Properties

Label 1352.2.o.c.361.4
Level $1352$
Weight $2$
Character 1352.361
Analytic conductor $10.796$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1352,2,Mod(361,1352)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1352, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1352.361"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1352 = 2^{3} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1352.o (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,-2,0,0,0,0,0,-6,0,0,0,0,0,0,0,-20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.7957743533\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.1731891456.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 9x^{6} + 65x^{4} - 144x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 104)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 361.4
Root \(1.35234 + 0.780776i\) of defining polynomial
Character \(\chi\) \(=\) 1352.361
Dual form 1352.2.o.c.1161.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.780776 + 1.35234i) q^{3} +0.561553i q^{5} +(1.35234 + 0.780776i) q^{7} +(0.280776 - 0.486319i) q^{9} +(1.35234 - 0.780776i) q^{11} +(-0.759413 + 0.438447i) q^{15} +(-2.50000 + 4.33013i) q^{17} +(-1.35234 - 0.780776i) q^{19} +2.43845i q^{21} +(4.34233 + 7.52113i) q^{23} +4.68466 q^{25} +5.56155 q^{27} +(2.50000 + 4.33013i) q^{29} -8.00000i q^{31} +(2.11176 + 1.21922i) q^{33} +(-0.438447 + 0.759413i) q^{35} +(0.866025 - 0.500000i) q^{37} +(-6.27540 + 3.62311i) q^{41} +(-1.21922 + 2.11176i) q^{43} +(0.273094 + 0.157671i) q^{45} -4.00000i q^{47} +(-2.28078 - 3.95042i) q^{49} -7.80776 q^{51} +8.56155 q^{53} +(0.438447 + 0.759413i) q^{55} -2.43845i q^{57} +(1.35234 + 0.780776i) q^{59} +(-4.62311 + 8.00745i) q^{61} +(0.759413 - 0.438447i) q^{63} +(-11.7446 + 6.78078i) q^{67} +(-6.78078 + 11.7446i) q^{69} +(4.05703 + 2.34233i) q^{71} +13.6847i q^{73} +(3.65767 + 6.33527i) q^{75} +2.43845 q^{77} -4.00000 q^{79} +(3.50000 + 6.06218i) q^{81} -14.2462i q^{83} +(-2.43160 - 1.40388i) q^{85} +(-3.90388 + 6.76172i) q^{87} +(-2.32498 + 1.34233i) q^{89} +(10.8188 - 6.24621i) q^{93} +(0.438447 - 0.759413i) q^{95} +(15.4220 + 8.90388i) q^{97} -0.876894i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{3} - 6 q^{9} - 20 q^{17} + 10 q^{23} - 12 q^{25} + 28 q^{27} + 20 q^{29} - 20 q^{35} - 18 q^{43} - 10 q^{49} + 20 q^{51} + 52 q^{53} + 20 q^{55} - 4 q^{61} - 46 q^{69} + 54 q^{75} + 36 q^{77}+ \cdots + 20 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1352\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(1015\) \(1185\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.780776 + 1.35234i 0.450781 + 0.780776i 0.998435 0.0559290i \(-0.0178120\pi\)
−0.547653 + 0.836705i \(0.684479\pi\)
\(4\) 0 0
\(5\) 0.561553i 0.251134i 0.992085 + 0.125567i \(0.0400750\pi\)
−0.992085 + 0.125567i \(0.959925\pi\)
\(6\) 0 0
\(7\) 1.35234 + 0.780776i 0.511138 + 0.295106i 0.733301 0.679904i \(-0.237978\pi\)
−0.222163 + 0.975009i \(0.571312\pi\)
\(8\) 0 0
\(9\) 0.280776 0.486319i 0.0935921 0.162106i
\(10\) 0 0
\(11\) 1.35234 0.780776i 0.407747 0.235413i −0.282074 0.959393i \(-0.591022\pi\)
0.689821 + 0.723980i \(0.257689\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) −0.759413 + 0.438447i −0.196080 + 0.113207i
\(16\) 0 0
\(17\) −2.50000 + 4.33013i −0.606339 + 1.05021i 0.385499 + 0.922708i \(0.374029\pi\)
−0.991838 + 0.127502i \(0.959304\pi\)
\(18\) 0 0
\(19\) −1.35234 0.780776i −0.310249 0.179122i 0.336789 0.941580i \(-0.390659\pi\)
−0.647038 + 0.762458i \(0.723992\pi\)
\(20\) 0 0
\(21\) 2.43845i 0.532113i
\(22\) 0 0
\(23\) 4.34233 + 7.52113i 0.905438 + 1.56827i 0.820328 + 0.571893i \(0.193791\pi\)
0.0851104 + 0.996372i \(0.472876\pi\)
\(24\) 0 0
\(25\) 4.68466 0.936932
\(26\) 0 0
\(27\) 5.56155 1.07032
\(28\) 0 0
\(29\) 2.50000 + 4.33013i 0.464238 + 0.804084i 0.999167 0.0408130i \(-0.0129948\pi\)
−0.534928 + 0.844897i \(0.679661\pi\)
\(30\) 0 0
\(31\) 8.00000i 1.43684i −0.695608 0.718421i \(-0.744865\pi\)
0.695608 0.718421i \(-0.255135\pi\)
\(32\) 0 0
\(33\) 2.11176 + 1.21922i 0.367610 + 0.212240i
\(34\) 0 0
\(35\) −0.438447 + 0.759413i −0.0741111 + 0.128364i
\(36\) 0 0
\(37\) 0.866025 0.500000i 0.142374 0.0821995i −0.427121 0.904194i \(-0.640472\pi\)
0.569495 + 0.821995i \(0.307139\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −6.27540 + 3.62311i −0.980053 + 0.565834i −0.902286 0.431138i \(-0.858112\pi\)
−0.0777671 + 0.996972i \(0.524779\pi\)
\(42\) 0 0
\(43\) −1.21922 + 2.11176i −0.185930 + 0.322040i −0.943889 0.330262i \(-0.892863\pi\)
0.757960 + 0.652301i \(0.226196\pi\)
\(44\) 0 0
\(45\) 0.273094 + 0.157671i 0.0407104 + 0.0235042i
\(46\) 0 0
\(47\) 4.00000i 0.583460i −0.956501 0.291730i \(-0.905769\pi\)
0.956501 0.291730i \(-0.0942309\pi\)
\(48\) 0 0
\(49\) −2.28078 3.95042i −0.325825 0.564346i
\(50\) 0 0
\(51\) −7.80776 −1.09331
\(52\) 0 0
\(53\) 8.56155 1.17602 0.588010 0.808854i \(-0.299912\pi\)
0.588010 + 0.808854i \(0.299912\pi\)
\(54\) 0 0
\(55\) 0.438447 + 0.759413i 0.0591202 + 0.102399i
\(56\) 0 0
\(57\) 2.43845i 0.322980i
\(58\) 0 0
\(59\) 1.35234 + 0.780776i 0.176060 + 0.101648i 0.585440 0.810716i \(-0.300922\pi\)
−0.409380 + 0.912364i \(0.634255\pi\)
\(60\) 0 0
\(61\) −4.62311 + 8.00745i −0.591928 + 1.02525i 0.402045 + 0.915620i \(0.368300\pi\)
−0.993973 + 0.109629i \(0.965034\pi\)
\(62\) 0 0
\(63\) 0.759413 0.438447i 0.0956770 0.0552392i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −11.7446 + 6.78078i −1.43484 + 0.828404i −0.997484 0.0708863i \(-0.977417\pi\)
−0.437353 + 0.899290i \(0.644084\pi\)
\(68\) 0 0
\(69\) −6.78078 + 11.7446i −0.816310 + 1.41389i
\(70\) 0 0
\(71\) 4.05703 + 2.34233i 0.481481 + 0.277983i 0.721034 0.692900i \(-0.243667\pi\)
−0.239552 + 0.970883i \(0.577001\pi\)
\(72\) 0 0
\(73\) 13.6847i 1.60167i 0.598886 + 0.800834i \(0.295610\pi\)
−0.598886 + 0.800834i \(0.704390\pi\)
\(74\) 0 0
\(75\) 3.65767 + 6.33527i 0.422351 + 0.731534i
\(76\) 0 0
\(77\) 2.43845 0.277887
\(78\) 0 0
\(79\) −4.00000 −0.450035 −0.225018 0.974355i \(-0.572244\pi\)
−0.225018 + 0.974355i \(0.572244\pi\)
\(80\) 0 0
\(81\) 3.50000 + 6.06218i 0.388889 + 0.673575i
\(82\) 0 0
\(83\) 14.2462i 1.56372i −0.623451 0.781862i \(-0.714270\pi\)
0.623451 0.781862i \(-0.285730\pi\)
\(84\) 0 0
\(85\) −2.43160 1.40388i −0.263744 0.152272i
\(86\) 0 0
\(87\) −3.90388 + 6.76172i −0.418540 + 0.724933i
\(88\) 0 0
\(89\) −2.32498 + 1.34233i −0.246448 + 0.142287i −0.618137 0.786071i \(-0.712112\pi\)
0.371689 + 0.928357i \(0.378779\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 10.8188 6.24621i 1.12185 0.647702i
\(94\) 0 0
\(95\) 0.438447 0.759413i 0.0449837 0.0779141i
\(96\) 0 0
\(97\) 15.4220 + 8.90388i 1.56586 + 0.904052i 0.996643 + 0.0818678i \(0.0260885\pi\)
0.569221 + 0.822184i \(0.307245\pi\)
\(98\) 0 0
\(99\) 0.876894i 0.0881312i
\(100\) 0 0
\(101\) −5.62311 9.73950i −0.559520 0.969117i −0.997536 0.0701500i \(-0.977652\pi\)
0.438017 0.898967i \(-0.355681\pi\)
\(102\) 0 0
\(103\) 2.24621 0.221326 0.110663 0.993858i \(-0.464703\pi\)
0.110663 + 0.993858i \(0.464703\pi\)
\(104\) 0 0
\(105\) −1.36932 −0.133632
\(106\) 0 0
\(107\) −4.34233 7.52113i −0.419789 0.727096i 0.576129 0.817359i \(-0.304563\pi\)
−0.995918 + 0.0902631i \(0.971229\pi\)
\(108\) 0 0
\(109\) 8.24621i 0.789844i −0.918715 0.394922i \(-0.870772\pi\)
0.918715 0.394922i \(-0.129228\pi\)
\(110\) 0 0
\(111\) 1.35234 + 0.780776i 0.128359 + 0.0741080i
\(112\) 0 0
\(113\) 3.62311 6.27540i 0.340833 0.590340i −0.643755 0.765232i \(-0.722624\pi\)
0.984588 + 0.174892i \(0.0559576\pi\)
\(114\) 0 0
\(115\) −4.22351 + 2.43845i −0.393845 + 0.227386i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −6.76172 + 3.90388i −0.619846 + 0.357868i
\(120\) 0 0
\(121\) −4.28078 + 7.41452i −0.389161 + 0.674047i
\(122\) 0 0
\(123\) −9.79937 5.65767i −0.883580 0.510135i
\(124\) 0 0
\(125\) 5.43845i 0.486430i
\(126\) 0 0
\(127\) −3.90388 6.76172i −0.346414 0.600006i 0.639196 0.769044i \(-0.279267\pi\)
−0.985610 + 0.169038i \(0.945934\pi\)
\(128\) 0 0
\(129\) −3.80776 −0.335255
\(130\) 0 0
\(131\) 1.75379 0.153229 0.0766146 0.997061i \(-0.475589\pi\)
0.0766146 + 0.997061i \(0.475589\pi\)
\(132\) 0 0
\(133\) −1.21922 2.11176i −0.105720 0.183113i
\(134\) 0 0
\(135\) 3.12311i 0.268794i
\(136\) 0 0
\(137\) 9.95273 + 5.74621i 0.850319 + 0.490932i 0.860759 0.509014i \(-0.169990\pi\)
−0.0104394 + 0.999946i \(0.503323\pi\)
\(138\) 0 0
\(139\) −3.65767 + 6.33527i −0.310240 + 0.537351i −0.978414 0.206654i \(-0.933743\pi\)
0.668175 + 0.744005i \(0.267076\pi\)
\(140\) 0 0
\(141\) 5.40938 3.12311i 0.455552 0.263013i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −2.43160 + 1.40388i −0.201933 + 0.116586i
\(146\) 0 0
\(147\) 3.56155 6.16879i 0.293752 0.508793i
\(148\) 0 0
\(149\) 2.81130 + 1.62311i 0.230311 + 0.132970i 0.610715 0.791850i \(-0.290882\pi\)
−0.380405 + 0.924820i \(0.624215\pi\)
\(150\) 0 0
\(151\) 20.4924i 1.66765i −0.552029 0.833825i \(-0.686146\pi\)
0.552029 0.833825i \(-0.313854\pi\)
\(152\) 0 0
\(153\) 1.40388 + 2.43160i 0.113497 + 0.196583i
\(154\) 0 0
\(155\) 4.49242 0.360840
\(156\) 0 0
\(157\) 2.80776 0.224084 0.112042 0.993703i \(-0.464261\pi\)
0.112042 + 0.993703i \(0.464261\pi\)
\(158\) 0 0
\(159\) 6.68466 + 11.5782i 0.530128 + 0.918208i
\(160\) 0 0
\(161\) 13.5616i 1.06880i
\(162\) 0 0
\(163\) −19.8587 11.4654i −1.55545 0.898042i −0.997682 0.0680484i \(-0.978323\pi\)
−0.557773 0.829994i \(-0.688344\pi\)
\(164\) 0 0
\(165\) −0.684658 + 1.18586i −0.0533006 + 0.0923193i
\(166\) 0 0
\(167\) 8.28055 4.78078i 0.640768 0.369948i −0.144142 0.989557i \(-0.546042\pi\)
0.784910 + 0.619609i \(0.212709\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) −0.759413 + 0.438447i −0.0580737 + 0.0335289i
\(172\) 0 0
\(173\) 6.46543 11.1985i 0.491558 0.851403i −0.508395 0.861124i \(-0.669761\pi\)
0.999953 + 0.00972081i \(0.00309428\pi\)
\(174\) 0 0
\(175\) 6.33527 + 3.65767i 0.478902 + 0.276494i
\(176\) 0 0
\(177\) 2.43845i 0.183285i
\(178\) 0 0
\(179\) 8.34233 + 14.4493i 0.623535 + 1.07999i 0.988822 + 0.149099i \(0.0476374\pi\)
−0.365287 + 0.930895i \(0.619029\pi\)
\(180\) 0 0
\(181\) −10.8078 −0.803335 −0.401667 0.915786i \(-0.631569\pi\)
−0.401667 + 0.915786i \(0.631569\pi\)
\(182\) 0 0
\(183\) −14.4384 −1.06732
\(184\) 0 0
\(185\) 0.280776 + 0.486319i 0.0206431 + 0.0357549i
\(186\) 0 0
\(187\) 7.80776i 0.570960i
\(188\) 0 0
\(189\) 7.52113 + 4.34233i 0.547082 + 0.315858i
\(190\) 0 0
\(191\) 8.34233 14.4493i 0.603630 1.04552i −0.388637 0.921391i \(-0.627054\pi\)
0.992266 0.124126i \(-0.0396128\pi\)
\(192\) 0 0
\(193\) −2.59808 + 1.50000i −0.187014 + 0.107972i −0.590584 0.806976i \(-0.701102\pi\)
0.403570 + 0.914949i \(0.367769\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 12.7173 7.34233i 0.906069 0.523119i 0.0269049 0.999638i \(-0.491435\pi\)
0.879164 + 0.476519i \(0.158102\pi\)
\(198\) 0 0
\(199\) 6.78078 11.7446i 0.480676 0.832556i −0.519078 0.854727i \(-0.673724\pi\)
0.999754 + 0.0221709i \(0.00705781\pi\)
\(200\) 0 0
\(201\) −18.3399 10.5885i −1.29360 0.746858i
\(202\) 0 0
\(203\) 7.80776i 0.547998i
\(204\) 0 0
\(205\) −2.03457 3.52397i −0.142100 0.246125i
\(206\) 0 0
\(207\) 4.87689 0.338968
\(208\) 0 0
\(209\) −2.43845 −0.168671
\(210\) 0 0
\(211\) −12.3423 21.3775i −0.849681 1.47169i −0.881493 0.472197i \(-0.843461\pi\)
0.0318122 0.999494i \(-0.489872\pi\)
\(212\) 0 0
\(213\) 7.31534i 0.501239i
\(214\) 0 0
\(215\) −1.18586 0.684658i −0.0808752 0.0466933i
\(216\) 0 0
\(217\) 6.24621 10.8188i 0.424020 0.734425i
\(218\) 0 0
\(219\) −18.5064 + 10.6847i −1.25054 + 0.722002i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 7.52113 4.34233i 0.503652 0.290784i −0.226568 0.973995i \(-0.572751\pi\)
0.730221 + 0.683211i \(0.239417\pi\)
\(224\) 0 0
\(225\) 1.31534 2.27824i 0.0876894 0.151883i
\(226\) 0 0
\(227\) −26.0275 15.0270i −1.72751 0.997376i −0.899950 0.435994i \(-0.856397\pi\)
−0.827557 0.561382i \(-0.810270\pi\)
\(228\) 0 0
\(229\) 12.2462i 0.809252i −0.914482 0.404626i \(-0.867402\pi\)
0.914482 0.404626i \(-0.132598\pi\)
\(230\) 0 0
\(231\) 1.90388 + 3.29762i 0.125266 + 0.216967i
\(232\) 0 0
\(233\) 12.2462 0.802276 0.401138 0.916018i \(-0.368615\pi\)
0.401138 + 0.916018i \(0.368615\pi\)
\(234\) 0 0
\(235\) 2.24621 0.146527
\(236\) 0 0
\(237\) −3.12311 5.40938i −0.202868 0.351377i
\(238\) 0 0
\(239\) 18.2462i 1.18025i 0.807312 + 0.590125i \(0.200921\pi\)
−0.807312 + 0.590125i \(0.799079\pi\)
\(240\) 0 0
\(241\) 6.48863 + 3.74621i 0.417969 + 0.241315i 0.694208 0.719774i \(-0.255755\pi\)
−0.276239 + 0.961089i \(0.589088\pi\)
\(242\) 0 0
\(243\) 2.87689 4.98293i 0.184553 0.319655i
\(244\) 0 0
\(245\) 2.21837 1.28078i 0.141726 0.0818258i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 19.2658 11.1231i 1.22092 0.704898i
\(250\) 0 0
\(251\) 0.534565 0.925894i 0.0337415 0.0584419i −0.848662 0.528936i \(-0.822591\pi\)
0.882403 + 0.470494i \(0.155924\pi\)
\(252\) 0 0
\(253\) 11.7446 + 6.78078i 0.738380 + 0.426304i
\(254\) 0 0
\(255\) 4.38447i 0.274566i
\(256\) 0 0
\(257\) 2.62311 + 4.54335i 0.163625 + 0.283407i 0.936166 0.351558i \(-0.114348\pi\)
−0.772541 + 0.634965i \(0.781015\pi\)
\(258\) 0 0
\(259\) 1.56155 0.0970302
\(260\) 0 0
\(261\) 2.80776 0.173796
\(262\) 0 0
\(263\) 5.90388 + 10.2258i 0.364049 + 0.630551i 0.988623 0.150414i \(-0.0480607\pi\)
−0.624574 + 0.780966i \(0.714727\pi\)
\(264\) 0 0
\(265\) 4.80776i 0.295339i
\(266\) 0 0
\(267\) −3.63058 2.09612i −0.222188 0.128280i
\(268\) 0 0
\(269\) 2.90388 5.02967i 0.177053 0.306664i −0.763817 0.645433i \(-0.776677\pi\)
0.940870 + 0.338768i \(0.110010\pi\)
\(270\) 0 0
\(271\) 8.28055 4.78078i 0.503007 0.290411i −0.226947 0.973907i \(-0.572874\pi\)
0.729955 + 0.683496i \(0.239541\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 6.33527 3.65767i 0.382031 0.220566i
\(276\) 0 0
\(277\) 5.50000 9.52628i 0.330463 0.572379i −0.652140 0.758099i \(-0.726128\pi\)
0.982603 + 0.185720i \(0.0594618\pi\)
\(278\) 0 0
\(279\) −3.89055 2.24621i −0.232921 0.134477i
\(280\) 0 0
\(281\) 2.31534i 0.138122i −0.997612 0.0690608i \(-0.978000\pi\)
0.997612 0.0690608i \(-0.0220003\pi\)
\(282\) 0 0
\(283\) −12.7808 22.1370i −0.759738 1.31591i −0.942984 0.332838i \(-0.891994\pi\)
0.183246 0.983067i \(-0.441340\pi\)
\(284\) 0 0
\(285\) 1.36932 0.0811113
\(286\) 0 0
\(287\) −11.3153 −0.667923
\(288\) 0 0
\(289\) −4.00000 6.92820i −0.235294 0.407541i
\(290\) 0 0
\(291\) 27.8078i 1.63012i
\(292\) 0 0
\(293\) −18.6130 10.7462i −1.08738 0.627800i −0.154504 0.987992i \(-0.549378\pi\)
−0.932878 + 0.360192i \(0.882711\pi\)
\(294\) 0 0
\(295\) −0.438447 + 0.759413i −0.0255274 + 0.0442147i
\(296\) 0 0
\(297\) 7.52113 4.34233i 0.436421 0.251967i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −3.29762 + 1.90388i −0.190072 + 0.109738i
\(302\) 0 0
\(303\) 8.78078 15.2088i 0.504442 0.873720i
\(304\) 0 0
\(305\) −4.49661 2.59612i −0.257475 0.148653i
\(306\) 0 0
\(307\) 9.75379i 0.556678i 0.960483 + 0.278339i \(0.0897839\pi\)
−0.960483 + 0.278339i \(0.910216\pi\)
\(308\) 0 0
\(309\) 1.75379 + 3.03765i 0.0997696 + 0.172806i
\(310\) 0 0
\(311\) −2.24621 −0.127371 −0.0636855 0.997970i \(-0.520285\pi\)
−0.0636855 + 0.997970i \(0.520285\pi\)
\(312\) 0 0
\(313\) −15.7538 −0.890457 −0.445228 0.895417i \(-0.646878\pi\)
−0.445228 + 0.895417i \(0.646878\pi\)
\(314\) 0 0
\(315\) 0.246211 + 0.426450i 0.0138724 + 0.0240278i
\(316\) 0 0
\(317\) 20.5616i 1.15485i 0.816443 + 0.577426i \(0.195943\pi\)
−0.816443 + 0.577426i \(0.804057\pi\)
\(318\) 0 0
\(319\) 6.76172 + 3.90388i 0.378584 + 0.218575i
\(320\) 0 0
\(321\) 6.78078 11.7446i 0.378466 0.655522i
\(322\) 0 0
\(323\) 6.76172 3.90388i 0.376232 0.217218i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 11.1517 6.43845i 0.616691 0.356047i
\(328\) 0 0
\(329\) 3.12311 5.40938i 0.172182 0.298229i
\(330\) 0 0
\(331\) 6.00231 + 3.46543i 0.329917 + 0.190478i 0.655804 0.754931i \(-0.272330\pi\)
−0.325887 + 0.945409i \(0.605663\pi\)
\(332\) 0 0
\(333\) 0.561553i 0.0307729i
\(334\) 0 0
\(335\) −3.80776 6.59524i −0.208040 0.360336i
\(336\) 0 0
\(337\) −20.5616 −1.12006 −0.560030 0.828473i \(-0.689210\pi\)
−0.560030 + 0.828473i \(0.689210\pi\)
\(338\) 0 0
\(339\) 11.3153 0.614565
\(340\) 0 0
\(341\) −6.24621 10.8188i −0.338251 0.585868i
\(342\) 0 0
\(343\) 18.0540i 0.974823i
\(344\) 0 0
\(345\) −6.59524 3.80776i −0.355076 0.205003i
\(346\) 0 0
\(347\) −1.02699 + 1.77879i −0.0551316 + 0.0954907i −0.892274 0.451494i \(-0.850891\pi\)
0.837142 + 0.546985i \(0.184224\pi\)
\(348\) 0 0
\(349\) −14.2361 + 8.21922i −0.762042 + 0.439965i −0.830028 0.557721i \(-0.811676\pi\)
0.0679866 + 0.997686i \(0.478342\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −7.79423 + 4.50000i −0.414845 + 0.239511i −0.692869 0.721063i \(-0.743654\pi\)
0.278024 + 0.960574i \(0.410320\pi\)
\(354\) 0 0
\(355\) −1.31534 + 2.27824i −0.0698111 + 0.120916i
\(356\) 0 0
\(357\) −10.5588 6.09612i −0.558830 0.322641i
\(358\) 0 0
\(359\) 28.4924i 1.50377i −0.659293 0.751886i \(-0.729144\pi\)
0.659293 0.751886i \(-0.270856\pi\)
\(360\) 0 0
\(361\) −8.28078 14.3427i −0.435830 0.754880i
\(362\) 0 0
\(363\) −13.3693 −0.701707
\(364\) 0 0
\(365\) −7.68466 −0.402233
\(366\) 0 0
\(367\) −6.58854 11.4117i −0.343919 0.595685i 0.641238 0.767342i \(-0.278421\pi\)
−0.985157 + 0.171657i \(0.945088\pi\)
\(368\) 0 0
\(369\) 4.06913i 0.211830i
\(370\) 0 0
\(371\) 11.5782 + 6.68466i 0.601109 + 0.347050i
\(372\) 0 0
\(373\) −2.62311 + 4.54335i −0.135819 + 0.235246i −0.925910 0.377744i \(-0.876700\pi\)
0.790091 + 0.612990i \(0.210033\pi\)
\(374\) 0 0
\(375\) −7.35465 + 4.24621i −0.379793 + 0.219273i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 2.53821 1.46543i 0.130379 0.0752743i −0.433392 0.901206i \(-0.642683\pi\)
0.563771 + 0.825931i \(0.309350\pi\)
\(380\) 0 0
\(381\) 6.09612 10.5588i 0.312314 0.540943i
\(382\) 0 0
\(383\) 25.2681 + 14.5885i 1.29114 + 0.745440i 0.978856 0.204550i \(-0.0655729\pi\)
0.312283 + 0.949989i \(0.398906\pi\)
\(384\) 0 0
\(385\) 1.36932i 0.0697869i
\(386\) 0 0
\(387\) 0.684658 + 1.18586i 0.0348031 + 0.0602808i
\(388\) 0 0
\(389\) 29.6847 1.50507 0.752536 0.658551i \(-0.228830\pi\)
0.752536 + 0.658551i \(0.228830\pi\)
\(390\) 0 0
\(391\) −43.4233 −2.19601
\(392\) 0 0
\(393\) 1.36932 + 2.37173i 0.0690729 + 0.119638i
\(394\) 0 0
\(395\) 2.24621i 0.113019i
\(396\) 0 0
\(397\) −8.06732 4.65767i −0.404887 0.233762i 0.283703 0.958912i \(-0.408437\pi\)
−0.688591 + 0.725150i \(0.741770\pi\)
\(398\) 0 0
\(399\) 1.90388 3.29762i 0.0953133 0.165088i
\(400\) 0 0
\(401\) −20.3450 + 11.7462i −1.01598 + 0.586578i −0.912938 0.408099i \(-0.866192\pi\)
−0.103045 + 0.994677i \(0.532859\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −3.40423 + 1.96543i −0.169158 + 0.0976632i
\(406\) 0 0
\(407\) 0.780776 1.35234i 0.0387016 0.0670332i
\(408\) 0 0
\(409\) 13.2036 + 7.62311i 0.652876 + 0.376938i 0.789557 0.613677i \(-0.210310\pi\)
−0.136681 + 0.990615i \(0.543644\pi\)
\(410\) 0 0
\(411\) 17.9460i 0.885212i
\(412\) 0 0
\(413\) 1.21922 + 2.11176i 0.0599941 + 0.103913i
\(414\) 0 0
\(415\) 8.00000 0.392705
\(416\) 0 0
\(417\) −11.4233 −0.559401
\(418\) 0 0
\(419\) −7.46543 12.9305i −0.364710 0.631697i 0.624019 0.781409i \(-0.285499\pi\)
−0.988730 + 0.149712i \(0.952165\pi\)
\(420\) 0 0
\(421\) 33.6847i 1.64169i −0.571151 0.820845i \(-0.693503\pi\)
0.571151 0.820845i \(-0.306497\pi\)
\(422\) 0 0
\(423\) −1.94528 1.12311i −0.0945826 0.0546073i
\(424\) 0 0
\(425\) −11.7116 + 20.2852i −0.568098 + 0.983975i
\(426\) 0 0
\(427\) −12.5041 + 7.21922i −0.605114 + 0.349363i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 26.7869 15.4654i 1.29028 0.744944i 0.311577 0.950221i \(-0.399143\pi\)
0.978704 + 0.205277i \(0.0658096\pi\)
\(432\) 0 0
\(433\) 15.7462 27.2732i 0.756715 1.31067i −0.187803 0.982207i \(-0.560137\pi\)
0.944517 0.328461i \(-0.106530\pi\)
\(434\) 0 0
\(435\) −3.79706 2.19224i −0.182055 0.105110i
\(436\) 0 0
\(437\) 13.5616i 0.648737i
\(438\) 0 0
\(439\) −4.53457 7.85410i −0.216423 0.374856i 0.737289 0.675578i \(-0.236106\pi\)
−0.953712 + 0.300722i \(0.902772\pi\)
\(440\) 0 0
\(441\) −2.56155 −0.121979
\(442\) 0 0
\(443\) 38.2462 1.81713 0.908566 0.417741i \(-0.137178\pi\)
0.908566 + 0.417741i \(0.137178\pi\)
\(444\) 0 0
\(445\) −0.753789 1.30560i −0.0357330 0.0618914i
\(446\) 0 0
\(447\) 5.06913i 0.239762i
\(448\) 0 0
\(449\) −20.8314 12.0270i −0.983092 0.567589i −0.0798900 0.996804i \(-0.525457\pi\)
−0.903202 + 0.429215i \(0.858790\pi\)
\(450\) 0 0
\(451\) −5.65767 + 9.79937i −0.266409 + 0.461434i
\(452\) 0 0
\(453\) 27.7128 16.0000i 1.30206 0.751746i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −7.79423 + 4.50000i −0.364599 + 0.210501i −0.671096 0.741370i \(-0.734176\pi\)
0.306497 + 0.951871i \(0.400843\pi\)
\(458\) 0 0
\(459\) −13.9039 + 24.0822i −0.648978 + 1.12406i
\(460\) 0 0
\(461\) −20.3450 11.7462i −0.947563 0.547076i −0.0552398 0.998473i \(-0.517592\pi\)
−0.892323 + 0.451398i \(0.850926\pi\)
\(462\) 0 0
\(463\) 32.9848i 1.53294i 0.642283 + 0.766468i \(0.277988\pi\)
−0.642283 + 0.766468i \(0.722012\pi\)
\(464\) 0 0
\(465\) 3.50758 + 6.07530i 0.162660 + 0.281735i
\(466\) 0 0
\(467\) −26.2462 −1.21453 −0.607265 0.794499i \(-0.707733\pi\)
−0.607265 + 0.794499i \(0.707733\pi\)
\(468\) 0 0
\(469\) −21.1771 −0.977867
\(470\) 0 0
\(471\) 2.19224 + 3.79706i 0.101013 + 0.174959i
\(472\) 0 0
\(473\) 3.80776i 0.175081i
\(474\) 0 0
\(475\) −6.33527 3.65767i −0.290682 0.167825i
\(476\) 0 0
\(477\) 2.40388 4.16365i 0.110066 0.190640i
\(478\) 0 0
\(479\) 17.5805 10.1501i 0.803273 0.463770i −0.0413417 0.999145i \(-0.513163\pi\)
0.844614 + 0.535375i \(0.179830\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) −18.3399 + 10.5885i −0.834494 + 0.481795i
\(484\) 0 0
\(485\) −5.00000 + 8.66025i −0.227038 + 0.393242i
\(486\) 0 0
\(487\) 29.8246 + 17.2192i 1.35148 + 0.780278i 0.988457 0.151503i \(-0.0484112\pi\)
0.363023 + 0.931780i \(0.381744\pi\)
\(488\) 0 0
\(489\) 35.8078i 1.61928i
\(490\) 0 0
\(491\) −1.02699 1.77879i −0.0463473 0.0802759i 0.841921 0.539601i \(-0.181425\pi\)
−0.888268 + 0.459325i \(0.848091\pi\)
\(492\) 0 0
\(493\) −25.0000 −1.12594
\(494\) 0 0
\(495\) 0.492423 0.0221327
\(496\) 0 0
\(497\) 3.65767 + 6.33527i 0.164069 + 0.284176i
\(498\) 0 0
\(499\) 16.4924i 0.738302i −0.929369 0.369151i \(-0.879648\pi\)
0.929369 0.369151i \(-0.120352\pi\)
\(500\) 0 0
\(501\) 12.9305 + 7.46543i 0.577693 + 0.333531i
\(502\) 0 0
\(503\) 16.3423 28.3057i 0.728668 1.26209i −0.228778 0.973479i \(-0.573473\pi\)
0.957446 0.288612i \(-0.0931938\pi\)
\(504\) 0 0
\(505\) 5.46925 3.15767i 0.243378 0.140515i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −28.5788 + 16.5000i −1.26673 + 0.731350i −0.974369 0.224957i \(-0.927776\pi\)
−0.292366 + 0.956306i \(0.594443\pi\)
\(510\) 0 0
\(511\) −10.6847 + 18.5064i −0.472661 + 0.818674i
\(512\) 0 0
\(513\) −7.52113 4.34233i −0.332066 0.191719i
\(514\) 0 0
\(515\) 1.26137i 0.0555824i
\(516\) 0 0
\(517\) −3.12311 5.40938i −0.137354 0.237904i
\(518\) 0 0
\(519\) 20.1922 0.886341
\(520\) 0 0
\(521\) 9.05398 0.396662 0.198331 0.980135i \(-0.436448\pi\)
0.198331 + 0.980135i \(0.436448\pi\)
\(522\) 0 0
\(523\) 6.15009 + 10.6523i 0.268925 + 0.465791i 0.968584 0.248685i \(-0.0799984\pi\)
−0.699660 + 0.714476i \(0.746665\pi\)
\(524\) 0 0
\(525\) 11.4233i 0.498553i
\(526\) 0 0
\(527\) 34.6410 + 20.0000i 1.50899 + 0.871214i
\(528\) 0 0
\(529\) −26.2116 + 45.3999i −1.13964 + 1.97391i
\(530\) 0 0
\(531\) 0.759413 0.438447i 0.0329557 0.0190270i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 4.22351 2.43845i 0.182598 0.105423i
\(536\) 0 0
\(537\) −13.0270 + 22.5634i −0.562156 + 0.973683i
\(538\) 0 0
\(539\) −6.16879 3.56155i −0.265709 0.153407i
\(540\) 0 0
\(541\) 5.68466i 0.244403i 0.992505 + 0.122201i \(0.0389953\pi\)
−0.992505 + 0.122201i \(0.961005\pi\)
\(542\) 0 0
\(543\) −8.43845 14.6158i −0.362128 0.627225i
\(544\) 0 0
\(545\) 4.63068 0.198357
\(546\) 0 0
\(547\) 16.4924 0.705165 0.352583 0.935781i \(-0.385304\pi\)
0.352583 + 0.935781i \(0.385304\pi\)
\(548\) 0 0
\(549\) 2.59612 + 4.49661i 0.110800 + 0.191911i
\(550\) 0 0
\(551\) 7.80776i 0.332622i
\(552\) 0 0
\(553\) −5.40938 3.12311i −0.230030 0.132808i
\(554\) 0 0
\(555\) −0.438447 + 0.759413i −0.0186110 + 0.0322353i
\(556\) 0 0
\(557\) −27.2732 + 15.7462i −1.15560 + 0.667188i −0.950247 0.311499i \(-0.899169\pi\)
−0.205358 + 0.978687i \(0.565836\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −10.5588 + 6.09612i −0.445792 + 0.257378i
\(562\) 0 0
\(563\) 3.02699 5.24290i 0.127572 0.220962i −0.795163 0.606396i \(-0.792615\pi\)
0.922736 + 0.385434i \(0.125948\pi\)
\(564\) 0 0
\(565\) 3.52397 + 2.03457i 0.148255 + 0.0855948i
\(566\) 0 0
\(567\) 10.9309i 0.459053i
\(568\) 0 0
\(569\) 9.34233 + 16.1814i 0.391651 + 0.678359i 0.992667 0.120877i \(-0.0385708\pi\)
−0.601017 + 0.799237i \(0.705237\pi\)
\(570\) 0 0
\(571\) 8.49242 0.355397 0.177698 0.984085i \(-0.443135\pi\)
0.177698 + 0.984085i \(0.443135\pi\)
\(572\) 0 0
\(573\) 26.0540 1.08842
\(574\) 0 0
\(575\) 20.3423 + 35.2339i 0.848334 + 1.46936i
\(576\) 0 0
\(577\) 27.4384i 1.14228i −0.820854 0.571139i \(-0.806502\pi\)
0.820854 0.571139i \(-0.193498\pi\)
\(578\) 0 0
\(579\) −4.05703 2.34233i −0.168605 0.0973439i
\(580\) 0 0
\(581\) 11.1231 19.2658i 0.461464 0.799279i
\(582\) 0 0
\(583\) 11.5782 6.68466i 0.479519 0.276850i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 12.9305 7.46543i 0.533699 0.308131i −0.208822 0.977954i \(-0.566963\pi\)
0.742522 + 0.669822i \(0.233630\pi\)
\(588\) 0 0
\(589\) −6.24621 + 10.8188i −0.257371 + 0.445779i
\(590\) 0 0
\(591\) 19.8587 + 11.4654i 0.816878 + 0.471625i
\(592\) 0 0
\(593\) 19.4384i 0.798241i 0.916898 + 0.399121i \(0.130685\pi\)
−0.916898 + 0.399121i \(0.869315\pi\)
\(594\) 0 0
\(595\) −2.19224 3.79706i −0.0898729 0.155664i
\(596\) 0 0
\(597\) 21.1771 0.866720
\(598\) 0 0
\(599\) 26.7386 1.09251 0.546255 0.837619i \(-0.316053\pi\)
0.546255 + 0.837619i \(0.316053\pi\)
\(600\) 0 0
\(601\) −13.9924 24.2356i −0.570763 0.988590i −0.996488 0.0837376i \(-0.973314\pi\)
0.425725 0.904853i \(-0.360019\pi\)
\(602\) 0 0
\(603\) 7.61553i 0.310128i
\(604\) 0 0
\(605\) −4.16365 2.40388i −0.169276 0.0977317i
\(606\) 0 0
\(607\) −9.65767 + 16.7276i −0.391993 + 0.678951i −0.992712 0.120508i \(-0.961548\pi\)
0.600720 + 0.799460i \(0.294881\pi\)
\(608\) 0 0
\(609\) −10.5588 + 6.09612i −0.427864 + 0.247027i
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −7.79423 + 4.50000i −0.314806 + 0.181753i −0.649075 0.760724i \(-0.724844\pi\)
0.334269 + 0.942478i \(0.391511\pi\)
\(614\) 0 0
\(615\) 3.17708 5.50287i 0.128112 0.221897i
\(616\) 0 0
\(617\) −21.8639 12.6231i −0.880206 0.508187i −0.00947959 0.999955i \(-0.503017\pi\)
−0.870726 + 0.491768i \(0.836351\pi\)
\(618\) 0 0
\(619\) 28.9848i 1.16500i 0.812831 + 0.582500i \(0.197925\pi\)
−0.812831 + 0.582500i \(0.802075\pi\)
\(620\) 0 0
\(621\) 24.1501 + 41.8292i 0.969110 + 1.67855i
\(622\) 0 0
\(623\) −4.19224 −0.167958
\(624\) 0 0
\(625\) 20.3693 0.814773
\(626\) 0 0
\(627\) −1.90388 3.29762i −0.0760337 0.131694i
\(628\) 0 0
\(629\) 5.00000i 0.199363i
\(630\) 0 0
\(631\) 8.70700 + 5.02699i 0.346620 + 0.200121i 0.663196 0.748446i \(-0.269200\pi\)
−0.316576 + 0.948567i \(0.602533\pi\)
\(632\) 0 0
\(633\) 19.2732 33.3822i 0.766041 1.32682i
\(634\) 0 0
\(635\) 3.79706 2.19224i 0.150682 0.0869962i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 2.27824 1.31534i 0.0901257 0.0520341i
\(640\) 0 0
\(641\) −0.746211 + 1.29248i −0.0294736 + 0.0510497i −0.880386 0.474258i \(-0.842716\pi\)
0.850912 + 0.525308i \(0.176050\pi\)
\(642\) 0 0
\(643\) −17.5805 10.1501i −0.693306 0.400281i 0.111543 0.993760i \(-0.464421\pi\)
−0.804849 + 0.593479i \(0.797754\pi\)
\(644\) 0 0
\(645\) 2.13826i 0.0841939i
\(646\) 0 0
\(647\) 11.4654 + 19.8587i 0.450753 + 0.780727i 0.998433 0.0559611i \(-0.0178223\pi\)
−0.547680 + 0.836688i \(0.684489\pi\)
\(648\) 0 0
\(649\) 2.43845 0.0957174
\(650\) 0 0
\(651\) 19.5076 0.764562
\(652\) 0 0
\(653\) 12.2732 + 21.2578i 0.480287 + 0.831882i 0.999744 0.0226145i \(-0.00719904\pi\)
−0.519457 + 0.854497i \(0.673866\pi\)
\(654\) 0 0
\(655\) 0.984845i 0.0384811i
\(656\) 0 0
\(657\) 6.65511 + 3.84233i 0.259641 + 0.149904i
\(658\) 0 0
\(659\) −10.7808 + 18.6729i −0.419959 + 0.727391i −0.995935 0.0900759i \(-0.971289\pi\)
0.575975 + 0.817467i \(0.304622\pi\)
\(660\) 0 0
\(661\) −4.96980 + 2.86932i −0.193303 + 0.111603i −0.593528 0.804813i \(-0.702265\pi\)
0.400225 + 0.916417i \(0.368932\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 1.18586 0.684658i 0.0459858 0.0265499i
\(666\) 0 0
\(667\) −21.7116 + 37.6057i −0.840678 + 1.45610i
\(668\) 0 0
\(669\) 11.7446 + 6.78078i 0.454074 + 0.262160i
\(670\) 0 0
\(671\) 14.4384i 0.557390i
\(672\) 0 0
\(673\) 8.62311 + 14.9357i 0.332396 + 0.575727i 0.982981 0.183706i \(-0.0588095\pi\)
−0.650585 + 0.759434i \(0.725476\pi\)
\(674\) 0 0
\(675\) 26.0540 1.00282
\(676\) 0 0
\(677\) −28.7386 −1.10452 −0.552258 0.833673i \(-0.686234\pi\)
−0.552258 + 0.833673i \(0.686234\pi\)
\(678\) 0 0
\(679\) 13.9039 + 24.0822i 0.533582 + 0.924191i
\(680\) 0 0
\(681\) 46.9309i 1.79839i
\(682\) 0 0
\(683\) 6.33527 + 3.65767i 0.242412 + 0.139957i 0.616285 0.787523i \(-0.288637\pi\)
−0.373873 + 0.927480i \(0.621970\pi\)
\(684\) 0 0
\(685\) −3.22680 + 5.58898i −0.123290 + 0.213544i
\(686\) 0 0
\(687\) 16.5611 9.56155i 0.631845 0.364796i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −22.1370 + 12.7808i −0.842129 + 0.486204i −0.857987 0.513671i \(-0.828285\pi\)
0.0158581 + 0.999874i \(0.494952\pi\)
\(692\) 0 0
\(693\) 0.684658 1.18586i 0.0260080 0.0450472i
\(694\) 0 0
\(695\) −3.55759 2.05398i −0.134947 0.0779117i
\(696\) 0 0
\(697\) 36.2311i 1.37235i
\(698\) 0 0
\(699\) 9.56155 + 16.5611i 0.361651 + 0.626398i
\(700\) 0 0
\(701\) −32.7386 −1.23652 −0.618261 0.785973i \(-0.712162\pi\)
−0.618261 + 0.785973i \(0.712162\pi\)
\(702\) 0 0
\(703\) −1.56155 −0.0588951
\(704\) 0 0
\(705\) 1.75379 + 3.03765i 0.0660515 + 0.114405i
\(706\) 0 0
\(707\) 17.5616i 0.660470i
\(708\) 0 0
\(709\) 29.2185 + 16.8693i 1.09732 + 0.633540i 0.935517 0.353282i \(-0.114934\pi\)
0.161807 + 0.986822i \(0.448268\pi\)
\(710\) 0 0
\(711\) −1.12311 + 1.94528i −0.0421198 + 0.0729535i
\(712\) 0 0
\(713\) 60.1691 34.7386i 2.25335 1.30097i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −24.6752 + 14.2462i −0.921511 + 0.532035i
\(718\) 0 0
\(719\) −21.4654 + 37.1792i −0.800526 + 1.38655i 0.118745 + 0.992925i \(0.462113\pi\)
−0.919271 + 0.393626i \(0.871220\pi\)
\(720\) 0 0
\(721\) 3.03765 + 1.75379i 0.113128 + 0.0653145i
\(722\) 0 0
\(723\) 11.6998i 0.435121i
\(724\) 0 0
\(725\) 11.7116 + 20.2852i 0.434960 + 0.753372i
\(726\) 0 0
\(727\) −6.73863 −0.249922 −0.124961 0.992162i \(-0.539881\pi\)
−0.124961 + 0.992162i \(0.539881\pi\)
\(728\) 0 0
\(729\) 29.9848 1.11055
\(730\) 0 0
\(731\) −6.09612 10.5588i −0.225473 0.390531i
\(732\) 0 0
\(733\) 1.19224i 0.0440362i −0.999758 0.0220181i \(-0.992991\pi\)
0.999758 0.0220181i \(-0.00700915\pi\)
\(734\) 0 0
\(735\) 3.46410 + 2.00000i 0.127775 + 0.0737711i
\(736\) 0 0
\(737\) −10.5885 + 18.3399i −0.390034 + 0.675559i
\(738\) 0 0
\(739\) −40.6433 + 23.4654i −1.49509 + 0.863190i −0.999984 0.00564328i \(-0.998204\pi\)
−0.495105 + 0.868833i \(0.664870\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −7.85410 + 4.53457i −0.288139 + 0.166357i −0.637102 0.770779i \(-0.719867\pi\)
0.348963 + 0.937136i \(0.386534\pi\)
\(744\) 0 0
\(745\) −0.911460 + 1.57869i −0.0333933 + 0.0578389i
\(746\) 0 0
\(747\) −6.92820 4.00000i −0.253490 0.146352i
\(748\) 0 0
\(749\) 13.5616i 0.495528i
\(750\) 0 0
\(751\) −24.1501 41.8292i −0.881249 1.52637i −0.849953 0.526859i \(-0.823370\pi\)
−0.0312965 0.999510i \(-0.509964\pi\)
\(752\) 0 0
\(753\) 1.66950 0.0608401
\(754\) 0 0
\(755\) 11.5076 0.418804
\(756\) 0 0
\(757\) 8.27320 + 14.3296i 0.300695 + 0.520818i 0.976293 0.216451i \(-0.0694482\pi\)
−0.675599 + 0.737269i \(0.736115\pi\)
\(758\) 0 0
\(759\) 21.1771i 0.768679i
\(760\) 0 0
\(761\) −19.9785 11.5346i −0.724218 0.418128i 0.0920850 0.995751i \(-0.470647\pi\)
−0.816303 + 0.577623i \(0.803980\pi\)
\(762\) 0 0
\(763\) 6.43845 11.1517i 0.233087 0.403719i
\(764\) 0 0
\(765\) −1.36547 + 0.788354i −0.0493686 + 0.0285030i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0.806157 0.465435i 0.0290708 0.0167840i −0.485394 0.874295i \(-0.661324\pi\)
0.514465 + 0.857511i \(0.327991\pi\)
\(770\) 0 0
\(771\) −4.09612 + 7.09468i −0.147518 + 0.255509i
\(772\) 0 0
\(773\) −29.6113 17.0961i −1.06505 0.614905i −0.138222 0.990401i \(-0.544139\pi\)
−0.926824 + 0.375497i \(0.877472\pi\)
\(774\) 0 0
\(775\) 37.4773i 1.34622i
\(776\) 0 0
\(777\) 1.21922 + 2.11176i 0.0437394 + 0.0757589i
\(778\) 0 0
\(779\) 11.3153 0.405414
\(780\) 0 0
\(781\) 7.31534 0.261764
\(782\) 0 0
\(783\) 13.9039 + 24.0822i 0.496884 + 0.860629i
\(784\) 0 0
\(785\) 1.57671i 0.0562751i
\(786\) 0 0
\(787\) −23.7493 13.7116i −0.846570 0.488767i 0.0129221 0.999917i \(-0.495887\pi\)
−0.859492 + 0.511149i \(0.829220\pi\)
\(788\) 0 0
\(789\) −9.21922 + 15.9682i −0.328213 + 0.568482i
\(790\) 0 0
\(791\) 9.79937 5.65767i 0.348426 0.201164i
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) −6.50175 + 3.75379i −0.230593 + 0.133133i
\(796\) 0 0
\(797\) 6.46543 11.1985i 0.229017 0.396670i −0.728500 0.685046i \(-0.759782\pi\)
0.957517 + 0.288376i \(0.0931154\pi\)
\(798\) 0 0
\(799\) 17.3205 + 10.0000i 0.612756 + 0.353775i
\(800\) 0 0
\(801\) 1.50758i 0.0532676i
\(802\) 0 0
\(803\) 10.6847 + 18.5064i 0.377053 + 0.653076i
\(804\) 0 0
\(805\) −7.61553 −0.268412
\(806\) 0 0
\(807\) 9.06913 0.319249
\(808\) 0 0
\(809\) 11.6231 + 20.1318i 0.408647 + 0.707797i 0.994738 0.102448i \(-0.0326675\pi\)
−0.586092 + 0.810245i \(0.699334\pi\)
\(810\) 0 0
\(811\) 8.00000i 0.280918i 0.990086 + 0.140459i \(0.0448578\pi\)
−0.990086 + 0.140459i \(0.955142\pi\)
\(812\) 0 0
\(813\) 12.9305 + 7.46543i 0.453493 + 0.261824i
\(814\) 0 0
\(815\) 6.43845 11.1517i 0.225529 0.390628i
\(816\) 0 0
\(817\) 3.29762 1.90388i 0.115369 0.0666084i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −11.9579 + 6.90388i −0.417333 + 0.240947i −0.693935 0.720037i \(-0.744125\pi\)
0.276603 + 0.960984i \(0.410791\pi\)
\(822\) 0 0
\(823\) −0.588540 + 1.01938i −0.0205152 + 0.0355334i −0.876101 0.482128i \(-0.839864\pi\)
0.855586 + 0.517661i \(0.173197\pi\)
\(824\) 0 0
\(825\) 9.89286 + 5.71165i 0.344425 + 0.198854i
\(826\) 0 0
\(827\) 36.9848i 1.28609i 0.765829 + 0.643045i \(0.222329\pi\)
−0.765829 + 0.643045i \(0.777671\pi\)
\(828\) 0 0
\(829\) 3.25379 + 5.63573i 0.113009 + 0.195737i 0.916982 0.398929i \(-0.130618\pi\)
−0.803973 + 0.594665i \(0.797285\pi\)
\(830\) 0 0
\(831\) 17.1771 0.595866
\(832\) 0 0
\(833\) 22.8078 0.790242
\(834\) 0 0
\(835\) 2.68466 + 4.64996i 0.0929064 + 0.160919i
\(836\) 0 0
\(837\) 44.4924i 1.53788i
\(838\) 0 0
\(839\) 23.6558 + 13.6577i 0.816688 + 0.471515i 0.849273 0.527954i \(-0.177041\pi\)
−0.0325849 + 0.999469i \(0.510374\pi\)
\(840\) 0 0
\(841\) 2.00000 3.46410i 0.0689655 0.119452i
\(842\) 0 0
\(843\) 3.13114 1.80776i 0.107842 0.0622627i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −11.5782 + 6.68466i −0.397831 + 0.229688i
\(848\) 0 0
\(849\) 19.9579 34.5680i 0.684952 1.18637i
\(850\) 0 0
\(851\) 7.52113 + 4.34233i 0.257821 + 0.148853i
\(852\) 0 0
\(853\) 48.4233i 1.65798i 0.559262 + 0.828991i \(0.311085\pi\)
−0.559262 + 0.828991i \(0.688915\pi\)
\(854\) 0 0
\(855\) −0.246211 0.426450i −0.00842025 0.0145843i
\(856\) 0 0
\(857\) 14.9460 0.510546 0.255273 0.966869i \(-0.417835\pi\)
0.255273 + 0.966869i \(0.417835\pi\)
\(858\) 0 0
\(859\) −22.2462 −0.759031 −0.379515 0.925185i \(-0.623909\pi\)
−0.379515 + 0.925185i \(0.623909\pi\)
\(860\) 0 0
\(861\) −8.83475 15.3022i −0.301088 0.521499i
\(862\) 0 0
\(863\) 21.7538i 0.740508i −0.928931 0.370254i \(-0.879271\pi\)
0.928931 0.370254i \(-0.120729\pi\)
\(864\) 0 0
\(865\) 6.28853 + 3.63068i 0.213816 + 0.123447i
\(866\) 0 0
\(867\) 6.24621 10.8188i 0.212132 0.367424i
\(868\) 0 0
\(869\) −5.40938 + 3.12311i −0.183501 + 0.105944i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 8.66025 5.00000i 0.293105 0.169224i
\(874\) 0 0
\(875\) −4.24621 + 7.35465i −0.143548 + 0.248633i
\(876\) 0 0
\(877\) 34.4147 + 19.8693i 1.16210 + 0.670939i 0.951807 0.306699i \(-0.0992245\pi\)
0.210294 + 0.977638i \(0.432558\pi\)
\(878\) 0 0
\(879\) 33.5616i 1.13200i
\(880\) 0 0
\(881\) −7.62311 13.2036i −0.256829 0.444841i 0.708562 0.705649i \(-0.249344\pi\)
−0.965391 + 0.260808i \(0.916011\pi\)
\(882\) 0 0
\(883\) −20.0000 −0.673054 −0.336527 0.941674i \(-0.609252\pi\)
−0.336527 + 0.941674i \(0.609252\pi\)
\(884\) 0 0
\(885\) −1.36932 −0.0460291
\(886\) 0 0
\(887\) −10.3423 17.9134i −0.347261 0.601474i 0.638501 0.769621i \(-0.279555\pi\)
−0.985762 + 0.168147i \(0.946222\pi\)
\(888\) 0 0
\(889\) 12.1922i 0.408914i
\(890\) 0 0
\(891\) 9.46641 + 5.46543i 0.317137 + 0.183099i
\(892\) 0 0
\(893\) −3.12311 + 5.40938i −0.104511 + 0.181018i
\(894\) 0 0
\(895\) −8.11407 + 4.68466i −0.271223 + 0.156591i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 34.6410 20.0000i 1.15534 0.667037i
\(900\) 0 0
\(901\) −21.4039 + 37.0726i −0.713067 + 1.23507i
\(902\) 0 0
\(903\) −5.14941 2.97301i −0.171362 0.0989357i
\(904\) 0 0
\(905\) 6.06913i 0.201745i
\(906\) 0 0
\(907\) −20.1501 34.9010i −0.669073 1.15887i −0.978164 0.207836i \(-0.933358\pi\)
0.309091 0.951033i \(-0.399975\pi\)
\(908\) 0 0
\(909\) −6.31534 −0.209467
\(910\) 0 0
\(911\) −30.7386 −1.01842 −0.509208 0.860643i \(-0.670062\pi\)
−0.509208 + 0.860643i \(0.670062\pi\)
\(912\) 0 0
\(913\) −11.1231 19.2658i −0.368121 0.637604i
\(914\) 0 0
\(915\) 8.10795i 0.268041i
\(916\) 0 0
\(917\) 2.37173 + 1.36932i 0.0783213 + 0.0452188i
\(918\) 0 0
\(919\) −29.2732 + 50.7027i −0.965634 + 1.67253i −0.257731 + 0.966217i \(0.582975\pi\)
−0.707903 + 0.706310i \(0.750358\pi\)
\(920\) 0 0
\(921\) −13.1905 + 7.61553i −0.434641 + 0.250940i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 4.05703 2.34233i 0.133394 0.0770153i
\(926\) 0 0
\(927\) 0.630683 1.09238i 0.0207144 0.0358783i
\(928\) 0 0
\(929\) 32.8958 + 18.9924i 1.07928 + 0.623121i 0.930701 0.365780i \(-0.119198\pi\)
0.148576 + 0.988901i \(0.452531\pi\)
\(930\) 0 0
\(931\) 7.12311i 0.233450i
\(932\) 0 0
\(933\) −1.75379 3.03765i −0.0574165 0.0994482i
\(934\) 0 0
\(935\) −4.38447 −0.143388
\(936\) 0 0
\(937\) −13.6847 −0.447058 −0.223529 0.974697i \(-0.571758\pi\)
−0.223529 + 0.974697i \(0.571758\pi\)
\(938\) 0 0
\(939\) −12.3002 21.3045i −0.401401 0.695248i
\(940\) 0 0
\(941\) 14.0000i 0.456387i 0.973616 + 0.228193i \(0.0732819\pi\)
−0.973616 + 0.228193i \(0.926718\pi\)
\(942\) 0 0
\(943\) −54.4997 31.4654i −1.77476 1.02466i
\(944\) 0 0
\(945\) −2.43845 + 4.22351i −0.0793227 + 0.137391i
\(946\) 0 0
\(947\) −13.3570 + 7.71165i −0.434043 + 0.250595i −0.701068 0.713095i \(-0.747293\pi\)
0.267025 + 0.963690i \(0.413960\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) −27.8063 + 16.0540i −0.901681 + 0.520586i
\(952\) 0 0
\(953\) −12.9039 + 22.3502i −0.417998 + 0.723993i −0.995738 0.0922274i \(-0.970601\pi\)
0.577740 + 0.816221i \(0.303935\pi\)
\(954\) 0 0
\(955\) 8.11407 + 4.68466i 0.262565 + 0.151592i
\(956\) 0 0
\(957\) 12.1922i 0.394119i
\(958\) 0 0
\(959\) 8.97301 + 15.5417i 0.289754 + 0.501868i
\(960\) 0 0
\(961\) −33.0000 −1.06452
\(962\) 0 0
\(963\) −4.87689 −0.157156
\(964\) 0 0
\(965\) −0.842329 1.45896i −0.0271155 0.0469655i
\(966\) 0 0
\(967\) 5.75379i 0.185029i 0.995711 + 0.0925147i \(0.0294905\pi\)
−0.995711 + 0.0925147i \(0.970509\pi\)
\(968\) 0 0
\(969\) 10.5588 + 6.09612i 0.339197 + 0.195836i
\(970\) 0 0
\(971\) −9.65767 + 16.7276i −0.309929 + 0.536813i −0.978347 0.206973i \(-0.933639\pi\)
0.668417 + 0.743787i \(0.266972\pi\)
\(972\) 0 0
\(973\) −9.89286 + 5.71165i −0.317151 + 0.183107i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1.07925 0.623106i 0.0345283 0.0199349i −0.482636 0.875821i \(-0.660321\pi\)
0.517165 + 0.855886i \(0.326987\pi\)
\(978\) 0 0
\(979\) −2.09612 + 3.63058i −0.0669922 + 0.116034i
\(980\) 0 0
\(981\) −4.01029 2.31534i −0.128039 0.0739232i
\(982\) 0 0
\(983\) 24.9848i 0.796893i 0.917192 + 0.398446i \(0.130451\pi\)
−0.917192 + 0.398446i \(0.869549\pi\)
\(984\) 0 0
\(985\) 4.12311 + 7.14143i 0.131373 + 0.227545i
\(986\) 0 0
\(987\) 9.75379 0.310467
\(988\) 0 0
\(989\) −21.1771 −0.673392
\(990\) 0 0
\(991\) −1.84991 3.20413i −0.0587642 0.101783i 0.835147 0.550027i \(-0.185383\pi\)
−0.893911 + 0.448245i \(0.852049\pi\)
\(992\) 0 0
\(993\) 10.8229i 0.343455i
\(994\) 0 0
\(995\) 6.59524 + 3.80776i 0.209083 + 0.120714i
\(996\) 0 0
\(997\) 21.6231 37.4523i 0.684811 1.18613i −0.288686 0.957424i \(-0.593218\pi\)
0.973496 0.228703i \(-0.0734484\pi\)
\(998\) 0 0
\(999\) 4.81645 2.78078i 0.152386 0.0879799i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1352.2.o.c.361.4 8
13.2 odd 12 1352.2.a.f.1.1 2
13.3 even 3 1352.2.f.d.337.2 4
13.4 even 6 inner 1352.2.o.c.1161.3 8
13.5 odd 4 104.2.i.b.81.2 yes 4
13.6 odd 12 104.2.i.b.9.2 4
13.7 odd 12 1352.2.i.e.529.2 4
13.8 odd 4 1352.2.i.e.1329.2 4
13.9 even 3 inner 1352.2.o.c.1161.4 8
13.10 even 6 1352.2.f.d.337.1 4
13.11 odd 12 1352.2.a.h.1.1 2
13.12 even 2 inner 1352.2.o.c.361.3 8
39.5 even 4 936.2.t.f.289.1 4
39.32 even 12 936.2.t.f.217.1 4
52.3 odd 6 2704.2.f.l.337.4 4
52.11 even 12 2704.2.a.r.1.2 2
52.15 even 12 2704.2.a.q.1.2 2
52.19 even 12 208.2.i.e.113.1 4
52.23 odd 6 2704.2.f.l.337.3 4
52.31 even 4 208.2.i.e.81.1 4
104.5 odd 4 832.2.i.o.705.1 4
104.19 even 12 832.2.i.l.321.2 4
104.45 odd 12 832.2.i.o.321.1 4
104.83 even 4 832.2.i.l.705.2 4
156.71 odd 12 1872.2.t.s.1153.1 4
156.83 odd 4 1872.2.t.s.289.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.2.i.b.9.2 4 13.6 odd 12
104.2.i.b.81.2 yes 4 13.5 odd 4
208.2.i.e.81.1 4 52.31 even 4
208.2.i.e.113.1 4 52.19 even 12
832.2.i.l.321.2 4 104.19 even 12
832.2.i.l.705.2 4 104.83 even 4
832.2.i.o.321.1 4 104.45 odd 12
832.2.i.o.705.1 4 104.5 odd 4
936.2.t.f.217.1 4 39.32 even 12
936.2.t.f.289.1 4 39.5 even 4
1352.2.a.f.1.1 2 13.2 odd 12
1352.2.a.h.1.1 2 13.11 odd 12
1352.2.f.d.337.1 4 13.10 even 6
1352.2.f.d.337.2 4 13.3 even 3
1352.2.i.e.529.2 4 13.7 odd 12
1352.2.i.e.1329.2 4 13.8 odd 4
1352.2.o.c.361.3 8 13.12 even 2 inner
1352.2.o.c.361.4 8 1.1 even 1 trivial
1352.2.o.c.1161.3 8 13.4 even 6 inner
1352.2.o.c.1161.4 8 13.9 even 3 inner
1872.2.t.s.289.1 4 156.83 odd 4
1872.2.t.s.1153.1 4 156.71 odd 12
2704.2.a.q.1.2 2 52.15 even 12
2704.2.a.r.1.2 2 52.11 even 12
2704.2.f.l.337.3 4 52.23 odd 6
2704.2.f.l.337.4 4 52.3 odd 6