Defining parameters
| Level: | \( N \) | \(=\) | \( 27 = 3^{3} \) |
| Weight: | \( k \) | \(=\) | \( 12 \) |
| Character orbit: | \([\chi]\) | \(=\) | 27.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 5 \) | ||
| Sturm bound: | \(36\) | ||
| Trace bound: | \(2\) | ||
| Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{12}(\Gamma_0(27))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 36 | 15 | 21 |
| Cusp forms | 30 | 15 | 15 |
| Eisenstein series | 6 | 0 | 6 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(3\) | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||
| \(+\) | \(19\) | \(8\) | \(11\) | \(16\) | \(8\) | \(8\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(17\) | \(7\) | \(10\) | \(14\) | \(7\) | \(7\) | \(3\) | \(0\) | \(3\) | |||
Trace form
Decomposition of \(S_{12}^{\mathrm{new}}(\Gamma_0(27))\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 3 | |||||||
| 27.12.a.a | $1$ | $20.745$ | \(\Q\) | \(\Q(\sqrt{-3}) \) | \(0\) | \(0\) | \(0\) | \(77153\) | $-$ | \(q-2^{11}q^{4}+77153q^{7}-2248615q^{13}+\cdots\) | |
| 27.12.a.b | $2$ | $20.745$ | \(\Q(\sqrt{93}) \) | None | \(0\) | \(0\) | \(0\) | \(-100142\) | $-$ | \(q-\beta q^{2}+1300q^{4}+10\beta q^{5}-50071q^{7}+\cdots\) | |
| 27.12.a.c | $4$ | $20.745$ | \(\mathbb{Q}[x]/(x^{4} - \cdots)\) | None | \(-9\) | \(0\) | \(-12060\) | \(-12076\) | $-$ | \(q+(-2+\beta _{1})q^{2}+(1522-22\beta _{1}+\beta _{3})q^{4}+\cdots\) | |
| 27.12.a.d | $4$ | $20.745$ | \(\mathbb{Q}[x]/(x^{4} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(28460\) | $+$ | \(q-\beta _{1}q^{2}+(409-\beta _{3})q^{4}+(-2^{4}\beta _{1}+\cdots)q^{5}+\cdots\) | |
| 27.12.a.e | $4$ | $20.745$ | \(\mathbb{Q}[x]/(x^{4} - \cdots)\) | None | \(9\) | \(0\) | \(12060\) | \(-12076\) | $+$ | \(q+(2-\beta _{1})q^{2}+(1522-22\beta _{1}+\beta _{3})q^{4}+\cdots\) | |
Decomposition of \(S_{12}^{\mathrm{old}}(\Gamma_0(27))\) into lower level spaces
\( S_{12}^{\mathrm{old}}(\Gamma_0(27)) \simeq \) \(S_{12}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 3}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 2}\)