0.600200 0.119387i
\(421\) 429.955 + 429.955i 1.02127 + 1.02127i 0.999769 + 0.0215010i \(0.00684449\pi\)
0.0215010 + 0.999769i \(0.493156\pi\)
\(422\) 759.502 507.483i 1.79977 1.20257i
\(423\) 120.821 50.0457i 0.285629 0.118311i
\(424\) 17.8195i 0.0420272i
\(425\) 0 0
\(426\) −763.393 −1.79200
\(427\) −52.4110 126.531i −0.122742 0.296326i
\(428\) 84.7083 + 126.775i 0.197917 + 0.296203i
\(429\) −97.6204 + 97.6204i −0.227553 + 0.227553i
\(430\) 109.728 551.639i 0.255181 1.28288i
\(431\) 355.752 532.421i 0.825412 1.23532i −0.143927 0.989588i \(-0.545973\pi\)
0.969339 0.245728i \(-0.0790269\pi\)
\(432\) −141.813 712.941i −0.328271 1.65033i
\(433\) −590.594 244.632i −1.36396 0.564971i −0.423816 0.905748i \(-0.639310\pi\)
−0.940144 + 0.340778i \(0.889310\pi\)
\(434\) −99.6488 + 240.573i −0.229605 + 0.554317i
\(435\) 446.820 88.8780i 1.02717 0.204317i
\(436\) −155.728 104.054i −0.357174 0.238656i
\(437\) −31.0192 6.17010i −0.0709821 0.0141192i
\(438\) −650.416 650.416i −1.48497 1.48497i
\(439\) −586.307 + 391.758i −1.33555 + 0.892386i −0.998789 0.0492039i \(-0.984332\pi\)
−0.336761 + 0.941590i \(0.609332\pi\)
\(440\) 2.55782 1.05948i 0.00581322 0.00240792i
\(441\) 685.729i 1.55494i
\(442\) 0 0
\(443\) −317.185 −0.715994 −0.357997 0.933723i \(-0.616540\pi\)
−0.357997 + 0.933723i \(0.616540\pi\)
\(444\) −314.760 759.898i −0.708919 1.71148i
\(445\) −56.1528 84.0386i −0.126186 0.188851i
\(446\) 218.824 218.824i 0.490636 0.490636i
\(447\) −190.145 + 955.924i −0.425381 + 2.13853i
\(448\) 123.731 185.177i 0.276186 0.413341i
\(449\) 47.9801 + 241.212i 0.106860 + 0.537222i 0.996716 + 0.0809796i \(0.0258049\pi\)
−0.889856 + 0.456242i \(0.849195\pi\)
\(450\) −554.325 229.609i −1.23183 0.510242i
\(451\) −71.5736 + 172.794i −0.158700 + 0.383135i
\(452\) −352.260 + 70.0689i −0.779336 + 0.155020i
\(453\) −933.869 623.991i −2.06152 1.37746i
\(454\) 551.164 + 109.633i 1.21402 + 0.241483i
\(455\) −93.0622 93.0622i −0.204532 0.204532i
\(456\) −12.3585 + 8.25770i −0.0271020 + 0.0181090i
\(457\) 343.798 142.406i 0.752293 0.311610i 0.0266163 0.999646i \(-0.491527\pi\)
0.725677 + 0.688036i \(0.241527\pi\)
\(458\) 515.753i 1.12610i
\(459\) 0 0
\(460\) 51.7680 0.112539
\(461\) 329.689 + 795.940i 0.715161 + 1.72655i 0.686683 + 0.726957i \(0.259066\pi\)
0.0284783 + 0.999594i \(0.490934\pi\)
\(462\) 65.9459 + 98.6951i 0.142740 + 0.213626i
\(463\) −386.172 + 386.172i −0.834065 + 0.834065i −0.988070 0.154005i \(-0.950783\pi\)
0.154005 + 0.988070i \(0.450783\pi\)
\(464\) −72.9494 + 366.741i −0.157218 + 0.790391i
\(465\) 291.516 436.285i 0.626917 0.938247i
\(466\) −3.25423 16.3601i −0.00698333 0.0351076i
\(467\) 374.194 + 154.996i 0.801272 + 0.331898i 0.745466 0.666544i \(-0.232227\pi\)
0.0558061 + 0.998442i \(0.482227\pi\)
\(468\) −309.495 + 747.187i −0.661314 + 1.59655i
\(469\) −56.2210 + 11.1831i −0.119874 + 0.0238445i
\(470\) −62.7311 41.9156i −0.133470 0.0891821i
\(471\) −800.273 159.184i −1.69909 0.337971i
\(472\) 5.09394 + 5.09394i 0.0107922 + 0.0107922i
\(473\) −109.449 + 73.1316i −0.231394 + 0.154612i
\(474\) 1620.53 671.246i 3.41884 1.41613i
\(475\) 107.167i 0.225615i
\(476\) 0 0
\(477\) −1026.29 −2.15155
\(478\) 75.1317 + 181.384i 0.157179 + 0.379464i
\(479\) −66.8122 99.9916i −0.139483 0.208751i 0.755151 0.655551i \(-0.227564\pi\)
−0.894634 + 0.446800i \(0.852564\pi\)
\(480\) −609.898 + 609.898i −1.27062 + 1.27062i
\(481\) 82.1661 413.077i 0.170823 0.858788i
\(482\) −490.269 + 733.739i −1.01716 + 1.52228i
\(483\) 11.5614 + 58.1230i 0.0239366 + 0.120338i
\(484\) 437.005 + 181.013i 0.902902 + 0.373994i
\(485\) −21.2560 + 51.3164i −0.0438267 + 0.105807i
\(486\) −0.685944 + 0.136443i −0.00141141 + 0.000280747i
\(487\) 673.901 + 450.287i 1.38378 + 0.924613i 0.999999 + 0.00118928i \(0.000378561\pi\)
0.383782 + 0.923424i \(0.374621\pi\)
\(488\) 12.7148 + 2.52914i 0.0260550 + 0.00518265i
\(489\) −613.058 613.058i −1.25370 1.25370i
\(490\) 328.934 219.786i 0.671293 0.448544i
\(491\) −139.166 + 57.6444i −0.283433 + 0.117402i −0.519871 0.854245i \(-0.674020\pi\)
0.236438 + 0.971647i \(0.424020\pi\)
\(492\) 1643.55i 3.34056i
\(493\) 0 0
\(494\) −285.049 −0.577022
\(495\) −61.0194 147.314i −0.123271 0.297604i
\(496\) 239.271 + 358.094i 0.482401 + 0.721964i
\(497\) −120.434 + 120.434i −0.242323 + 0.242323i
\(498\) 271.637 1365.61i 0.545455 2.74219i
\(499\) −457.780 + 685.116i −0.917394 + 1.37298i 0.0104246 + 0.999946i \(0.496682\pi\)
−0.927819 + 0.373032i \(0.878318\pi\)
\(500\) 107.303 + 539.447i 0.214605 + 1.07889i
\(501\) 258.504 + 107.076i 0.515976 + 0.213724i
\(502\) −231.013 + 557.714i −0.460185 + 1.11098i
\(503\) −663.866 + 132.051i −1.31981 + 0.262527i −0.804233 0.594314i \(-0.797424\pi\)
−0.515580 + 0.856841i \(0.672424\pi\)
\(504\) 15.4373 + 10.3149i 0.0306296 + 0.0204661i
\(505\) −472.706 94.0270i −0.936051 0.186192i
\(506\) −16.9053 16.9053i −0.0334098 0.0334098i
\(507\) 213.596 142.720i 0.421293 0.281499i
\(508\) −420.276 + 174.084i −0.827315 + 0.342685i
\(509\) 340.603i 0.669161i −0.942367 0.334581i \(-0.891405\pi\)
0.942367 0.334581i \(-0.108595\pi\)
\(510\) 0 0
\(511\) −205.222 −0.401609
\(512\) −278.357 672.012i −0.543665 1.31252i
\(513\) 237.761 + 355.834i 0.463471 + 0.693633i
\(514\) −486.569 + 486.569i −0.946632 + 0.946632i
\(515\) −131.686 + 662.030i −0.255701 + 1.28550i
\(516\) −642.652 + 961.796i −1.24545 + 1.86395i
\(517\) 3.44475 + 17.3179i 0.00666295 + 0.0334969i
\(518\) −334.553 138.577i −0.645856 0.267522i
\(519\) 133.730 322.852i 0.257668 0.622066i
\(520\) 12.2185 2.43040i 0.0234970 0.00467385i
\(521\) −374.731 250.387i −0.719253 0.480590i 0.141289 0.989968i \(-0.454875\pi\)
−0.860542 + 0.509379i \(0.829875\pi\)
\(522\) −1208.84 240.453i −2.31579 0.460638i
\(523\) 425.914 + 425.914i 0.814367 + 0.814367i 0.985285 0.170918i \(-0.0546734\pi\)
−0.170918 + 0.985285i \(0.554673\pi\)
\(524\) −153.357 + 102.470i −0.292667 + 0.195554i
\(525\) −185.521 + 76.8455i −0.353374 + 0.146372i
\(526\) 681.350i 1.29534i
\(527\) 0 0
\(528\) 196.321 0.371821
\(529\) 197.872 + 477.705i 0.374049 + 0.903033i
\(530\) 328.942 + 492.296i 0.620645 + 0.928861i
\(531\) 293.378 293.378i 0.552501 0.552501i
\(532\) −24.2301 + 121.813i −0.0455453 + 0.228972i
\(533\) −467.563 + 699.758i −0.877229 + 1.31287i
\(534\) 80.0234 + 402.305i 0.149856 + 0.753379i
\(535\) −124.970 51.7641i −0.233588 0.0967554i
\(536\) 2.07643 5.01296i 0.00387395 0.00935253i
\(537\) 1278.66 254.340i 2.38111 0.473632i
\(538\) −26.8244 17.9235i −0.0498594 0.0333150i
\(539\) −90.8073 18.0627i −0.168474 0.0335115i
\(540\) −495.325 495.325i −0.917269 0.917269i
\(541\) 406.212 271.422i 0.750855 0.501705i −0.120286 0.992739i \(-0.538381\pi\)
0.871140 + 0.491034i \(0.163381\pi\)
\(542\) −926.906 + 383.937i −1.71016 + 0.708371i
\(543\) 88.9999i 0.163904i
\(544\) 0 0
\(545\) 166.158 0.304878
\(546\) 204.398 + 493.460i 0.374355 + 0.903774i
\(547\) 209.264 + 313.185i 0.382566 + 0.572551i 0.971916 0.235327i \(-0.0756161\pi\)
−0.589350 + 0.807878i \(0.700616\pi\)
\(548\) −178.723 + 178.723i −0.326136 + 0.326136i
\(549\) 145.662 732.292i 0.265322 1.33386i
\(550\) 45.0072 67.3581i 0.0818313 0.122469i
\(551\) −42.9480 215.914i −0.0779455 0.391858i
\(552\) −5.18255 2.14668i −0.00938868 0.00388892i
\(553\) 149.761 361.556i 0.270816 0.653808i
\(554\) 260.477 51.8121i 0.470175 0.0935236i
\(555\) 606.720 + 405.397i 1.09319 + 0.730445i
\(556\) 352.119 + 70.0408i 0.633308 + 0.125973i
\(557\) 58.1418 + 58.1418i 0.104384 + 0.104384i 0.757370 0.652986i \(-0.226484\pi\)
−0.652986 + 0.757370i \(0.726484\pi\)
\(558\) −1180.34 + 788.677i −2.11530 + 1.41340i
\(559\) −547.229 + 226.670i −0.978943 + 0.405492i
\(560\) 187.155i 0.334205i
\(561\) 0 0
\(562\) 633.956 1.12803
\(563\) 93.7832 + 226.413i 0.166578 + 0.402154i 0.985021 0.172433i \(-0.0551628\pi\)
−0.818444 + 0.574587i \(0.805163\pi\)
\(564\) 86.2047 + 129.015i 0.152845 + 0.228749i
\(565\) 225.308 225.308i 0.398775 0.398775i
\(566\) 69.5017 349.409i 0.122794 0.617330i
\(567\) 148.431 222.143i 0.261783 0.391787i
\(568\) −3.14525 15.8122i −0.00553741 0.0278385i
\(569\) −35.1685 14.5673i −0.0618076 0.0256015i 0.351565 0.936163i \(-0.385649\pi\)
−0.413373 + 0.910562i \(0.635649\pi\)
\(570\) 188.992 456.267i 0.331565 0.800469i
\(571\) 55.6344 11.0664i 0.0974332 0.0193807i −0.146133 0.989265i \(-0.546683\pi\)
0.243566 + 0.969884i \(0.421683\pi\)
\(572\) −90.7935 60.6663i −0.158730 0.106060i
\(573\) 574.857 + 114.346i 1.00324 + 0.199557i
\(574\) 511.658 + 511.658i 0.891390 + 0.891390i
\(575\) 33.6291 22.4702i 0.0584854 0.0390787i
\(576\) 1121.72 464.630i 1.94743 0.806650i
\(577\) 711.158i 1.23251i 0.787547 + 0.616255i \(0.211351\pi\)
−0.787547 + 0.616255i \(0.788649\pi\)
\(578\) 0 0
\(579\) 106.433 0.183823
\(580\) 137.896 + 332.910i 0.237751 + 0.573983i
\(581\) −172.587 258.295i −0.297052 0.444570i
\(582\) 159.395 159.395i 0.273875 0.273875i
\(583\) 27.0334 135.906i 0.0463694 0.233115i
\(584\) 10.7924 16.1519i 0.0184801 0.0276574i
\(585\) −139.975 703.704i −0.239274 1.20291i
\(586\) −315.187 130.555i −0.537862 0.222790i
\(587\) −358.692 + 865.959i −0.611060 + 1.47523i 0.250778 + 0.968045i \(0.419314\pi\)
−0.861838 + 0.507184i \(0.830686\pi\)
\(588\) −797.979 + 158.728i −1.35711 + 0.269945i
\(589\) −210.823 140.868i −0.357934 0.239164i
\(590\) −234.761 46.6969i −0.397900 0.0791473i
\(591\) 151.475 + 151.475i 0.256303 + 0.256303i
\(592\) −497.984 + 332.742i −0.841189 + 0.562064i
\(593\) 858.785 355.720i 1.44820 0.599865i 0.486432 0.873719i \(-0.338298\pi\)
0.961772 + 0.273853i \(0.0882982\pi\)
\(594\) 323.507i 0.544624i
\(595\) 0 0
\(596\) −770.907 −1.29347
\(597\) −727.871 1757.24i −1.21921 2.94344i
\(598\) −59.7676 89.4485i −0.0999458 0.149579i
\(599\) −278.647 + 278.647i −0.465187 + 0.465187i −0.900351 0.435164i \(-0.856690\pi\)
0.435164 + 0.900351i \(0.356690\pi\)
\(600\) 3.70824 18.6426i 0.00618041 0.0310710i
\(601\) −280.477 + 419.764i −0.466684 + 0.698442i −0.987919 0.154971i \(-0.950472\pi\)
0.521235 + 0.853413i \(0.325472\pi\)
\(602\) 99.3534 + 499.484i 0.165039 + 0.829707i
\(603\) −288.714 119.589i −0.478796 0.198324i
\(604\) 339.963 820.744i 0.562853 1.35885i
\(605\) −411.573 + 81.8669i −0.680285 + 0.135317i
\(606\) 1626.34 + 1086.69i 2.68373 + 1.79321i
\(607\) 302.742 + 60.2190i 0.498750 + 0.0992076i 0.438054 0.898949i \(-0.355668\pi\)
0.0606964 + 0.998156i \(0.480668\pi\)
\(608\) 294.717 + 294.717i 0.484732 + 0.484732i
\(609\) −342.982 + 229.173i −0.563189 + 0.376311i
\(610\) −397.956 + 164.839i −0.652387 + 0.270228i
\(611\) 79.4528i 0.130037i
\(612\) 0 0
\(613\) 116.450 0.189967 0.0949835 0.995479i \(-0.469720\pi\)
0.0949835 + 0.995479i \(0.469720\pi\)
\(614\) 258.568 + 624.237i 0.421120 + 1.01667i
\(615\) −810.075 1212.36i −1.31719 1.97132i
\(616\) −1.77258 + 1.77258i −0.00287756 + 0.00287756i
\(617\) 124.062 623.701i 0.201073 1.01086i −0.739987 0.672621i \(-0.765169\pi\)
0.941060 0.338239i \(-0.109831\pi\)
\(618\) 1521.92 2277.71i 2.46265 3.68562i
\(619\) −114.897 577.626i −0.185617 0.933160i −0.955504 0.294980i \(-0.904687\pi\)
0.769886 0.638181i \(-0.220313\pi\)
\(620\) 383.435 + 158.824i 0.618444 + 0.256168i
\(621\) −61.8085 + 149.219i −0.0995306 + 0.240288i
\(622\) −899.189 + 178.860i −1.44564 + 0.287556i
\(623\) 76.0930 + 50.8437i 0.122140 + 0.0816111i
\(624\) 866.422 + 172.342i 1.38850 + 0.276189i
\(625\) −138.086 138.086i −0.220938 0.220938i
\(626\) 745.995 498.458i 1.19169 0.796259i
\(627\) −106.783 + 44.2311i −0.170309 + 0.0705441i
\(628\) 645.382i 1.02768i
\(629\) 0 0
\(630\) −616.892 −0.979194
\(631\) −414.694 1001.16i −0.657201 1.58662i −0.802108 0.597179i \(-0.796288\pi\)
0.144906 0.989445i \(-0.453712\pi\)
\(632\) 20.5803 + 30.8007i 0.0325638 + 0.0487352i
\(633\) 1178.49 1178.49i 1.86175 1.86175i
\(634\) −178.370 + 896.725i −0.281340 + 1.41439i
\(635\) 224.213 335.558i 0.353091 0.528438i
\(636\) −237.559 1194.29i −0.373520 1.87781i
\(637\) −384.902 159.432i −0.604242 0.250285i
\(638\) 63.6838 153.746i 0.0998178 0.240982i
\(639\) −910.683 + 181.146i −1.42517 + 0.283484i
\(640\) −30.3029 20.2477i −0.0473482 0.0316371i
\(641\) 545.664 + 108.539i 0.851269 + 0.169328i 0.601397 0.798951i \(-0.294611\pi\)
0.249873 + 0.968279i \(0.419611\pi\)
\(642\) 388.171 + 388.171i 0.604627 + 0.604627i
\(643\) 90.3509 60.3706i 0.140515 0.0938889i −0.483326 0.875440i \(-0.660571\pi\)
0.623841 + 0.781552i \(0.285571\pi\)
\(644\) −43.3054 + 17.9377i −0.0672445 + 0.0278536i
\(645\) 1026.22i 1.59103i
\(646\) 0 0
\(647\) 1175.55 1.81693 0.908463 0.417966i \(-0.137257\pi\)
0.908463 + 0.417966i \(0.137257\pi\)
\(648\) 9.67787 + 23.3644i 0.0149350 + 0.0360562i
\(649\) 31.1226 + 46.5783i 0.0479547 + 0.0717693i
\(650\) 257.760 257.760i 0.396555 0.396555i
\(651\) −92.6884 + 465.976i −0.142379 + 0.715785i
\(652\) 380.985 570.185i 0.584333 0.874516i
\(653\) 132.779 + 667.525i 0.203337 + 1.02224i 0.938743 + 0.344617i \(0.111991\pi\)
−0.735407 + 0.677626i \(0.763009\pi\)
\(654\) −622.997 258.054i −0.952596 0.394578i
\(655\) 62.6181 151.173i 0.0956001 0.230799i
\(656\) 1173.78 233.480i 1.78930 0.355914i
\(657\) −930.246 621.571i −1.41590 0.946074i
\(658\) 67.0003 + 13.3272i 0.101824 + 0.0202541i
\(659\) −542.829 542.829i −0.823716 0.823716i 0.162923 0.986639i \(-0.447908\pi\)
−0.986639 + 0.162923i \(0.947908\pi\)
\(660\) 157.304 105.107i 0.238339 0.159253i
\(661\) 84.7509 35.1050i 0.128216 0.0531089i −0.317653 0.948207i \(-0.602895\pi\)
0.445869 + 0.895098i \(0.352895\pi\)
\(662\) 76.1234i 0.114990i
\(663\) 0 0
\(664\) 29.4052 0.0442849
\(665\) −42.1659 101.797i −0.0634073 0.153079i
\(666\) −1096.77 1641.44i −1.64681 2.46462i
\(667\) 58.7489 58.7489i 0.0880793 0.0880793i
\(668\) −43.1758 + 217.059i −0.0646344 + 0.324939i
\(669\) 313.694 469.476i 0.468899 0.701757i
\(670\) 35.1721 + 176.822i 0.0524956 + 0.263913i
\(671\) 93.1365 + 38.5784i 0.138803 + 0.0574939i
\(672\) 298.867 721.529i 0.444743 1.07370i
\(673\) 166.460 33.1109i 0.247340 0.0491990i −0.0698631 0.997557i \(-0.522256\pi\)
0.317203 + 0.948358i \(0.397256\pi\)
\(674\) −1158.72 774.232i −1.71917 1.14871i
\(675\) −536.768 106.770i −0.795213 0.158178i
\(676\) 143.676 + 143.676i 0.212538 + 0.212538i
\(677\) 378.084 252.628i 0.558470 0.373158i −0.244068 0.969758i \(-0.578482\pi\)
0.802539 + 0.596600i \(0.203482\pi\)
\(678\) −1194.69 + 494.857i −1.76208 + 0.729877i
\(679\) 50.2930i 0.0740692i
\(680\) 0 0
\(681\) 1025.33 1.50563
\(682\) −73.3490 177.080i −0.107550 0.259648i
\(683\) 746.009 + 1116.48i 1.09225 + 1.63467i 0.698779 + 0.715337i \(0.253727\pi\)
0.393474 + 0.919336i \(0.371273\pi\)
\(684\) −478.775 + 478.775i −0.699964 + 0.699964i
\(685\) 43.7454 219.923i 0.0638619 0.321055i
\(686\) −454.935 + 680.859i −0.663171 + 0.992506i
\(687\) −183.584 922.940i −0.267226 1.34343i
\(688\) 778.182 + 322.334i 1.13108 + 0.468508i
\(689\) 238.612 576.061i 0.346317 0.836082i
\(690\) 182.804 36.3620i 0.264933 0.0526985i
\(691\) 163.058 + 108.952i 0.235975 + 0.157673i 0.667936 0.744219i \(-0.267178\pi\)
−0.431961 + 0.901892i \(0.642178\pi\)
\(692\) 271.091 + 53.9233i 0.391750 + 0.0779239i
\(693\) 102.089 + 102.089i 0.147315 + 0.147315i
\(694\) −572.662 + 382.641i −0.825161 + 0.551355i
\(695\) −294.261 + 121.887i −0.423397 + 0.175377i
\(696\) 39.0462i 0.0561008i
\(697\) 0 0
\(698\) −113.096 −0.162028
\(699\) −11.6469 28.1181i −0.0166622 0.0402262i
\(700\) −88.2410 132.062i −0.126059 0.188660i
\(701\) −164.717 + 164.717i −0.234975 + 0.234975i −0.814766 0.579791i \(-0.803134\pi\)
0.579791 + 0.814766i \(0.303134\pi\)
\(702\) −283.993 + 1427.73i −0.404548 + 2.03380i
\(703\) 195.897 293.181i 0.278659 0.417043i
\(704\) 31.9814 + 160.782i 0.0454282 + 0.228383i
\(705\) −127.177 52.6786i −0.180393 0.0747214i
\(706\) 696.551 1681.62i 0.986616 2.38190i
\(707\) 428.013 85.1370i 0.605393 0.120420i
\(708\) 409.312 + 273.493i 0.578124 + 0.386290i
\(709\) −737.675 146.733i −1.04044 0.206957i −0.354836 0.934928i \(-0.615463\pi\)
−0.685608 + 0.727971i \(0.740463\pi\)
\(710\) 378.781 + 378.781i 0.533494 + 0.533494i
\(711\) 1773.92 1185.29i 2.49496 1.66708i
\(712\) −8.00327 + 3.31506i −0.0112406 + 0.00465599i
\(713\) 95.6929i 0.134212i
\(714\) 0 0
\(715\) 96.8747 0.135489
\(716\) 394.613 + 952.681i 0.551136 + 1.33056i
\(717\) 199.012 + 297.843i 0.277562 + 0.415402i
\(718\) −410.618 + 410.618i −0.571891 + 0.571891i
\(719\) 104.310 524.403i 0.145077 0.729351i −0.837929 0.545779i \(-0.816234\pi\)
0.983006 0.183572i \(-0.0587661\pi\)
\(720\) −566.848 + 848.349i −0.787290 + 1.17826i
\(721\) −119.236 599.437i −0.165375 0.831397i
\(722\) 729.307 + 302.089i 1.01012 + 0.418406i
\(723\) −616.159 + 1487.54i −0.852225 + 2.05745i
\(724\) −69.0425 + 13.7334i −0.0953625 + 0.0189688i
\(725\) 234.081 + 156.408i 0.322870 + 0.215735i
\(726\) 1670.30 + 332.244i 2.30069 + 0.457636i
\(727\) −883.793 883.793i −1.21567 1.21567i −0.969133 0.246538i \(-0.920707\pi\)
−0.246538 0.969133i \(-0.579293\pi\)
\(728\) −9.37896 + 6.26682i −0.0128832 + 0.00860827i
\(729\) −674.098 + 279.220i −0.924688 + 0.383018i
\(730\) 645.448i 0.884175i
\(731\) 0 0
\(732\) 885.881 1.21022
\(733\) 249.714 + 602.864i 0.340674 + 0.822460i 0.997648 + 0.0685469i \(0.0218363\pi\)
−0.656974 + 0.753914i \(0.728164\pi\)
\(734\) 446.122 + 667.669i 0.607796 + 0.909631i
\(735\) 510.393 510.393i 0.694412 0.694412i
\(736\) −30.6877 + 154.277i −0.0416952 + 0.209616i
\(737\) 23.4415 35.0827i 0.0318067 0.0476021i
\(738\) 769.587 + 3868.98i 1.04280 + 5.24252i
\(739\) 710.562 + 294.324i 0.961518 + 0.398274i 0.807548 0.589802i \(-0.200794\pi\)
0.153970 + 0.988075i \(0.450794\pi\)
\(740\) −220.869 + 533.224i −0.298471 + 0.720573i
\(741\) −510.094 + 101.464i −0.688386 + 0.136929i
\(742\) −445.751 297.841i −0.600743 0.401403i
\(743\) −66.1835 13.1647i −0.0890760 0.0177183i 0.150351 0.988633i \(-0.451960\pi\)
−0.239427 + 0.970914i \(0.576960\pi\)
\(744\) −31.8001 31.8001i −0.0427421 0.0427421i
\(745\) 568.657 379.965i 0.763298 0.510020i
\(746\) 897.102 371.592i 1.20255 0.498113i
\(747\) 1693.55i 2.26713i
\(748\) 0 0
\(749\) 122.477 0.163521
\(750\) 757.818 + 1829.54i 1.01042 + 2.43938i
\(751\) −155.202 232.276i −0.206660 0.309289i 0.713632 0.700521i \(-0.247049\pi\)
−0.920292 + 0.391232i \(0.872049\pi\)
\(752\) 79.8926 79.8926i 0.106240 0.106240i
\(753\) −214.877 + 1080.26i −0.285361 + 1.43461i
\(754\) 416.022 622.621i 0.551753 0.825757i
\(755\) 153.755 + 772.980i 0.203649 + 1.02381i
\(756\) 585.985 + 242.723i 0.775113 + 0.321062i
\(757\) −222.495 + 537.150i −0.293917 + 0.709577i 0.706082 + 0.708130i \(0.250461\pi\)
−0.999999 + 0.00144764i \(0.999539\pi\)
\(758\) 1000.29 198.969i 1.31964 0.262492i
\(759\) −36.2696 24.2346i −0.0477860 0.0319296i
\(760\) 10.2294 + 2.03475i 0.0134597 + 0.00267730i
\(761\) −64.7670 64.7670i −0.0851078 0.0851078i 0.663271 0.748379i \(-0.269168\pi\)
−0.748379 + 0.663271i \(0.769168\pi\)
\(762\) −1361.81 + 909.932i −1.78715 + 1.19414i
\(763\) −138.996 + 57.5742i −0.182171 + 0.0754577i
\(764\) 463.595i 0.606799i
\(765\) 0 0
\(766\) 688.823 0.899247
\(767\) 96.4639 + 232.884i 0.125768 + 0.303630i
\(768\) −696.794 1042.83i −0.907284 1.35785i
\(769\) −8.68658 + 8.68658i −0.0112959 + 0.0112959i −0.712732 0.701436i \(-0.752543\pi\)
0.701436 + 0.712732i \(0.252543\pi\)
\(770\) 16.2495 81.6917i 0.0211032 0.106093i
\(771\) −697.518 + 1043.91i −0.904693 + 1.35397i
\(772\) 16.4235 + 82.5666i 0.0212740 + 0.106952i
\(773\) −256.725 106.339i −0.332115 0.137567i 0.210393 0.977617i \(-0.432526\pi\)
−0.542509 + 0.840050i \(0.682526\pi\)
\(774\) −1062.46 + 2565.02i −1.37269 + 3.31397i
\(775\) 318.023 63.2586i 0.410352 0.0816240i
\(776\) 3.95829 + 2.64484i 0.00510089 + 0.00340830i
\(777\) −648.010 128.897i −0.833990 0.165891i
\(778\) −1349.54 1349.54i −1.73463 1.73463i
\(779\) −585.842 + 391.447i −0.752044 + 0.502500i
\(780\) 786.496 325.777i 1.00833 0.417663i
\(781\) 125.368i 0.160523i
\(782\) 0 0
\(783\) −1124.24 −1.43581
\(784\) 226.718 + 547.346i 0.289181 + 0.698145i
\(785\) 318.096 + 476.064i 0.405217 + 0.606451i
\(786\) −469.563 + 469.563i −0.597408 + 0.597408i
\(787\) 25.8529 129.971i 0.0328499 0.165148i −0.960878 0.276971i \(-0.910669\pi\)
0.993728 + 0.111824i \(0.0356692\pi\)
\(788\) −94.1343 + 140.882i −0.119460 + 0.178784i
\(789\) −242.529 1219.28i −0.307388 1.54534i
\(790\) −1137.14 471.017i −1.43941 0.596224i
\(791\) −110.407 + 266.546i −0.139579 + 0.336974i
\(792\) −13.4036 + 2.66614i −0.0169238 + 0.00336634i
\(793\) 377.172 + 252.018i 0.475626 + 0.317803i
\(794\) −1251.14 248.868i −1.57575 0.313435i
\(795\) 763.875 + 763.875i 0.960850 + 0.960850i
\(796\) 1250.87 835.808i 1.57145 1.05001i
\(797\) 1137.33 471.097i 1.42701 0.591087i 0.470400 0.882453i \(-0.344110\pi\)
0.956612 + 0.291366i \(0.0941097\pi\)
\(798\) 447.167i 0.560360i
\(799\) 0 0
\(800\) −533.007 −0.666259
\(801\) 190.926 + 460.937i 0.238360 + 0.575452i
\(802\) −219.924 329.139i −0.274219 0.410398i
\(803\) 106.815 106.815i 0.133020 0.133020i
\(804\) 72.3358 363.657i 0.0899699 0.452309i
\(805\) 23.1030 34.5761i 0.0286994 0.0429516i
\(806\) −168.259 845.895i −0.208758 1.04950i
\(807\) −54.3821 22.5258i −0.0673880 0.0279130i
\(808\) −15.8080 + 38.1638i −0.0195643 + 0.0472325i
\(809\) 1547.48 307.812i 1.91282 0.380485i 0.913191 0.407532i \(-0.133611\pi\)
0.999634 + 0.0270477i \(0.00861059\pi\)
\(810\) −698.666 466.834i −0.862551 0.576338i
\(811\) −590.002 117.359i −0.727499 0.144709i −0.182573 0.983192i \(-0.558442\pi\)
−0.544926 + 0.838484i \(0.683442\pi\)
\(812\) −230.708 230.708i −0.284123 0.284123i
\(813\) −1522.03 + 1016.99i −1.87212 + 1.25091i
\(814\) 246.256 102.003i 0.302526 0.125310i
\(815\) 608.375i 0.746472i
\(816\) 0 0
\(817\) −495.892 −0.606966
\(818\) −440.884 1064.39i −0.538978 1.30121i
\(819\) 360.928 + 540.168i 0.440694 + 0.659545i
\(820\) 815.500 815.500i 0.994512 0.994512i
\(821\) −153.360 + 770.993i −0.186797 + 0.939090i 0.767687 + 0.640826i \(0.221408\pi\)
−0.954483 + 0.298265i \(0.903592\pi\)
\(822\) −505.573 + 756.644i −0.615053 + 0.920491i
\(823\) 54.7382 + 275.188i 0.0665106 + 0.334371i 0.999686 0.0250494i \(-0.00797432\pi\)
−0.933176 + 0.359421i \(0.882974\pi\)
\(824\) 53.4489 + 22.1393i 0.0648652 + 0.0268681i
\(825\) 56.5640 136.558i 0.0685625 0.165524i
\(826\) 212.565 42.2819i 0.257343 0.0511887i
\(827\) −1229.32 821.409i −1.48649 0.993239i −0.992297 0.123886i \(-0.960464\pi\)
−0.494191 0.869354i \(-0.664536\pi\)
\(828\) −250.627 49.8529i −0.302690 0.0602088i
\(829\) −331.030 331.030i −0.399312 0.399312i 0.478678 0.877990i \(-0.341116\pi\)
−0.877990 + 0.478678i \(0.841116\pi\)
\(830\) −812.370 + 542.808i −0.978759 + 0.653986i
\(831\) 447.681 185.435i 0.538725 0.223147i
\(832\) 737.650i 0.886598i
\(833\) 0 0
\(834\) 1292.61 1.54989
\(835\) −75.1357 181.394i −0.0899828 0.217238i
\(836\) −50.7902 76.0130i −0.0607539 0.0909246i
\(837\) −915.607 + 915.607i −1.09392 + 1.09392i
\(838\) −145.162 + 729.778i −0.173224 + 0.870856i
\(839\) 117.506 175.861i 0.140055 0.209608i −0.754810 0.655943i \(-0.772271\pi\)
0.894866 + 0.446335i \(0.147271\pi\)
\(840\) −3.81267 19.1676i −0.00453889 0.0228185i
\(841\) −242.689 100.525i −0.288572 0.119530i
\(842\) −662.644 + 1599.76i −0.786988 + 1.89996i
\(843\) 1134.46 225.659i 1.34574 0.267685i
\(844\) 1096.07 + 732.372i 1.29866 + 0.867739i
\(845\) −176.797 35.1671i −0.209227 0.0416179i
\(846\) 263.339 + 263.339i 0.311276 + 0.311276i
\(847\) 315.926 211.095i 0.372994 0.249226i
\(848\) −819.181 + 339.316i −0.966016 + 0.400137i
\(849\) 650.006i 0.765613i
\(850\) 0 0
\(851\) 133.075 0.156375
\(852\) −421.598 1017.83i −0.494833 1.19463i
\(853\) −556.064 832.209i −0.651892 0.975626i −0.999281 0.0379048i \(-0.987932\pi\)
0.347389 0.937721i \(-0.387068\pi\)
\(854\) 275.785 275.785i 0.322933 0.322933i
\(855\) 117.188 589.146i 0.137062 0.689060i
\(856\) −6.44092 + 9.63952i −0.00752444 + 0.0112611i
\(857\) −145.210 730.021i −0.169440 0.851833i −0.968199 0.250181i \(-0.919510\pi\)
0.798759 0.601651i \(-0.205490\pi\)
\(858\) −363.224 150.452i −0.423338 0.175352i
\(859\) 374.100 903.157i 0.435506 1.05141i −0.541977 0.840393i \(-0.682324\pi\)
0.977483 0.211012i \(-0.0676759\pi\)
\(860\) 796.096 158.353i 0.925693 0.184132i
\(861\) 1097.74 + 733.485i 1.27496 + 0.851899i
\(862\) 1788.49 + 355.752i 2.07481 + 0.412706i
\(863\) 799.269 + 799.269i 0.926152 + 0.926152i 0.997455 0.0713024i \(-0.0227155\pi\)
−0.0713024 + 0.997455i \(0.522716\pi\)
\(864\) 1769.78 1182.53i 2.04836 1.36867i
\(865\) −226.547 + 93.8388i −0.261904 + 0.108484i
\(866\) 1820.44i 2.10213i
\(867\) 0 0
\(868\) −375.788 −0.432935
\(869\) 110.236 + 266.132i 0.126853 + 0.306251i
\(870\) 720.777 + 1078.72i 0.828479 + 1.23991i
\(871\) 134.252 134.252i 0.154135 0.154135i
\(872\) 2.77829 13.9674i 0.00318612 0.0160177i
\(873\) 152.326 227.972i 0.174486 0.261136i
\(874\) −17.5710 88.3352i −0.0201041 0.101070i
\(875\) 408.186 + 169.076i 0.466499 + 0.193230i
\(876\) 507.991 1226.40i 0.579899 1.40000i
\(877\) −1320.03 + 262.571i −1.50517 + 0.299397i −0.877688 0.479233i \(-0.840915\pi\)
−0.627483 + 0.778630i \(0.715915\pi\)
\(878\) −1669.66 1115.63i −1.90166 1.27065i
\(879\) −610.499 121.436i −0.694538 0.138152i
\(880\) −97.4109 97.4109i −0.110694 0.110694i
\(881\) 880.918 588.611i 0.999907 0.668116i 0.0560352 0.998429i \(-0.482154\pi\)
0.943872 + 0.330312i \(0.107154\pi\)
\(882\) −1804.14 + 747.300i −2.04551 + 0.847279i
\(883\) 658.553i 0.745813i 0.927869 + 0.372907i \(0.121639\pi\)
−0.927869 + 0.372907i \(0.878361\pi\)
\(884\) 0 0
\(885\) −436.727 −0.493477
\(886\) −345.665 834.510i −0.390142 0.941885i
\(887\) 370.614 + 554.662i 0.417828 + 0.625324i 0.979358 0.202132i \(-0.0647871\pi\)
−0.561530 + 0.827456i \(0.689787\pi\)
\(888\) 44.2228 44.2228i 0.0498005 0.0498005i
\(889\) −71.2891 + 358.395i −0.0801902 + 0.403143i
\(890\) 159.910 239.322i 0.179674 0.268901i
\(891\) 38.3658 + 192.878i 0.0430592 + 0.216473i
\(892\) 412.605 + 170.907i 0.462562 + 0.191599i
\(893\) −25.4555 + 61.4550i −0.0285056 + 0.0688186i
\(894\) −2722.24 + 541.487i −3.04501 + 0.605691i
\(895\) −760.643 508.245i −0.849880 0.567872i
\(896\) 32.3651 + 6.43782i 0.0361218 + 0.00718507i
\(897\) −138.794 138.794i −0.154731 0.154731i
\(898\) −582.338 + 389.106i −0.648484 + 0.433303i
\(899\) 615.383 254.900i 0.684519 0.283537i
\(900\) 865.883i 0.962092i
\(901\) 0 0
\(902\) −532.619 −0.590487
\(903\) 355.586 + 858.460i 0.393783 + 0.950676i
\(904\) −15.1723 22.7069i −0.0167835 0.0251182i
\(905\) 44.1600 44.1600i 0.0487956 0.0487956i
\(906\) 623.991 3137.01i 0.688732 3.46249i
\(907\) 100.245 150.028i 0.110524 0.165411i −0.772084 0.635521i \(-0.780786\pi\)
0.882608 + 0.470109i \(0.155786\pi\)
\(908\) 158.217 + 795.410i 0.174248 + 0.876002i
\(909\) 2197.99 + 910.437i 2.41803 + 1.00158i
\(910\) 143.427 346.264i 0.157612 0.380510i
\(911\) −1620.68 + 322.374i −1.77901 + 0.353868i −0.971693 0.236246i \(-0.924083\pi\)
−0.807320 + 0.590114i \(0.799083\pi\)
\(912\) 614.943 + 410.892i 0.674279 + 0.450539i
\(913\) 224.267 + 44.6096i 0.245638 + 0.0488604i
\(914\) 749.335 + 749.335i 0.819842 + 0.819842i
\(915\) −653.467 + 436.633i −0.714172 + 0.477194i
\(916\) 687.650 284.834i 0.750709 0.310954i
\(917\) 148.158i 0.161569i
\(918\) 0 0
\(919\) −630.155 −0.685697 −0.342848 0.939391i \(-0.611392\pi\)
−0.342848 + 0.939391i \(0.611392\pi\)
\(920\) 1.50634 + 3.63662i 0.00163732 + 0.00395285i
\(921\) 684.906 + 1025.03i 0.743655 + 1.11296i
\(922\) −1734.82 + 1734.82i −1.88158 + 1.88158i
\(923\) 110.055 553.286i 0.119237 0.599443i
\(924\) −95.1696 + 142.431i −0.102997 + 0.154146i
\(925\) 87.9706 + 442.258i 0.0951034 + 0.478117i
\(926\) −1436.86 595.167i −1.55169 0.642729i
\(927\) 1275.08 3078.31i 1.37549 3.32073i
\(928\) −1073.87 + 213.607i −1.15719 + 0.230179i
\(929\) 1303.36 + 870.877i 1.40297 + 0.937435i 0.999751 + 0.0223314i \(0.00710891\pi\)
0.403220 + 0.915103i \(0.367891\pi\)
\(930\) 1465.55 + 291.516i 1.57586 + 0.313458i
\(931\) −246.634 246.634i −0.264913 0.264913i
\(932\) 20.0156 13.3740i 0.0214760 0.0143498i
\(933\) −1545.43 + 640.139i −1.65641 + 0.686109i
\(934\) 1153.41i 1.23492i
\(935\) 0 0
\(936\) −61.4945 −0.0656992
\(937\) −291.961 704.857i −0.311591 0.752248i −0.999646 0.0265897i \(-0.991535\pi\)
0.688055 0.725659i \(-0.258465\pi\)
\(938\) −90.6916 135.730i −0.0966861 0.144701i
\(939\) 1157.53 1157.53i 1.23273 1.23273i
\(940\) 21.2414 106.788i 0.0225972 0.113604i
\(941\) 656.274 982.184i 0.697422 1.04377i −0.298575 0.954386i \(-0.596511\pi\)
0.995998 0.0893803i \(-0.0284886\pi\)
\(942\) −453.318 2278.98i −0.481229 2.41930i
\(943\) −245.673 101.761i −0.260523 0.107912i
\(944\) 137.176 331.171i 0.145313 0.350817i
\(945\) −551.884 + 109.776i −0.584004 + 0.116166i
\(946\) −311.685 208.261i −0.329476 0.220149i
\(947\) 1709.91 + 340.121i 1.80560 + 0.359157i 0.979037 0.203684i \(-0.0652914\pi\)
0.826566 + 0.562840i \(0.190291\pi\)
\(948\) 1789.94 + 1789.94i 1.88812 + 1.88812i
\(949\) 565.172 377.636i 0.595544 0.397930i
\(950\) 281.955 116.789i 0.296794 0.122936i
\(951\) 1668.18i 1.75413i
\(952\) 0 0
\(953\) −1007.14 −1.05681 −0.528405 0.848992i \(-0.677210\pi\)
−0.528405 + 0.848992i \(0.677210\pi\)
\(954\) −1118.44 2700.16i −1.17237 2.83035i
\(955\) −228.496 341.969i −0.239263 0.358083i
\(956\) −200.345 + 200.345i −0.209566 + 0.209566i
\(957\) 59.2356 297.797i 0.0618971 0.311178i
\(958\) 190.265 284.752i 0.198607 0.297236i
\(959\) 39.6094 + 199.130i 0.0413028 + 0.207643i
\(960\) −1180.73 489.074i −1.22993 0.509452i
\(961\) −74.1731 + 179.070i −0.0771833 + 0.186337i
\(962\) 1176.34 233.989i 1.22281 0.243232i
\(963\) 555.174 + 370.955i 0.576505 + 0.385208i
\(964\) −1249.05 248.451i −1.29569 0.257730i
\(965\) −52.8101 52.8101i −0.0547255 0.0547255i
\(966\) −140.321 + 93.7598i −0.145260 + 0.0970598i
\(967\) 499.135 206.749i 0.516169 0.213804i −0.109364 0.994002i \(-0.534882\pi\)
0.625533 + 0.780198i \(0.284882\pi\)
\(968\) 35.9660i 0.0371550i
\(969\) 0 0
\(970\) −158.177 −0.163069
\(971\) 153.655 + 370.956i 0.158244 + 0.382035i 0.983039 0.183397i \(-0.0587095\pi\)
−0.824795 + 0.565432i \(0.808709\pi\)
\(972\) −0.560743 0.839212i −0.000576896 0.000863387i
\(973\) 203.924 203.924i 0.209583 0.209583i
\(974\) −450.287 + 2263.74i −0.462307 + 2.32417i
\(975\) 369.511 553.013i 0.378986 0.567193i
\(976\) −125.846 632.672i −0.128941 0.648229i
\(977\) 880.902 + 364.881i 0.901639 + 0.373471i 0.784850 0.619686i \(-0.212740\pi\)
0.116789 + 0.993157i \(0.462740\pi\)
\(978\) 944.842 2281.05i 0.966096 2.33236i
\(979\) −66.0685 + 13.1418i −0.0674857 + 0.0134237i
\(980\) 474.699 + 317.184i 0.484387 + 0.323657i
\(981\) −804.433 160.012i −0.820014 0.163111i
\(982\) −303.323 303.323i −0.308883 0.308883i
\(983\) −1186.50 + 792.797i −1.20702 + 0.806507i −0.985670 0.168686i \(-0.946048\pi\)
−0.221354 + 0.975194i \(0.571048\pi\)
\(984\) −115.457 + 47.8240i −0.117335 + 0.0486016i
\(985\) 150.318i 0.152607i
\(986\) 0 0
\(987\) 124.641 0.126282
\(988\) −157.423 380.053i −0.159335 0.384669i
\(989\) −103.976 155.611i −0.105133 0.157342i
\(990\) 321.082 321.082i 0.324326 0.324326i
\(991\) −54.9030 + 276.016i −0.0554016 + 0.278523i −0.998549 0.0538524i \(-0.982850\pi\)
0.943147 + 0.332375i \(0.107850\pi\)
\(992\) −700.620 + 1048.55i −0.706271 + 1.05701i
\(993\) 27.0964 + 136.223i 0.0272874 + 0.137183i
\(994\) −448.110 185.613i −0.450815 0.186734i
\(995\) −510.751 + 1233.06i −0.513317 + 1.23926i
\(996\) 1970.77 392.011i 1.97869 0.393586i
\(997\) 447.153 + 298.778i 0.448499 + 0.299677i 0.759232 0.650820i \(-0.225575\pi\)
−0.310734 + 0.950497i \(0.600575\pi\)
\(998\) −2301.41 457.780i −2.30603 0.458697i
\(999\) −1273.29 1273.29i −1.27456 1.27456i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 289.3.e.g.158.1 8
17.2 even 8 289.3.e.e.224.1 8
17.3 odd 16 289.3.e.j.249.1 8
17.4 even 4 289.3.e.h.131.1 8
17.5 odd 16 289.3.e.a.40.1 8
17.6 odd 16 289.3.e.h.214.1 8
17.7 odd 16 inner 289.3.e.g.75.1 8
17.8 even 8 289.3.e.j.65.1 8
17.9 even 8 289.3.e.n.65.1 8
17.10 odd 16 17.3.e.b.7.1 yes 8
17.11 odd 16 289.3.e.f.214.1 8
17.12 odd 16 289.3.e.e.40.1 8
17.13 even 4 289.3.e.f.131.1 8
17.14 odd 16 289.3.e.n.249.1 8
17.15 even 8 289.3.e.a.224.1 8
17.16 even 2 17.3.e.b.5.1 8
51.44 even 16 153.3.p.a.109.1 8
51.50 odd 2 153.3.p.a.73.1 8
68.27 even 16 272.3.bh.b.177.1 8
68.67 odd 2 272.3.bh.b.209.1 8
85.27 even 16 425.3.t.d.24.1 8
85.33 odd 4 425.3.t.d.124.1 8
85.44 odd 16 425.3.u.a.126.1 8
85.67 odd 4 425.3.t.b.124.1 8
85.78 even 16 425.3.t.b.24.1 8
85.84 even 2 425.3.u.a.226.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
17.3.e.b.5.1 8 17.16 even 2
17.3.e.b.7.1 yes 8 17.10 odd 16
153.3.p.a.73.1 8 51.50 odd 2
153.3.p.a.109.1 8 51.44 even 16
272.3.bh.b.177.1 8 68.27 even 16
272.3.bh.b.209.1 8 68.67 odd 2
289.3.e.a.40.1 8 17.5 odd 16
289.3.e.a.224.1 8 17.15 even 8
289.3.e.e.40.1 8 17.12 odd 16
289.3.e.e.224.1 8 17.2 even 8
289.3.e.f.131.1 8 17.13 even 4
289.3.e.f.214.1 8 17.11 odd 16
289.3.e.g.75.1 8 17.7 odd 16 inner
289.3.e.g.158.1 8 1.1 even 1 trivial
289.3.e.h.131.1 8 17.4 even 4
289.3.e.h.214.1 8 17.6 odd 16
289.3.e.j.65.1 8 17.8 even 8
289.3.e.j.249.1 8 17.3 odd 16
289.3.e.n.65.1 8 17.9 even 8
289.3.e.n.249.1 8 17.14 odd 16
425.3.t.b.24.1 8 85.78 even 16
425.3.t.b.124.1 8 85.67 odd 4
425.3.t.d.24.1 8 85.27 even 16
425.3.t.d.124.1 8 85.33 odd 4
425.3.u.a.126.1 8 85.44 odd 16
425.3.u.a.226.1 8 85.84 even 2