L(s) = 1 | + (0.780 + 1.35i)3-s + 0.561i·5-s + (1.35 + 0.780i)7-s + (0.280 − 0.486i)9-s + (1.35 − 0.780i)11-s + (−0.759 + 0.438i)15-s + (−2.5 + 4.33i)17-s + (−1.35 − 0.780i)19-s + 2.43i·21-s + (4.34 + 7.52i)23-s + 4.68·25-s + 5.56·27-s + (2.5 + 4.33i)29-s − 8i·31-s + (2.11 + 1.21i)33-s + ⋯ |
L(s) = 1 | + (0.450 + 0.780i)3-s + 0.251i·5-s + (0.511 + 0.295i)7-s + (0.0935 − 0.162i)9-s + (0.407 − 0.235i)11-s + (−0.196 + 0.113i)15-s + (−0.606 + 1.05i)17-s + (−0.310 − 0.179i)19-s + 0.532i·21-s + (0.905 + 1.56i)23-s + 0.936·25-s + 1.07·27-s + (0.464 + 0.804i)29-s − 1.43i·31-s + (0.367 + 0.212i)33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1352 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.252 - 0.967i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1352 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.252 - 0.967i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.136573482\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.136573482\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 \) |
good | 3 | \( 1 + (-0.780 - 1.35i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 - 0.561iT - 5T^{2} \) |
| 7 | \( 1 + (-1.35 - 0.780i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-1.35 + 0.780i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (2.5 - 4.33i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (1.35 + 0.780i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-4.34 - 7.52i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-2.5 - 4.33i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 8iT - 31T^{2} \) |
| 37 | \( 1 + (-0.866 + 0.5i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (6.27 - 3.62i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (1.21 - 2.11i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 4iT - 47T^{2} \) |
| 53 | \( 1 - 8.56T + 53T^{2} \) |
| 59 | \( 1 + (-1.35 - 0.780i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (4.62 - 8.00i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (11.7 - 6.78i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-4.05 - 2.34i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 13.6iT - 73T^{2} \) |
| 79 | \( 1 + 4T + 79T^{2} \) |
| 83 | \( 1 + 14.2iT - 83T^{2} \) |
| 89 | \( 1 + (2.32 - 1.34i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-15.4 - 8.90i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.760309176451793264730774480212, −8.813330566236378269153947494821, −8.563503673218445272025572772137, −7.32170537615462062966045926435, −6.52687074114947220345517464008, −5.51100650726264300074622454072, −4.53677240379484448124956732544, −3.74582452348395738655745793709, −2.84008880530730141856658389543, −1.45308493977658499567647898229,
0.934972108495174345304872610848, 2.06958132103718470803977403720, 3.04084058216161408047456724508, 4.55760280706305624148894438581, 4.93585149407208575771518435350, 6.51364448393575040452276968352, 6.96250203968606348289574030503, 7.82663153784431282452434157155, 8.612458578833541203273907487852, 9.133377166695950927052875780267