Properties

Label 8-3e12-1.1-c11e4-0-0
Degree $8$
Conductor $531441$
Sign $1$
Analytic cond. $185214.$
Root an. cond. $4.55469$
Motivic weight $11$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 9·2-s − 1.00e3·4-s + 1.20e4·5-s − 1.20e4·7-s + 8.83e4·8-s + 1.08e5·10-s − 5.26e5·11-s − 2.22e6·13-s − 1.08e5·14-s + 5.89e5·16-s + 8.88e6·17-s + 6.17e6·19-s − 1.20e7·20-s − 4.74e6·22-s + 7.69e7·23-s + 2.53e7·25-s − 2.00e7·26-s + 1.20e7·28-s + 1.80e8·29-s − 3.56e7·31-s + 1.55e6·32-s + 7.99e7·34-s − 1.45e8·35-s + 5.96e7·37-s + 5.55e7·38-s + 1.06e9·40-s − 5.40e8·41-s + ⋯
L(s)  = 1  + 0.198·2-s − 0.488·4-s + 1.72·5-s − 0.271·7-s + 0.953·8-s + 0.343·10-s − 0.986·11-s − 1.66·13-s − 0.0540·14-s + 0.140·16-s + 1.51·17-s + 0.571·19-s − 0.843·20-s − 0.196·22-s + 2.49·23-s + 0.518·25-s − 0.330·26-s + 0.132·28-s + 1.63·29-s − 0.223·31-s + 0.00818·32-s + 0.301·34-s − 0.468·35-s + 0.141·37-s + 0.113·38-s + 1.64·40-s − 0.728·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 531441 ^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(12-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 531441 ^{s/2} \, \Gamma_{\C}(s+11/2)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(531441\)    =    \(3^{12}\)
Sign: $1$
Analytic conductor: \(185214.\)
Root analytic conductor: \(4.55469\)
Motivic weight: \(11\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 531441,\ (\ :11/2, 11/2, 11/2, 11/2),\ 1)\)

Particular Values

\(L(6)\) \(\approx\) \(1.946701981\)
\(L(\frac12)\) \(\approx\) \(1.946701981\)
\(L(\frac{13}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
good2$C_2 \wr S_4$ \( 1 - 9 T + 541 p T^{2} - 837 p^{7} T^{3} + 17607 p^{7} T^{4} - 837 p^{18} T^{5} + 541 p^{23} T^{6} - 9 p^{33} T^{7} + p^{44} T^{8} \)
5$C_2 \wr S_4$ \( 1 - 2412 p T + 24028126 p T^{2} - 38909247912 p^{2} T^{3} + 62688308007891 p^{3} T^{4} - 38909247912 p^{13} T^{5} + 24028126 p^{23} T^{6} - 2412 p^{34} T^{7} + p^{44} T^{8} \)
7$C_2 \wr S_4$ \( 1 + 12076 T + 3523686214 T^{2} + 14469482528272 p T^{3} + 151417928656476919 p^{2} T^{4} + 14469482528272 p^{12} T^{5} + 3523686214 p^{22} T^{6} + 12076 p^{33} T^{7} + p^{44} T^{8} \)
11$C_2 \wr S_4$ \( 1 + 526788 T + 39624253102 p T^{2} + 242807357995546104 T^{3} + \)\(21\!\cdots\!67\)\( T^{4} + 242807357995546104 p^{11} T^{5} + 39624253102 p^{23} T^{6} + 526788 p^{33} T^{7} + p^{44} T^{8} \)
13$C_2 \wr S_4$ \( 1 + 2227432 T + 4340556730132 T^{2} + 461256626445491704 p T^{3} + \)\(89\!\cdots\!30\)\( T^{4} + 461256626445491704 p^{12} T^{5} + 4340556730132 p^{22} T^{6} + 2227432 p^{33} T^{7} + p^{44} T^{8} \)
17$C_2 \wr S_4$ \( 1 - 8884296 T + 152188590444548 T^{2} - \)\(90\!\cdots\!08\)\( T^{3} + \)\(80\!\cdots\!06\)\( T^{4} - \)\(90\!\cdots\!08\)\( p^{11} T^{5} + 152188590444548 p^{22} T^{6} - 8884296 p^{33} T^{7} + p^{44} T^{8} \)
19$C_2 \wr S_4$ \( 1 - 6172784 T + 385477479434692 T^{2} - \)\(10\!\cdots\!24\)\( p T^{3} + \)\(62\!\cdots\!82\)\( T^{4} - \)\(10\!\cdots\!24\)\( p^{12} T^{5} + 385477479434692 p^{22} T^{6} - 6172784 p^{33} T^{7} + p^{44} T^{8} \)
23$C_2 \wr S_4$ \( 1 - 76901040 T + 5412772069781156 T^{2} - \)\(22\!\cdots\!40\)\( T^{3} + \)\(83\!\cdots\!82\)\( T^{4} - \)\(22\!\cdots\!40\)\( p^{11} T^{5} + 5412772069781156 p^{22} T^{6} - 76901040 p^{33} T^{7} + p^{44} T^{8} \)
29$C_2 \wr S_4$ \( 1 - 180046080 T + 30796015347898508 T^{2} - \)\(38\!\cdots\!60\)\( T^{3} + \)\(51\!\cdots\!82\)\( T^{4} - \)\(38\!\cdots\!60\)\( p^{11} T^{5} + 30796015347898508 p^{22} T^{6} - 180046080 p^{33} T^{7} + p^{44} T^{8} \)
31$C_2 \wr S_4$ \( 1 + 35694652 T + 67125076158615838 T^{2} + \)\(23\!\cdots\!88\)\( T^{3} + \)\(21\!\cdots\!95\)\( T^{4} + \)\(23\!\cdots\!88\)\( p^{11} T^{5} + 67125076158615838 p^{22} T^{6} + 35694652 p^{33} T^{7} + p^{44} T^{8} \)
37$C_2 \wr S_4$ \( 1 - 59658848 T + 518629292153510428 T^{2} + \)\(16\!\cdots\!28\)\( T^{3} + \)\(11\!\cdots\!90\)\( T^{4} + \)\(16\!\cdots\!28\)\( p^{11} T^{5} + 518629292153510428 p^{22} T^{6} - 59658848 p^{33} T^{7} + p^{44} T^{8} \)
41$C_2 \wr S_4$ \( 1 + 540559152 T + 1077564717734609852 T^{2} + \)\(66\!\cdots\!96\)\( T^{3} + \)\(84\!\cdots\!02\)\( T^{4} + \)\(66\!\cdots\!96\)\( p^{11} T^{5} + 1077564717734609852 p^{22} T^{6} + 540559152 p^{33} T^{7} + p^{44} T^{8} \)
43$C_2 \wr S_4$ \( 1 + 2521421368 T + 5093790666347846452 T^{2} + \)\(69\!\cdots\!28\)\( T^{3} + \)\(76\!\cdots\!30\)\( T^{4} + \)\(69\!\cdots\!28\)\( p^{11} T^{5} + 5093790666347846452 p^{22} T^{6} + 2521421368 p^{33} T^{7} + p^{44} T^{8} \)
47$C_2 \wr S_4$ \( 1 + 2691337608 T + 11877920084136312020 T^{2} + \)\(20\!\cdots\!12\)\( T^{3} + \)\(46\!\cdots\!42\)\( T^{4} + \)\(20\!\cdots\!12\)\( p^{11} T^{5} + 11877920084136312020 p^{22} T^{6} + 2691337608 p^{33} T^{7} + p^{44} T^{8} \)
53$C_2 \wr S_4$ \( 1 + 132122340 T + 14408869704130488974 T^{2} + \)\(46\!\cdots\!04\)\( T^{3} + \)\(78\!\cdots\!07\)\( T^{4} + \)\(46\!\cdots\!04\)\( p^{11} T^{5} + 14408869704130488974 p^{22} T^{6} + 132122340 p^{33} T^{7} + p^{44} T^{8} \)
59$C_2 \wr S_4$ \( 1 + 8139028320 T + \)\(11\!\cdots\!08\)\( T^{2} + \)\(72\!\cdots\!40\)\( T^{3} + \)\(50\!\cdots\!82\)\( T^{4} + \)\(72\!\cdots\!40\)\( p^{11} T^{5} + \)\(11\!\cdots\!08\)\( p^{22} T^{6} + 8139028320 p^{33} T^{7} + p^{44} T^{8} \)
61$C_2 \wr S_4$ \( 1 + 3516171856 T + 26722632168180254740 T^{2} - \)\(17\!\cdots\!84\)\( T^{3} + \)\(49\!\cdots\!70\)\( T^{4} - \)\(17\!\cdots\!84\)\( p^{11} T^{5} + 26722632168180254740 p^{22} T^{6} + 3516171856 p^{33} T^{7} + p^{44} T^{8} \)
67$C_2 \wr S_4$ \( 1 + 711923512 T + \)\(41\!\cdots\!80\)\( T^{2} + \)\(31\!\cdots\!88\)\( T^{3} + \)\(71\!\cdots\!02\)\( T^{4} + \)\(31\!\cdots\!88\)\( p^{11} T^{5} + \)\(41\!\cdots\!80\)\( p^{22} T^{6} + 711923512 p^{33} T^{7} + p^{44} T^{8} \)
71$C_2 \wr S_4$ \( 1 - 36309366072 T + \)\(10\!\cdots\!72\)\( T^{2} - \)\(18\!\cdots\!36\)\( T^{3} + \)\(31\!\cdots\!42\)\( T^{4} - \)\(18\!\cdots\!36\)\( p^{11} T^{5} + \)\(10\!\cdots\!72\)\( p^{22} T^{6} - 36309366072 p^{33} T^{7} + p^{44} T^{8} \)
73$C_2 \wr S_4$ \( 1 - 28769206364 T + \)\(83\!\cdots\!50\)\( T^{2} - \)\(17\!\cdots\!84\)\( T^{3} + \)\(40\!\cdots\!67\)\( T^{4} - \)\(17\!\cdots\!84\)\( p^{11} T^{5} + \)\(83\!\cdots\!50\)\( p^{22} T^{6} - 28769206364 p^{33} T^{7} + p^{44} T^{8} \)
79$C_2 \wr S_4$ \( 1 + 108210339448 T + \)\(68\!\cdots\!12\)\( T^{2} + \)\(28\!\cdots\!76\)\( T^{3} + \)\(91\!\cdots\!58\)\( T^{4} + \)\(28\!\cdots\!76\)\( p^{11} T^{5} + \)\(68\!\cdots\!12\)\( p^{22} T^{6} + 108210339448 p^{33} T^{7} + p^{44} T^{8} \)
83$C_2 \wr S_4$ \( 1 - 68197592556 T + \)\(34\!\cdots\!74\)\( T^{2} - \)\(81\!\cdots\!72\)\( T^{3} + \)\(30\!\cdots\!59\)\( T^{4} - \)\(81\!\cdots\!72\)\( p^{11} T^{5} + \)\(34\!\cdots\!74\)\( p^{22} T^{6} - 68197592556 p^{33} T^{7} + p^{44} T^{8} \)
89$C_2 \wr S_4$ \( 1 - 69699290616 T + \)\(10\!\cdots\!28\)\( T^{2} - \)\(55\!\cdots\!72\)\( T^{3} + \)\(40\!\cdots\!42\)\( T^{4} - \)\(55\!\cdots\!72\)\( p^{11} T^{5} + \)\(10\!\cdots\!28\)\( p^{22} T^{6} - 69699290616 p^{33} T^{7} + p^{44} T^{8} \)
97$C_2 \wr S_4$ \( 1 + 153951848548 T + \)\(14\!\cdots\!38\)\( T^{2} + \)\(10\!\cdots\!32\)\( T^{3} - \)\(18\!\cdots\!65\)\( T^{4} + \)\(10\!\cdots\!32\)\( p^{11} T^{5} + \)\(14\!\cdots\!38\)\( p^{22} T^{6} + 153951848548 p^{33} T^{7} + p^{44} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.30239645430955453257749604037, −10.01627647697177524654281796270, −9.593536417743516560176970795399, −9.564468152949570720802804840721, −9.385554897440297217522560631154, −8.409165090900624692890498239840, −8.172574898294954937541417782508, −8.109088934463181747584606257365, −7.34645902140491210012070296630, −7.02255548179160255285904831535, −6.84664809143298575614917854346, −6.19257776195965212497866739334, −5.86695111872713815517293993061, −5.15695002497515956476512671477, −5.08642410397676405462296509948, −4.71697582821639801301478442572, −4.70544964460530256181273854185, −3.41117966574473761668158788171, −3.16500970332420060391178702395, −2.94288744046508713114437722897, −2.06227084566454383669354225961, −1.98648101391524390234348389150, −1.19153806326204571706981111112, −1.04851411336423615628253681273, −0.20208713358249857514827274253, 0.20208713358249857514827274253, 1.04851411336423615628253681273, 1.19153806326204571706981111112, 1.98648101391524390234348389150, 2.06227084566454383669354225961, 2.94288744046508713114437722897, 3.16500970332420060391178702395, 3.41117966574473761668158788171, 4.70544964460530256181273854185, 4.71697582821639801301478442572, 5.08642410397676405462296509948, 5.15695002497515956476512671477, 5.86695111872713815517293993061, 6.19257776195965212497866739334, 6.84664809143298575614917854346, 7.02255548179160255285904831535, 7.34645902140491210012070296630, 8.109088934463181747584606257365, 8.172574898294954937541417782508, 8.409165090900624692890498239840, 9.385554897440297217522560631154, 9.564468152949570720802804840721, 9.593536417743516560176970795399, 10.01627647697177524654281796270, 10.30239645430955453257749604037

Graph of the $Z$-function along the critical line