Properties

Label 27.12.a
Level $27$
Weight $12$
Character orbit 27.a
Rep. character $\chi_{27}(1,\cdot)$
Character field $\Q$
Dimension $15$
Newform subspaces $5$
Sturm bound $36$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 27 = 3^{3} \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 27.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 5 \)
Sturm bound: \(36\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{12}(\Gamma_0(27))\).

Total New Old
Modular forms 36 15 21
Cusp forms 30 15 15
Eisenstein series 6 0 6

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)TotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(19\)\(8\)\(11\)\(16\)\(8\)\(8\)\(3\)\(0\)\(3\)
\(-\)\(17\)\(7\)\(10\)\(14\)\(7\)\(7\)\(3\)\(0\)\(3\)

Trace form

\( 15 q + 14406 q^{4} - 18681 q^{7} + 519606 q^{10} - 4254369 q^{13} + 16691370 q^{16} + 28469829 q^{19} - 125905230 q^{22} + 198116421 q^{25} + 172835130 q^{28} + 148121940 q^{31} - 415028880 q^{34} - 343006647 q^{37}+ \cdots - 214230528861 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{12}^{\mathrm{new}}(\Gamma_0(27))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3
27.12.a.a 27.a 1.a $1$ $20.745$ \(\Q\) \(\Q(\sqrt{-3}) \) 27.12.a.a \(0\) \(0\) \(0\) \(77153\) $-$ $N(\mathrm{U}(1))$ \(q-2^{11}q^{4}+77153q^{7}-2248615q^{13}+\cdots\)
27.12.a.b 27.a 1.a $2$ $20.745$ \(\Q(\sqrt{93}) \) None 27.12.a.b \(0\) \(0\) \(0\) \(-100142\) $-$ $\mathrm{SU}(2)$ \(q-\beta q^{2}+1300q^{4}+10\beta q^{5}-50071q^{7}+\cdots\)
27.12.a.c 27.a 1.a $4$ $20.745$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 27.12.a.c \(-9\) \(0\) \(-12060\) \(-12076\) $-$ $\mathrm{SU}(2)$ \(q+(-2+\beta _{1})q^{2}+(1522-22\beta _{1}+\beta _{3})q^{4}+\cdots\)
27.12.a.d 27.a 1.a $4$ $20.745$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 27.12.a.d \(0\) \(0\) \(0\) \(28460\) $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(409-\beta _{3})q^{4}+(-2^{4}\beta _{1}+\cdots)q^{5}+\cdots\)
27.12.a.e 27.a 1.a $4$ $20.745$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 27.12.a.c \(9\) \(0\) \(12060\) \(-12076\) $+$ $\mathrm{SU}(2)$ \(q+(2-\beta _{1})q^{2}+(1522-22\beta _{1}+\beta _{3})q^{4}+\cdots\)

Decomposition of \(S_{12}^{\mathrm{old}}(\Gamma_0(27))\) into lower level spaces

\( S_{12}^{\mathrm{old}}(\Gamma_0(27)) \simeq \) \(S_{12}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 3}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 2}\)