Properties

Label 1620.2.d.c.649.5
Level $1620$
Weight $2$
Character 1620.649
Analytic conductor $12.936$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1620,2,Mod(649,1620)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1620.649"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1620, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1620 = 2^{2} \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1620.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,0,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.9357651274\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.301925376.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 14x^{4} + 43x^{2} + 36 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 180)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 649.5
Root \(-1.20590i\) of defining polynomial
Character \(\chi\) \(=\) 1620.649
Dual form 1620.2.d.c.649.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.83216 - 1.28187i) q^{5} -3.76963i q^{7} -3.54580 q^{11} -1.00351i q^{13} +1.56023i q^{17} -7.21013 q^{19} -6.18143i q^{23} +(1.71364 - 4.69717i) q^{25} +3.00000 q^{29} -5.78285 q^{31} +(-4.83216 - 6.90658i) q^{35} +0.851576i q^{37} -3.11852 q^{41} +2.70666i q^{43} +9.74867i q^{47} -7.21013 q^{49} +11.2494i q^{53} +(-6.49649 + 4.54524i) q^{55} +9.66433 q^{59} -8.21013 q^{61} +(-1.28636 - 1.83859i) q^{65} -2.91806i q^{67} +7.21013 q^{71} -16.7817i q^{73} +13.3664i q^{77} -10.9930 q^{79} -10.1955i q^{83} +(2.00000 + 2.85859i) q^{85} +5.33567 q^{89} -3.78285 q^{91} +(-13.2101 + 9.24242i) q^{95} -3.86209i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - q^{5} - 2 q^{11} + 3 q^{25} + 18 q^{29} - 6 q^{31} - 17 q^{35} - 14 q^{41} - 3 q^{55} + 34 q^{59} - 6 q^{61} - 15 q^{65} + 6 q^{79} + 12 q^{85} + 56 q^{89} + 6 q^{91} - 36 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1620\mathbb{Z}\right)^\times\).

\(n\) \(811\) \(1297\) \(1541\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.83216 1.28187i 0.819368 0.573268i
\(6\) 0 0
\(7\) 3.76963i 1.42479i −0.701780 0.712394i \(-0.747611\pi\)
0.701780 0.712394i \(-0.252389\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −3.54580 −1.06910 −0.534550 0.845137i \(-0.679519\pi\)
−0.534550 + 0.845137i \(0.679519\pi\)
\(12\) 0 0
\(13\) 1.00351i 0.278322i −0.990270 0.139161i \(-0.955559\pi\)
0.990270 0.139161i \(-0.0444406\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.56023i 0.378410i 0.981938 + 0.189205i \(0.0605911\pi\)
−0.981938 + 0.189205i \(0.939409\pi\)
\(18\) 0 0
\(19\) −7.21013 −1.65412 −0.827058 0.562116i \(-0.809987\pi\)
−0.827058 + 0.562116i \(0.809987\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 6.18143i 1.28892i −0.764639 0.644459i \(-0.777083\pi\)
0.764639 0.644459i \(-0.222917\pi\)
\(24\) 0 0
\(25\) 1.71364 4.69717i 0.342728 0.939435i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 3.00000 0.557086 0.278543 0.960424i \(-0.410149\pi\)
0.278543 + 0.960424i \(0.410149\pi\)
\(30\) 0 0
\(31\) −5.78285 −1.03863 −0.519315 0.854583i \(-0.673813\pi\)
−0.519315 + 0.854583i \(0.673813\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −4.83216 6.90658i −0.816785 1.16743i
\(36\) 0 0
\(37\) 0.851576i 0.139998i 0.997547 + 0.0699991i \(0.0222996\pi\)
−0.997547 + 0.0699991i \(0.977700\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −3.11852 −0.487031 −0.243516 0.969897i \(-0.578301\pi\)
−0.243516 + 0.969897i \(0.578301\pi\)
\(42\) 0 0
\(43\) 2.70666i 0.412761i 0.978472 + 0.206381i \(0.0661685\pi\)
−0.978472 + 0.206381i \(0.933831\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 9.74867i 1.42199i 0.703197 + 0.710995i \(0.251755\pi\)
−0.703197 + 0.710995i \(0.748245\pi\)
\(48\) 0 0
\(49\) −7.21013 −1.03002
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 11.2494i 1.54523i 0.634876 + 0.772614i \(0.281051\pi\)
−0.634876 + 0.772614i \(0.718949\pi\)
\(54\) 0 0
\(55\) −6.49649 + 4.54524i −0.875986 + 0.612881i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 9.66433 1.25819 0.629094 0.777329i \(-0.283426\pi\)
0.629094 + 0.777329i \(0.283426\pi\)
\(60\) 0 0
\(61\) −8.21013 −1.05120 −0.525600 0.850732i \(-0.676159\pi\)
−0.525600 + 0.850732i \(0.676159\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −1.28636 1.83859i −0.159553 0.228049i
\(66\) 0 0
\(67\) 2.91806i 0.356497i −0.983985 0.178249i \(-0.942957\pi\)
0.983985 0.178249i \(-0.0570431\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 7.21013 0.855685 0.427842 0.903853i \(-0.359274\pi\)
0.427842 + 0.903853i \(0.359274\pi\)
\(72\) 0 0
\(73\) 16.7817i 1.96415i −0.188498 0.982074i \(-0.560362\pi\)
0.188498 0.982074i \(-0.439638\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 13.3664i 1.52324i
\(78\) 0 0
\(79\) −10.9930 −1.23681 −0.618403 0.785861i \(-0.712220\pi\)
−0.618403 + 0.785861i \(0.712220\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 10.1955i 1.11910i −0.828798 0.559548i \(-0.810975\pi\)
0.828798 0.559548i \(-0.189025\pi\)
\(84\) 0 0
\(85\) 2.00000 + 2.85859i 0.216930 + 0.310057i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 5.33567 0.565580 0.282790 0.959182i \(-0.408740\pi\)
0.282790 + 0.959182i \(0.408740\pi\)
\(90\) 0 0
\(91\) −3.78285 −0.396550
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −13.2101 + 9.24242i −1.35533 + 0.948252i
\(96\) 0 0
\(97\) 3.86209i 0.392136i −0.980590 0.196068i \(-0.937183\pi\)
0.980590 0.196068i \(-0.0628174\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 4.75593 0.473233 0.236616 0.971603i \(-0.423962\pi\)
0.236616 + 0.971603i \(0.423962\pi\)
\(102\) 0 0
\(103\) 18.0890i 1.78237i −0.453643 0.891183i \(-0.649876\pi\)
0.453643 0.891183i \(-0.350124\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 3.61770i 0.349737i −0.984592 0.174868i \(-0.944050\pi\)
0.984592 0.174868i \(-0.0559500\pi\)
\(108\) 0 0
\(109\) 9.63741 0.923096 0.461548 0.887115i \(-0.347294\pi\)
0.461548 + 0.887115i \(0.347294\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 3.55823i 0.334730i −0.985895 0.167365i \(-0.946474\pi\)
0.985895 0.167365i \(-0.0535259\pi\)
\(114\) 0 0
\(115\) −7.92377 11.3254i −0.738895 1.05610i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 5.88148 0.539154
\(120\) 0 0
\(121\) 1.57272 0.142974
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −2.88148 10.8026i −0.257727 0.966218i
\(126\) 0 0
\(127\) 6.78015i 0.601641i −0.953681 0.300820i \(-0.902739\pi\)
0.953681 0.300820i \(-0.0972605\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −3.42728 −0.299443 −0.149721 0.988728i \(-0.547838\pi\)
−0.149721 + 0.988728i \(0.547838\pi\)
\(132\) 0 0
\(133\) 27.1795i 2.35676i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 14.9266i 1.27527i −0.770340 0.637633i \(-0.779914\pi\)
0.770340 0.637633i \(-0.220086\pi\)
\(138\) 0 0
\(139\) 5.42728 0.460336 0.230168 0.973151i \(-0.426072\pi\)
0.230168 + 0.973151i \(0.426072\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 3.55823i 0.297554i
\(144\) 0 0
\(145\) 5.49649 3.84560i 0.456458 0.319359i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −5.53878 −0.453754 −0.226877 0.973923i \(-0.572852\pi\)
−0.226877 + 0.973923i \(0.572852\pi\)
\(150\) 0 0
\(151\) 0.217152 0.0176716 0.00883580 0.999961i \(-0.497187\pi\)
0.00883580 + 0.999961i \(0.497187\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −10.5951 + 7.41283i −0.851020 + 0.595413i
\(156\) 0 0
\(157\) 2.15894i 0.172302i 0.996282 + 0.0861511i \(0.0274568\pi\)
−0.996282 + 0.0861511i \(0.972543\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −23.3017 −1.83643
\(162\) 0 0
\(163\) 8.39084i 0.657221i −0.944465 0.328611i \(-0.893420\pi\)
0.944465 0.328611i \(-0.106580\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 4.62121i 0.357600i −0.983885 0.178800i \(-0.942779\pi\)
0.983885 0.178800i \(-0.0572215\pi\)
\(168\) 0 0
\(169\) 11.9930 0.922537
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 1.45029i 0.110264i −0.998479 0.0551318i \(-0.982442\pi\)
0.998479 0.0551318i \(-0.0175579\pi\)
\(174\) 0 0
\(175\) −17.7066 6.45979i −1.33849 0.488315i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 19.4472 1.45355 0.726775 0.686876i \(-0.241018\pi\)
0.726775 + 0.686876i \(0.241018\pi\)
\(180\) 0 0
\(181\) −10.4273 −0.775054 −0.387527 0.921858i \(-0.626671\pi\)
−0.387527 + 0.921858i \(0.626671\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 1.09161 + 1.56023i 0.0802565 + 0.114710i
\(186\) 0 0
\(187\) 5.53225i 0.404558i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −3.78285 −0.273717 −0.136859 0.990591i \(-0.543701\pi\)
−0.136859 + 0.990591i \(0.543701\pi\)
\(192\) 0 0
\(193\) 14.0750i 1.01314i 0.862198 + 0.506571i \(0.169087\pi\)
−0.862198 + 0.506571i \(0.830913\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 21.5044i 1.53212i −0.642768 0.766061i \(-0.722214\pi\)
0.642768 0.766061i \(-0.277786\pi\)
\(198\) 0 0
\(199\) −7.21013 −0.511112 −0.255556 0.966794i \(-0.582259\pi\)
−0.255556 + 0.966794i \(0.582259\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 11.3089i 0.793729i
\(204\) 0 0
\(205\) −5.71364 + 3.99753i −0.399058 + 0.279199i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 25.5657 1.76842
\(210\) 0 0
\(211\) 3.78285 0.260422 0.130211 0.991486i \(-0.458435\pi\)
0.130211 + 0.991486i \(0.458435\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 3.46957 + 4.95904i 0.236623 + 0.338204i
\(216\) 0 0
\(217\) 21.7992i 1.47983i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 1.56570 0.105320
\(222\) 0 0
\(223\) 2.91806i 0.195408i −0.995216 0.0977038i \(-0.968850\pi\)
0.995216 0.0977038i \(-0.0311498\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 5.11846i 0.339724i 0.985468 + 0.169862i \(0.0543322\pi\)
−0.985468 + 0.169862i \(0.945668\pi\)
\(228\) 0 0
\(229\) 9.42026 0.622508 0.311254 0.950327i \(-0.399251\pi\)
0.311254 + 0.950327i \(0.399251\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 26.1850i 1.71544i 0.514118 + 0.857719i \(0.328119\pi\)
−0.514118 + 0.857719i \(0.671881\pi\)
\(234\) 0 0
\(235\) 12.4965 + 17.8612i 0.815181 + 1.16513i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 22.7559 1.47196 0.735979 0.677004i \(-0.236722\pi\)
0.735979 + 0.677004i \(0.236722\pi\)
\(240\) 0 0
\(241\) 16.6304 1.07126 0.535629 0.844454i \(-0.320075\pi\)
0.535629 + 0.844454i \(0.320075\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −13.2101 + 9.24242i −0.843964 + 0.590476i
\(246\) 0 0
\(247\) 7.23541i 0.460378i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −20.7758 −1.31136 −0.655679 0.755040i \(-0.727618\pi\)
−0.655679 + 0.755040i \(0.727618\pi\)
\(252\) 0 0
\(253\) 21.9181i 1.37798i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 19.0596i 1.18890i −0.804132 0.594451i \(-0.797369\pi\)
0.804132 0.594451i \(-0.202631\pi\)
\(258\) 0 0
\(259\) 3.21013 0.199468
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 8.13798i 0.501809i 0.968012 + 0.250905i \(0.0807281\pi\)
−0.968012 + 0.250905i \(0.919272\pi\)
\(264\) 0 0
\(265\) 14.4203 + 20.6108i 0.885829 + 1.26611i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 25.6374 1.56314 0.781570 0.623817i \(-0.214419\pi\)
0.781570 + 0.623817i \(0.214419\pi\)
\(270\) 0 0
\(271\) −3.21013 −0.195001 −0.0975007 0.995235i \(-0.531085\pi\)
−0.0975007 + 0.995235i \(0.531085\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −6.07623 + 16.6553i −0.366411 + 1.00435i
\(276\) 0 0
\(277\) 0.699646i 0.0420377i −0.999779 0.0210188i \(-0.993309\pi\)
0.999779 0.0210188i \(-0.00669100\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −30.6304 −1.82726 −0.913628 0.406552i \(-0.866731\pi\)
−0.913628 + 0.406552i \(0.866731\pi\)
\(282\) 0 0
\(283\) 9.60575i 0.571002i 0.958378 + 0.285501i \(0.0921600\pi\)
−0.958378 + 0.285501i \(0.907840\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 11.7557i 0.693916i
\(288\) 0 0
\(289\) 14.5657 0.856806
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 3.01052i 0.175876i 0.996126 + 0.0879381i \(0.0280278\pi\)
−0.996126 + 0.0879381i \(0.971972\pi\)
\(294\) 0 0
\(295\) 17.7066 12.3884i 1.03092 0.721279i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −6.20310 −0.358735
\(300\) 0 0
\(301\) 10.2031 0.588097
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −15.0423 + 10.5243i −0.861319 + 0.602619i
\(306\) 0 0
\(307\) 14.8671i 0.848512i −0.905542 0.424256i \(-0.860536\pi\)
0.905542 0.424256i \(-0.139464\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 3.07171 0.174181 0.0870905 0.996200i \(-0.472243\pi\)
0.0870905 + 0.996200i \(0.472243\pi\)
\(312\) 0 0
\(313\) 23.0136i 1.30080i −0.759590 0.650402i \(-0.774600\pi\)
0.759590 0.650402i \(-0.225400\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0.00900354i 0.000505689i 1.00000 0.000252844i \(8.04829e-5\pi\)
−1.00000 0.000252844i \(0.999920\pi\)
\(318\) 0 0
\(319\) −10.6374 −0.595581
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 11.2494i 0.625935i
\(324\) 0 0
\(325\) −4.71364 1.71965i −0.261466 0.0953889i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 36.7489 2.02603
\(330\) 0 0
\(331\) 8.99298 0.494299 0.247149 0.968977i \(-0.420506\pi\)
0.247149 + 0.968977i \(0.420506\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −3.74056 5.34635i −0.204368 0.292103i
\(336\) 0 0
\(337\) 5.26139i 0.286606i −0.989679 0.143303i \(-0.954228\pi\)
0.989679 0.143303i \(-0.0457723\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 20.5048 1.11040
\(342\) 0 0
\(343\) 0.792107i 0.0427698i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 21.4954i 1.15393i −0.816769 0.576965i \(-0.804237\pi\)
0.816769 0.576965i \(-0.195763\pi\)
\(348\) 0 0
\(349\) 12.5657 0.672626 0.336313 0.941750i \(-0.390820\pi\)
0.336313 + 0.941750i \(0.390820\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 25.0626i 1.33395i 0.745081 + 0.666973i \(0.232411\pi\)
−0.745081 + 0.666973i \(0.767589\pi\)
\(354\) 0 0
\(355\) 13.2101 9.24242i 0.701121 0.490537i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −23.1961 −1.22424 −0.612121 0.790764i \(-0.709684\pi\)
−0.612121 + 0.790764i \(0.709684\pi\)
\(360\) 0 0
\(361\) 32.9860 1.73610
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −21.5119 30.7468i −1.12598 1.60936i
\(366\) 0 0
\(367\) 17.7852i 0.928379i 0.885736 + 0.464190i \(0.153654\pi\)
−0.885736 + 0.464190i \(0.846346\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 42.4062 2.20162
\(372\) 0 0
\(373\) 12.9196i 0.668951i −0.942404 0.334475i \(-0.891441\pi\)
0.942404 0.334475i \(-0.108559\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 3.01052i 0.155050i
\(378\) 0 0
\(379\) 5.56570 0.285891 0.142945 0.989731i \(-0.454343\pi\)
0.142945 + 0.989731i \(0.454343\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 29.7433i 1.51981i 0.650034 + 0.759905i \(0.274755\pi\)
−0.650034 + 0.759905i \(0.725245\pi\)
\(384\) 0 0
\(385\) 17.1339 + 24.4894i 0.873224 + 1.24809i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 7.55283 0.382944 0.191472 0.981498i \(-0.438674\pi\)
0.191472 + 0.981498i \(0.438674\pi\)
\(390\) 0 0
\(391\) 9.64443 0.487740
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −20.1409 + 14.0915i −1.01340 + 0.709021i
\(396\) 0 0
\(397\) 30.1571i 1.51354i 0.653682 + 0.756770i \(0.273224\pi\)
−0.653682 + 0.756770i \(0.726776\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −21.6643 −1.08186 −0.540932 0.841066i \(-0.681929\pi\)
−0.540932 + 0.841066i \(0.681929\pi\)
\(402\) 0 0
\(403\) 5.80312i 0.289074i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 3.01952i 0.149672i
\(408\) 0 0
\(409\) 8.13841 0.402419 0.201209 0.979548i \(-0.435513\pi\)
0.201209 + 0.979548i \(0.435513\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 36.4310i 1.79265i
\(414\) 0 0
\(415\) −13.0692 18.6797i −0.641542 0.916952i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −13.2947 −0.649489 −0.324745 0.945802i \(-0.605278\pi\)
−0.324745 + 0.945802i \(0.605278\pi\)
\(420\) 0 0
\(421\) 20.1384 0.981486 0.490743 0.871304i \(-0.336725\pi\)
0.490743 + 0.871304i \(0.336725\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 7.32865 + 2.67367i 0.355492 + 0.129692i
\(426\) 0 0
\(427\) 30.9492i 1.49774i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 25.8027 1.24287 0.621437 0.783464i \(-0.286549\pi\)
0.621437 + 0.783464i \(0.286549\pi\)
\(432\) 0 0
\(433\) 6.38383i 0.306787i 0.988165 + 0.153394i \(0.0490202\pi\)
−0.988165 + 0.153394i \(0.950980\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 44.5689i 2.13202i
\(438\) 0 0
\(439\) −10.9930 −0.524666 −0.262333 0.964977i \(-0.584492\pi\)
−0.262333 + 0.964977i \(0.584492\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 25.2320i 1.19881i −0.800447 0.599404i \(-0.795404\pi\)
0.800447 0.599404i \(-0.204596\pi\)
\(444\) 0 0
\(445\) 9.77582 6.83962i 0.463419 0.324229i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 19.5657 0.923362 0.461681 0.887046i \(-0.347246\pi\)
0.461681 + 0.887046i \(0.347246\pi\)
\(450\) 0 0
\(451\) 11.0577 0.520685
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −6.93079 + 4.84910i −0.324921 + 0.227329i
\(456\) 0 0
\(457\) 6.53576i 0.305730i 0.988247 + 0.152865i \(0.0488500\pi\)
−0.988247 + 0.152865i \(0.951150\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −35.4203 −1.64969 −0.824843 0.565362i \(-0.808736\pi\)
−0.824843 + 0.565362i \(0.808736\pi\)
\(462\) 0 0
\(463\) 16.2670i 0.755990i 0.925808 + 0.377995i \(0.123386\pi\)
−0.925808 + 0.377995i \(0.876614\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 15.8112i 0.731654i 0.930683 + 0.365827i \(0.119214\pi\)
−0.930683 + 0.365827i \(0.880786\pi\)
\(468\) 0 0
\(469\) −11.0000 −0.507933
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 9.59728i 0.441283i
\(474\) 0 0
\(475\) −12.3556 + 33.8672i −0.566912 + 1.55393i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 32.7419 1.49601 0.748007 0.663690i \(-0.231011\pi\)
0.748007 + 0.663690i \(0.231011\pi\)
\(480\) 0 0
\(481\) 0.854561 0.0389646
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −4.95069 7.07598i −0.224799 0.321304i
\(486\) 0 0
\(487\) 36.4220i 1.65044i −0.564814 0.825218i \(-0.691052\pi\)
0.564814 0.825218i \(-0.308948\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −3.42728 −0.154671 −0.0773355 0.997005i \(-0.524641\pi\)
−0.0773355 + 0.997005i \(0.524641\pi\)
\(492\) 0 0
\(493\) 4.68068i 0.210807i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 27.1795i 1.21917i
\(498\) 0 0
\(499\) −3.42728 −0.153426 −0.0767131 0.997053i \(-0.524443\pi\)
−0.0767131 + 0.997053i \(0.524443\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 17.4219i 0.776802i −0.921490 0.388401i \(-0.873027\pi\)
0.921490 0.388401i \(-0.126973\pi\)
\(504\) 0 0
\(505\) 8.71364 6.09647i 0.387752 0.271289i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 14.1454 0.626986 0.313493 0.949591i \(-0.398501\pi\)
0.313493 + 0.949591i \(0.398501\pi\)
\(510\) 0 0
\(511\) −63.2608 −2.79849
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −23.1877 33.1421i −1.02177 1.46041i
\(516\) 0 0
\(517\) 34.5669i 1.52025i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −20.2300 −0.886293 −0.443147 0.896449i \(-0.646138\pi\)
−0.443147 + 0.896449i \(0.646138\pi\)
\(522\) 0 0
\(523\) 36.3295i 1.58858i 0.607540 + 0.794289i \(0.292156\pi\)
−0.607540 + 0.794289i \(0.707844\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 9.02255i 0.393028i
\(528\) 0 0
\(529\) −15.2101 −0.661310
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 3.12946i 0.135552i
\(534\) 0 0
\(535\) −4.63741 6.62822i −0.200493 0.286563i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 25.5657 1.10119
\(540\) 0 0
\(541\) 24.8475 1.06828 0.534140 0.845396i \(-0.320636\pi\)
0.534140 + 0.845396i \(0.320636\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 17.6573 12.3539i 0.756356 0.529181i
\(546\) 0 0
\(547\) 32.1046i 1.37269i 0.727274 + 0.686347i \(0.240787\pi\)
−0.727274 + 0.686347i \(0.759213\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −21.6304 −0.921485
\(552\) 0 0
\(553\) 41.4395i 1.76219i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 17.3894i 0.736813i 0.929665 + 0.368406i \(0.120096\pi\)
−0.929665 + 0.368406i \(0.879904\pi\)
\(558\) 0 0
\(559\) 2.71615 0.114881
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 27.3399i 1.15224i 0.817365 + 0.576120i \(0.195434\pi\)
−0.817365 + 0.576120i \(0.804566\pi\)
\(564\) 0 0
\(565\) −4.56118 6.51926i −0.191890 0.274267i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 15.1902 0.636808 0.318404 0.947955i \(-0.396853\pi\)
0.318404 + 0.947955i \(0.396853\pi\)
\(570\) 0 0
\(571\) −38.7021 −1.61963 −0.809816 0.586684i \(-0.800433\pi\)
−0.809816 + 0.586684i \(0.800433\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −29.0353 10.5928i −1.21085 0.441748i
\(576\) 0 0
\(577\) 3.82910i 0.159408i −0.996819 0.0797038i \(-0.974603\pi\)
0.996819 0.0797038i \(-0.0253974\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −38.4331 −1.59447
\(582\) 0 0
\(583\) 39.8883i 1.65200i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 24.6843i 1.01883i 0.860521 + 0.509415i \(0.170138\pi\)
−0.860521 + 0.509415i \(0.829862\pi\)
\(588\) 0 0
\(589\) 41.6951 1.71802
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 38.4290i 1.57809i −0.614336 0.789044i \(-0.710576\pi\)
0.614336 0.789044i \(-0.289424\pi\)
\(594\) 0 0
\(595\) 10.7758 7.53926i 0.441766 0.309080i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −15.4273 −0.630342 −0.315171 0.949035i \(-0.602062\pi\)
−0.315171 + 0.949035i \(0.602062\pi\)
\(600\) 0 0
\(601\) −0.572719 −0.0233617 −0.0116809 0.999932i \(-0.503718\pi\)
−0.0116809 + 0.999932i \(0.503718\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 2.88148 2.01602i 0.117149 0.0819627i
\(606\) 0 0
\(607\) 9.05803i 0.367654i −0.982959 0.183827i \(-0.941151\pi\)
0.982959 0.183827i \(-0.0588486\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 9.78285 0.395772
\(612\) 0 0
\(613\) 6.99155i 0.282386i −0.989982 0.141193i \(-0.954906\pi\)
0.989982 0.141193i \(-0.0450938\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 19.8342i 0.798495i 0.916843 + 0.399247i \(0.130729\pi\)
−0.916843 + 0.399247i \(0.869271\pi\)
\(618\) 0 0
\(619\) 28.2031 1.13358 0.566789 0.823863i \(-0.308185\pi\)
0.566789 + 0.823863i \(0.308185\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 20.1135i 0.805832i
\(624\) 0 0
\(625\) −19.1269 16.0985i −0.765075 0.643941i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −1.32865 −0.0529768
\(630\) 0 0
\(631\) −7.27482 −0.289606 −0.144803 0.989461i \(-0.546255\pi\)
−0.144803 + 0.989461i \(0.546255\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −8.69124 12.4223i −0.344901 0.492965i
\(636\) 0 0
\(637\) 7.23541i 0.286677i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 12.8674 0.508233 0.254116 0.967174i \(-0.418215\pi\)
0.254116 + 0.967174i \(0.418215\pi\)
\(642\) 0 0
\(643\) 25.2320i 0.995053i −0.867449 0.497526i \(-0.834242\pi\)
0.867449 0.497526i \(-0.165758\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 23.5618i 0.926311i 0.886277 + 0.463156i \(0.153283\pi\)
−0.886277 + 0.463156i \(0.846717\pi\)
\(648\) 0 0
\(649\) −34.2678 −1.34513
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 17.3804i 0.680147i 0.940399 + 0.340074i \(0.110452\pi\)
−0.940399 + 0.340074i \(0.889548\pi\)
\(654\) 0 0
\(655\) −6.27934 + 4.39331i −0.245354 + 0.171661i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 15.6643 0.610195 0.305098 0.952321i \(-0.401311\pi\)
0.305098 + 0.952321i \(0.401311\pi\)
\(660\) 0 0
\(661\) 23.4273 0.911216 0.455608 0.890181i \(-0.349422\pi\)
0.455608 + 0.890181i \(0.349422\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 34.8405 + 49.7973i 1.35106 + 1.93106i
\(666\) 0 0
\(667\) 18.5443i 0.718038i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 29.1115 1.12384
\(672\) 0 0
\(673\) 28.7308i 1.10749i −0.832687 0.553745i \(-0.813198\pi\)
0.832687 0.553745i \(-0.186802\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 50.3540i 1.93526i 0.252367 + 0.967632i \(0.418791\pi\)
−0.252367 + 0.967632i \(0.581209\pi\)
\(678\) 0 0
\(679\) −14.5587 −0.558711
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 11.5953i 0.443681i −0.975083 0.221841i \(-0.928794\pi\)
0.975083 0.221841i \(-0.0712065\pi\)
\(684\) 0 0
\(685\) −19.1339 27.3480i −0.731069 1.04491i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 11.2889 0.430072
\(690\) 0 0
\(691\) 45.8475 1.74412 0.872061 0.489397i \(-0.162783\pi\)
0.872061 + 0.489397i \(0.162783\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 9.94366 6.95705i 0.377185 0.263896i
\(696\) 0 0
\(697\) 4.86560i 0.184298i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −38.1115 −1.43945 −0.719726 0.694259i \(-0.755732\pi\)
−0.719726 + 0.694259i \(0.755732\pi\)
\(702\) 0 0
\(703\) 6.13997i 0.231573i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 17.9281i 0.674256i
\(708\) 0 0
\(709\) 2.28887 0.0859602 0.0429801 0.999076i \(-0.486315\pi\)
0.0429801 + 0.999076i \(0.486315\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 35.7463i 1.33871i
\(714\) 0 0
\(715\) 4.56118 + 6.51926i 0.170578 + 0.243807i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 16.6035 0.619205 0.309602 0.950866i \(-0.399804\pi\)
0.309602 + 0.950866i \(0.399804\pi\)
\(720\) 0 0
\(721\) −68.1891 −2.53949
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 5.14092 14.0915i 0.190929 0.523346i
\(726\) 0 0
\(727\) 38.6074i 1.43187i −0.698168 0.715934i \(-0.746001\pi\)
0.698168 0.715934i \(-0.253999\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −4.22300 −0.156193
\(732\) 0 0
\(733\) 33.9002i 1.25213i −0.779770 0.626066i \(-0.784664\pi\)
0.779770 0.626066i \(-0.215336\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 10.3469i 0.381131i
\(738\) 0 0
\(739\) 36.8405 1.35520 0.677600 0.735431i \(-0.263020\pi\)
0.677600 + 0.735431i \(0.263020\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 11.4278i 0.419247i −0.977782 0.209623i \(-0.932776\pi\)
0.977782 0.209623i \(-0.0672238\pi\)
\(744\) 0 0
\(745\) −10.1479 + 7.09997i −0.371792 + 0.260123i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −13.6374 −0.498300
\(750\) 0 0
\(751\) −16.2031 −0.591260 −0.295630 0.955303i \(-0.595529\pi\)
−0.295630 + 0.955303i \(0.595529\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0.397858 0.278360i 0.0144795 0.0101306i
\(756\) 0 0
\(757\) 8.08698i 0.293926i 0.989142 + 0.146963i \(0.0469499\pi\)
−0.989142 + 0.146963i \(0.953050\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 21.4062 0.775974 0.387987 0.921665i \(-0.373170\pi\)
0.387987 + 0.921665i \(0.373170\pi\)
\(762\) 0 0
\(763\) 36.3295i 1.31522i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 9.69821i 0.350182i
\(768\) 0 0
\(769\) −51.4062 −1.85376 −0.926878 0.375364i \(-0.877518\pi\)
−0.926878 + 0.375364i \(0.877518\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) 0 0
\(775\) −9.90972 + 27.1630i −0.355968 + 0.975725i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 22.4849 0.805607
\(780\) 0 0
\(781\) −25.5657 −0.914813
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 2.76747 + 3.95553i 0.0987753 + 0.141179i
\(786\) 0 0
\(787\) 4.71367i 0.168024i −0.996465 0.0840121i \(-0.973227\pi\)
0.996465 0.0840121i \(-0.0267734\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −13.4132 −0.476920
\(792\) 0 0
\(793\) 8.23891i 0.292572i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 10.2639i 0.363567i −0.983339 0.181784i \(-0.941813\pi\)
0.983339 0.181784i \(-0.0581870\pi\)
\(798\) 0 0
\(799\) −15.2101 −0.538096
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 59.5045i 2.09987i
\(804\) 0 0
\(805\) −42.6926 + 29.8697i −1.50472 + 1.05277i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −21.9860 −0.772985 −0.386492 0.922293i \(-0.626313\pi\)
−0.386492 + 0.922293i \(0.626313\pi\)
\(810\) 0 0
\(811\) −25.6951 −0.902276 −0.451138 0.892454i \(-0.648982\pi\)
−0.451138 + 0.892454i \(0.648982\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −10.7559 15.3734i −0.376764 0.538506i
\(816\) 0 0
\(817\) 19.5153i 0.682756i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 24.3933 0.851333 0.425667 0.904880i \(-0.360040\pi\)
0.425667 + 0.904880i \(0.360040\pi\)
\(822\) 0 0
\(823\) 2.61420i 0.0911252i 0.998961 + 0.0455626i \(0.0145080\pi\)
−0.998961 + 0.0455626i \(0.985492\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0.0684725i 0.00238102i 0.999999 + 0.00119051i \(0.000378951\pi\)
−0.999999 + 0.00119051i \(0.999621\pi\)
\(828\) 0 0
\(829\) 24.7828 0.860744 0.430372 0.902652i \(-0.358382\pi\)
0.430372 + 0.902652i \(0.358382\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 11.2494i 0.389770i
\(834\) 0 0
\(835\) −5.92377 8.46681i −0.205000 0.293006i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −45.2409 −1.56189 −0.780944 0.624601i \(-0.785262\pi\)
−0.780944 + 0.624601i \(0.785262\pi\)
\(840\) 0 0
\(841\) −20.0000 −0.689655
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 21.9731 15.3734i 0.755897 0.528861i
\(846\) 0 0
\(847\) 5.92857i 0.203708i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 5.26396 0.180446
\(852\) 0 0
\(853\) 20.2150i 0.692148i −0.938207 0.346074i \(-0.887515\pi\)
0.938207 0.346074i \(-0.112485\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 26.8427i 0.916929i −0.888713 0.458464i \(-0.848400\pi\)
0.888713 0.458464i \(-0.151600\pi\)
\(858\) 0 0
\(859\) −3.36259 −0.114730 −0.0573651 0.998353i \(-0.518270\pi\)
−0.0573651 + 0.998353i \(0.518270\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 18.4524i 0.628126i 0.949402 + 0.314063i \(0.101690\pi\)
−0.949402 + 0.314063i \(0.898310\pi\)
\(864\) 0 0
\(865\) −1.85908 2.65717i −0.0632106 0.0903465i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 38.9789 1.32227
\(870\) 0 0
\(871\) −2.92829 −0.0992212
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −40.7220 + 10.8621i −1.37665 + 0.367206i
\(876\) 0 0
\(877\) 23.1985i 0.783358i 0.920102 + 0.391679i \(0.128106\pi\)
−0.920102 + 0.391679i \(0.871894\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 2.34854 0.0791244 0.0395622 0.999217i \(-0.487404\pi\)
0.0395622 + 0.999217i \(0.487404\pi\)
\(882\) 0 0
\(883\) 16.3264i 0.549428i 0.961526 + 0.274714i \(0.0885832\pi\)
−0.961526 + 0.274714i \(0.911417\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 26.8427i 0.901289i −0.892703 0.450645i \(-0.851194\pi\)
0.892703 0.450645i \(-0.148806\pi\)
\(888\) 0 0
\(889\) −25.5587 −0.857210
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 70.2892i 2.35214i
\(894\) 0 0
\(895\) 35.6304 24.9287i 1.19099 0.833273i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −17.3485 −0.578606
\(900\) 0 0
\(901\) −17.5516 −0.584730
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −19.1045 + 13.3664i −0.635054 + 0.444313i
\(906\) 0 0
\(907\) 7.84259i 0.260409i −0.991487 0.130204i \(-0.958437\pi\)
0.991487 0.130204i \(-0.0415634\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 2.57272 0.0852380 0.0426190 0.999091i \(-0.486430\pi\)
0.0426190 + 0.999091i \(0.486430\pi\)
\(912\) 0 0
\(913\) 36.1511i 1.19643i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 12.9196i 0.426642i
\(918\) 0 0
\(919\) −42.4062 −1.39885 −0.699426 0.714705i \(-0.746561\pi\)
−0.699426 + 0.714705i \(0.746561\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 7.23541i 0.238156i
\(924\) 0 0
\(925\) 4.00000 + 1.45929i 0.131519 + 0.0479813i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −51.8335 −1.70060 −0.850301 0.526297i \(-0.823580\pi\)
−0.850301 + 0.526297i \(0.823580\pi\)
\(930\) 0 0
\(931\) 51.9860 1.70377
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −7.09161 10.1360i −0.231920 0.331482i
\(936\) 0 0
\(937\) 16.9666i 0.554275i 0.960830 + 0.277137i \(0.0893857\pi\)
−0.960830 + 0.277137i \(0.910614\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 5.65730 0.184423 0.0922114 0.995739i \(-0.470606\pi\)
0.0922114 + 0.995739i \(0.470606\pi\)
\(942\) 0 0
\(943\) 19.2769i 0.627744i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 35.3860i 1.14989i −0.818192 0.574945i \(-0.805023\pi\)
0.818192 0.574945i \(-0.194977\pi\)
\(948\) 0 0
\(949\) −16.8405 −0.546666
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 1.66116i 0.0538101i −0.999638 0.0269051i \(-0.991435\pi\)
0.999638 0.0269051i \(-0.00856518\pi\)
\(954\) 0 0
\(955\) −6.93079 + 4.84910i −0.224275 + 0.156913i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −56.2678 −1.81698
\(960\) 0 0
\(961\) 2.44133 0.0787525
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 18.0423 + 25.7877i 0.580802 + 0.830137i
\(966\) 0 0
\(967\) 20.7362i 0.666832i −0.942780 0.333416i \(-0.891799\pi\)
0.942780 0.333416i \(-0.108201\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 20.9193 0.671331 0.335665 0.941981i \(-0.391039\pi\)
0.335665 + 0.941981i \(0.391039\pi\)
\(972\) 0 0
\(973\) 20.4589i 0.655881i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 2.89158i 0.0925098i −0.998930 0.0462549i \(-0.985271\pi\)
0.998930 0.0462549i \(-0.0147287\pi\)
\(978\) 0 0
\(979\) −18.9193 −0.604662
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 6.30037i 0.200951i 0.994940 + 0.100475i \(0.0320363\pi\)
−0.994940 + 0.100475i \(0.967964\pi\)
\(984\) 0 0
\(985\) −27.5657 39.3995i −0.878316 1.25537i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 16.7310 0.532016
\(990\) 0 0
\(991\) −32.0000 −1.01651 −0.508257 0.861206i \(-0.669710\pi\)
−0.508257 + 0.861206i \(0.669710\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −13.2101 + 9.24242i −0.418789 + 0.293004i
\(996\) 0 0
\(997\) 9.57927i 0.303378i −0.988428 0.151689i \(-0.951529\pi\)
0.988428 0.151689i \(-0.0484713\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1620.2.d.c.649.5 6
3.2 odd 2 1620.2.d.d.649.2 6
5.2 odd 4 8100.2.a.bc.1.6 6
5.3 odd 4 8100.2.a.bc.1.1 6
5.4 even 2 inner 1620.2.d.c.649.6 6
9.2 odd 6 540.2.r.a.469.4 12
9.4 even 3 180.2.r.a.169.6 yes 12
9.5 odd 6 540.2.r.a.289.6 12
9.7 even 3 180.2.r.a.49.1 12
15.2 even 4 8100.2.a.bd.1.6 6
15.8 even 4 8100.2.a.bd.1.1 6
15.14 odd 2 1620.2.d.d.649.1 6
36.7 odd 6 720.2.by.e.49.6 12
36.11 even 6 2160.2.by.e.1009.4 12
36.23 even 6 2160.2.by.e.289.6 12
36.31 odd 6 720.2.by.e.529.1 12
45.2 even 12 2700.2.i.f.901.1 12
45.4 even 6 180.2.r.a.169.1 yes 12
45.7 odd 12 900.2.i.f.301.3 12
45.13 odd 12 900.2.i.f.601.4 12
45.14 odd 6 540.2.r.a.289.4 12
45.22 odd 12 900.2.i.f.601.3 12
45.23 even 12 2700.2.i.f.1801.6 12
45.29 odd 6 540.2.r.a.469.6 12
45.32 even 12 2700.2.i.f.1801.1 12
45.34 even 6 180.2.r.a.49.6 yes 12
45.38 even 12 2700.2.i.f.901.6 12
45.43 odd 12 900.2.i.f.301.4 12
180.59 even 6 2160.2.by.e.289.4 12
180.79 odd 6 720.2.by.e.49.1 12
180.119 even 6 2160.2.by.e.1009.6 12
180.139 odd 6 720.2.by.e.529.6 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
180.2.r.a.49.1 12 9.7 even 3
180.2.r.a.49.6 yes 12 45.34 even 6
180.2.r.a.169.1 yes 12 45.4 even 6
180.2.r.a.169.6 yes 12 9.4 even 3
540.2.r.a.289.4 12 45.14 odd 6
540.2.r.a.289.6 12 9.5 odd 6
540.2.r.a.469.4 12 9.2 odd 6
540.2.r.a.469.6 12 45.29 odd 6
720.2.by.e.49.1 12 180.79 odd 6
720.2.by.e.49.6 12 36.7 odd 6
720.2.by.e.529.1 12 36.31 odd 6
720.2.by.e.529.6 12 180.139 odd 6
900.2.i.f.301.3 12 45.7 odd 12
900.2.i.f.301.4 12 45.43 odd 12
900.2.i.f.601.3 12 45.22 odd 12
900.2.i.f.601.4 12 45.13 odd 12
1620.2.d.c.649.5 6 1.1 even 1 trivial
1620.2.d.c.649.6 6 5.4 even 2 inner
1620.2.d.d.649.1 6 15.14 odd 2
1620.2.d.d.649.2 6 3.2 odd 2
2160.2.by.e.289.4 12 180.59 even 6
2160.2.by.e.289.6 12 36.23 even 6
2160.2.by.e.1009.4 12 36.11 even 6
2160.2.by.e.1009.6 12 180.119 even 6
2700.2.i.f.901.1 12 45.2 even 12
2700.2.i.f.901.6 12 45.38 even 12
2700.2.i.f.1801.1 12 45.32 even 12
2700.2.i.f.1801.6 12 45.23 even 12
8100.2.a.bc.1.1 6 5.3 odd 4
8100.2.a.bc.1.6 6 5.2 odd 4
8100.2.a.bd.1.1 6 15.8 even 4
8100.2.a.bd.1.6 6 15.2 even 4