Properties

Label 272.3
Level 272
Weight 3
Dimension 2506
Nonzero newspaces 13
Newform subspaces 28
Sturm bound 13824
Trace bound 6

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 272 = 2^{4} \cdot 17 \)
Weight: \( k \) = \( 3 \)
Nonzero newspaces: \( 13 \)
Newform subspaces: \( 28 \)
Sturm bound: \(13824\)
Trace bound: \(6\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(272))\).

Total New Old
Modular forms 4832 2642 2190
Cusp forms 4384 2506 1878
Eisenstein series 448 136 312

Trace form

\( 2506 q - 28 q^{2} - 20 q^{3} - 16 q^{4} - 24 q^{5} - 16 q^{6} - 16 q^{7} - 40 q^{8} - 26 q^{9} - 104 q^{10} + 12 q^{11} - 136 q^{12} - 56 q^{13} - 56 q^{14} - 24 q^{15} + 48 q^{16} - 38 q^{17} + 84 q^{18}+ \cdots + 356 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(272))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
272.3.d \(\chi_{272}(239, \cdot)\) 272.3.d.a 4 1
272.3.d.b 12
272.3.e \(\chi_{272}(135, \cdot)\) None 0 1
272.3.f \(\chi_{272}(103, \cdot)\) None 0 1
272.3.g \(\chi_{272}(271, \cdot)\) 272.3.g.a 2 1
272.3.g.b 2
272.3.g.c 2
272.3.g.d 12
272.3.i \(\chi_{272}(251, \cdot)\) 272.3.i.a 140 2
272.3.k \(\chi_{272}(67, \cdot)\) 272.3.k.a 140 2
272.3.n \(\chi_{272}(55, \cdot)\) None 0 2
272.3.p \(\chi_{272}(47, \cdot)\) 272.3.p.a 2 2
272.3.p.b 2
272.3.p.c 4
272.3.p.d 4
272.3.p.e 24
272.3.q \(\chi_{272}(35, \cdot)\) 272.3.q.a 128 2
272.3.t \(\chi_{272}(115, \cdot)\) 272.3.t.a 140 2
272.3.u \(\chi_{272}(15, \cdot)\) 272.3.u.a 24 4
272.3.u.b 48
272.3.x \(\chi_{272}(155, \cdot)\) 272.3.x.a 280 4
272.3.z \(\chi_{272}(19, \cdot)\) 272.3.z.a 280 4
272.3.bb \(\chi_{272}(87, \cdot)\) None 0 4
272.3.bc \(\chi_{272}(29, \cdot)\) 272.3.bc.a 560 8
272.3.be \(\chi_{272}(41, \cdot)\) None 0 8
272.3.bh \(\chi_{272}(65, \cdot)\) 272.3.bh.a 8 8
272.3.bh.b 8
272.3.bh.c 8
272.3.bh.d 16
272.3.bh.e 24
272.3.bh.f 32
272.3.bh.g 40
272.3.bi \(\chi_{272}(5, \cdot)\) 272.3.bi.a 560 8

Decomposition of \(S_{3}^{\mathrm{old}}(\Gamma_1(272))\) into lower level spaces

\( S_{3}^{\mathrm{old}}(\Gamma_1(272)) \cong \) \(S_{3}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 10}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(17))\)\(^{\oplus 5}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(34))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(68))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(136))\)\(^{\oplus 2}\)