Properties

Label 2704.2.f.l.337.3
Level $2704$
Weight $2$
Character 2704.337
Analytic conductor $21.592$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2704,2,Mod(337,2704)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2704, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2704.337"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2704 = 2^{4} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2704.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-2,0,0,0,0,0,6,0,0,0,0,0,0,0,20,0,0,0,0,0,10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(23)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.5915487066\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{17})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 104)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 337.3
Root \(2.56155i\) of defining polynomial
Character \(\chi\) \(=\) 2704.337
Dual form 2704.2.f.l.337.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.56155 q^{3} -0.561553i q^{5} -1.56155i q^{7} -0.561553 q^{9} +1.56155i q^{11} -0.876894i q^{15} +5.00000 q^{17} +1.56155i q^{19} -2.43845i q^{21} +8.68466 q^{23} +4.68466 q^{25} -5.56155 q^{27} -5.00000 q^{29} -8.00000i q^{31} +2.43845i q^{33} -0.876894 q^{35} -1.00000i q^{37} +7.24621i q^{41} -2.43845 q^{43} +0.315342i q^{45} -4.00000i q^{47} +4.56155 q^{49} +7.80776 q^{51} +8.56155 q^{53} +0.876894 q^{55} +2.43845i q^{57} -1.56155i q^{59} +9.24621 q^{61} +0.876894i q^{63} -13.5616i q^{67} +13.5616 q^{69} -4.68466i q^{71} -13.6847i q^{73} +7.31534 q^{75} +2.43845 q^{77} +4.00000 q^{79} -7.00000 q^{81} -14.2462i q^{83} -2.80776i q^{85} -7.80776 q^{87} +2.68466i q^{89} -12.4924i q^{93} +0.876894 q^{95} +17.8078i q^{97} -0.876894i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{3} + 6 q^{9} + 20 q^{17} + 10 q^{23} - 6 q^{25} - 14 q^{27} - 20 q^{29} - 20 q^{35} - 18 q^{43} + 10 q^{49} - 10 q^{51} + 26 q^{53} + 20 q^{55} + 4 q^{61} + 46 q^{69} + 54 q^{75} + 18 q^{77}+ \cdots + 20 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2704\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(1185\) \(2367\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.56155 0.901563 0.450781 0.892634i \(-0.351145\pi\)
0.450781 + 0.892634i \(0.351145\pi\)
\(4\) 0 0
\(5\) − 0.561553i − 0.251134i −0.992085 0.125567i \(-0.959925\pi\)
0.992085 0.125567i \(-0.0400750\pi\)
\(6\) 0 0
\(7\) − 1.56155i − 0.590211i −0.955465 0.295106i \(-0.904645\pi\)
0.955465 0.295106i \(-0.0953549\pi\)
\(8\) 0 0
\(9\) −0.561553 −0.187184
\(10\) 0 0
\(11\) 1.56155i 0.470826i 0.971895 + 0.235413i \(0.0756443\pi\)
−0.971895 + 0.235413i \(0.924356\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) − 0.876894i − 0.226413i
\(16\) 0 0
\(17\) 5.00000 1.21268 0.606339 0.795206i \(-0.292637\pi\)
0.606339 + 0.795206i \(0.292637\pi\)
\(18\) 0 0
\(19\) 1.56155i 0.358245i 0.983827 + 0.179122i \(0.0573258\pi\)
−0.983827 + 0.179122i \(0.942674\pi\)
\(20\) 0 0
\(21\) − 2.43845i − 0.532113i
\(22\) 0 0
\(23\) 8.68466 1.81088 0.905438 0.424478i \(-0.139542\pi\)
0.905438 + 0.424478i \(0.139542\pi\)
\(24\) 0 0
\(25\) 4.68466 0.936932
\(26\) 0 0
\(27\) −5.56155 −1.07032
\(28\) 0 0
\(29\) −5.00000 −0.928477 −0.464238 0.885710i \(-0.653672\pi\)
−0.464238 + 0.885710i \(0.653672\pi\)
\(30\) 0 0
\(31\) − 8.00000i − 1.43684i −0.695608 0.718421i \(-0.744865\pi\)
0.695608 0.718421i \(-0.255135\pi\)
\(32\) 0 0
\(33\) 2.43845i 0.424479i
\(34\) 0 0
\(35\) −0.876894 −0.148222
\(36\) 0 0
\(37\) − 1.00000i − 0.164399i −0.996616 0.0821995i \(-0.973806\pi\)
0.996616 0.0821995i \(-0.0261945\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 7.24621i 1.13167i 0.824519 + 0.565834i \(0.191446\pi\)
−0.824519 + 0.565834i \(0.808554\pi\)
\(42\) 0 0
\(43\) −2.43845 −0.371860 −0.185930 0.982563i \(-0.559530\pi\)
−0.185930 + 0.982563i \(0.559530\pi\)
\(44\) 0 0
\(45\) 0.315342i 0.0470083i
\(46\) 0 0
\(47\) − 4.00000i − 0.583460i −0.956501 0.291730i \(-0.905769\pi\)
0.956501 0.291730i \(-0.0942309\pi\)
\(48\) 0 0
\(49\) 4.56155 0.651650
\(50\) 0 0
\(51\) 7.80776 1.09331
\(52\) 0 0
\(53\) 8.56155 1.17602 0.588010 0.808854i \(-0.299912\pi\)
0.588010 + 0.808854i \(0.299912\pi\)
\(54\) 0 0
\(55\) 0.876894 0.118240
\(56\) 0 0
\(57\) 2.43845i 0.322980i
\(58\) 0 0
\(59\) − 1.56155i − 0.203297i −0.994820 0.101648i \(-0.967588\pi\)
0.994820 0.101648i \(-0.0324117\pi\)
\(60\) 0 0
\(61\) 9.24621 1.18386 0.591928 0.805991i \(-0.298367\pi\)
0.591928 + 0.805991i \(0.298367\pi\)
\(62\) 0 0
\(63\) 0.876894i 0.110478i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 13.5616i − 1.65681i −0.560132 0.828404i \(-0.689249\pi\)
0.560132 0.828404i \(-0.310751\pi\)
\(68\) 0 0
\(69\) 13.5616 1.63262
\(70\) 0 0
\(71\) − 4.68466i − 0.555967i −0.960586 0.277983i \(-0.910334\pi\)
0.960586 0.277983i \(-0.0896660\pi\)
\(72\) 0 0
\(73\) − 13.6847i − 1.60167i −0.598886 0.800834i \(-0.704390\pi\)
0.598886 0.800834i \(-0.295610\pi\)
\(74\) 0 0
\(75\) 7.31534 0.844703
\(76\) 0 0
\(77\) 2.43845 0.277887
\(78\) 0 0
\(79\) 4.00000 0.450035 0.225018 0.974355i \(-0.427756\pi\)
0.225018 + 0.974355i \(0.427756\pi\)
\(80\) 0 0
\(81\) −7.00000 −0.777778
\(82\) 0 0
\(83\) − 14.2462i − 1.56372i −0.623451 0.781862i \(-0.714270\pi\)
0.623451 0.781862i \(-0.285730\pi\)
\(84\) 0 0
\(85\) − 2.80776i − 0.304545i
\(86\) 0 0
\(87\) −7.80776 −0.837080
\(88\) 0 0
\(89\) 2.68466i 0.284573i 0.989825 + 0.142287i \(0.0454455\pi\)
−0.989825 + 0.142287i \(0.954555\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) − 12.4924i − 1.29540i
\(94\) 0 0
\(95\) 0.876894 0.0899675
\(96\) 0 0
\(97\) 17.8078i 1.80810i 0.427422 + 0.904052i \(0.359422\pi\)
−0.427422 + 0.904052i \(0.640578\pi\)
\(98\) 0 0
\(99\) − 0.876894i − 0.0881312i
\(100\) 0 0
\(101\) 11.2462 1.11904 0.559520 0.828817i \(-0.310986\pi\)
0.559520 + 0.828817i \(0.310986\pi\)
\(102\) 0 0
\(103\) −2.24621 −0.221326 −0.110663 0.993858i \(-0.535297\pi\)
−0.110663 + 0.993858i \(0.535297\pi\)
\(104\) 0 0
\(105\) −1.36932 −0.133632
\(106\) 0 0
\(107\) −8.68466 −0.839578 −0.419789 0.907622i \(-0.637896\pi\)
−0.419789 + 0.907622i \(0.637896\pi\)
\(108\) 0 0
\(109\) 8.24621i 0.789844i 0.918715 + 0.394922i \(0.129228\pi\)
−0.918715 + 0.394922i \(0.870772\pi\)
\(110\) 0 0
\(111\) − 1.56155i − 0.148216i
\(112\) 0 0
\(113\) −7.24621 −0.681666 −0.340833 0.940124i \(-0.610709\pi\)
−0.340833 + 0.940124i \(0.610709\pi\)
\(114\) 0 0
\(115\) − 4.87689i − 0.454773i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) − 7.80776i − 0.715737i
\(120\) 0 0
\(121\) 8.56155 0.778323
\(122\) 0 0
\(123\) 11.3153i 1.02027i
\(124\) 0 0
\(125\) − 5.43845i − 0.486430i
\(126\) 0 0
\(127\) −7.80776 −0.692827 −0.346414 0.938082i \(-0.612601\pi\)
−0.346414 + 0.938082i \(0.612601\pi\)
\(128\) 0 0
\(129\) −3.80776 −0.335255
\(130\) 0 0
\(131\) −1.75379 −0.153229 −0.0766146 0.997061i \(-0.524411\pi\)
−0.0766146 + 0.997061i \(0.524411\pi\)
\(132\) 0 0
\(133\) 2.43845 0.211440
\(134\) 0 0
\(135\) 3.12311i 0.268794i
\(136\) 0 0
\(137\) 11.4924i 0.981864i 0.871198 + 0.490932i \(0.163344\pi\)
−0.871198 + 0.490932i \(0.836656\pi\)
\(138\) 0 0
\(139\) −7.31534 −0.620479 −0.310240 0.950658i \(-0.600409\pi\)
−0.310240 + 0.950658i \(0.600409\pi\)
\(140\) 0 0
\(141\) − 6.24621i − 0.526026i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 2.80776i 0.233172i
\(146\) 0 0
\(147\) 7.12311 0.587504
\(148\) 0 0
\(149\) 3.24621i 0.265940i 0.991120 + 0.132970i \(0.0424514\pi\)
−0.991120 + 0.132970i \(0.957549\pi\)
\(150\) 0 0
\(151\) − 20.4924i − 1.66765i −0.552029 0.833825i \(-0.686146\pi\)
0.552029 0.833825i \(-0.313854\pi\)
\(152\) 0 0
\(153\) −2.80776 −0.226994
\(154\) 0 0
\(155\) −4.49242 −0.360840
\(156\) 0 0
\(157\) 2.80776 0.224084 0.112042 0.993703i \(-0.464261\pi\)
0.112042 + 0.993703i \(0.464261\pi\)
\(158\) 0 0
\(159\) 13.3693 1.06026
\(160\) 0 0
\(161\) − 13.5616i − 1.06880i
\(162\) 0 0
\(163\) 22.9309i 1.79608i 0.439909 + 0.898042i \(0.355011\pi\)
−0.439909 + 0.898042i \(0.644989\pi\)
\(164\) 0 0
\(165\) 1.36932 0.106601
\(166\) 0 0
\(167\) 9.56155i 0.739895i 0.929053 + 0.369948i \(0.120624\pi\)
−0.929053 + 0.369948i \(0.879376\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) − 0.876894i − 0.0670578i
\(172\) 0 0
\(173\) −12.9309 −0.983116 −0.491558 0.870845i \(-0.663572\pi\)
−0.491558 + 0.870845i \(0.663572\pi\)
\(174\) 0 0
\(175\) − 7.31534i − 0.552988i
\(176\) 0 0
\(177\) − 2.43845i − 0.183285i
\(178\) 0 0
\(179\) 16.6847 1.24707 0.623535 0.781795i \(-0.285696\pi\)
0.623535 + 0.781795i \(0.285696\pi\)
\(180\) 0 0
\(181\) −10.8078 −0.803335 −0.401667 0.915786i \(-0.631569\pi\)
−0.401667 + 0.915786i \(0.631569\pi\)
\(182\) 0 0
\(183\) 14.4384 1.06732
\(184\) 0 0
\(185\) −0.561553 −0.0412862
\(186\) 0 0
\(187\) 7.80776i 0.570960i
\(188\) 0 0
\(189\) 8.68466i 0.631716i
\(190\) 0 0
\(191\) 16.6847 1.20726 0.603630 0.797265i \(-0.293721\pi\)
0.603630 + 0.797265i \(0.293721\pi\)
\(192\) 0 0
\(193\) 3.00000i 0.215945i 0.994154 + 0.107972i \(0.0344358\pi\)
−0.994154 + 0.107972i \(0.965564\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 14.6847i − 1.04624i −0.852259 0.523119i \(-0.824768\pi\)
0.852259 0.523119i \(-0.175232\pi\)
\(198\) 0 0
\(199\) 13.5616 0.961353 0.480676 0.876898i \(-0.340391\pi\)
0.480676 + 0.876898i \(0.340391\pi\)
\(200\) 0 0
\(201\) − 21.1771i − 1.49372i
\(202\) 0 0
\(203\) 7.80776i 0.547998i
\(204\) 0 0
\(205\) 4.06913 0.284200
\(206\) 0 0
\(207\) −4.87689 −0.338968
\(208\) 0 0
\(209\) −2.43845 −0.168671
\(210\) 0 0
\(211\) −24.6847 −1.69936 −0.849681 0.527297i \(-0.823205\pi\)
−0.849681 + 0.527297i \(0.823205\pi\)
\(212\) 0 0
\(213\) − 7.31534i − 0.501239i
\(214\) 0 0
\(215\) 1.36932i 0.0933866i
\(216\) 0 0
\(217\) −12.4924 −0.848041
\(218\) 0 0
\(219\) − 21.3693i − 1.44400i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 8.68466i 0.581568i 0.956789 + 0.290784i \(0.0939161\pi\)
−0.956789 + 0.290784i \(0.906084\pi\)
\(224\) 0 0
\(225\) −2.63068 −0.175379
\(226\) 0 0
\(227\) 30.0540i 1.99475i 0.0723928 + 0.997376i \(0.476936\pi\)
−0.0723928 + 0.997376i \(0.523064\pi\)
\(228\) 0 0
\(229\) 12.2462i 0.809252i 0.914482 + 0.404626i \(0.132598\pi\)
−0.914482 + 0.404626i \(0.867402\pi\)
\(230\) 0 0
\(231\) 3.80776 0.250532
\(232\) 0 0
\(233\) 12.2462 0.802276 0.401138 0.916018i \(-0.368615\pi\)
0.401138 + 0.916018i \(0.368615\pi\)
\(234\) 0 0
\(235\) −2.24621 −0.146527
\(236\) 0 0
\(237\) 6.24621 0.405735
\(238\) 0 0
\(239\) 18.2462i 1.18025i 0.807312 + 0.590125i \(0.200921\pi\)
−0.807312 + 0.590125i \(0.799079\pi\)
\(240\) 0 0
\(241\) 7.49242i 0.482629i 0.970447 + 0.241315i \(0.0775786\pi\)
−0.970447 + 0.241315i \(0.922421\pi\)
\(242\) 0 0
\(243\) 5.75379 0.369106
\(244\) 0 0
\(245\) − 2.56155i − 0.163652i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) − 22.2462i − 1.40980i
\(250\) 0 0
\(251\) 1.06913 0.0674829 0.0337415 0.999431i \(-0.489258\pi\)
0.0337415 + 0.999431i \(0.489258\pi\)
\(252\) 0 0
\(253\) 13.5616i 0.852608i
\(254\) 0 0
\(255\) − 4.38447i − 0.274566i
\(256\) 0 0
\(257\) −5.24621 −0.327250 −0.163625 0.986523i \(-0.552319\pi\)
−0.163625 + 0.986523i \(0.552319\pi\)
\(258\) 0 0
\(259\) −1.56155 −0.0970302
\(260\) 0 0
\(261\) 2.80776 0.173796
\(262\) 0 0
\(263\) 11.8078 0.728098 0.364049 0.931380i \(-0.381394\pi\)
0.364049 + 0.931380i \(0.381394\pi\)
\(264\) 0 0
\(265\) − 4.80776i − 0.295339i
\(266\) 0 0
\(267\) 4.19224i 0.256561i
\(268\) 0 0
\(269\) −5.80776 −0.354106 −0.177053 0.984201i \(-0.556656\pi\)
−0.177053 + 0.984201i \(0.556656\pi\)
\(270\) 0 0
\(271\) 9.56155i 0.580823i 0.956902 + 0.290411i \(0.0937922\pi\)
−0.956902 + 0.290411i \(0.906208\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 7.31534i 0.441132i
\(276\) 0 0
\(277\) −11.0000 −0.660926 −0.330463 0.943819i \(-0.607205\pi\)
−0.330463 + 0.943819i \(0.607205\pi\)
\(278\) 0 0
\(279\) 4.49242i 0.268954i
\(280\) 0 0
\(281\) 2.31534i 0.138122i 0.997612 + 0.0690608i \(0.0220003\pi\)
−0.997612 + 0.0690608i \(0.978000\pi\)
\(282\) 0 0
\(283\) −25.5616 −1.51948 −0.759738 0.650229i \(-0.774673\pi\)
−0.759738 + 0.650229i \(0.774673\pi\)
\(284\) 0 0
\(285\) 1.36932 0.0811113
\(286\) 0 0
\(287\) 11.3153 0.667923
\(288\) 0 0
\(289\) 8.00000 0.470588
\(290\) 0 0
\(291\) 27.8078i 1.63012i
\(292\) 0 0
\(293\) − 21.4924i − 1.25560i −0.778374 0.627800i \(-0.783955\pi\)
0.778374 0.627800i \(-0.216045\pi\)
\(294\) 0 0
\(295\) −0.876894 −0.0510548
\(296\) 0 0
\(297\) − 8.68466i − 0.503935i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 3.80776i 0.219476i
\(302\) 0 0
\(303\) 17.5616 1.00888
\(304\) 0 0
\(305\) − 5.19224i − 0.297307i
\(306\) 0 0
\(307\) 9.75379i 0.556678i 0.960483 + 0.278339i \(0.0897839\pi\)
−0.960483 + 0.278339i \(0.910216\pi\)
\(308\) 0 0
\(309\) −3.50758 −0.199539
\(310\) 0 0
\(311\) 2.24621 0.127371 0.0636855 0.997970i \(-0.479715\pi\)
0.0636855 + 0.997970i \(0.479715\pi\)
\(312\) 0 0
\(313\) −15.7538 −0.890457 −0.445228 0.895417i \(-0.646878\pi\)
−0.445228 + 0.895417i \(0.646878\pi\)
\(314\) 0 0
\(315\) 0.492423 0.0277449
\(316\) 0 0
\(317\) − 20.5616i − 1.15485i −0.816443 0.577426i \(-0.804057\pi\)
0.816443 0.577426i \(-0.195943\pi\)
\(318\) 0 0
\(319\) − 7.80776i − 0.437151i
\(320\) 0 0
\(321\) −13.5616 −0.756932
\(322\) 0 0
\(323\) 7.80776i 0.434436i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 12.8769i 0.712094i
\(328\) 0 0
\(329\) −6.24621 −0.344365
\(330\) 0 0
\(331\) − 6.93087i − 0.380955i −0.981692 0.190478i \(-0.938996\pi\)
0.981692 0.190478i \(-0.0610036\pi\)
\(332\) 0 0
\(333\) 0.561553i 0.0307729i
\(334\) 0 0
\(335\) −7.61553 −0.416081
\(336\) 0 0
\(337\) −20.5616 −1.12006 −0.560030 0.828473i \(-0.689210\pi\)
−0.560030 + 0.828473i \(0.689210\pi\)
\(338\) 0 0
\(339\) −11.3153 −0.614565
\(340\) 0 0
\(341\) 12.4924 0.676503
\(342\) 0 0
\(343\) − 18.0540i − 0.974823i
\(344\) 0 0
\(345\) − 7.61553i − 0.410006i
\(346\) 0 0
\(347\) −2.05398 −0.110263 −0.0551316 0.998479i \(-0.517558\pi\)
−0.0551316 + 0.998479i \(0.517558\pi\)
\(348\) 0 0
\(349\) 16.4384i 0.879930i 0.898015 + 0.439965i \(0.145009\pi\)
−0.898015 + 0.439965i \(0.854991\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 9.00000i 0.479022i 0.970894 + 0.239511i \(0.0769871\pi\)
−0.970894 + 0.239511i \(0.923013\pi\)
\(354\) 0 0
\(355\) −2.63068 −0.139622
\(356\) 0 0
\(357\) − 12.1922i − 0.645282i
\(358\) 0 0
\(359\) − 28.4924i − 1.50377i −0.659293 0.751886i \(-0.729144\pi\)
0.659293 0.751886i \(-0.270856\pi\)
\(360\) 0 0
\(361\) 16.5616 0.871661
\(362\) 0 0
\(363\) 13.3693 0.701707
\(364\) 0 0
\(365\) −7.68466 −0.402233
\(366\) 0 0
\(367\) −13.1771 −0.687838 −0.343919 0.938999i \(-0.611755\pi\)
−0.343919 + 0.938999i \(0.611755\pi\)
\(368\) 0 0
\(369\) − 4.06913i − 0.211830i
\(370\) 0 0
\(371\) − 13.3693i − 0.694100i
\(372\) 0 0
\(373\) 5.24621 0.271639 0.135819 0.990734i \(-0.456633\pi\)
0.135819 + 0.990734i \(0.456633\pi\)
\(374\) 0 0
\(375\) − 8.49242i − 0.438547i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 2.93087i 0.150549i 0.997163 + 0.0752743i \(0.0239832\pi\)
−0.997163 + 0.0752743i \(0.976017\pi\)
\(380\) 0 0
\(381\) −12.1922 −0.624627
\(382\) 0 0
\(383\) − 29.1771i − 1.49088i −0.666573 0.745440i \(-0.732240\pi\)
0.666573 0.745440i \(-0.267760\pi\)
\(384\) 0 0
\(385\) − 1.36932i − 0.0697869i
\(386\) 0 0
\(387\) 1.36932 0.0696063
\(388\) 0 0
\(389\) 29.6847 1.50507 0.752536 0.658551i \(-0.228830\pi\)
0.752536 + 0.658551i \(0.228830\pi\)
\(390\) 0 0
\(391\) 43.4233 2.19601
\(392\) 0 0
\(393\) −2.73863 −0.138146
\(394\) 0 0
\(395\) − 2.24621i − 0.113019i
\(396\) 0 0
\(397\) − 9.31534i − 0.467524i −0.972294 0.233762i \(-0.924896\pi\)
0.972294 0.233762i \(-0.0751036\pi\)
\(398\) 0 0
\(399\) 3.80776 0.190627
\(400\) 0 0
\(401\) 23.4924i 1.17316i 0.809893 + 0.586578i \(0.199525\pi\)
−0.809893 + 0.586578i \(0.800475\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 3.93087i 0.195326i
\(406\) 0 0
\(407\) 1.56155 0.0774033
\(408\) 0 0
\(409\) 15.2462i 0.753877i 0.926238 + 0.376938i \(0.123023\pi\)
−0.926238 + 0.376938i \(0.876977\pi\)
\(410\) 0 0
\(411\) 17.9460i 0.885212i
\(412\) 0 0
\(413\) −2.43845 −0.119988
\(414\) 0 0
\(415\) −8.00000 −0.392705
\(416\) 0 0
\(417\) −11.4233 −0.559401
\(418\) 0 0
\(419\) −14.9309 −0.729421 −0.364710 0.931121i \(-0.618832\pi\)
−0.364710 + 0.931121i \(0.618832\pi\)
\(420\) 0 0
\(421\) 33.6847i 1.64169i 0.571151 + 0.820845i \(0.306497\pi\)
−0.571151 + 0.820845i \(0.693503\pi\)
\(422\) 0 0
\(423\) 2.24621i 0.109215i
\(424\) 0 0
\(425\) 23.4233 1.13620
\(426\) 0 0
\(427\) − 14.4384i − 0.698725i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 30.9309i 1.48989i 0.667127 + 0.744944i \(0.267524\pi\)
−0.667127 + 0.744944i \(0.732476\pi\)
\(432\) 0 0
\(433\) −31.4924 −1.51343 −0.756715 0.653745i \(-0.773197\pi\)
−0.756715 + 0.653745i \(0.773197\pi\)
\(434\) 0 0
\(435\) 4.38447i 0.210219i
\(436\) 0 0
\(437\) 13.5616i 0.648737i
\(438\) 0 0
\(439\) −9.06913 −0.432846 −0.216423 0.976300i \(-0.569439\pi\)
−0.216423 + 0.976300i \(0.569439\pi\)
\(440\) 0 0
\(441\) −2.56155 −0.121979
\(442\) 0 0
\(443\) −38.2462 −1.81713 −0.908566 0.417741i \(-0.862822\pi\)
−0.908566 + 0.417741i \(0.862822\pi\)
\(444\) 0 0
\(445\) 1.50758 0.0714660
\(446\) 0 0
\(447\) 5.06913i 0.239762i
\(448\) 0 0
\(449\) − 24.0540i − 1.13518i −0.823312 0.567589i \(-0.807876\pi\)
0.823312 0.567589i \(-0.192124\pi\)
\(450\) 0 0
\(451\) −11.3153 −0.532819
\(452\) 0 0
\(453\) − 32.0000i − 1.50349i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 9.00000i 0.421002i 0.977594 + 0.210501i \(0.0675096\pi\)
−0.977594 + 0.210501i \(0.932490\pi\)
\(458\) 0 0
\(459\) −27.8078 −1.29796
\(460\) 0 0
\(461\) − 23.4924i − 1.09415i −0.837083 0.547076i \(-0.815741\pi\)
0.837083 0.547076i \(-0.184259\pi\)
\(462\) 0 0
\(463\) 32.9848i 1.53294i 0.642283 + 0.766468i \(0.277988\pi\)
−0.642283 + 0.766468i \(0.722012\pi\)
\(464\) 0 0
\(465\) −7.01515 −0.325320
\(466\) 0 0
\(467\) 26.2462 1.21453 0.607265 0.794499i \(-0.292267\pi\)
0.607265 + 0.794499i \(0.292267\pi\)
\(468\) 0 0
\(469\) −21.1771 −0.977867
\(470\) 0 0
\(471\) 4.38447 0.202026
\(472\) 0 0
\(473\) − 3.80776i − 0.175081i
\(474\) 0 0
\(475\) 7.31534i 0.335651i
\(476\) 0 0
\(477\) −4.80776 −0.220132
\(478\) 0 0
\(479\) 20.3002i 0.927539i 0.885956 + 0.463770i \(0.153503\pi\)
−0.885956 + 0.463770i \(0.846497\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) − 21.1771i − 0.963591i
\(484\) 0 0
\(485\) 10.0000 0.454077
\(486\) 0 0
\(487\) − 34.4384i − 1.56056i −0.625433 0.780278i \(-0.715078\pi\)
0.625433 0.780278i \(-0.284922\pi\)
\(488\) 0 0
\(489\) 35.8078i 1.61928i
\(490\) 0 0
\(491\) −2.05398 −0.0926946 −0.0463473 0.998925i \(-0.514758\pi\)
−0.0463473 + 0.998925i \(0.514758\pi\)
\(492\) 0 0
\(493\) −25.0000 −1.12594
\(494\) 0 0
\(495\) −0.492423 −0.0221327
\(496\) 0 0
\(497\) −7.31534 −0.328138
\(498\) 0 0
\(499\) − 16.4924i − 0.738302i −0.929369 0.369151i \(-0.879648\pi\)
0.929369 0.369151i \(-0.120352\pi\)
\(500\) 0 0
\(501\) 14.9309i 0.667062i
\(502\) 0 0
\(503\) 32.6847 1.45734 0.728668 0.684867i \(-0.240140\pi\)
0.728668 + 0.684867i \(0.240140\pi\)
\(504\) 0 0
\(505\) − 6.31534i − 0.281029i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 33.0000i 1.46270i 0.682003 + 0.731350i \(0.261109\pi\)
−0.682003 + 0.731350i \(0.738891\pi\)
\(510\) 0 0
\(511\) −21.3693 −0.945323
\(512\) 0 0
\(513\) − 8.68466i − 0.383437i
\(514\) 0 0
\(515\) 1.26137i 0.0555824i
\(516\) 0 0
\(517\) 6.24621 0.274708
\(518\) 0 0
\(519\) −20.1922 −0.886341
\(520\) 0 0
\(521\) 9.05398 0.396662 0.198331 0.980135i \(-0.436448\pi\)
0.198331 + 0.980135i \(0.436448\pi\)
\(522\) 0 0
\(523\) 12.3002 0.537850 0.268925 0.963161i \(-0.413332\pi\)
0.268925 + 0.963161i \(0.413332\pi\)
\(524\) 0 0
\(525\) − 11.4233i − 0.498553i
\(526\) 0 0
\(527\) − 40.0000i − 1.74243i
\(528\) 0 0
\(529\) 52.4233 2.27927
\(530\) 0 0
\(531\) 0.876894i 0.0380540i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 4.87689i 0.210847i
\(536\) 0 0
\(537\) 26.0540 1.12431
\(538\) 0 0
\(539\) 7.12311i 0.306814i
\(540\) 0 0
\(541\) − 5.68466i − 0.244403i −0.992505 0.122201i \(-0.961005\pi\)
0.992505 0.122201i \(-0.0389953\pi\)
\(542\) 0 0
\(543\) −16.8769 −0.724257
\(544\) 0 0
\(545\) 4.63068 0.198357
\(546\) 0 0
\(547\) −16.4924 −0.705165 −0.352583 0.935781i \(-0.614696\pi\)
−0.352583 + 0.935781i \(0.614696\pi\)
\(548\) 0 0
\(549\) −5.19224 −0.221599
\(550\) 0 0
\(551\) − 7.80776i − 0.332622i
\(552\) 0 0
\(553\) − 6.24621i − 0.265616i
\(554\) 0 0
\(555\) −0.876894 −0.0372221
\(556\) 0 0
\(557\) 31.4924i 1.33438i 0.744889 + 0.667188i \(0.232502\pi\)
−0.744889 + 0.667188i \(0.767498\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 12.1922i 0.514757i
\(562\) 0 0
\(563\) 6.05398 0.255145 0.127572 0.991829i \(-0.459282\pi\)
0.127572 + 0.991829i \(0.459282\pi\)
\(564\) 0 0
\(565\) 4.06913i 0.171190i
\(566\) 0 0
\(567\) 10.9309i 0.459053i
\(568\) 0 0
\(569\) −18.6847 −0.783302 −0.391651 0.920114i \(-0.628096\pi\)
−0.391651 + 0.920114i \(0.628096\pi\)
\(570\) 0 0
\(571\) −8.49242 −0.355397 −0.177698 0.984085i \(-0.556865\pi\)
−0.177698 + 0.984085i \(0.556865\pi\)
\(572\) 0 0
\(573\) 26.0540 1.08842
\(574\) 0 0
\(575\) 40.6847 1.69667
\(576\) 0 0
\(577\) 27.4384i 1.14228i 0.820854 + 0.571139i \(0.193498\pi\)
−0.820854 + 0.571139i \(0.806502\pi\)
\(578\) 0 0
\(579\) 4.68466i 0.194688i
\(580\) 0 0
\(581\) −22.2462 −0.922928
\(582\) 0 0
\(583\) 13.3693i 0.553701i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 14.9309i 0.616263i 0.951344 + 0.308131i \(0.0997037\pi\)
−0.951344 + 0.308131i \(0.900296\pi\)
\(588\) 0 0
\(589\) 12.4924 0.514741
\(590\) 0 0
\(591\) − 22.9309i − 0.943250i
\(592\) 0 0
\(593\) − 19.4384i − 0.798241i −0.916898 0.399121i \(-0.869315\pi\)
0.916898 0.399121i \(-0.130685\pi\)
\(594\) 0 0
\(595\) −4.38447 −0.179746
\(596\) 0 0
\(597\) 21.1771 0.866720
\(598\) 0 0
\(599\) −26.7386 −1.09251 −0.546255 0.837619i \(-0.683947\pi\)
−0.546255 + 0.837619i \(0.683947\pi\)
\(600\) 0 0
\(601\) 27.9848 1.14153 0.570763 0.821115i \(-0.306648\pi\)
0.570763 + 0.821115i \(0.306648\pi\)
\(602\) 0 0
\(603\) 7.61553i 0.310128i
\(604\) 0 0
\(605\) − 4.80776i − 0.195463i
\(606\) 0 0
\(607\) −19.3153 −0.783986 −0.391993 0.919968i \(-0.628214\pi\)
−0.391993 + 0.919968i \(0.628214\pi\)
\(608\) 0 0
\(609\) 12.1922i 0.494054i
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 9.00000i 0.363507i 0.983344 + 0.181753i \(0.0581772\pi\)
−0.983344 + 0.181753i \(0.941823\pi\)
\(614\) 0 0
\(615\) 6.35416 0.256225
\(616\) 0 0
\(617\) − 25.2462i − 1.01637i −0.861247 0.508187i \(-0.830316\pi\)
0.861247 0.508187i \(-0.169684\pi\)
\(618\) 0 0
\(619\) 28.9848i 1.16500i 0.812831 + 0.582500i \(0.197925\pi\)
−0.812831 + 0.582500i \(0.802075\pi\)
\(620\) 0 0
\(621\) −48.3002 −1.93822
\(622\) 0 0
\(623\) 4.19224 0.167958
\(624\) 0 0
\(625\) 20.3693 0.814773
\(626\) 0 0
\(627\) −3.80776 −0.152067
\(628\) 0 0
\(629\) − 5.00000i − 0.199363i
\(630\) 0 0
\(631\) − 10.0540i − 0.400242i −0.979771 0.200121i \(-0.935866\pi\)
0.979771 0.200121i \(-0.0641336\pi\)
\(632\) 0 0
\(633\) −38.5464 −1.53208
\(634\) 0 0
\(635\) 4.38447i 0.173992i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 2.63068i 0.104068i
\(640\) 0 0
\(641\) 1.49242 0.0589471 0.0294736 0.999566i \(-0.490617\pi\)
0.0294736 + 0.999566i \(0.490617\pi\)
\(642\) 0 0
\(643\) 20.3002i 0.800561i 0.916393 + 0.400281i \(0.131087\pi\)
−0.916393 + 0.400281i \(0.868913\pi\)
\(644\) 0 0
\(645\) 2.13826i 0.0841939i
\(646\) 0 0
\(647\) 22.9309 0.901506 0.450753 0.892649i \(-0.351156\pi\)
0.450753 + 0.892649i \(0.351156\pi\)
\(648\) 0 0
\(649\) 2.43845 0.0957174
\(650\) 0 0
\(651\) −19.5076 −0.764562
\(652\) 0 0
\(653\) −24.5464 −0.960575 −0.480287 0.877111i \(-0.659468\pi\)
−0.480287 + 0.877111i \(0.659468\pi\)
\(654\) 0 0
\(655\) 0.984845i 0.0384811i
\(656\) 0 0
\(657\) 7.68466i 0.299807i
\(658\) 0 0
\(659\) −21.5616 −0.839919 −0.419959 0.907543i \(-0.637956\pi\)
−0.419959 + 0.907543i \(0.637956\pi\)
\(660\) 0 0
\(661\) 5.73863i 0.223207i 0.993753 + 0.111603i \(0.0355987\pi\)
−0.993753 + 0.111603i \(0.964401\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) − 1.36932i − 0.0530998i
\(666\) 0 0
\(667\) −43.4233 −1.68136
\(668\) 0 0
\(669\) 13.5616i 0.524320i
\(670\) 0 0
\(671\) 14.4384i 0.557390i
\(672\) 0 0
\(673\) −17.2462 −0.664793 −0.332396 0.943140i \(-0.607857\pi\)
−0.332396 + 0.943140i \(0.607857\pi\)
\(674\) 0 0
\(675\) −26.0540 −1.00282
\(676\) 0 0
\(677\) −28.7386 −1.10452 −0.552258 0.833673i \(-0.686234\pi\)
−0.552258 + 0.833673i \(0.686234\pi\)
\(678\) 0 0
\(679\) 27.8078 1.06716
\(680\) 0 0
\(681\) 46.9309i 1.79839i
\(682\) 0 0
\(683\) − 7.31534i − 0.279914i −0.990158 0.139957i \(-0.955304\pi\)
0.990158 0.139957i \(-0.0446964\pi\)
\(684\) 0 0
\(685\) 6.45360 0.246579
\(686\) 0 0
\(687\) 19.1231i 0.729592i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) − 25.5616i − 0.972407i −0.873846 0.486204i \(-0.838381\pi\)
0.873846 0.486204i \(-0.161619\pi\)
\(692\) 0 0
\(693\) −1.36932 −0.0520160
\(694\) 0 0
\(695\) 4.10795i 0.155823i
\(696\) 0 0
\(697\) 36.2311i 1.37235i
\(698\) 0 0
\(699\) 19.1231 0.723302
\(700\) 0 0
\(701\) −32.7386 −1.23652 −0.618261 0.785973i \(-0.712162\pi\)
−0.618261 + 0.785973i \(0.712162\pi\)
\(702\) 0 0
\(703\) 1.56155 0.0588951
\(704\) 0 0
\(705\) −3.50758 −0.132103
\(706\) 0 0
\(707\) − 17.5616i − 0.660470i
\(708\) 0 0
\(709\) 33.7386i 1.26708i 0.773710 + 0.633540i \(0.218399\pi\)
−0.773710 + 0.633540i \(0.781601\pi\)
\(710\) 0 0
\(711\) −2.24621 −0.0842395
\(712\) 0 0
\(713\) − 69.4773i − 2.60194i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 28.4924i 1.06407i
\(718\) 0 0
\(719\) −42.9309 −1.60105 −0.800526 0.599299i \(-0.795446\pi\)
−0.800526 + 0.599299i \(0.795446\pi\)
\(720\) 0 0
\(721\) 3.50758i 0.130629i
\(722\) 0 0
\(723\) 11.6998i 0.435121i
\(724\) 0 0
\(725\) −23.4233 −0.869919
\(726\) 0 0
\(727\) 6.73863 0.249922 0.124961 0.992162i \(-0.460119\pi\)
0.124961 + 0.992162i \(0.460119\pi\)
\(728\) 0 0
\(729\) 29.9848 1.11055
\(730\) 0 0
\(731\) −12.1922 −0.450946
\(732\) 0 0
\(733\) 1.19224i 0.0440362i 0.999758 + 0.0220181i \(0.00700915\pi\)
−0.999758 + 0.0220181i \(0.992991\pi\)
\(734\) 0 0
\(735\) − 4.00000i − 0.147542i
\(736\) 0 0
\(737\) 21.1771 0.780068
\(738\) 0 0
\(739\) − 46.9309i − 1.72638i −0.504879 0.863190i \(-0.668463\pi\)
0.504879 0.863190i \(-0.331537\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) − 9.06913i − 0.332714i −0.986066 0.166357i \(-0.946800\pi\)
0.986066 0.166357i \(-0.0532004\pi\)
\(744\) 0 0
\(745\) 1.82292 0.0667866
\(746\) 0 0
\(747\) 8.00000i 0.292705i
\(748\) 0 0
\(749\) 13.5616i 0.495528i
\(750\) 0 0
\(751\) −48.3002 −1.76250 −0.881249 0.472652i \(-0.843297\pi\)
−0.881249 + 0.472652i \(0.843297\pi\)
\(752\) 0 0
\(753\) 1.66950 0.0608401
\(754\) 0 0
\(755\) −11.5076 −0.418804
\(756\) 0 0
\(757\) −16.5464 −0.601389 −0.300695 0.953721i \(-0.597218\pi\)
−0.300695 + 0.953721i \(0.597218\pi\)
\(758\) 0 0
\(759\) 21.1771i 0.768679i
\(760\) 0 0
\(761\) − 23.0691i − 0.836255i −0.908388 0.418128i \(-0.862686\pi\)
0.908388 0.418128i \(-0.137314\pi\)
\(762\) 0 0
\(763\) 12.8769 0.466175
\(764\) 0 0
\(765\) 1.57671i 0.0570060i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) − 0.930870i − 0.0335680i −0.999859 0.0167840i \(-0.994657\pi\)
0.999859 0.0167840i \(-0.00534277\pi\)
\(770\) 0 0
\(771\) −8.19224 −0.295036
\(772\) 0 0
\(773\) − 34.1922i − 1.22981i −0.788601 0.614905i \(-0.789194\pi\)
0.788601 0.614905i \(-0.210806\pi\)
\(774\) 0 0
\(775\) − 37.4773i − 1.34622i
\(776\) 0 0
\(777\) −2.43845 −0.0874788
\(778\) 0 0
\(779\) −11.3153 −0.405414
\(780\) 0 0
\(781\) 7.31534 0.261764
\(782\) 0 0
\(783\) 27.8078 0.993768
\(784\) 0 0
\(785\) − 1.57671i − 0.0562751i
\(786\) 0 0
\(787\) 27.4233i 0.977535i 0.872414 + 0.488767i \(0.162553\pi\)
−0.872414 + 0.488767i \(0.837447\pi\)
\(788\) 0 0
\(789\) 18.4384 0.656426
\(790\) 0 0
\(791\) 11.3153i 0.402327i
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) − 7.50758i − 0.266266i
\(796\) 0 0
\(797\) −12.9309 −0.458035 −0.229017 0.973422i \(-0.573551\pi\)
−0.229017 + 0.973422i \(0.573551\pi\)
\(798\) 0 0
\(799\) − 20.0000i − 0.707549i
\(800\) 0 0
\(801\) − 1.50758i − 0.0532676i
\(802\) 0 0
\(803\) 21.3693 0.754107
\(804\) 0 0
\(805\) −7.61553 −0.268412
\(806\) 0 0
\(807\) −9.06913 −0.319249
\(808\) 0 0
\(809\) −23.2462 −0.817293 −0.408647 0.912693i \(-0.633999\pi\)
−0.408647 + 0.912693i \(0.633999\pi\)
\(810\) 0 0
\(811\) 8.00000i 0.280918i 0.990086 + 0.140459i \(0.0448578\pi\)
−0.990086 + 0.140459i \(0.955142\pi\)
\(812\) 0 0
\(813\) 14.9309i 0.523648i
\(814\) 0 0
\(815\) 12.8769 0.451058
\(816\) 0 0
\(817\) − 3.80776i − 0.133217i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 13.8078i 0.481894i 0.970538 + 0.240947i \(0.0774580\pi\)
−0.970538 + 0.240947i \(0.922542\pi\)
\(822\) 0 0
\(823\) −1.17708 −0.0410305 −0.0205152 0.999790i \(-0.506531\pi\)
−0.0205152 + 0.999790i \(0.506531\pi\)
\(824\) 0 0
\(825\) 11.4233i 0.397708i
\(826\) 0 0
\(827\) 36.9848i 1.28609i 0.765829 + 0.643045i \(0.222329\pi\)
−0.765829 + 0.643045i \(0.777671\pi\)
\(828\) 0 0
\(829\) −6.50758 −0.226018 −0.113009 0.993594i \(-0.536049\pi\)
−0.113009 + 0.993594i \(0.536049\pi\)
\(830\) 0 0
\(831\) −17.1771 −0.595866
\(832\) 0 0
\(833\) 22.8078 0.790242
\(834\) 0 0
\(835\) 5.36932 0.185813
\(836\) 0 0
\(837\) 44.4924i 1.53788i
\(838\) 0 0
\(839\) − 27.3153i − 0.943030i −0.881858 0.471515i \(-0.843707\pi\)
0.881858 0.471515i \(-0.156293\pi\)
\(840\) 0 0
\(841\) −4.00000 −0.137931
\(842\) 0 0
\(843\) 3.61553i 0.124525i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 13.3693i − 0.459375i
\(848\) 0 0
\(849\) −39.9157 −1.36990
\(850\) 0 0
\(851\) − 8.68466i − 0.297706i
\(852\) 0 0
\(853\) − 48.4233i − 1.65798i −0.559262 0.828991i \(-0.688915\pi\)
0.559262 0.828991i \(-0.311085\pi\)
\(854\) 0 0
\(855\) −0.492423 −0.0168405
\(856\) 0 0
\(857\) 14.9460 0.510546 0.255273 0.966869i \(-0.417835\pi\)
0.255273 + 0.966869i \(0.417835\pi\)
\(858\) 0 0
\(859\) 22.2462 0.759031 0.379515 0.925185i \(-0.376091\pi\)
0.379515 + 0.925185i \(0.376091\pi\)
\(860\) 0 0
\(861\) 17.6695 0.602175
\(862\) 0 0
\(863\) − 21.7538i − 0.740508i −0.928931 0.370254i \(-0.879271\pi\)
0.928931 0.370254i \(-0.120729\pi\)
\(864\) 0 0
\(865\) 7.26137i 0.246894i
\(866\) 0 0
\(867\) 12.4924 0.424265
\(868\) 0 0
\(869\) 6.24621i 0.211888i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) − 10.0000i − 0.338449i
\(874\) 0 0
\(875\) −8.49242 −0.287096
\(876\) 0 0
\(877\) 39.7386i 1.34188i 0.741512 + 0.670939i \(0.234109\pi\)
−0.741512 + 0.670939i \(0.765891\pi\)
\(878\) 0 0
\(879\) − 33.5616i − 1.13200i
\(880\) 0 0
\(881\) 15.2462 0.513658 0.256829 0.966457i \(-0.417322\pi\)
0.256829 + 0.966457i \(0.417322\pi\)
\(882\) 0 0
\(883\) 20.0000 0.673054 0.336527 0.941674i \(-0.390748\pi\)
0.336527 + 0.941674i \(0.390748\pi\)
\(884\) 0 0
\(885\) −1.36932 −0.0460291
\(886\) 0 0
\(887\) −20.6847 −0.694523 −0.347261 0.937768i \(-0.612888\pi\)
−0.347261 + 0.937768i \(0.612888\pi\)
\(888\) 0 0
\(889\) 12.1922i 0.408914i
\(890\) 0 0
\(891\) − 10.9309i − 0.366198i
\(892\) 0 0
\(893\) 6.24621 0.209021
\(894\) 0 0
\(895\) − 9.36932i − 0.313182i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 40.0000i 1.33407i
\(900\) 0 0
\(901\) 42.8078 1.42613
\(902\) 0 0
\(903\) 5.94602i 0.197871i
\(904\) 0 0
\(905\) 6.06913i 0.201745i
\(906\) 0 0
\(907\) −40.3002 −1.33815 −0.669073 0.743197i \(-0.733309\pi\)
−0.669073 + 0.743197i \(0.733309\pi\)
\(908\) 0 0
\(909\) −6.31534 −0.209467
\(910\) 0 0
\(911\) 30.7386 1.01842 0.509208 0.860643i \(-0.329938\pi\)
0.509208 + 0.860643i \(0.329938\pi\)
\(912\) 0 0
\(913\) 22.2462 0.736242
\(914\) 0 0
\(915\) − 8.10795i − 0.268041i
\(916\) 0 0
\(917\) 2.73863i 0.0904377i
\(918\) 0 0
\(919\) −58.5464 −1.93127 −0.965634 0.259907i \(-0.916308\pi\)
−0.965634 + 0.259907i \(0.916308\pi\)
\(920\) 0 0
\(921\) 15.2311i 0.501880i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) − 4.68466i − 0.154031i
\(926\) 0 0
\(927\) 1.26137 0.0414287
\(928\) 0 0
\(929\) 37.9848i 1.24624i 0.782125 + 0.623121i \(0.214136\pi\)
−0.782125 + 0.623121i \(0.785864\pi\)
\(930\) 0 0
\(931\) 7.12311i 0.233450i
\(932\) 0 0
\(933\) 3.50758 0.114833
\(934\) 0 0
\(935\) 4.38447 0.143388
\(936\) 0 0
\(937\) −13.6847 −0.447058 −0.223529 0.974697i \(-0.571758\pi\)
−0.223529 + 0.974697i \(0.571758\pi\)
\(938\) 0 0
\(939\) −24.6004 −0.802803
\(940\) 0 0
\(941\) − 14.0000i − 0.456387i −0.973616 0.228193i \(-0.926718\pi\)
0.973616 0.228193i \(-0.0732819\pi\)
\(942\) 0 0
\(943\) 62.9309i 2.04931i
\(944\) 0 0
\(945\) 4.87689 0.158645
\(946\) 0 0
\(947\) − 15.4233i − 0.501190i −0.968092 0.250595i \(-0.919374\pi\)
0.968092 0.250595i \(-0.0806262\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) − 32.1080i − 1.04117i
\(952\) 0 0
\(953\) 25.8078 0.835995 0.417998 0.908448i \(-0.362732\pi\)
0.417998 + 0.908448i \(0.362732\pi\)
\(954\) 0 0
\(955\) − 9.36932i − 0.303184i
\(956\) 0 0
\(957\) − 12.1922i − 0.394119i
\(958\) 0 0
\(959\) 17.9460 0.579507
\(960\) 0 0
\(961\) −33.0000 −1.06452
\(962\) 0 0
\(963\) 4.87689 0.157156
\(964\) 0 0
\(965\) 1.68466 0.0542311
\(966\) 0 0
\(967\) 5.75379i 0.185029i 0.995711 + 0.0925147i \(0.0294905\pi\)
−0.995711 + 0.0925147i \(0.970509\pi\)
\(968\) 0 0
\(969\) 12.1922i 0.391671i
\(970\) 0 0
\(971\) −19.3153 −0.619859 −0.309929 0.950760i \(-0.600305\pi\)
−0.309929 + 0.950760i \(0.600305\pi\)
\(972\) 0 0
\(973\) 11.4233i 0.366214i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 1.24621i − 0.0398698i −0.999801 0.0199349i \(-0.993654\pi\)
0.999801 0.0199349i \(-0.00634590\pi\)
\(978\) 0 0
\(979\) −4.19224 −0.133984
\(980\) 0 0
\(981\) − 4.63068i − 0.147846i
\(982\) 0 0
\(983\) 24.9848i 0.796893i 0.917192 + 0.398446i \(0.130451\pi\)
−0.917192 + 0.398446i \(0.869549\pi\)
\(984\) 0 0
\(985\) −8.24621 −0.262746
\(986\) 0 0
\(987\) −9.75379 −0.310467
\(988\) 0 0
\(989\) −21.1771 −0.673392
\(990\) 0 0
\(991\) −3.69981 −0.117528 −0.0587642 0.998272i \(-0.518716\pi\)
−0.0587642 + 0.998272i \(0.518716\pi\)
\(992\) 0 0
\(993\) − 10.8229i − 0.343455i
\(994\) 0 0
\(995\) − 7.61553i − 0.241428i
\(996\) 0 0
\(997\) −43.2462 −1.36962 −0.684811 0.728721i \(-0.740115\pi\)
−0.684811 + 0.728721i \(0.740115\pi\)
\(998\) 0 0
\(999\) 5.56155i 0.175960i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2704.2.f.l.337.3 4
4.3 odd 2 1352.2.f.d.337.1 4
13.5 odd 4 2704.2.a.r.1.2 2
13.7 odd 12 208.2.i.e.81.1 4
13.8 odd 4 2704.2.a.q.1.2 2
13.11 odd 12 208.2.i.e.113.1 4
13.12 even 2 inner 2704.2.f.l.337.4 4
39.11 even 12 1872.2.t.s.1153.1 4
39.20 even 12 1872.2.t.s.289.1 4
52.3 odd 6 1352.2.o.c.1161.3 8
52.7 even 12 104.2.i.b.81.2 yes 4
52.11 even 12 104.2.i.b.9.2 4
52.15 even 12 1352.2.i.e.529.2 4
52.19 even 12 1352.2.i.e.1329.2 4
52.23 odd 6 1352.2.o.c.1161.4 8
52.31 even 4 1352.2.a.h.1.1 2
52.35 odd 6 1352.2.o.c.361.3 8
52.43 odd 6 1352.2.o.c.361.4 8
52.47 even 4 1352.2.a.f.1.1 2
52.51 odd 2 1352.2.f.d.337.2 4
104.11 even 12 832.2.i.o.321.1 4
104.37 odd 12 832.2.i.l.321.2 4
104.59 even 12 832.2.i.o.705.1 4
104.85 odd 12 832.2.i.l.705.2 4
156.11 odd 12 936.2.t.f.217.1 4
156.59 odd 12 936.2.t.f.289.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.2.i.b.9.2 4 52.11 even 12
104.2.i.b.81.2 yes 4 52.7 even 12
208.2.i.e.81.1 4 13.7 odd 12
208.2.i.e.113.1 4 13.11 odd 12
832.2.i.l.321.2 4 104.37 odd 12
832.2.i.l.705.2 4 104.85 odd 12
832.2.i.o.321.1 4 104.11 even 12
832.2.i.o.705.1 4 104.59 even 12
936.2.t.f.217.1 4 156.11 odd 12
936.2.t.f.289.1 4 156.59 odd 12
1352.2.a.f.1.1 2 52.47 even 4
1352.2.a.h.1.1 2 52.31 even 4
1352.2.f.d.337.1 4 4.3 odd 2
1352.2.f.d.337.2 4 52.51 odd 2
1352.2.i.e.529.2 4 52.15 even 12
1352.2.i.e.1329.2 4 52.19 even 12
1352.2.o.c.361.3 8 52.35 odd 6
1352.2.o.c.361.4 8 52.43 odd 6
1352.2.o.c.1161.3 8 52.3 odd 6
1352.2.o.c.1161.4 8 52.23 odd 6
1872.2.t.s.289.1 4 39.20 even 12
1872.2.t.s.1153.1 4 39.11 even 12
2704.2.a.q.1.2 2 13.8 odd 4
2704.2.a.r.1.2 2 13.5 odd 4
2704.2.f.l.337.3 4 1.1 even 1 trivial
2704.2.f.l.337.4 4 13.12 even 2 inner