Properties

Label 936.2.t.f.217.1
Level $936$
Weight $2$
Character 936.217
Analytic conductor $7.474$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(217,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.217"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.t (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,6,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{17})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 5x^{2} + 4x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 104)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 217.1
Root \(-0.780776 + 1.35234i\) of defining polynomial
Character \(\chi\) \(=\) 936.217
Dual form 936.2.t.f.289.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.561553 q^{5} +(-0.780776 - 1.35234i) q^{7} +(-0.780776 + 1.35234i) q^{11} +(-2.84233 + 2.21837i) q^{13} +(-2.50000 - 4.33013i) q^{17} +(-0.780776 - 1.35234i) q^{19} +(4.34233 - 7.52113i) q^{23} -4.68466 q^{25} +(-2.50000 + 4.33013i) q^{29} -8.00000 q^{31} +(0.438447 + 0.759413i) q^{35} +(0.500000 - 0.866025i) q^{37} +(-3.62311 + 6.27540i) q^{41} +(1.21922 + 2.11176i) q^{43} -4.00000 q^{47} +(2.28078 - 3.95042i) q^{49} -8.56155 q^{53} +(0.438447 - 0.759413i) q^{55} +(0.780776 + 1.35234i) q^{59} +(-4.62311 - 8.00745i) q^{61} +(1.59612 - 1.24573i) q^{65} +(6.78078 - 11.7446i) q^{67} +(-2.34233 - 4.05703i) q^{71} -13.6847 q^{73} +2.43845 q^{77} -4.00000 q^{79} +14.2462 q^{83} +(1.40388 + 2.43160i) q^{85} +(1.34233 - 2.32498i) q^{89} +(5.21922 + 2.11176i) q^{91} +(0.438447 + 0.759413i) q^{95} +(8.90388 + 15.4220i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 6 q^{5} + q^{7} + q^{11} + q^{13} - 10 q^{17} + q^{19} + 5 q^{23} + 6 q^{25} - 10 q^{29} - 32 q^{31} + 10 q^{35} + 2 q^{37} + 2 q^{41} + 9 q^{43} - 16 q^{47} + 5 q^{49} - 26 q^{53} + 10 q^{55}+ \cdots + 15 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.561553 −0.251134 −0.125567 0.992085i \(-0.540075\pi\)
−0.125567 + 0.992085i \(0.540075\pi\)
\(6\) 0 0
\(7\) −0.780776 1.35234i −0.295106 0.511138i 0.679904 0.733301i \(-0.262022\pi\)
−0.975009 + 0.222163i \(0.928688\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −0.780776 + 1.35234i −0.235413 + 0.407747i −0.959393 0.282074i \(-0.908978\pi\)
0.723980 + 0.689821i \(0.242311\pi\)
\(12\) 0 0
\(13\) −2.84233 + 2.21837i −0.788320 + 0.615265i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −2.50000 4.33013i −0.606339 1.05021i −0.991838 0.127502i \(-0.959304\pi\)
0.385499 0.922708i \(-0.374029\pi\)
\(18\) 0 0
\(19\) −0.780776 1.35234i −0.179122 0.310249i 0.762458 0.647038i \(-0.223992\pi\)
−0.941580 + 0.336789i \(0.890659\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.34233 7.52113i 0.905438 1.56827i 0.0851104 0.996372i \(-0.472876\pi\)
0.820328 0.571893i \(-0.193791\pi\)
\(24\) 0 0
\(25\) −4.68466 −0.936932
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −2.50000 + 4.33013i −0.464238 + 0.804084i −0.999167 0.0408130i \(-0.987005\pi\)
0.534928 + 0.844897i \(0.320339\pi\)
\(30\) 0 0
\(31\) −8.00000 −1.43684 −0.718421 0.695608i \(-0.755135\pi\)
−0.718421 + 0.695608i \(0.755135\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0.438447 + 0.759413i 0.0741111 + 0.128364i
\(36\) 0 0
\(37\) 0.500000 0.866025i 0.0821995 0.142374i −0.821995 0.569495i \(-0.807139\pi\)
0.904194 + 0.427121i \(0.140472\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −3.62311 + 6.27540i −0.565834 + 0.980053i 0.431138 + 0.902286i \(0.358112\pi\)
−0.996972 + 0.0777671i \(0.975221\pi\)
\(42\) 0 0
\(43\) 1.21922 + 2.11176i 0.185930 + 0.322040i 0.943889 0.330262i \(-0.107137\pi\)
−0.757960 + 0.652301i \(0.773804\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −4.00000 −0.583460 −0.291730 0.956501i \(-0.594231\pi\)
−0.291730 + 0.956501i \(0.594231\pi\)
\(48\) 0 0
\(49\) 2.28078 3.95042i 0.325825 0.564346i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −8.56155 −1.17602 −0.588010 0.808854i \(-0.700088\pi\)
−0.588010 + 0.808854i \(0.700088\pi\)
\(54\) 0 0
\(55\) 0.438447 0.759413i 0.0591202 0.102399i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0.780776 + 1.35234i 0.101648 + 0.176060i 0.912364 0.409380i \(-0.134255\pi\)
−0.810716 + 0.585440i \(0.800922\pi\)
\(60\) 0 0
\(61\) −4.62311 8.00745i −0.591928 1.02525i −0.993973 0.109629i \(-0.965034\pi\)
0.402045 0.915620i \(-0.368300\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.59612 1.24573i 0.197974 0.154514i
\(66\) 0 0
\(67\) 6.78078 11.7446i 0.828404 1.43484i −0.0708863 0.997484i \(-0.522583\pi\)
0.899290 0.437353i \(-0.144084\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −2.34233 4.05703i −0.277983 0.481481i 0.692900 0.721034i \(-0.256333\pi\)
−0.970883 + 0.239552i \(0.922999\pi\)
\(72\) 0 0
\(73\) −13.6847 −1.60167 −0.800834 0.598886i \(-0.795610\pi\)
−0.800834 + 0.598886i \(0.795610\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 2.43845 0.277887
\(78\) 0 0
\(79\) −4.00000 −0.450035 −0.225018 0.974355i \(-0.572244\pi\)
−0.225018 + 0.974355i \(0.572244\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 14.2462 1.56372 0.781862 0.623451i \(-0.214270\pi\)
0.781862 + 0.623451i \(0.214270\pi\)
\(84\) 0 0
\(85\) 1.40388 + 2.43160i 0.152272 + 0.263744i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1.34233 2.32498i 0.142287 0.246448i −0.786071 0.618137i \(-0.787888\pi\)
0.928357 + 0.371689i \(0.121221\pi\)
\(90\) 0 0
\(91\) 5.21922 + 2.11176i 0.547123 + 0.221372i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0.438447 + 0.759413i 0.0449837 + 0.0779141i
\(96\) 0 0
\(97\) 8.90388 + 15.4220i 0.904052 + 1.56586i 0.822184 + 0.569221i \(0.192755\pi\)
0.0818678 + 0.996643i \(0.473911\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −5.62311 + 9.73950i −0.559520 + 0.969117i 0.438017 + 0.898967i \(0.355681\pi\)
−0.997536 + 0.0701500i \(0.977652\pi\)
\(102\) 0 0
\(103\) −2.24621 −0.221326 −0.110663 0.993858i \(-0.535297\pi\)
−0.110663 + 0.993858i \(0.535297\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 4.34233 7.52113i 0.419789 0.727096i −0.576129 0.817359i \(-0.695437\pi\)
0.995918 + 0.0902631i \(0.0287708\pi\)
\(108\) 0 0
\(109\) −8.24621 −0.789844 −0.394922 0.918715i \(-0.629228\pi\)
−0.394922 + 0.918715i \(0.629228\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −3.62311 6.27540i −0.340833 0.590340i 0.643755 0.765232i \(-0.277376\pi\)
−0.984588 + 0.174892i \(0.944042\pi\)
\(114\) 0 0
\(115\) −2.43845 + 4.22351i −0.227386 + 0.393845i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −3.90388 + 6.76172i −0.357868 + 0.619846i
\(120\) 0 0
\(121\) 4.28078 + 7.41452i 0.389161 + 0.674047i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 5.43845 0.486430
\(126\) 0 0
\(127\) 3.90388 6.76172i 0.346414 0.600006i −0.639196 0.769044i \(-0.720733\pi\)
0.985610 + 0.169038i \(0.0540661\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −1.75379 −0.153229 −0.0766146 0.997061i \(-0.524411\pi\)
−0.0766146 + 0.997061i \(0.524411\pi\)
\(132\) 0 0
\(133\) −1.21922 + 2.11176i −0.105720 + 0.183113i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 5.74621 + 9.95273i 0.490932 + 0.850319i 0.999946 0.0104394i \(-0.00332303\pi\)
−0.509014 + 0.860759i \(0.669990\pi\)
\(138\) 0 0
\(139\) −3.65767 6.33527i −0.310240 0.537351i 0.668175 0.744005i \(-0.267076\pi\)
−0.978414 + 0.206654i \(0.933743\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −0.780776 5.57586i −0.0652918 0.466277i
\(144\) 0 0
\(145\) 1.40388 2.43160i 0.116586 0.201933i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −1.62311 2.81130i −0.132970 0.230311i 0.791850 0.610715i \(-0.209118\pi\)
−0.924820 + 0.380405i \(0.875785\pi\)
\(150\) 0 0
\(151\) 20.4924 1.66765 0.833825 0.552029i \(-0.186146\pi\)
0.833825 + 0.552029i \(0.186146\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 4.49242 0.360840
\(156\) 0 0
\(157\) 2.80776 0.224084 0.112042 0.993703i \(-0.464261\pi\)
0.112042 + 0.993703i \(0.464261\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −13.5616 −1.06880
\(162\) 0 0
\(163\) 11.4654 + 19.8587i 0.898042 + 1.55545i 0.829994 + 0.557773i \(0.188344\pi\)
0.0680484 + 0.997682i \(0.478323\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −4.78078 + 8.28055i −0.369948 + 0.640768i −0.989557 0.144142i \(-0.953958\pi\)
0.619609 + 0.784910i \(0.287291\pi\)
\(168\) 0 0
\(169\) 3.15767 12.6107i 0.242898 0.970052i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 6.46543 + 11.1985i 0.491558 + 0.851403i 0.999953 0.00972081i \(-0.00309428\pi\)
−0.508395 + 0.861124i \(0.669761\pi\)
\(174\) 0 0
\(175\) 3.65767 + 6.33527i 0.276494 + 0.478902i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 8.34233 14.4493i 0.623535 1.07999i −0.365287 0.930895i \(-0.619029\pi\)
0.988822 0.149099i \(-0.0476374\pi\)
\(180\) 0 0
\(181\) 10.8078 0.803335 0.401667 0.915786i \(-0.368431\pi\)
0.401667 + 0.915786i \(0.368431\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −0.280776 + 0.486319i −0.0206431 + 0.0357549i
\(186\) 0 0
\(187\) 7.80776 0.570960
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −8.34233 14.4493i −0.603630 1.04552i −0.992266 0.124126i \(-0.960387\pi\)
0.388637 0.921391i \(-0.372946\pi\)
\(192\) 0 0
\(193\) −1.50000 + 2.59808i −0.107972 + 0.187014i −0.914949 0.403570i \(-0.867769\pi\)
0.806976 + 0.590584i \(0.201102\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 7.34233 12.7173i 0.523119 0.906069i −0.476519 0.879164i \(-0.658102\pi\)
0.999638 0.0269049i \(-0.00856512\pi\)
\(198\) 0 0
\(199\) −6.78078 11.7446i −0.480676 0.832556i 0.519078 0.854727i \(-0.326276\pi\)
−0.999754 + 0.0221709i \(0.992942\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 7.80776 0.547998
\(204\) 0 0
\(205\) 2.03457 3.52397i 0.142100 0.246125i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 2.43845 0.168671
\(210\) 0 0
\(211\) −12.3423 + 21.3775i −0.849681 + 1.47169i 0.0318122 + 0.999494i \(0.489872\pi\)
−0.881493 + 0.472197i \(0.843461\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −0.684658 1.18586i −0.0466933 0.0808752i
\(216\) 0 0
\(217\) 6.24621 + 10.8188i 0.424020 + 0.734425i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 16.7116 + 6.76172i 1.12415 + 0.454843i
\(222\) 0 0
\(223\) −4.34233 + 7.52113i −0.290784 + 0.503652i −0.973995 0.226568i \(-0.927249\pi\)
0.683211 + 0.730221i \(0.260583\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 15.0270 + 26.0275i 0.997376 + 1.72751i 0.561382 + 0.827557i \(0.310270\pi\)
0.435994 + 0.899950i \(0.356397\pi\)
\(228\) 0 0
\(229\) 12.2462 0.809252 0.404626 0.914482i \(-0.367402\pi\)
0.404626 + 0.914482i \(0.367402\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 12.2462 0.802276 0.401138 0.916018i \(-0.368615\pi\)
0.401138 + 0.916018i \(0.368615\pi\)
\(234\) 0 0
\(235\) 2.24621 0.146527
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −18.2462 −1.18025 −0.590125 0.807312i \(-0.700921\pi\)
−0.590125 + 0.807312i \(0.700921\pi\)
\(240\) 0 0
\(241\) −3.74621 6.48863i −0.241315 0.417969i 0.719774 0.694208i \(-0.244245\pi\)
−0.961089 + 0.276239i \(0.910912\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −1.28078 + 2.21837i −0.0818258 + 0.141726i
\(246\) 0 0
\(247\) 5.21922 + 2.11176i 0.332091 + 0.134368i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0.534565 + 0.925894i 0.0337415 + 0.0584419i 0.882403 0.470494i \(-0.155924\pi\)
−0.848662 + 0.528936i \(0.822591\pi\)
\(252\) 0 0
\(253\) 6.78078 + 11.7446i 0.426304 + 0.738380i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 2.62311 4.54335i 0.163625 0.283407i −0.772541 0.634965i \(-0.781015\pi\)
0.936166 + 0.351558i \(0.114348\pi\)
\(258\) 0 0
\(259\) −1.56155 −0.0970302
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −5.90388 + 10.2258i −0.364049 + 0.630551i −0.988623 0.150414i \(-0.951939\pi\)
0.624574 + 0.780966i \(0.285273\pi\)
\(264\) 0 0
\(265\) 4.80776 0.295339
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −2.90388 5.02967i −0.177053 0.306664i 0.763817 0.645433i \(-0.223323\pi\)
−0.940870 + 0.338768i \(0.889990\pi\)
\(270\) 0 0
\(271\) 4.78078 8.28055i 0.290411 0.503007i −0.683496 0.729955i \(-0.739541\pi\)
0.973907 + 0.226947i \(0.0728745\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 3.65767 6.33527i 0.220566 0.382031i
\(276\) 0 0
\(277\) −5.50000 9.52628i −0.330463 0.572379i 0.652140 0.758099i \(-0.273872\pi\)
−0.982603 + 0.185720i \(0.940538\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −2.31534 −0.138122 −0.0690608 0.997612i \(-0.522000\pi\)
−0.0690608 + 0.997612i \(0.522000\pi\)
\(282\) 0 0
\(283\) 12.7808 22.1370i 0.759738 1.31591i −0.183246 0.983067i \(-0.558660\pi\)
0.942984 0.332838i \(-0.108006\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 11.3153 0.667923
\(288\) 0 0
\(289\) −4.00000 + 6.92820i −0.235294 + 0.407541i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −10.7462 18.6130i −0.627800 1.08738i −0.987992 0.154504i \(-0.950622\pi\)
0.360192 0.932878i \(-0.382711\pi\)
\(294\) 0 0
\(295\) −0.438447 0.759413i −0.0255274 0.0442147i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 4.34233 + 31.0104i 0.251123 + 1.79338i
\(300\) 0 0
\(301\) 1.90388 3.29762i 0.109738 0.190072i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 2.59612 + 4.49661i 0.148653 + 0.257475i
\(306\) 0 0
\(307\) −9.75379 −0.556678 −0.278339 0.960483i \(-0.589784\pi\)
−0.278339 + 0.960483i \(0.589784\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −2.24621 −0.127371 −0.0636855 0.997970i \(-0.520285\pi\)
−0.0636855 + 0.997970i \(0.520285\pi\)
\(312\) 0 0
\(313\) −15.7538 −0.890457 −0.445228 0.895417i \(-0.646878\pi\)
−0.445228 + 0.895417i \(0.646878\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −20.5616 −1.15485 −0.577426 0.816443i \(-0.695943\pi\)
−0.577426 + 0.816443i \(0.695943\pi\)
\(318\) 0 0
\(319\) −3.90388 6.76172i −0.218575 0.378584i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −3.90388 + 6.76172i −0.217218 + 0.376232i
\(324\) 0 0
\(325\) 13.3153 10.3923i 0.738602 0.576461i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 3.12311 + 5.40938i 0.172182 + 0.298229i
\(330\) 0 0
\(331\) 3.46543 + 6.00231i 0.190478 + 0.329917i 0.945409 0.325887i \(-0.105663\pi\)
−0.754931 + 0.655804i \(0.772330\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −3.80776 + 6.59524i −0.208040 + 0.360336i
\(336\) 0 0
\(337\) 20.5616 1.12006 0.560030 0.828473i \(-0.310790\pi\)
0.560030 + 0.828473i \(0.310790\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 6.24621 10.8188i 0.338251 0.585868i
\(342\) 0 0
\(343\) −18.0540 −0.974823
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 1.02699 + 1.77879i 0.0551316 + 0.0954907i 0.892274 0.451494i \(-0.149109\pi\)
−0.837142 + 0.546985i \(0.815776\pi\)
\(348\) 0 0
\(349\) −8.21922 + 14.2361i −0.439965 + 0.762042i −0.997686 0.0679866i \(-0.978342\pi\)
0.557721 + 0.830028i \(0.311676\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −4.50000 + 7.79423i −0.239511 + 0.414845i −0.960574 0.278024i \(-0.910320\pi\)
0.721063 + 0.692869i \(0.243654\pi\)
\(354\) 0 0
\(355\) 1.31534 + 2.27824i 0.0698111 + 0.120916i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −28.4924 −1.50377 −0.751886 0.659293i \(-0.770856\pi\)
−0.751886 + 0.659293i \(0.770856\pi\)
\(360\) 0 0
\(361\) 8.28078 14.3427i 0.435830 0.754880i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 7.68466 0.402233
\(366\) 0 0
\(367\) −6.58854 + 11.4117i −0.343919 + 0.595685i −0.985157 0.171657i \(-0.945088\pi\)
0.641238 + 0.767342i \(0.278421\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 6.68466 + 11.5782i 0.347050 + 0.601109i
\(372\) 0 0
\(373\) −2.62311 4.54335i −0.135819 0.235246i 0.790091 0.612990i \(-0.210033\pi\)
−0.925910 + 0.377744i \(0.876700\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −2.50000 17.8536i −0.128757 0.919506i
\(378\) 0 0
\(379\) −1.46543 + 2.53821i −0.0752743 + 0.130379i −0.901206 0.433392i \(-0.857317\pi\)
0.825931 + 0.563771i \(0.190650\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −14.5885 25.2681i −0.745440 1.29114i −0.949989 0.312283i \(-0.898906\pi\)
0.204550 0.978856i \(-0.434427\pi\)
\(384\) 0 0
\(385\) −1.36932 −0.0697869
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 29.6847 1.50507 0.752536 0.658551i \(-0.228830\pi\)
0.752536 + 0.658551i \(0.228830\pi\)
\(390\) 0 0
\(391\) −43.4233 −2.19601
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 2.24621 0.113019
\(396\) 0 0
\(397\) 4.65767 + 8.06732i 0.233762 + 0.404887i 0.958912 0.283703i \(-0.0915631\pi\)
−0.725150 + 0.688591i \(0.758230\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 11.7462 20.3450i 0.586578 1.01598i −0.408099 0.912938i \(-0.633808\pi\)
0.994677 0.103045i \(-0.0328585\pi\)
\(402\) 0 0
\(403\) 22.7386 17.7470i 1.13269 0.884039i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0.780776 + 1.35234i 0.0387016 + 0.0670332i
\(408\) 0 0
\(409\) 7.62311 + 13.2036i 0.376938 + 0.652876i 0.990615 0.136681i \(-0.0436435\pi\)
−0.613677 + 0.789557i \(0.710310\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 1.21922 2.11176i 0.0599941 0.103913i
\(414\) 0 0
\(415\) −8.00000 −0.392705
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 7.46543 12.9305i 0.364710 0.631697i −0.624019 0.781409i \(-0.714501\pi\)
0.988730 + 0.149712i \(0.0478347\pi\)
\(420\) 0 0
\(421\) −33.6847 −1.64169 −0.820845 0.571151i \(-0.806497\pi\)
−0.820845 + 0.571151i \(0.806497\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 11.7116 + 20.2852i 0.568098 + 0.983975i
\(426\) 0 0
\(427\) −7.21922 + 12.5041i −0.349363 + 0.605114i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 15.4654 26.7869i 0.744944 1.29028i −0.205277 0.978704i \(-0.565810\pi\)
0.950221 0.311577i \(-0.100857\pi\)
\(432\) 0 0
\(433\) −15.7462 27.2732i −0.756715 1.31067i −0.944517 0.328461i \(-0.893470\pi\)
0.187803 0.982207i \(-0.439863\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −13.5616 −0.648737
\(438\) 0 0
\(439\) 4.53457 7.85410i 0.216423 0.374856i −0.737289 0.675578i \(-0.763894\pi\)
0.953712 + 0.300722i \(0.0972276\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −38.2462 −1.81713 −0.908566 0.417741i \(-0.862822\pi\)
−0.908566 + 0.417741i \(0.862822\pi\)
\(444\) 0 0
\(445\) −0.753789 + 1.30560i −0.0357330 + 0.0618914i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −12.0270 20.8314i −0.567589 0.983092i −0.996804 0.0798900i \(-0.974543\pi\)
0.429215 0.903202i \(-0.358790\pi\)
\(450\) 0 0
\(451\) −5.65767 9.79937i −0.266409 0.461434i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −2.93087 1.18586i −0.137401 0.0555941i
\(456\) 0 0
\(457\) 4.50000 7.79423i 0.210501 0.364599i −0.741370 0.671096i \(-0.765824\pi\)
0.951871 + 0.306497i \(0.0991571\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 11.7462 + 20.3450i 0.547076 + 0.947563i 0.998473 + 0.0552398i \(0.0175923\pi\)
−0.451398 + 0.892323i \(0.649074\pi\)
\(462\) 0 0
\(463\) −32.9848 −1.53294 −0.766468 0.642283i \(-0.777988\pi\)
−0.766468 + 0.642283i \(0.777988\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −26.2462 −1.21453 −0.607265 0.794499i \(-0.707733\pi\)
−0.607265 + 0.794499i \(0.707733\pi\)
\(468\) 0 0
\(469\) −21.1771 −0.977867
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −3.80776 −0.175081
\(474\) 0 0
\(475\) 3.65767 + 6.33527i 0.167825 + 0.290682i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −10.1501 + 17.5805i −0.463770 + 0.803273i −0.999145 0.0413417i \(-0.986837\pi\)
0.535375 + 0.844614i \(0.320170\pi\)
\(480\) 0 0
\(481\) 0.500000 + 3.57071i 0.0227980 + 0.162811i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −5.00000 8.66025i −0.227038 0.393242i
\(486\) 0 0
\(487\) 17.2192 + 29.8246i 0.780278 + 1.35148i 0.931780 + 0.363023i \(0.118256\pi\)
−0.151503 + 0.988457i \(0.548411\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −1.02699 + 1.77879i −0.0463473 + 0.0802759i −0.888268 0.459325i \(-0.848091\pi\)
0.841921 + 0.539601i \(0.181425\pi\)
\(492\) 0 0
\(493\) 25.0000 1.12594
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −3.65767 + 6.33527i −0.164069 + 0.284176i
\(498\) 0 0
\(499\) −16.4924 −0.738302 −0.369151 0.929369i \(-0.620352\pi\)
−0.369151 + 0.929369i \(0.620352\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −16.3423 28.3057i −0.728668 1.26209i −0.957446 0.288612i \(-0.906806\pi\)
0.228778 0.973479i \(-0.426527\pi\)
\(504\) 0 0
\(505\) 3.15767 5.46925i 0.140515 0.243378i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −16.5000 + 28.5788i −0.731350 + 1.26673i 0.224957 + 0.974369i \(0.427776\pi\)
−0.956306 + 0.292366i \(0.905557\pi\)
\(510\) 0 0
\(511\) 10.6847 + 18.5064i 0.472661 + 0.818674i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 1.26137 0.0555824
\(516\) 0 0
\(517\) 3.12311 5.40938i 0.137354 0.237904i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −9.05398 −0.396662 −0.198331 0.980135i \(-0.563552\pi\)
−0.198331 + 0.980135i \(0.563552\pi\)
\(522\) 0 0
\(523\) 6.15009 10.6523i 0.268925 0.465791i −0.699660 0.714476i \(-0.746665\pi\)
0.968584 + 0.248685i \(0.0799984\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 20.0000 + 34.6410i 0.871214 + 1.50899i
\(528\) 0 0
\(529\) −26.2116 45.3999i −1.13964 1.97391i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −3.62311 25.8741i −0.156934 1.12073i
\(534\) 0 0
\(535\) −2.43845 + 4.22351i −0.105423 + 0.182598i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 3.56155 + 6.16879i 0.153407 + 0.265709i
\(540\) 0 0
\(541\) −5.68466 −0.244403 −0.122201 0.992505i \(-0.538995\pi\)
−0.122201 + 0.992505i \(0.538995\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 4.63068 0.198357
\(546\) 0 0
\(547\) 16.4924 0.705165 0.352583 0.935781i \(-0.385304\pi\)
0.352583 + 0.935781i \(0.385304\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 7.80776 0.332622
\(552\) 0 0
\(553\) 3.12311 + 5.40938i 0.132808 + 0.230030i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 15.7462 27.2732i 0.667188 1.15560i −0.311499 0.950247i \(-0.600831\pi\)
0.978687 0.205358i \(-0.0658357\pi\)
\(558\) 0 0
\(559\) −8.15009 3.29762i −0.344712 0.139474i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 3.02699 + 5.24290i 0.127572 + 0.220962i 0.922736 0.385434i \(-0.125948\pi\)
−0.795163 + 0.606396i \(0.792615\pi\)
\(564\) 0 0
\(565\) 2.03457 + 3.52397i 0.0855948 + 0.148255i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 9.34233 16.1814i 0.391651 0.678359i −0.601017 0.799237i \(-0.705237\pi\)
0.992667 + 0.120877i \(0.0385708\pi\)
\(570\) 0 0
\(571\) −8.49242 −0.355397 −0.177698 0.984085i \(-0.556865\pi\)
−0.177698 + 0.984085i \(0.556865\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −20.3423 + 35.2339i −0.848334 + 1.46936i
\(576\) 0 0
\(577\) −27.4384 −1.14228 −0.571139 0.820854i \(-0.693498\pi\)
−0.571139 + 0.820854i \(0.693498\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −11.1231 19.2658i −0.461464 0.799279i
\(582\) 0 0
\(583\) 6.68466 11.5782i 0.276850 0.479519i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 7.46543 12.9305i 0.308131 0.533699i −0.669822 0.742522i \(-0.733630\pi\)
0.977954 + 0.208822i \(0.0669630\pi\)
\(588\) 0 0
\(589\) 6.24621 + 10.8188i 0.257371 + 0.445779i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 19.4384 0.798241 0.399121 0.916898i \(-0.369315\pi\)
0.399121 + 0.916898i \(0.369315\pi\)
\(594\) 0 0
\(595\) 2.19224 3.79706i 0.0898729 0.155664i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −26.7386 −1.09251 −0.546255 0.837619i \(-0.683947\pi\)
−0.546255 + 0.837619i \(0.683947\pi\)
\(600\) 0 0
\(601\) −13.9924 + 24.2356i −0.570763 + 0.988590i 0.425725 + 0.904853i \(0.360019\pi\)
−0.996488 + 0.0837376i \(0.973314\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −2.40388 4.16365i −0.0977317 0.169276i
\(606\) 0 0
\(607\) −9.65767 16.7276i −0.391993 0.678951i 0.600720 0.799460i \(-0.294881\pi\)
−0.992712 + 0.120508i \(0.961548\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 11.3693 8.87348i 0.459953 0.358983i
\(612\) 0 0
\(613\) 4.50000 7.79423i 0.181753 0.314806i −0.760724 0.649075i \(-0.775156\pi\)
0.942478 + 0.334269i \(0.108489\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 12.6231 + 21.8639i 0.508187 + 0.880206i 0.999955 + 0.00947959i \(0.00301749\pi\)
−0.491768 + 0.870726i \(0.663649\pi\)
\(618\) 0 0
\(619\) −28.9848 −1.16500 −0.582500 0.812831i \(-0.697925\pi\)
−0.582500 + 0.812831i \(0.697925\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −4.19224 −0.167958
\(624\) 0 0
\(625\) 20.3693 0.814773
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −5.00000 −0.199363
\(630\) 0 0
\(631\) −5.02699 8.70700i −0.200121 0.346620i 0.748446 0.663196i \(-0.230800\pi\)
−0.948567 + 0.316576i \(0.897467\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −2.19224 + 3.79706i −0.0869962 + 0.150682i
\(636\) 0 0
\(637\) 2.28078 + 16.2880i 0.0903677 + 0.645354i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −0.746211 1.29248i −0.0294736 0.0510497i 0.850912 0.525308i \(-0.176050\pi\)
−0.880386 + 0.474258i \(0.842716\pi\)
\(642\) 0 0
\(643\) −10.1501 17.5805i −0.400281 0.693306i 0.593479 0.804849i \(-0.297754\pi\)
−0.993760 + 0.111543i \(0.964421\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 11.4654 19.8587i 0.450753 0.780727i −0.547680 0.836688i \(-0.684489\pi\)
0.998433 + 0.0559611i \(0.0178223\pi\)
\(648\) 0 0
\(649\) −2.43845 −0.0957174
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −12.2732 + 21.2578i −0.480287 + 0.831882i −0.999744 0.0226145i \(-0.992801\pi\)
0.519457 + 0.854497i \(0.326134\pi\)
\(654\) 0 0
\(655\) 0.984845 0.0384811
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 10.7808 + 18.6729i 0.419959 + 0.727391i 0.995935 0.0900759i \(-0.0287110\pi\)
−0.575975 + 0.817467i \(0.695378\pi\)
\(660\) 0 0
\(661\) −2.86932 + 4.96980i −0.111603 + 0.193303i −0.916417 0.400225i \(-0.868932\pi\)
0.804813 + 0.593528i \(0.202265\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0.684658 1.18586i 0.0265499 0.0459858i
\(666\) 0 0
\(667\) 21.7116 + 37.6057i 0.840678 + 1.45610i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 14.4384 0.557390
\(672\) 0 0
\(673\) −8.62311 + 14.9357i −0.332396 + 0.575727i −0.982981 0.183706i \(-0.941190\pi\)
0.650585 + 0.759434i \(0.274524\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 28.7386 1.10452 0.552258 0.833673i \(-0.313766\pi\)
0.552258 + 0.833673i \(0.313766\pi\)
\(678\) 0 0
\(679\) 13.9039 24.0822i 0.533582 0.924191i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 3.65767 + 6.33527i 0.139957 + 0.242412i 0.927480 0.373873i \(-0.121970\pi\)
−0.787523 + 0.616285i \(0.788637\pi\)
\(684\) 0 0
\(685\) −3.22680 5.58898i −0.123290 0.213544i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 24.3348 18.9927i 0.927080 0.723564i
\(690\) 0 0
\(691\) 12.7808 22.1370i 0.486204 0.842129i −0.513671 0.857987i \(-0.671715\pi\)
0.999874 + 0.0158581i \(0.00504799\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 2.05398 + 3.55759i 0.0779117 + 0.134947i
\(696\) 0 0
\(697\) 36.2311 1.37235
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −32.7386 −1.23652 −0.618261 0.785973i \(-0.712162\pi\)
−0.618261 + 0.785973i \(0.712162\pi\)
\(702\) 0 0
\(703\) −1.56155 −0.0588951
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 17.5616 0.660470
\(708\) 0 0
\(709\) −16.8693 29.2185i −0.633540 1.09732i −0.986822 0.161807i \(-0.948268\pi\)
0.353282 0.935517i \(-0.385066\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −34.7386 + 60.1691i −1.30097 + 2.25335i
\(714\) 0 0
\(715\) 0.438447 + 3.13114i 0.0163970 + 0.117098i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −21.4654 37.1792i −0.800526 1.38655i −0.919271 0.393626i \(-0.871220\pi\)
0.118745 0.992925i \(-0.462113\pi\)
\(720\) 0 0
\(721\) 1.75379 + 3.03765i 0.0653145 + 0.113128i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 11.7116 20.2852i 0.434960 0.753372i
\(726\) 0 0
\(727\) 6.73863 0.249922 0.124961 0.992162i \(-0.460119\pi\)
0.124961 + 0.992162i \(0.460119\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 6.09612 10.5588i 0.225473 0.390531i
\(732\) 0 0
\(733\) −1.19224 −0.0440362 −0.0220181 0.999758i \(-0.507009\pi\)
−0.0220181 + 0.999758i \(0.507009\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 10.5885 + 18.3399i 0.390034 + 0.675559i
\(738\) 0 0
\(739\) −23.4654 + 40.6433i −0.863190 + 1.49509i 0.00564328 + 0.999984i \(0.498204\pi\)
−0.868833 + 0.495105i \(0.835130\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −4.53457 + 7.85410i −0.166357 + 0.288139i −0.937136 0.348963i \(-0.886534\pi\)
0.770779 + 0.637102i \(0.219867\pi\)
\(744\) 0 0
\(745\) 0.911460 + 1.57869i 0.0333933 + 0.0578389i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −13.5616 −0.495528
\(750\) 0 0
\(751\) 24.1501 41.8292i 0.881249 1.52637i 0.0312965 0.999510i \(-0.490036\pi\)
0.849953 0.526859i \(-0.176630\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −11.5076 −0.418804
\(756\) 0 0
\(757\) 8.27320 14.3296i 0.300695 0.520818i −0.675599 0.737269i \(-0.736115\pi\)
0.976293 + 0.216451i \(0.0694482\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −11.5346 19.9785i −0.418128 0.724218i 0.577623 0.816303i \(-0.303980\pi\)
−0.995751 + 0.0920850i \(0.970647\pi\)
\(762\) 0 0
\(763\) 6.43845 + 11.1517i 0.233087 + 0.403719i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −5.21922 2.11176i −0.188455 0.0762511i
\(768\) 0 0
\(769\) −0.465435 + 0.806157i −0.0167840 + 0.0290708i −0.874295 0.485394i \(-0.838676\pi\)
0.857511 + 0.514465i \(0.172009\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 17.0961 + 29.6113i 0.614905 + 1.06505i 0.990401 + 0.138222i \(0.0441388\pi\)
−0.375497 + 0.926824i \(0.622528\pi\)
\(774\) 0 0
\(775\) 37.4773 1.34622
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 11.3153 0.405414
\(780\) 0 0
\(781\) 7.31534 0.261764
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −1.57671 −0.0562751
\(786\) 0 0
\(787\) 13.7116 + 23.7493i 0.488767 + 0.846570i 0.999917 0.0129221i \(-0.00411334\pi\)
−0.511149 + 0.859492i \(0.670780\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −5.65767 + 9.79937i −0.201164 + 0.348426i
\(792\) 0 0
\(793\) 30.9039 + 12.5041i 1.09743 + 0.444032i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 6.46543 + 11.1985i 0.229017 + 0.396670i 0.957517 0.288376i \(-0.0931154\pi\)
−0.728500 + 0.685046i \(0.759782\pi\)
\(798\) 0 0
\(799\) 10.0000 + 17.3205i 0.353775 + 0.612756i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 10.6847 18.5064i 0.377053 0.653076i
\(804\) 0 0
\(805\) 7.61553 0.268412
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −11.6231 + 20.1318i −0.408647 + 0.707797i −0.994738 0.102448i \(-0.967332\pi\)
0.586092 + 0.810245i \(0.300666\pi\)
\(810\) 0 0
\(811\) 8.00000 0.280918 0.140459 0.990086i \(-0.455142\pi\)
0.140459 + 0.990086i \(0.455142\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −6.43845 11.1517i −0.225529 0.390628i
\(816\) 0 0
\(817\) 1.90388 3.29762i 0.0666084 0.115369i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −6.90388 + 11.9579i −0.240947 + 0.417333i −0.960984 0.276603i \(-0.910791\pi\)
0.720037 + 0.693935i \(0.244125\pi\)
\(822\) 0 0
\(823\) 0.588540 + 1.01938i 0.0205152 + 0.0355334i 0.876101 0.482128i \(-0.160136\pi\)
−0.855586 + 0.517661i \(0.826803\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 36.9848 1.28609 0.643045 0.765829i \(-0.277671\pi\)
0.643045 + 0.765829i \(0.277671\pi\)
\(828\) 0 0
\(829\) −3.25379 + 5.63573i −0.113009 + 0.195737i −0.916982 0.398929i \(-0.869382\pi\)
0.803973 + 0.594665i \(0.202715\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −22.8078 −0.790242
\(834\) 0 0
\(835\) 2.68466 4.64996i 0.0929064 0.160919i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 13.6577 + 23.6558i 0.471515 + 0.816688i 0.999469 0.0325849i \(-0.0103739\pi\)
−0.527954 + 0.849273i \(0.677041\pi\)
\(840\) 0 0
\(841\) 2.00000 + 3.46410i 0.0689655 + 0.119452i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −1.77320 + 7.08156i −0.0609999 + 0.243613i
\(846\) 0 0
\(847\) 6.68466 11.5782i 0.229688 0.397831i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −4.34233 7.52113i −0.148853 0.257821i
\(852\) 0 0
\(853\) −48.4233 −1.65798 −0.828991 0.559262i \(-0.811085\pi\)
−0.828991 + 0.559262i \(0.811085\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 14.9460 0.510546 0.255273 0.966869i \(-0.417835\pi\)
0.255273 + 0.966869i \(0.417835\pi\)
\(858\) 0 0
\(859\) −22.2462 −0.759031 −0.379515 0.925185i \(-0.623909\pi\)
−0.379515 + 0.925185i \(0.623909\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 21.7538 0.740508 0.370254 0.928931i \(-0.379271\pi\)
0.370254 + 0.928931i \(0.379271\pi\)
\(864\) 0 0
\(865\) −3.63068 6.28853i −0.123447 0.213816i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 3.12311 5.40938i 0.105944 0.183501i
\(870\) 0 0
\(871\) 6.78078 + 48.4244i 0.229758 + 1.64080i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −4.24621 7.35465i −0.143548 0.248633i
\(876\) 0 0
\(877\) 19.8693 + 34.4147i 0.670939 + 1.16210i 0.977638 + 0.210294i \(0.0674422\pi\)
−0.306699 + 0.951807i \(0.599224\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −7.62311 + 13.2036i −0.256829 + 0.444841i −0.965391 0.260808i \(-0.916011\pi\)
0.708562 + 0.705649i \(0.249344\pi\)
\(882\) 0 0
\(883\) 20.0000 0.673054 0.336527 0.941674i \(-0.390748\pi\)
0.336527 + 0.941674i \(0.390748\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 10.3423 17.9134i 0.347261 0.601474i −0.638501 0.769621i \(-0.720445\pi\)
0.985762 + 0.168147i \(0.0537783\pi\)
\(888\) 0 0
\(889\) −12.1922 −0.408914
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 3.12311 + 5.40938i 0.104511 + 0.181018i
\(894\) 0 0
\(895\) −4.68466 + 8.11407i −0.156591 + 0.271223i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 20.0000 34.6410i 0.667037 1.15534i
\(900\) 0 0
\(901\) 21.4039 + 37.0726i 0.713067 + 1.23507i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −6.06913 −0.201745
\(906\) 0 0
\(907\) 20.1501 34.9010i 0.669073 1.15887i −0.309091 0.951033i \(-0.600025\pi\)
0.978164 0.207836i \(-0.0666419\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 30.7386 1.01842 0.509208 0.860643i \(-0.329938\pi\)
0.509208 + 0.860643i \(0.329938\pi\)
\(912\) 0 0
\(913\) −11.1231 + 19.2658i −0.368121 + 0.637604i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 1.36932 + 2.37173i 0.0452188 + 0.0783213i
\(918\) 0 0
\(919\) −29.2732 50.7027i −0.965634 1.67253i −0.707903 0.706310i \(-0.750358\pi\)
−0.257731 0.966217i \(-0.582975\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 15.6577 + 6.33527i 0.515379 + 0.208528i
\(924\) 0 0
\(925\) −2.34233 + 4.05703i −0.0770153 + 0.133394i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −18.9924 32.8958i −0.623121 1.07928i −0.988901 0.148576i \(-0.952531\pi\)
0.365780 0.930701i \(-0.380802\pi\)
\(930\) 0 0
\(931\) −7.12311 −0.233450
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −4.38447 −0.143388
\(936\) 0 0
\(937\) −13.6847 −0.447058 −0.223529 0.974697i \(-0.571758\pi\)
−0.223529 + 0.974697i \(0.571758\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −14.0000 −0.456387 −0.228193 0.973616i \(-0.573282\pi\)
−0.228193 + 0.973616i \(0.573282\pi\)
\(942\) 0 0
\(943\) 31.4654 + 54.4997i 1.02466 + 1.77476i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 7.71165 13.3570i 0.250595 0.434043i −0.713095 0.701068i \(-0.752707\pi\)
0.963690 + 0.267025i \(0.0860405\pi\)
\(948\) 0 0
\(949\) 38.8963 30.3576i 1.26263 0.985450i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −12.9039 22.3502i −0.417998 0.723993i 0.577740 0.816221i \(-0.303935\pi\)
−0.995738 + 0.0922274i \(0.970601\pi\)
\(954\) 0 0
\(955\) 4.68466 + 8.11407i 0.151592 + 0.262565i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 8.97301 15.5417i 0.289754 0.501868i
\(960\) 0 0
\(961\) 33.0000 1.06452
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0.842329 1.45896i 0.0271155 0.0469655i
\(966\) 0 0
\(967\) 5.75379 0.185029 0.0925147 0.995711i \(-0.470509\pi\)
0.0925147 + 0.995711i \(0.470509\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 9.65767 + 16.7276i 0.309929 + 0.536813i 0.978347 0.206973i \(-0.0663612\pi\)
−0.668417 + 0.743787i \(0.733028\pi\)
\(972\) 0 0
\(973\) −5.71165 + 9.89286i −0.183107 + 0.317151i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0.623106 1.07925i 0.0199349 0.0345283i −0.855886 0.517165i \(-0.826987\pi\)
0.875821 + 0.482636i \(0.160321\pi\)
\(978\) 0 0
\(979\) 2.09612 + 3.63058i 0.0669922 + 0.116034i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 24.9848 0.796893 0.398446 0.917192i \(-0.369549\pi\)
0.398446 + 0.917192i \(0.369549\pi\)
\(984\) 0 0
\(985\) −4.12311 + 7.14143i −0.131373 + 0.227545i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 21.1771 0.673392
\(990\) 0 0
\(991\) −1.84991 + 3.20413i −0.0587642 + 0.101783i −0.893911 0.448245i \(-0.852049\pi\)
0.835147 + 0.550027i \(0.185383\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 3.80776 + 6.59524i 0.120714 + 0.209083i
\(996\) 0 0
\(997\) 21.6231 + 37.4523i 0.684811 + 1.18613i 0.973496 + 0.228703i \(0.0734484\pi\)
−0.288686 + 0.957424i \(0.593218\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.t.f.217.1 4
3.2 odd 2 104.2.i.b.9.2 4
4.3 odd 2 1872.2.t.s.1153.1 4
12.11 even 2 208.2.i.e.113.1 4
13.3 even 3 inner 936.2.t.f.289.1 4
24.5 odd 2 832.2.i.o.321.1 4
24.11 even 2 832.2.i.l.321.2 4
39.2 even 12 1352.2.o.c.361.3 8
39.5 even 4 1352.2.o.c.1161.3 8
39.8 even 4 1352.2.o.c.1161.4 8
39.11 even 12 1352.2.o.c.361.4 8
39.17 odd 6 1352.2.a.h.1.1 2
39.20 even 12 1352.2.f.d.337.2 4
39.23 odd 6 1352.2.i.e.1329.2 4
39.29 odd 6 104.2.i.b.81.2 yes 4
39.32 even 12 1352.2.f.d.337.1 4
39.35 odd 6 1352.2.a.f.1.1 2
39.38 odd 2 1352.2.i.e.529.2 4
52.3 odd 6 1872.2.t.s.289.1 4
156.35 even 6 2704.2.a.q.1.2 2
156.59 odd 12 2704.2.f.l.337.4 4
156.71 odd 12 2704.2.f.l.337.3 4
156.95 even 6 2704.2.a.r.1.2 2
156.107 even 6 208.2.i.e.81.1 4
312.29 odd 6 832.2.i.o.705.1 4
312.107 even 6 832.2.i.l.705.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.2.i.b.9.2 4 3.2 odd 2
104.2.i.b.81.2 yes 4 39.29 odd 6
208.2.i.e.81.1 4 156.107 even 6
208.2.i.e.113.1 4 12.11 even 2
832.2.i.l.321.2 4 24.11 even 2
832.2.i.l.705.2 4 312.107 even 6
832.2.i.o.321.1 4 24.5 odd 2
832.2.i.o.705.1 4 312.29 odd 6
936.2.t.f.217.1 4 1.1 even 1 trivial
936.2.t.f.289.1 4 13.3 even 3 inner
1352.2.a.f.1.1 2 39.35 odd 6
1352.2.a.h.1.1 2 39.17 odd 6
1352.2.f.d.337.1 4 39.32 even 12
1352.2.f.d.337.2 4 39.20 even 12
1352.2.i.e.529.2 4 39.38 odd 2
1352.2.i.e.1329.2 4 39.23 odd 6
1352.2.o.c.361.3 8 39.2 even 12
1352.2.o.c.361.4 8 39.11 even 12
1352.2.o.c.1161.3 8 39.5 even 4
1352.2.o.c.1161.4 8 39.8 even 4
1872.2.t.s.289.1 4 52.3 odd 6
1872.2.t.s.1153.1 4 4.3 odd 2
2704.2.a.q.1.2 2 156.35 even 6
2704.2.a.r.1.2 2 156.95 even 6
2704.2.f.l.337.3 4 156.71 odd 12
2704.2.f.l.337.4 4 156.59 odd 12