Properties

Label 2700.2.i.f.1801.1
Level $2700$
Weight $2$
Character 2700.1801
Analytic conductor $21.560$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2700,2,Mod(901,2700)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2700.901"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2700, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2700 = 2^{2} \cdot 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2700.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,0,0,0,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.5596085457\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 4x^{10} + 10x^{8} + 6x^{6} + 90x^{4} + 324x^{2} + 729 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 180)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1801.1
Root \(-0.602950 - 1.62372i\) of defining polynomial
Character \(\chi\) \(=\) 2700.1801
Dual form 2700.2.i.f.901.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.88482 + 3.26460i) q^{7} +(-1.77290 + 3.07076i) q^{11} +(0.501753 + 0.869061i) q^{13} +1.56023 q^{17} +7.21013 q^{19} +(-3.09072 - 5.35328i) q^{23} +(-1.50000 + 2.59808i) q^{29} +(2.89142 + 5.00809i) q^{31} -0.851576 q^{37} +(-1.55926 - 2.70072i) q^{41} +(-1.35333 + 2.34403i) q^{43} +(-4.87434 + 8.44260i) q^{47} +(-3.60506 - 6.24415i) q^{49} -11.2494 q^{53} +(-4.83216 - 8.36955i) q^{59} +(4.10506 - 7.11018i) q^{61} +(-1.45903 - 2.52711i) q^{67} -7.21013 q^{71} -16.7817 q^{73} +(-6.68319 - 11.5756i) q^{77} +(-5.49649 + 9.52020i) q^{79} +(-5.09773 + 8.82952i) q^{83} +5.33567 q^{89} -3.78285 q^{91} +(-1.93105 + 3.34467i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 2 q^{11} - 18 q^{29} + 6 q^{31} - 14 q^{41} - 34 q^{59} + 6 q^{61} + 6 q^{79} + 112 q^{89} + 12 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2700\mathbb{Z}\right)^\times\).

\(n\) \(1001\) \(1351\) \(2377\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −1.88482 + 3.26460i −0.712394 + 1.23390i 0.251563 + 0.967841i \(0.419056\pi\)
−0.963956 + 0.266061i \(0.914278\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −1.77290 + 3.07076i −0.534550 + 0.925868i 0.464635 + 0.885502i \(0.346186\pi\)
−0.999185 + 0.0403654i \(0.987148\pi\)
\(12\) 0 0
\(13\) 0.501753 + 0.869061i 0.139161 + 0.241034i 0.927179 0.374618i \(-0.122226\pi\)
−0.788018 + 0.615652i \(0.788893\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.56023 0.378410 0.189205 0.981938i \(-0.439409\pi\)
0.189205 + 0.981938i \(0.439409\pi\)
\(18\) 0 0
\(19\) 7.21013 1.65412 0.827058 0.562116i \(-0.190013\pi\)
0.827058 + 0.562116i \(0.190013\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −3.09072 5.35328i −0.644459 1.11624i −0.984426 0.175799i \(-0.943749\pi\)
0.339967 0.940437i \(-0.389584\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −1.50000 + 2.59808i −0.278543 + 0.482451i −0.971023 0.238987i \(-0.923185\pi\)
0.692480 + 0.721437i \(0.256518\pi\)
\(30\) 0 0
\(31\) 2.89142 + 5.00809i 0.519315 + 0.899480i 0.999748 + 0.0224486i \(0.00714621\pi\)
−0.480433 + 0.877031i \(0.659520\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −0.851576 −0.139998 −0.0699991 0.997547i \(-0.522300\pi\)
−0.0699991 + 0.997547i \(0.522300\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −1.55926 2.70072i −0.243516 0.421782i 0.718198 0.695839i \(-0.244967\pi\)
−0.961713 + 0.274058i \(0.911634\pi\)
\(42\) 0 0
\(43\) −1.35333 + 2.34403i −0.206381 + 0.357462i −0.950572 0.310505i \(-0.899502\pi\)
0.744191 + 0.667967i \(0.232835\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −4.87434 + 8.44260i −0.710995 + 1.23148i 0.253489 + 0.967338i \(0.418422\pi\)
−0.964484 + 0.264141i \(0.914912\pi\)
\(48\) 0 0
\(49\) −3.60506 6.24415i −0.515009 0.892022i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −11.2494 −1.54523 −0.772614 0.634876i \(-0.781051\pi\)
−0.772614 + 0.634876i \(0.781051\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −4.83216 8.36955i −0.629094 1.08962i −0.987734 0.156147i \(-0.950093\pi\)
0.358640 0.933476i \(-0.383241\pi\)
\(60\) 0 0
\(61\) 4.10506 7.11018i 0.525600 0.910365i −0.473956 0.880549i \(-0.657174\pi\)
0.999555 0.0298166i \(-0.00949232\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −1.45903 2.52711i −0.178249 0.308736i 0.763032 0.646361i \(-0.223710\pi\)
−0.941281 + 0.337625i \(0.890376\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −7.21013 −0.855685 −0.427842 0.903853i \(-0.640726\pi\)
−0.427842 + 0.903853i \(0.640726\pi\)
\(72\) 0 0
\(73\) −16.7817 −1.96415 −0.982074 0.188498i \(-0.939638\pi\)
−0.982074 + 0.188498i \(0.939638\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −6.68319 11.5756i −0.761620 1.31916i
\(78\) 0 0
\(79\) −5.49649 + 9.52020i −0.618403 + 1.07111i 0.371374 + 0.928483i \(0.378887\pi\)
−0.989777 + 0.142622i \(0.954447\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −5.09773 + 8.82952i −0.559548 + 0.969166i 0.437986 + 0.898982i \(0.355692\pi\)
−0.997534 + 0.0701843i \(0.977641\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 5.33567 0.565580 0.282790 0.959182i \(-0.408740\pi\)
0.282790 + 0.959182i \(0.408740\pi\)
\(90\) 0 0
\(91\) −3.78285 −0.396550
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −1.93105 + 3.34467i −0.196068 + 0.339600i −0.947250 0.320495i \(-0.896151\pi\)
0.751182 + 0.660095i \(0.229484\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 2.37797 4.11876i 0.236616 0.409832i −0.723125 0.690717i \(-0.757295\pi\)
0.959741 + 0.280886i \(0.0906282\pi\)
\(102\) 0 0
\(103\) 9.04452 + 15.6656i 0.891183 + 1.54357i 0.838458 + 0.544966i \(0.183457\pi\)
0.0527251 + 0.998609i \(0.483209\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −3.61770 −0.349737 −0.174868 0.984592i \(-0.555950\pi\)
−0.174868 + 0.984592i \(0.555950\pi\)
\(108\) 0 0
\(109\) −9.63741 −0.923096 −0.461548 0.887115i \(-0.652706\pi\)
−0.461548 + 0.887115i \(0.652706\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −1.77912 3.08152i −0.167365 0.289885i 0.770127 0.637890i \(-0.220193\pi\)
−0.937493 + 0.348005i \(0.886859\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −2.94074 + 5.09351i −0.269577 + 0.466921i
\(120\) 0 0
\(121\) −0.786360 1.36201i −0.0714872 0.123820i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 6.78015 0.601641 0.300820 0.953681i \(-0.402739\pi\)
0.300820 + 0.953681i \(0.402739\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −1.71364 2.96811i −0.149721 0.259325i 0.781403 0.624027i \(-0.214504\pi\)
−0.931124 + 0.364702i \(0.881171\pi\)
\(132\) 0 0
\(133\) −13.5898 + 23.5382i −1.17838 + 2.04102i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 7.46330 12.9268i 0.637633 1.10441i −0.348318 0.937376i \(-0.613247\pi\)
0.985951 0.167036i \(-0.0534196\pi\)
\(138\) 0 0
\(139\) 2.71364 + 4.70016i 0.230168 + 0.398663i 0.957857 0.287244i \(-0.0927391\pi\)
−0.727689 + 0.685907i \(0.759406\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −3.55823 −0.297554
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 2.76939 + 4.79672i 0.226877 + 0.392963i 0.956881 0.290480i \(-0.0938150\pi\)
−0.730004 + 0.683443i \(0.760482\pi\)
\(150\) 0 0
\(151\) −0.108576 + 0.188059i −0.00883580 + 0.0153041i −0.870409 0.492328i \(-0.836146\pi\)
0.861574 + 0.507633i \(0.169479\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 1.07947 + 1.86970i 0.0861511 + 0.149218i 0.905881 0.423532i \(-0.139210\pi\)
−0.819730 + 0.572750i \(0.805877\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 23.3017 1.83643
\(162\) 0 0
\(163\) −8.39084 −0.657221 −0.328611 0.944465i \(-0.606580\pi\)
−0.328611 + 0.944465i \(0.606580\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 2.31060 + 4.00208i 0.178800 + 0.309691i 0.941470 0.337097i \(-0.109445\pi\)
−0.762670 + 0.646788i \(0.776112\pi\)
\(168\) 0 0
\(169\) 5.99649 10.3862i 0.461268 0.798940i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −0.725146 + 1.25599i −0.0551318 + 0.0954911i −0.892274 0.451494i \(-0.850891\pi\)
0.837142 + 0.546985i \(0.184225\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 19.4472 1.45355 0.726775 0.686876i \(-0.241018\pi\)
0.726775 + 0.686876i \(0.241018\pi\)
\(180\) 0 0
\(181\) −10.4273 −0.775054 −0.387527 0.921858i \(-0.626671\pi\)
−0.387527 + 0.921858i \(0.626671\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −2.76613 + 4.79107i −0.202279 + 0.350358i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −1.89142 + 3.27604i −0.136859 + 0.237046i −0.926306 0.376772i \(-0.877034\pi\)
0.789447 + 0.613818i \(0.210367\pi\)
\(192\) 0 0
\(193\) −7.03751 12.1893i −0.506571 0.877407i −0.999971 0.00760445i \(-0.997579\pi\)
0.493400 0.869803i \(-0.335754\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −21.5044 −1.53212 −0.766061 0.642768i \(-0.777786\pi\)
−0.766061 + 0.642768i \(0.777786\pi\)
\(198\) 0 0
\(199\) 7.21013 0.511112 0.255556 0.966794i \(-0.417741\pi\)
0.255556 + 0.966794i \(0.417741\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −5.65445 9.79379i −0.396864 0.687389i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −12.7828 + 22.1405i −0.884208 + 1.53149i
\(210\) 0 0
\(211\) −1.89142 3.27604i −0.130211 0.225532i 0.793547 0.608509i \(-0.208232\pi\)
−0.923758 + 0.382977i \(0.874899\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −21.7992 −1.47983
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0.782848 + 1.35593i 0.0526600 + 0.0912099i
\(222\) 0 0
\(223\) 1.45903 2.52711i 0.0977038 0.169228i −0.813030 0.582222i \(-0.802184\pi\)
0.910734 + 0.412994i \(0.135517\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −2.55923 + 4.43272i −0.169862 + 0.294210i −0.938371 0.345629i \(-0.887666\pi\)
0.768509 + 0.639839i \(0.220999\pi\)
\(228\) 0 0
\(229\) 4.71013 + 8.15818i 0.311254 + 0.539108i 0.978634 0.205609i \(-0.0659177\pi\)
−0.667380 + 0.744717i \(0.732584\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −26.1850 −1.71544 −0.857719 0.514118i \(-0.828119\pi\)
−0.857719 + 0.514118i \(0.828119\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −11.3780 19.7072i −0.735979 1.27475i −0.954292 0.298875i \(-0.903389\pi\)
0.218313 0.975879i \(-0.429945\pi\)
\(240\) 0 0
\(241\) −8.31519 + 14.4023i −0.535629 + 0.927736i 0.463504 + 0.886095i \(0.346592\pi\)
−0.999133 + 0.0416412i \(0.986741\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 3.61770 + 6.26604i 0.230189 + 0.398699i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 20.7758 1.31136 0.655679 0.755040i \(-0.272382\pi\)
0.655679 + 0.755040i \(0.272382\pi\)
\(252\) 0 0
\(253\) 21.9181 1.37798
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 9.52978 + 16.5061i 0.594451 + 1.02962i 0.993624 + 0.112744i \(0.0359641\pi\)
−0.399173 + 0.916876i \(0.630703\pi\)
\(258\) 0 0
\(259\) 1.60506 2.78005i 0.0997338 0.172744i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 4.06899 7.04770i 0.250905 0.434580i −0.712870 0.701296i \(-0.752605\pi\)
0.963775 + 0.266716i \(0.0859386\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 25.6374 1.56314 0.781570 0.623817i \(-0.214419\pi\)
0.781570 + 0.623817i \(0.214419\pi\)
\(270\) 0 0
\(271\) −3.21013 −0.195001 −0.0975007 0.995235i \(-0.531085\pi\)
−0.0975007 + 0.995235i \(0.531085\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −0.349823 + 0.605911i −0.0210188 + 0.0364057i −0.876343 0.481687i \(-0.840024\pi\)
0.855325 + 0.518092i \(0.173358\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −15.3152 + 26.5267i −0.913628 + 1.58245i −0.104730 + 0.994501i \(0.533398\pi\)
−0.808898 + 0.587949i \(0.799936\pi\)
\(282\) 0 0
\(283\) −4.80287 8.31882i −0.285501 0.494502i 0.687229 0.726440i \(-0.258827\pi\)
−0.972731 + 0.231938i \(0.925493\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 11.7557 0.693916
\(288\) 0 0
\(289\) −14.5657 −0.856806
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 1.50526 + 2.60718i 0.0879381 + 0.152313i 0.906639 0.421906i \(-0.138639\pi\)
−0.818701 + 0.574220i \(0.805306\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 3.10155 5.37205i 0.179367 0.310673i
\(300\) 0 0
\(301\) −5.10155 8.83615i −0.294049 0.509307i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 14.8671 0.848512 0.424256 0.905542i \(-0.360536\pi\)
0.424256 + 0.905542i \(0.360536\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 1.53586 + 2.66018i 0.0870905 + 0.150845i 0.906280 0.422678i \(-0.138910\pi\)
−0.819190 + 0.573523i \(0.805576\pi\)
\(312\) 0 0
\(313\) 11.5068 19.9303i 0.650402 1.12653i −0.332623 0.943060i \(-0.607934\pi\)
0.983025 0.183470i \(-0.0587330\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −0.00450177 + 0.00779729i −0.000252844 + 0.000437939i −0.866152 0.499781i \(-0.833414\pi\)
0.865899 + 0.500219i \(0.166747\pi\)
\(318\) 0 0
\(319\) −5.31870 9.21227i −0.297790 0.515788i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 11.2494 0.625935
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −18.3745 31.8255i −1.01302 1.75460i
\(330\) 0 0
\(331\) −4.49649 + 7.78815i −0.247149 + 0.428075i −0.962734 0.270451i \(-0.912827\pi\)
0.715584 + 0.698526i \(0.246160\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −2.63069 4.55649i −0.143303 0.248208i 0.785436 0.618943i \(-0.212439\pi\)
−0.928739 + 0.370735i \(0.879106\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −20.5048 −1.11040
\(342\) 0 0
\(343\) 0.792107 0.0427698
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 10.7477 + 18.6155i 0.576965 + 0.999333i 0.995825 + 0.0912825i \(0.0290966\pi\)
−0.418860 + 0.908051i \(0.637570\pi\)
\(348\) 0 0
\(349\) 6.28285 10.8822i 0.336313 0.582511i −0.647423 0.762131i \(-0.724153\pi\)
0.983736 + 0.179619i \(0.0574866\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 12.5313 21.7048i 0.666973 1.15523i −0.311773 0.950157i \(-0.600923\pi\)
0.978746 0.205075i \(-0.0657439\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −23.1961 −1.22424 −0.612121 0.790764i \(-0.709684\pi\)
−0.612121 + 0.790764i \(0.709684\pi\)
\(360\) 0 0
\(361\) 32.9860 1.73610
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 8.89259 15.4024i 0.464190 0.804000i −0.534975 0.844868i \(-0.679679\pi\)
0.999165 + 0.0408679i \(0.0130123\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 21.2031 36.7249i 1.10081 1.90666i
\(372\) 0 0
\(373\) 6.45979 + 11.1887i 0.334475 + 0.579328i 0.983384 0.181538i \(-0.0581075\pi\)
−0.648908 + 0.760866i \(0.724774\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −3.01052 −0.155050
\(378\) 0 0
\(379\) −5.56570 −0.285891 −0.142945 0.989731i \(-0.545657\pi\)
−0.142945 + 0.989731i \(0.545657\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 14.8716 + 25.7584i 0.759905 + 1.31619i 0.942899 + 0.333080i \(0.108088\pi\)
−0.182994 + 0.983114i \(0.558579\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −3.77641 + 6.54094i −0.191472 + 0.331639i −0.945738 0.324930i \(-0.894659\pi\)
0.754266 + 0.656568i \(0.227993\pi\)
\(390\) 0 0
\(391\) −4.82222 8.35232i −0.243870 0.422395i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −30.1571 −1.51354 −0.756770 0.653682i \(-0.773224\pi\)
−0.756770 + 0.653682i \(0.773224\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −10.8322 18.7619i −0.540932 0.936922i −0.998851 0.0479282i \(-0.984738\pi\)
0.457918 0.888994i \(-0.348595\pi\)
\(402\) 0 0
\(403\) −2.90156 + 5.02565i −0.144537 + 0.250345i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1.50976 2.61498i 0.0748360 0.129620i
\(408\) 0 0
\(409\) 4.06921 + 7.04807i 0.201209 + 0.348505i 0.948918 0.315522i \(-0.102180\pi\)
−0.747709 + 0.664027i \(0.768846\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 36.4310 1.79265
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 6.64736 + 11.5136i 0.324745 + 0.562474i 0.981461 0.191664i \(-0.0613883\pi\)
−0.656716 + 0.754138i \(0.728055\pi\)
\(420\) 0 0
\(421\) −10.0692 + 17.4404i −0.490743 + 0.849992i −0.999943 0.0106561i \(-0.996608\pi\)
0.509200 + 0.860648i \(0.329941\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 15.4746 + 26.8028i 0.748868 + 1.29708i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −25.8027 −1.24287 −0.621437 0.783464i \(-0.713451\pi\)
−0.621437 + 0.783464i \(0.713451\pi\)
\(432\) 0 0
\(433\) 6.38383 0.306787 0.153394 0.988165i \(-0.450980\pi\)
0.153394 + 0.988165i \(0.450980\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −22.2845 38.5978i −1.06601 1.84638i
\(438\) 0 0
\(439\) −5.49649 + 9.52020i −0.262333 + 0.454374i −0.966861 0.255302i \(-0.917825\pi\)
0.704528 + 0.709676i \(0.251159\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −12.6160 + 21.8515i −0.599404 + 1.03820i 0.393505 + 0.919322i \(0.371262\pi\)
−0.992909 + 0.118876i \(0.962071\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 19.5657 0.923362 0.461681 0.887046i \(-0.347246\pi\)
0.461681 + 0.887046i \(0.347246\pi\)
\(450\) 0 0
\(451\) 11.0577 0.520685
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 3.26788 5.66013i 0.152865 0.264770i −0.779415 0.626508i \(-0.784483\pi\)
0.932280 + 0.361739i \(0.117817\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −17.7101 + 30.6748i −0.824843 + 1.42867i 0.0771964 + 0.997016i \(0.475403\pi\)
−0.902039 + 0.431654i \(0.857930\pi\)
\(462\) 0 0
\(463\) −8.13348 14.0876i −0.377995 0.654706i 0.612776 0.790257i \(-0.290053\pi\)
−0.990770 + 0.135551i \(0.956720\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 15.8112 0.731654 0.365827 0.930683i \(-0.380786\pi\)
0.365827 + 0.930683i \(0.380786\pi\)
\(468\) 0 0
\(469\) 11.0000 0.507933
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −4.79864 8.31148i −0.220642 0.382162i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −16.3709 + 28.3553i −0.748007 + 1.29559i 0.200769 + 0.979639i \(0.435656\pi\)
−0.948776 + 0.315948i \(0.897677\pi\)
\(480\) 0 0
\(481\) −0.427281 0.740072i −0.0194823 0.0337444i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 36.4220 1.65044 0.825218 0.564814i \(-0.191052\pi\)
0.825218 + 0.564814i \(0.191052\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −1.71364 2.96811i −0.0773355 0.133949i 0.824764 0.565477i \(-0.191308\pi\)
−0.902100 + 0.431528i \(0.857975\pi\)
\(492\) 0 0
\(493\) −2.34034 + 4.05359i −0.105404 + 0.182564i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 13.5898 23.5382i 0.609584 1.05583i
\(498\) 0 0
\(499\) −1.71364 2.96811i −0.0767131 0.132871i 0.825117 0.564962i \(-0.191109\pi\)
−0.901830 + 0.432091i \(0.857776\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 17.4219 0.776802 0.388401 0.921490i \(-0.373027\pi\)
0.388401 + 0.921490i \(0.373027\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −7.07272 12.2503i −0.313493 0.542985i 0.665623 0.746288i \(-0.268166\pi\)
−0.979116 + 0.203303i \(0.934832\pi\)
\(510\) 0 0
\(511\) 31.6304 54.7854i 1.39925 2.42356i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −17.2834 29.9358i −0.760125 1.31657i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 20.2300 0.886293 0.443147 0.896449i \(-0.353862\pi\)
0.443147 + 0.896449i \(0.353862\pi\)
\(522\) 0 0
\(523\) 36.3295 1.58858 0.794289 0.607540i \(-0.207844\pi\)
0.794289 + 0.607540i \(0.207844\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 4.51127 + 7.81376i 0.196514 + 0.340373i
\(528\) 0 0
\(529\) −7.60506 + 13.1724i −0.330655 + 0.572711i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 1.56473 2.71019i 0.0677759 0.117391i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 25.5657 1.10119
\(540\) 0 0
\(541\) 24.8475 1.06828 0.534140 0.845396i \(-0.320636\pi\)
0.534140 + 0.845396i \(0.320636\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 16.0523 27.8034i 0.686347 1.18879i −0.286665 0.958031i \(-0.592547\pi\)
0.973012 0.230757i \(-0.0741201\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −10.8152 + 18.7325i −0.460743 + 0.798030i
\(552\) 0 0
\(553\) −20.7197 35.8876i −0.881093 1.52610i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 17.3894 0.736813 0.368406 0.929665i \(-0.379904\pi\)
0.368406 + 0.929665i \(0.379904\pi\)
\(558\) 0 0
\(559\) −2.71615 −0.114881
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 13.6700 + 23.6771i 0.576120 + 0.997870i 0.995919 + 0.0902525i \(0.0287674\pi\)
−0.419799 + 0.907617i \(0.637899\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −7.59512 + 13.1551i −0.318404 + 0.551492i −0.980155 0.198232i \(-0.936480\pi\)
0.661751 + 0.749723i \(0.269813\pi\)
\(570\) 0 0
\(571\) 19.3510 + 33.5170i 0.809816 + 1.40264i 0.912991 + 0.407980i \(0.133767\pi\)
−0.103175 + 0.994663i \(0.532900\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 3.82910 0.159408 0.0797038 0.996819i \(-0.474603\pi\)
0.0797038 + 0.996819i \(0.474603\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −19.2166 33.2841i −0.797237 1.38086i
\(582\) 0 0
\(583\) 19.9441 34.5442i 0.826001 1.43068i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −12.3421 + 21.3772i −0.509415 + 0.882332i 0.490526 + 0.871427i \(0.336805\pi\)
−0.999941 + 0.0109053i \(0.996529\pi\)
\(588\) 0 0
\(589\) 20.8475 + 36.1090i 0.859008 + 1.48785i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 38.4290 1.57809 0.789044 0.614336i \(-0.210576\pi\)
0.789044 + 0.614336i \(0.210576\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 7.71364 + 13.3604i 0.315171 + 0.545892i 0.979474 0.201572i \(-0.0646049\pi\)
−0.664303 + 0.747463i \(0.731272\pi\)
\(600\) 0 0
\(601\) 0.286360 0.495989i 0.0116809 0.0202318i −0.860126 0.510082i \(-0.829615\pi\)
0.871807 + 0.489850i \(0.162948\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −4.52901 7.84448i −0.183827 0.318398i 0.759354 0.650678i \(-0.225515\pi\)
−0.943181 + 0.332280i \(0.892182\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −9.78285 −0.395772
\(612\) 0 0
\(613\) −6.99155 −0.282386 −0.141193 0.989982i \(-0.545094\pi\)
−0.141193 + 0.989982i \(0.545094\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −9.91710 17.1769i −0.399247 0.691517i 0.594386 0.804180i \(-0.297395\pi\)
−0.993633 + 0.112663i \(0.964062\pi\)
\(618\) 0 0
\(619\) 14.1016 24.4246i 0.566789 0.981708i −0.430092 0.902785i \(-0.641519\pi\)
0.996881 0.0789225i \(-0.0251480\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −10.0568 + 17.4188i −0.402916 + 0.697871i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −1.32865 −0.0529768
\(630\) 0 0
\(631\) −7.27482 −0.289606 −0.144803 0.989461i \(-0.546255\pi\)
−0.144803 + 0.989461i \(0.546255\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 3.61770 6.26604i 0.143339 0.248270i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 6.43372 11.1435i 0.254116 0.440143i −0.710539 0.703658i \(-0.751549\pi\)
0.964655 + 0.263515i \(0.0848820\pi\)
\(642\) 0 0
\(643\) 12.6160 + 21.8515i 0.497526 + 0.861741i 0.999996 0.00285403i \(-0.000908467\pi\)
−0.502470 + 0.864595i \(0.667575\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 23.5618 0.926311 0.463156 0.886277i \(-0.346717\pi\)
0.463156 + 0.886277i \(0.346717\pi\)
\(648\) 0 0
\(649\) 34.2678 1.34513
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 8.69020 + 15.0519i 0.340074 + 0.589025i 0.984446 0.175687i \(-0.0562146\pi\)
−0.644372 + 0.764712i \(0.722881\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −7.83216 + 13.5657i −0.305098 + 0.528445i −0.977283 0.211938i \(-0.932022\pi\)
0.672185 + 0.740383i \(0.265356\pi\)
\(660\) 0 0
\(661\) −11.7136 20.2886i −0.455608 0.789136i 0.543115 0.839658i \(-0.317245\pi\)
−0.998723 + 0.0505224i \(0.983911\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 18.5443 0.718038
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 14.5557 + 25.2113i 0.561918 + 0.973271i
\(672\) 0 0
\(673\) 14.3654 24.8816i 0.553745 0.959114i −0.444255 0.895900i \(-0.646532\pi\)
0.998000 0.0632136i \(-0.0201350\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −25.1770 + 43.6079i −0.967632 + 1.67599i −0.265260 + 0.964177i \(0.585458\pi\)
−0.702372 + 0.711810i \(0.747876\pi\)
\(678\) 0 0
\(679\) −7.27934 12.6082i −0.279355 0.483858i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 11.5953 0.443681 0.221841 0.975083i \(-0.428794\pi\)
0.221841 + 0.975083i \(0.428794\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −5.64443 9.77644i −0.215036 0.372453i
\(690\) 0 0
\(691\) −22.9238 + 39.7051i −0.872061 + 1.51045i −0.0122006 + 0.999926i \(0.503884\pi\)
−0.859861 + 0.510529i \(0.829450\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −2.43280 4.21373i −0.0921489 0.159606i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 38.1115 1.43945 0.719726 0.694259i \(-0.244268\pi\)
0.719726 + 0.694259i \(0.244268\pi\)
\(702\) 0 0
\(703\) −6.13997 −0.231573
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 8.96406 + 15.5262i 0.337128 + 0.583923i
\(708\) 0 0
\(709\) 1.14443 1.98222i 0.0429801 0.0744437i −0.843735 0.536760i \(-0.819648\pi\)
0.886715 + 0.462316i \(0.152981\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 17.8731 30.9572i 0.669355 1.15936i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 16.6035 0.619205 0.309602 0.950866i \(-0.399804\pi\)
0.309602 + 0.950866i \(0.399804\pi\)
\(720\) 0 0
\(721\) −68.1891 −2.53949
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −19.3037 + 33.4350i −0.715934 + 1.24003i 0.246664 + 0.969101i \(0.420666\pi\)
−0.962598 + 0.270933i \(0.912668\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −2.11150 + 3.65722i −0.0780966 + 0.135267i
\(732\) 0 0
\(733\) 16.9501 + 29.3584i 0.626066 + 1.08438i 0.988334 + 0.152305i \(0.0486695\pi\)
−0.362267 + 0.932074i \(0.617997\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 10.3469 0.381131
\(738\) 0 0
\(739\) −36.8405 −1.35520 −0.677600 0.735431i \(-0.736980\pi\)
−0.677600 + 0.735431i \(0.736980\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −5.71392 9.89680i −0.209623 0.363078i 0.741973 0.670430i \(-0.233890\pi\)
−0.951596 + 0.307352i \(0.900557\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 6.81870 11.8103i 0.249150 0.431541i
\(750\) 0 0
\(751\) 8.10155 + 14.0323i 0.295630 + 0.512046i 0.975131 0.221628i \(-0.0711372\pi\)
−0.679501 + 0.733674i \(0.737804\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −8.08698 −0.293926 −0.146963 0.989142i \(-0.546950\pi\)
−0.146963 + 0.989142i \(0.546950\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 10.7031 + 18.5383i 0.387987 + 0.672014i 0.992179 0.124826i \(-0.0398371\pi\)
−0.604191 + 0.796839i \(0.706504\pi\)
\(762\) 0 0
\(763\) 18.1647 31.4623i 0.657608 1.13901i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 4.84910 8.39889i 0.175091 0.303266i
\(768\) 0 0
\(769\) −25.7031 44.5191i −0.926878 1.60540i −0.788513 0.615018i \(-0.789149\pi\)
−0.138364 0.990381i \(-0.544185\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −11.2425 19.4725i −0.402803 0.697676i
\(780\) 0 0
\(781\) 12.7828 22.1405i 0.457406 0.792251i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −2.35683 4.08216i −0.0840121 0.145513i 0.820958 0.570989i \(-0.193440\pi\)
−0.904970 + 0.425476i \(0.860107\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 13.4132 0.476920
\(792\) 0 0
\(793\) 8.23891 0.292572
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 5.13196 + 8.88882i 0.181784 + 0.314858i 0.942488 0.334240i \(-0.108480\pi\)
−0.760704 + 0.649098i \(0.775146\pi\)
\(798\) 0 0
\(799\) −7.60506 + 13.1724i −0.269048 + 0.466005i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 29.7523 51.5324i 1.04993 1.81854i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −21.9860 −0.772985 −0.386492 0.922293i \(-0.626313\pi\)
−0.386492 + 0.922293i \(0.626313\pi\)
\(810\) 0 0
\(811\) −25.6951 −0.902276 −0.451138 0.892454i \(-0.648982\pi\)
−0.451138 + 0.892454i \(0.648982\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −9.75767 + 16.9008i −0.341378 + 0.591284i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 12.1967 21.1253i 0.425667 0.737276i −0.570816 0.821078i \(-0.693373\pi\)
0.996482 + 0.0838018i \(0.0267063\pi\)
\(822\) 0 0
\(823\) −1.30710 2.26396i −0.0455626 0.0789167i 0.842345 0.538939i \(-0.181175\pi\)
−0.887907 + 0.460022i \(0.847841\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0.0684725 0.00238102 0.00119051 0.999999i \(-0.499621\pi\)
0.00119051 + 0.999999i \(0.499621\pi\)
\(828\) 0 0
\(829\) −24.7828 −0.860744 −0.430372 0.902652i \(-0.641618\pi\)
−0.430372 + 0.902652i \(0.641618\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −5.62471 9.74229i −0.194885 0.337550i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 22.6204 39.1797i 0.780944 1.35264i −0.150448 0.988618i \(-0.548072\pi\)
0.931392 0.364017i \(-0.118595\pi\)
\(840\) 0 0
\(841\) 10.0000 + 17.3205i 0.344828 + 0.597259i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 5.92857 0.203708
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 2.63198 + 4.55872i 0.0902231 + 0.156271i
\(852\) 0 0
\(853\) 10.1075 17.5067i 0.346074 0.599418i −0.639474 0.768813i \(-0.720848\pi\)
0.985548 + 0.169395i \(0.0541812\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 13.4213 23.2464i 0.458464 0.794083i −0.540416 0.841398i \(-0.681733\pi\)
0.998880 + 0.0473147i \(0.0150664\pi\)
\(858\) 0 0
\(859\) −1.68130 2.91209i −0.0573651 0.0993592i 0.835917 0.548856i \(-0.184937\pi\)
−0.893282 + 0.449497i \(0.851603\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −18.4524 −0.628126 −0.314063 0.949402i \(-0.601690\pi\)
−0.314063 + 0.949402i \(0.601690\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −19.4895 33.7567i −0.661135 1.14512i
\(870\) 0 0
\(871\) 1.46414 2.53597i 0.0496106 0.0859281i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 11.5993 + 20.0905i 0.391679 + 0.678408i 0.992671 0.120847i \(-0.0385611\pi\)
−0.600992 + 0.799255i \(0.705228\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −2.34854 −0.0791244 −0.0395622 0.999217i \(-0.512596\pi\)
−0.0395622 + 0.999217i \(0.512596\pi\)
\(882\) 0 0
\(883\) 16.3264 0.549428 0.274714 0.961526i \(-0.411417\pi\)
0.274714 + 0.961526i \(0.411417\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 13.4213 + 23.2464i 0.450645 + 0.780539i 0.998426 0.0560821i \(-0.0178609\pi\)
−0.547782 + 0.836621i \(0.684528\pi\)
\(888\) 0 0
\(889\) −12.7793 + 22.1345i −0.428605 + 0.742366i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −35.1446 + 60.8722i −1.17607 + 2.03701i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −17.3485 −0.578606
\(900\) 0 0
\(901\) −17.5516 −0.584730
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −3.92130 + 6.79188i −0.130204 + 0.225521i −0.923755 0.382983i \(-0.874897\pi\)
0.793551 + 0.608504i \(0.208230\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 1.28636 2.22804i 0.0426190 0.0738183i −0.843929 0.536455i \(-0.819763\pi\)
0.886548 + 0.462637i \(0.153097\pi\)
\(912\) 0 0
\(913\) −18.0755 31.3078i −0.598213 1.03614i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 12.9196 0.426642
\(918\) 0 0
\(919\) 42.4062 1.39885 0.699426 0.714705i \(-0.253439\pi\)
0.699426 + 0.714705i \(0.253439\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −3.61770 6.26604i −0.119078 0.206249i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 25.9167 44.8891i 0.850301 1.47276i −0.0306361 0.999531i \(-0.509753\pi\)
0.880937 0.473234i \(-0.156913\pi\)
\(930\) 0 0
\(931\) −25.9930 45.0212i −0.851885 1.47551i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −16.9666 −0.554275 −0.277137 0.960830i \(-0.589386\pi\)
−0.277137 + 0.960830i \(0.589386\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 2.82865 + 4.89937i 0.0922114 + 0.159715i 0.908441 0.418012i \(-0.137273\pi\)
−0.816230 + 0.577727i \(0.803940\pi\)
\(942\) 0 0
\(943\) −9.63847 + 16.6943i −0.313872 + 0.543642i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 17.6930 30.6452i 0.574945 0.995834i −0.421103 0.907013i \(-0.638357\pi\)
0.996048 0.0888210i \(-0.0283099\pi\)
\(948\) 0 0
\(949\) −8.42026 14.5843i −0.273333 0.473427i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 1.66116 0.0538101 0.0269051 0.999638i \(-0.491435\pi\)
0.0269051 + 0.999638i \(0.491435\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 28.1339 + 48.7293i 0.908491 + 1.57355i
\(960\) 0 0
\(961\) −1.22066 + 2.11425i −0.0393763 + 0.0682017i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −10.3681 17.9581i −0.333416 0.577494i 0.649763 0.760137i \(-0.274868\pi\)
−0.983179 + 0.182643i \(0.941535\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −20.9193 −0.671331 −0.335665 0.941981i \(-0.608961\pi\)
−0.335665 + 0.941981i \(0.608961\pi\)
\(972\) 0 0
\(973\) −20.4589 −0.655881
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1.44579 + 2.50418i 0.0462549 + 0.0801159i 0.888226 0.459407i \(-0.151938\pi\)
−0.841971 + 0.539523i \(0.818605\pi\)
\(978\) 0 0
\(979\) −9.45963 + 16.3846i −0.302331 + 0.523653i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 3.15019 5.45628i 0.100475 0.174028i −0.811405 0.584484i \(-0.801297\pi\)
0.911881 + 0.410456i \(0.134630\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 16.7310 0.532016
\(990\) 0 0
\(991\) −32.0000 −1.01651 −0.508257 0.861206i \(-0.669710\pi\)
−0.508257 + 0.861206i \(0.669710\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −4.78963 + 8.29589i −0.151689 + 0.262733i −0.931849 0.362847i \(-0.881805\pi\)
0.780159 + 0.625581i \(0.215138\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2700.2.i.f.1801.1 12
3.2 odd 2 900.2.i.f.601.3 12
5.2 odd 4 540.2.r.a.289.4 12
5.3 odd 4 540.2.r.a.289.6 12
5.4 even 2 inner 2700.2.i.f.1801.6 12
9.2 odd 6 8100.2.a.bc.1.6 6
9.4 even 3 inner 2700.2.i.f.901.1 12
9.5 odd 6 900.2.i.f.301.3 12
9.7 even 3 8100.2.a.bd.1.6 6
15.2 even 4 180.2.r.a.169.1 yes 12
15.8 even 4 180.2.r.a.169.6 yes 12
15.14 odd 2 900.2.i.f.601.4 12
20.3 even 4 2160.2.by.e.289.6 12
20.7 even 4 2160.2.by.e.289.4 12
45.2 even 12 1620.2.d.c.649.6 6
45.4 even 6 inner 2700.2.i.f.901.6 12
45.7 odd 12 1620.2.d.d.649.1 6
45.13 odd 12 540.2.r.a.469.4 12
45.14 odd 6 900.2.i.f.301.4 12
45.22 odd 12 540.2.r.a.469.6 12
45.23 even 12 180.2.r.a.49.1 12
45.29 odd 6 8100.2.a.bc.1.1 6
45.32 even 12 180.2.r.a.49.6 yes 12
45.34 even 6 8100.2.a.bd.1.1 6
45.38 even 12 1620.2.d.c.649.5 6
45.43 odd 12 1620.2.d.d.649.2 6
60.23 odd 4 720.2.by.e.529.1 12
60.47 odd 4 720.2.by.e.529.6 12
180.23 odd 12 720.2.by.e.49.6 12
180.67 even 12 2160.2.by.e.1009.6 12
180.103 even 12 2160.2.by.e.1009.4 12
180.167 odd 12 720.2.by.e.49.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
180.2.r.a.49.1 12 45.23 even 12
180.2.r.a.49.6 yes 12 45.32 even 12
180.2.r.a.169.1 yes 12 15.2 even 4
180.2.r.a.169.6 yes 12 15.8 even 4
540.2.r.a.289.4 12 5.2 odd 4
540.2.r.a.289.6 12 5.3 odd 4
540.2.r.a.469.4 12 45.13 odd 12
540.2.r.a.469.6 12 45.22 odd 12
720.2.by.e.49.1 12 180.167 odd 12
720.2.by.e.49.6 12 180.23 odd 12
720.2.by.e.529.1 12 60.23 odd 4
720.2.by.e.529.6 12 60.47 odd 4
900.2.i.f.301.3 12 9.5 odd 6
900.2.i.f.301.4 12 45.14 odd 6
900.2.i.f.601.3 12 3.2 odd 2
900.2.i.f.601.4 12 15.14 odd 2
1620.2.d.c.649.5 6 45.38 even 12
1620.2.d.c.649.6 6 45.2 even 12
1620.2.d.d.649.1 6 45.7 odd 12
1620.2.d.d.649.2 6 45.43 odd 12
2160.2.by.e.289.4 12 20.7 even 4
2160.2.by.e.289.6 12 20.3 even 4
2160.2.by.e.1009.4 12 180.103 even 12
2160.2.by.e.1009.6 12 180.67 even 12
2700.2.i.f.901.1 12 9.4 even 3 inner
2700.2.i.f.901.6 12 45.4 even 6 inner
2700.2.i.f.1801.1 12 1.1 even 1 trivial
2700.2.i.f.1801.6 12 5.4 even 2 inner
8100.2.a.bc.1.1 6 45.29 odd 6
8100.2.a.bc.1.6 6 9.2 odd 6
8100.2.a.bd.1.1 6 45.34 even 6
8100.2.a.bd.1.6 6 9.7 even 3