Properties

Label 27.12.a.e
Level $27$
Weight $12$
Character orbit 27.a
Self dual yes
Analytic conductor $20.745$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [27,12,Mod(1,27)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("27.1"); S:= CuspForms(chi, 12); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(27, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 12, names="a")
 
Level: \( N \) \(=\) \( 27 = 3^{3} \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 27.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(20.7452658751\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 793x^{2} + 3505x + 73960 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{8} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 + 2) q^{2} + (\beta_{3} - 22 \beta_1 + 1522) q^{4} + (3 \beta_{3} + \beta_{2} - 13 \beta_1 + 3012) q^{5} + (7 \beta_{3} + 9 \beta_{2} + \cdots - 3004) q^{7} + (33 \beta_{3} - 16 \beta_{2} + \cdots + 77486) q^{8}+ \cdots + ( - 4603512 \beta_{3} + \cdots - 94971526892) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 9 q^{2} + 6109 q^{4} + 12060 q^{5} - 12076 q^{7} + 311355 q^{8} + 217035 q^{10} - 526788 q^{11} - 2227432 q^{13} - 1040157 q^{14} + 9350785 q^{16} + 8884296 q^{17} + 6172784 q^{19} + 80749755 q^{20}+ \cdots - 380219387526 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 793x^{2} + 3505x + 73960 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 3\nu - 1 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 27\nu^{3} + 216\nu^{2} - 15051\nu - 27016 ) / 16 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 9\nu^{2} + 48\nu - 3583 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta _1 + 1 ) / 3 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} - 16\beta _1 + 3567 ) / 9 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -24\beta_{3} + 16\beta_{2} + 5401\beta _1 - 53575 ) / 27 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
22.7983
14.4010
−7.98394
−28.2153
−65.3950 0 2228.50 12582.1 0 52013.1 −11803.9 0 −822804.
1.2 −40.2029 0 −431.728 −8008.14 0 −73745.9 99692.2 0 321950.
1.3 26.9518 0 −1321.60 −1017.63 0 23889.2 −90816.8 0 −27426.9
1.4 87.6460 0 5633.83 8503.70 0 −14232.4 314283. 0 745315.
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 27.12.a.e yes 4
3.b odd 2 1 27.12.a.c 4
9.c even 3 2 81.12.c.h 8
9.d odd 6 2 81.12.c.j 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
27.12.a.c 4 3.b odd 2 1
27.12.a.e yes 4 1.a even 1 1 trivial
81.12.c.h 8 9.c even 3 2
81.12.c.j 8 9.d odd 6 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} - 9T_{2}^{3} - 7110T_{2}^{2} - 51840T_{2} + 6210432 \) acting on \(S_{12}^{\mathrm{new}}(\Gamma_0(27))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - 9 T^{3} + \cdots + 6210432 \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + \cdots + 871926684580125 \) Copy content Toggle raw display
$7$ \( T^{4} + \cdots + 13\!\cdots\!25 \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots + 13\!\cdots\!25 \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots - 20\!\cdots\!00 \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots - 69\!\cdots\!84 \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots - 16\!\cdots\!92 \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots - 13\!\cdots\!84 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots + 63\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots + 12\!\cdots\!61 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots - 30\!\cdots\!00 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots + 26\!\cdots\!00 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots - 72\!\cdots\!00 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 41\!\cdots\!40 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots - 16\!\cdots\!31 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots - 26\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 19\!\cdots\!32 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 43\!\cdots\!00 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots - 61\!\cdots\!00 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 73\!\cdots\!25 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 10\!\cdots\!44 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots - 26\!\cdots\!79 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots - 10\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots - 12\!\cdots\!75 \) Copy content Toggle raw display
show more
show less