Properties

Label 2600.2.d.k.1249.4
Level $2600$
Weight $2$
Character 2600.1249
Analytic conductor $20.761$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2600,2,Mod(1249,2600)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2600, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2600.1249"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2600 = 2^{3} \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2600.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,-6,0,-4,0,0,0,0,0,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.7611045255\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{17})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 104)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1249.4
Root \(2.56155i\) of defining polynomial
Character \(\chi\) \(=\) 2600.1249
Dual form 2600.2.d.k.1249.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.56155i q^{3} +2.56155i q^{7} -3.56155 q^{9} -5.12311 q^{11} +1.00000i q^{13} -5.68466i q^{17} -5.12311 q^{19} -6.56155 q^{21} -8.00000i q^{23} -1.43845i q^{27} +2.00000 q^{29} +4.00000 q^{31} -13.1231i q^{33} -9.68466i q^{37} -2.56155 q^{39} -3.12311 q^{41} +5.43845i q^{43} +0.315342i q^{47} +0.438447 q^{49} +14.5616 q^{51} +3.12311i q^{53} -13.1231i q^{57} -5.12311 q^{59} +11.1231 q^{61} -9.12311i q^{63} +5.12311i q^{67} +20.4924 q^{69} -7.68466 q^{71} -6.00000i q^{73} -13.1231i q^{77} -8.00000 q^{79} -7.00000 q^{81} +2.24621i q^{83} +5.12311i q^{87} -10.0000 q^{89} -2.56155 q^{91} +10.2462i q^{93} +8.24621i q^{97} +18.2462 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 6 q^{9} - 4 q^{11} - 4 q^{19} - 18 q^{21} + 8 q^{29} + 16 q^{31} - 2 q^{39} + 4 q^{41} + 10 q^{49} + 50 q^{51} - 4 q^{59} + 28 q^{61} + 16 q^{69} - 6 q^{71} - 32 q^{79} - 28 q^{81} - 40 q^{89} - 2 q^{91}+ \cdots + 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2600\mathbb{Z}\right)^\times\).

\(n\) \(1301\) \(1601\) \(1951\) \(1977\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.56155i 1.47891i 0.673204 + 0.739457i \(0.264917\pi\)
−0.673204 + 0.739457i \(0.735083\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 2.56155i 0.968176i 0.875019 + 0.484088i \(0.160849\pi\)
−0.875019 + 0.484088i \(0.839151\pi\)
\(8\) 0 0
\(9\) −3.56155 −1.18718
\(10\) 0 0
\(11\) −5.12311 −1.54467 −0.772337 0.635213i \(-0.780912\pi\)
−0.772337 + 0.635213i \(0.780912\pi\)
\(12\) 0 0
\(13\) 1.00000i 0.277350i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 5.68466i − 1.37873i −0.724413 0.689366i \(-0.757889\pi\)
0.724413 0.689366i \(-0.242111\pi\)
\(18\) 0 0
\(19\) −5.12311 −1.17532 −0.587661 0.809108i \(-0.699951\pi\)
−0.587661 + 0.809108i \(0.699951\pi\)
\(20\) 0 0
\(21\) −6.56155 −1.43185
\(22\) 0 0
\(23\) − 8.00000i − 1.66812i −0.551677 0.834058i \(-0.686012\pi\)
0.551677 0.834058i \(-0.313988\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) − 1.43845i − 0.276829i
\(28\) 0 0
\(29\) 2.00000 0.371391 0.185695 0.982607i \(-0.440546\pi\)
0.185695 + 0.982607i \(0.440546\pi\)
\(30\) 0 0
\(31\) 4.00000 0.718421 0.359211 0.933257i \(-0.383046\pi\)
0.359211 + 0.933257i \(0.383046\pi\)
\(32\) 0 0
\(33\) − 13.1231i − 2.28444i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 9.68466i − 1.59215i −0.605199 0.796074i \(-0.706907\pi\)
0.605199 0.796074i \(-0.293093\pi\)
\(38\) 0 0
\(39\) −2.56155 −0.410177
\(40\) 0 0
\(41\) −3.12311 −0.487747 −0.243874 0.969807i \(-0.578418\pi\)
−0.243874 + 0.969807i \(0.578418\pi\)
\(42\) 0 0
\(43\) 5.43845i 0.829355i 0.909968 + 0.414678i \(0.136106\pi\)
−0.909968 + 0.414678i \(0.863894\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0.315342i 0.0459973i 0.999735 + 0.0229986i \(0.00732134\pi\)
−0.999735 + 0.0229986i \(0.992679\pi\)
\(48\) 0 0
\(49\) 0.438447 0.0626353
\(50\) 0 0
\(51\) 14.5616 2.03903
\(52\) 0 0
\(53\) 3.12311i 0.428992i 0.976725 + 0.214496i \(0.0688108\pi\)
−0.976725 + 0.214496i \(0.931189\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 13.1231i − 1.73820i
\(58\) 0 0
\(59\) −5.12311 −0.666972 −0.333486 0.942755i \(-0.608225\pi\)
−0.333486 + 0.942755i \(0.608225\pi\)
\(60\) 0 0
\(61\) 11.1231 1.42417 0.712084 0.702094i \(-0.247752\pi\)
0.712084 + 0.702094i \(0.247752\pi\)
\(62\) 0 0
\(63\) − 9.12311i − 1.14940i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 5.12311i 0.625887i 0.949772 + 0.312943i \(0.101315\pi\)
−0.949772 + 0.312943i \(0.898685\pi\)
\(68\) 0 0
\(69\) 20.4924 2.46700
\(70\) 0 0
\(71\) −7.68466 −0.912001 −0.456001 0.889979i \(-0.650719\pi\)
−0.456001 + 0.889979i \(0.650719\pi\)
\(72\) 0 0
\(73\) − 6.00000i − 0.702247i −0.936329 0.351123i \(-0.885800\pi\)
0.936329 0.351123i \(-0.114200\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 13.1231i − 1.49552i
\(78\) 0 0
\(79\) −8.00000 −0.900070 −0.450035 0.893011i \(-0.648589\pi\)
−0.450035 + 0.893011i \(0.648589\pi\)
\(80\) 0 0
\(81\) −7.00000 −0.777778
\(82\) 0 0
\(83\) 2.24621i 0.246554i 0.992372 + 0.123277i \(0.0393403\pi\)
−0.992372 + 0.123277i \(0.960660\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 5.12311i 0.549255i
\(88\) 0 0
\(89\) −10.0000 −1.06000 −0.529999 0.847998i \(-0.677808\pi\)
−0.529999 + 0.847998i \(0.677808\pi\)
\(90\) 0 0
\(91\) −2.56155 −0.268524
\(92\) 0 0
\(93\) 10.2462i 1.06248i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 8.24621i 0.837276i 0.908153 + 0.418638i \(0.137492\pi\)
−0.908153 + 0.418638i \(0.862508\pi\)
\(98\) 0 0
\(99\) 18.2462 1.83381
\(100\) 0 0
\(101\) −7.12311 −0.708776 −0.354388 0.935099i \(-0.615311\pi\)
−0.354388 + 0.935099i \(0.615311\pi\)
\(102\) 0 0
\(103\) 2.24621i 0.221326i 0.993858 + 0.110663i \(0.0352974\pi\)
−0.993858 + 0.110663i \(0.964703\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 4.00000i − 0.386695i −0.981130 0.193347i \(-0.938066\pi\)
0.981130 0.193347i \(-0.0619344\pi\)
\(108\) 0 0
\(109\) 2.80776 0.268935 0.134468 0.990918i \(-0.457068\pi\)
0.134468 + 0.990918i \(0.457068\pi\)
\(110\) 0 0
\(111\) 24.8078 2.35465
\(112\) 0 0
\(113\) − 18.4924i − 1.73962i −0.493386 0.869810i \(-0.664241\pi\)
0.493386 0.869810i \(-0.335759\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) − 3.56155i − 0.329266i
\(118\) 0 0
\(119\) 14.5616 1.33486
\(120\) 0 0
\(121\) 15.2462 1.38602
\(122\) 0 0
\(123\) − 8.00000i − 0.721336i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 10.2462i 0.909204i 0.890695 + 0.454602i \(0.150219\pi\)
−0.890695 + 0.454602i \(0.849781\pi\)
\(128\) 0 0
\(129\) −13.9309 −1.22654
\(130\) 0 0
\(131\) −4.80776 −0.420056 −0.210028 0.977695i \(-0.567356\pi\)
−0.210028 + 0.977695i \(0.567356\pi\)
\(132\) 0 0
\(133\) − 13.1231i − 1.13792i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 3.12311i 0.266825i 0.991061 + 0.133412i \(0.0425935\pi\)
−0.991061 + 0.133412i \(0.957406\pi\)
\(138\) 0 0
\(139\) −7.68466 −0.651804 −0.325902 0.945404i \(-0.605668\pi\)
−0.325902 + 0.945404i \(0.605668\pi\)
\(140\) 0 0
\(141\) −0.807764 −0.0680260
\(142\) 0 0
\(143\) − 5.12311i − 0.428416i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 1.12311i 0.0926322i
\(148\) 0 0
\(149\) −16.2462 −1.33094 −0.665471 0.746424i \(-0.731769\pi\)
−0.665471 + 0.746424i \(0.731769\pi\)
\(150\) 0 0
\(151\) 10.5616 0.859487 0.429743 0.902951i \(-0.358604\pi\)
0.429743 + 0.902951i \(0.358604\pi\)
\(152\) 0 0
\(153\) 20.2462i 1.63681i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 22.4924i 1.79509i 0.440922 + 0.897545i \(0.354651\pi\)
−0.440922 + 0.897545i \(0.645349\pi\)
\(158\) 0 0
\(159\) −8.00000 −0.634441
\(160\) 0 0
\(161\) 20.4924 1.61503
\(162\) 0 0
\(163\) − 20.4924i − 1.60509i −0.596591 0.802545i \(-0.703479\pi\)
0.596591 0.802545i \(-0.296521\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 14.2462i − 1.10240i −0.834372 0.551202i \(-0.814169\pi\)
0.834372 0.551202i \(-0.185831\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) 0 0
\(171\) 18.2462 1.39532
\(172\) 0 0
\(173\) − 4.87689i − 0.370783i −0.982665 0.185392i \(-0.940645\pi\)
0.982665 0.185392i \(-0.0593554\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) − 13.1231i − 0.986393i
\(178\) 0 0
\(179\) −7.68466 −0.574378 −0.287189 0.957874i \(-0.592721\pi\)
−0.287189 + 0.957874i \(0.592721\pi\)
\(180\) 0 0
\(181\) −23.1231 −1.71873 −0.859363 0.511365i \(-0.829140\pi\)
−0.859363 + 0.511365i \(0.829140\pi\)
\(182\) 0 0
\(183\) 28.4924i 2.10622i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 29.1231i 2.12969i
\(188\) 0 0
\(189\) 3.68466 0.268019
\(190\) 0 0
\(191\) 15.3693 1.11208 0.556042 0.831154i \(-0.312319\pi\)
0.556042 + 0.831154i \(0.312319\pi\)
\(192\) 0 0
\(193\) − 21.3693i − 1.53820i −0.639130 0.769099i \(-0.720706\pi\)
0.639130 0.769099i \(-0.279294\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 2.31534i − 0.164961i −0.996593 0.0824806i \(-0.973716\pi\)
0.996593 0.0824806i \(-0.0262843\pi\)
\(198\) 0 0
\(199\) −5.12311 −0.363167 −0.181584 0.983375i \(-0.558122\pi\)
−0.181584 + 0.983375i \(0.558122\pi\)
\(200\) 0 0
\(201\) −13.1231 −0.925633
\(202\) 0 0
\(203\) 5.12311i 0.359572i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 28.4924i 1.98036i
\(208\) 0 0
\(209\) 26.2462 1.81549
\(210\) 0 0
\(211\) 15.6847 1.07978 0.539888 0.841737i \(-0.318467\pi\)
0.539888 + 0.841737i \(0.318467\pi\)
\(212\) 0 0
\(213\) − 19.6847i − 1.34877i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 10.2462i 0.695558i
\(218\) 0 0
\(219\) 15.3693 1.03856
\(220\) 0 0
\(221\) 5.68466 0.382392
\(222\) 0 0
\(223\) − 15.6847i − 1.05032i −0.851003 0.525161i \(-0.824005\pi\)
0.851003 0.525161i \(-0.175995\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 8.00000i 0.530979i 0.964114 + 0.265489i \(0.0855335\pi\)
−0.964114 + 0.265489i \(0.914466\pi\)
\(228\) 0 0
\(229\) −6.80776 −0.449870 −0.224935 0.974374i \(-0.572217\pi\)
−0.224935 + 0.974374i \(0.572217\pi\)
\(230\) 0 0
\(231\) 33.6155 2.21174
\(232\) 0 0
\(233\) − 6.80776i − 0.445991i −0.974819 0.222996i \(-0.928416\pi\)
0.974819 0.222996i \(-0.0715836\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) − 20.4924i − 1.33113i
\(238\) 0 0
\(239\) 2.56155 0.165693 0.0828465 0.996562i \(-0.473599\pi\)
0.0828465 + 0.996562i \(0.473599\pi\)
\(240\) 0 0
\(241\) −3.75379 −0.241803 −0.120901 0.992665i \(-0.538578\pi\)
−0.120901 + 0.992665i \(0.538578\pi\)
\(242\) 0 0
\(243\) − 22.2462i − 1.42710i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 5.12311i − 0.325975i
\(248\) 0 0
\(249\) −5.75379 −0.364632
\(250\) 0 0
\(251\) 22.2462 1.40417 0.702084 0.712094i \(-0.252253\pi\)
0.702084 + 0.712094i \(0.252253\pi\)
\(252\) 0 0
\(253\) 40.9848i 2.57670i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 11.4384i − 0.713511i −0.934198 0.356755i \(-0.883883\pi\)
0.934198 0.356755i \(-0.116117\pi\)
\(258\) 0 0
\(259\) 24.8078 1.54148
\(260\) 0 0
\(261\) −7.12311 −0.440909
\(262\) 0 0
\(263\) − 26.2462i − 1.61841i −0.587526 0.809205i \(-0.699898\pi\)
0.587526 0.809205i \(-0.300102\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) − 25.6155i − 1.56764i
\(268\) 0 0
\(269\) 4.87689 0.297349 0.148675 0.988886i \(-0.452499\pi\)
0.148675 + 0.988886i \(0.452499\pi\)
\(270\) 0 0
\(271\) −20.8078 −1.26398 −0.631991 0.774976i \(-0.717762\pi\)
−0.631991 + 0.774976i \(0.717762\pi\)
\(272\) 0 0
\(273\) − 6.56155i − 0.397123i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) − 29.3693i − 1.76463i −0.470658 0.882316i \(-0.655984\pi\)
0.470658 0.882316i \(-0.344016\pi\)
\(278\) 0 0
\(279\) −14.2462 −0.852898
\(280\) 0 0
\(281\) 10.0000 0.596550 0.298275 0.954480i \(-0.403589\pi\)
0.298275 + 0.954480i \(0.403589\pi\)
\(282\) 0 0
\(283\) − 8.49242i − 0.504822i −0.967620 0.252411i \(-0.918776\pi\)
0.967620 0.252411i \(-0.0812235\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 8.00000i − 0.472225i
\(288\) 0 0
\(289\) −15.3153 −0.900902
\(290\) 0 0
\(291\) −21.1231 −1.23826
\(292\) 0 0
\(293\) 15.4384i 0.901924i 0.892543 + 0.450962i \(0.148919\pi\)
−0.892543 + 0.450962i \(0.851081\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 7.36932i 0.427611i
\(298\) 0 0
\(299\) 8.00000 0.462652
\(300\) 0 0
\(301\) −13.9309 −0.802962
\(302\) 0 0
\(303\) − 18.2462i − 1.04822i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 13.1231i − 0.748975i −0.927232 0.374488i \(-0.877819\pi\)
0.927232 0.374488i \(-0.122181\pi\)
\(308\) 0 0
\(309\) −5.75379 −0.327322
\(310\) 0 0
\(311\) −10.8769 −0.616772 −0.308386 0.951261i \(-0.599789\pi\)
−0.308386 + 0.951261i \(0.599789\pi\)
\(312\) 0 0
\(313\) 26.8078i 1.51526i 0.652682 + 0.757632i \(0.273644\pi\)
−0.652682 + 0.757632i \(0.726356\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 12.2462i 0.687816i 0.939003 + 0.343908i \(0.111751\pi\)
−0.939003 + 0.343908i \(0.888249\pi\)
\(318\) 0 0
\(319\) −10.2462 −0.573678
\(320\) 0 0
\(321\) 10.2462 0.571888
\(322\) 0 0
\(323\) 29.1231i 1.62045i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 7.19224i 0.397732i
\(328\) 0 0
\(329\) −0.807764 −0.0445335
\(330\) 0 0
\(331\) −4.49242 −0.246926 −0.123463 0.992349i \(-0.539400\pi\)
−0.123463 + 0.992349i \(0.539400\pi\)
\(332\) 0 0
\(333\) 34.4924i 1.89017i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 13.1922i 0.718627i 0.933217 + 0.359313i \(0.116989\pi\)
−0.933217 + 0.359313i \(0.883011\pi\)
\(338\) 0 0
\(339\) 47.3693 2.57275
\(340\) 0 0
\(341\) −20.4924 −1.10973
\(342\) 0 0
\(343\) 19.0540i 1.02882i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 7.68466i − 0.412534i −0.978496 0.206267i \(-0.933868\pi\)
0.978496 0.206267i \(-0.0661316\pi\)
\(348\) 0 0
\(349\) −11.9309 −0.638645 −0.319322 0.947646i \(-0.603455\pi\)
−0.319322 + 0.947646i \(0.603455\pi\)
\(350\) 0 0
\(351\) 1.43845 0.0767786
\(352\) 0 0
\(353\) 9.36932i 0.498678i 0.968416 + 0.249339i \(0.0802134\pi\)
−0.968416 + 0.249339i \(0.919787\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 37.3002i 1.97414i
\(358\) 0 0
\(359\) −14.2462 −0.751886 −0.375943 0.926643i \(-0.622681\pi\)
−0.375943 + 0.926643i \(0.622681\pi\)
\(360\) 0 0
\(361\) 7.24621 0.381380
\(362\) 0 0
\(363\) 39.0540i 2.04980i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 9.61553i − 0.501926i −0.967997 0.250963i \(-0.919253\pi\)
0.967997 0.250963i \(-0.0807473\pi\)
\(368\) 0 0
\(369\) 11.1231 0.579046
\(370\) 0 0
\(371\) −8.00000 −0.415339
\(372\) 0 0
\(373\) − 11.6155i − 0.601429i −0.953714 0.300715i \(-0.902775\pi\)
0.953714 0.300715i \(-0.0972252\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 2.00000i 0.103005i
\(378\) 0 0
\(379\) −5.75379 −0.295552 −0.147776 0.989021i \(-0.547212\pi\)
−0.147776 + 0.989021i \(0.547212\pi\)
\(380\) 0 0
\(381\) −26.2462 −1.34463
\(382\) 0 0
\(383\) − 11.1922i − 0.571897i −0.958245 0.285948i \(-0.907691\pi\)
0.958245 0.285948i \(-0.0923086\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 19.3693i − 0.984598i
\(388\) 0 0
\(389\) −20.7386 −1.05149 −0.525745 0.850642i \(-0.676213\pi\)
−0.525745 + 0.850642i \(0.676213\pi\)
\(390\) 0 0
\(391\) −45.4773 −2.29988
\(392\) 0 0
\(393\) − 12.3153i − 0.621227i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 2.00000i 0.100377i 0.998740 + 0.0501886i \(0.0159822\pi\)
−0.998740 + 0.0501886i \(0.984018\pi\)
\(398\) 0 0
\(399\) 33.6155 1.68288
\(400\) 0 0
\(401\) 3.61553 0.180551 0.0902754 0.995917i \(-0.471225\pi\)
0.0902754 + 0.995917i \(0.471225\pi\)
\(402\) 0 0
\(403\) 4.00000i 0.199254i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 49.6155i 2.45935i
\(408\) 0 0
\(409\) −12.8769 −0.636721 −0.318361 0.947970i \(-0.603132\pi\)
−0.318361 + 0.947970i \(0.603132\pi\)
\(410\) 0 0
\(411\) −8.00000 −0.394611
\(412\) 0 0
\(413\) − 13.1231i − 0.645746i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) − 19.6847i − 0.963962i
\(418\) 0 0
\(419\) 1.93087 0.0943292 0.0471646 0.998887i \(-0.484981\pi\)
0.0471646 + 0.998887i \(0.484981\pi\)
\(420\) 0 0
\(421\) −6.31534 −0.307791 −0.153895 0.988087i \(-0.549182\pi\)
−0.153895 + 0.988087i \(0.549182\pi\)
\(422\) 0 0
\(423\) − 1.12311i − 0.0546073i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 28.4924i 1.37884i
\(428\) 0 0
\(429\) 13.1231 0.633590
\(430\) 0 0
\(431\) −18.5616 −0.894079 −0.447039 0.894514i \(-0.647522\pi\)
−0.447039 + 0.894514i \(0.647522\pi\)
\(432\) 0 0
\(433\) − 6.17708i − 0.296852i −0.988924 0.148426i \(-0.952579\pi\)
0.988924 0.148426i \(-0.0474206\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 40.9848i 1.96057i
\(438\) 0 0
\(439\) −21.1231 −1.00815 −0.504075 0.863660i \(-0.668167\pi\)
−0.504075 + 0.863660i \(0.668167\pi\)
\(440\) 0 0
\(441\) −1.56155 −0.0743597
\(442\) 0 0
\(443\) 20.8078i 0.988607i 0.869289 + 0.494303i \(0.164577\pi\)
−0.869289 + 0.494303i \(0.835423\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) − 41.6155i − 1.96835i
\(448\) 0 0
\(449\) −32.7386 −1.54503 −0.772516 0.634996i \(-0.781002\pi\)
−0.772516 + 0.634996i \(0.781002\pi\)
\(450\) 0 0
\(451\) 16.0000 0.753411
\(452\) 0 0
\(453\) 27.0540i 1.27111i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 24.7386i − 1.15722i −0.815603 0.578612i \(-0.803594\pi\)
0.815603 0.578612i \(-0.196406\pi\)
\(458\) 0 0
\(459\) −8.17708 −0.381673
\(460\) 0 0
\(461\) −34.8078 −1.62116 −0.810580 0.585628i \(-0.800848\pi\)
−0.810580 + 0.585628i \(0.800848\pi\)
\(462\) 0 0
\(463\) 38.2462i 1.77745i 0.458439 + 0.888726i \(0.348409\pi\)
−0.458439 + 0.888726i \(0.651591\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 40.4924i − 1.87377i −0.349643 0.936883i \(-0.613697\pi\)
0.349643 0.936883i \(-0.386303\pi\)
\(468\) 0 0
\(469\) −13.1231 −0.605969
\(470\) 0 0
\(471\) −57.6155 −2.65478
\(472\) 0 0
\(473\) − 27.8617i − 1.28108i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) − 11.1231i − 0.509292i
\(478\) 0 0
\(479\) −11.1922 −0.511386 −0.255693 0.966758i \(-0.582304\pi\)
−0.255693 + 0.966758i \(0.582304\pi\)
\(480\) 0 0
\(481\) 9.68466 0.441582
\(482\) 0 0
\(483\) 52.4924i 2.38849i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 1.75379i − 0.0794718i −0.999210 0.0397359i \(-0.987348\pi\)
0.999210 0.0397359i \(-0.0126517\pi\)
\(488\) 0 0
\(489\) 52.4924 2.37379
\(490\) 0 0
\(491\) 0.946025 0.0426935 0.0213467 0.999772i \(-0.493205\pi\)
0.0213467 + 0.999772i \(0.493205\pi\)
\(492\) 0 0
\(493\) − 11.3693i − 0.512048i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 19.6847i − 0.882978i
\(498\) 0 0
\(499\) −28.4924 −1.27550 −0.637748 0.770245i \(-0.720134\pi\)
−0.637748 + 0.770245i \(0.720134\pi\)
\(500\) 0 0
\(501\) 36.4924 1.63036
\(502\) 0 0
\(503\) − 7.36932i − 0.328582i −0.986412 0.164291i \(-0.947466\pi\)
0.986412 0.164291i \(-0.0525335\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 2.56155i − 0.113763i
\(508\) 0 0
\(509\) 18.0000 0.797836 0.398918 0.916987i \(-0.369386\pi\)
0.398918 + 0.916987i \(0.369386\pi\)
\(510\) 0 0
\(511\) 15.3693 0.679899
\(512\) 0 0
\(513\) 7.36932i 0.325363i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 1.61553i − 0.0710508i
\(518\) 0 0
\(519\) 12.4924 0.548356
\(520\) 0 0
\(521\) −9.68466 −0.424293 −0.212146 0.977238i \(-0.568045\pi\)
−0.212146 + 0.977238i \(0.568045\pi\)
\(522\) 0 0
\(523\) − 0.492423i − 0.0215321i −0.999942 0.0107661i \(-0.996573\pi\)
0.999942 0.0107661i \(-0.00342701\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 22.7386i − 0.990510i
\(528\) 0 0
\(529\) −41.0000 −1.78261
\(530\) 0 0
\(531\) 18.2462 0.791818
\(532\) 0 0
\(533\) − 3.12311i − 0.135277i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) − 19.6847i − 0.849456i
\(538\) 0 0
\(539\) −2.24621 −0.0967512
\(540\) 0 0
\(541\) −5.68466 −0.244403 −0.122201 0.992505i \(-0.538995\pi\)
−0.122201 + 0.992505i \(0.538995\pi\)
\(542\) 0 0
\(543\) − 59.2311i − 2.54185i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 29.4384i 1.25870i 0.777123 + 0.629349i \(0.216678\pi\)
−0.777123 + 0.629349i \(0.783322\pi\)
\(548\) 0 0
\(549\) −39.6155 −1.69075
\(550\) 0 0
\(551\) −10.2462 −0.436503
\(552\) 0 0
\(553\) − 20.4924i − 0.871426i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 42.1771i 1.78710i 0.448963 + 0.893550i \(0.351793\pi\)
−0.448963 + 0.893550i \(0.648207\pi\)
\(558\) 0 0
\(559\) −5.43845 −0.230022
\(560\) 0 0
\(561\) −74.6004 −3.14963
\(562\) 0 0
\(563\) − 7.05398i − 0.297290i −0.988891 0.148645i \(-0.952509\pi\)
0.988891 0.148645i \(-0.0474911\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) − 17.9309i − 0.753026i
\(568\) 0 0
\(569\) 41.6847 1.74751 0.873756 0.486365i \(-0.161677\pi\)
0.873756 + 0.486365i \(0.161677\pi\)
\(570\) 0 0
\(571\) 28.8078 1.20557 0.602784 0.797905i \(-0.294058\pi\)
0.602784 + 0.797905i \(0.294058\pi\)
\(572\) 0 0
\(573\) 39.3693i 1.64468i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 24.2462i 1.00938i 0.863300 + 0.504691i \(0.168394\pi\)
−0.863300 + 0.504691i \(0.831606\pi\)
\(578\) 0 0
\(579\) 54.7386 2.27486
\(580\) 0 0
\(581\) −5.75379 −0.238707
\(582\) 0 0
\(583\) − 16.0000i − 0.662652i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 24.9848i 1.03123i 0.856819 + 0.515617i \(0.172437\pi\)
−0.856819 + 0.515617i \(0.827563\pi\)
\(588\) 0 0
\(589\) −20.4924 −0.844376
\(590\) 0 0
\(591\) 5.93087 0.243963
\(592\) 0 0
\(593\) 38.4924i 1.58069i 0.612659 + 0.790347i \(0.290100\pi\)
−0.612659 + 0.790347i \(0.709900\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) − 13.1231i − 0.537093i
\(598\) 0 0
\(599\) −23.3693 −0.954844 −0.477422 0.878674i \(-0.658429\pi\)
−0.477422 + 0.878674i \(0.658429\pi\)
\(600\) 0 0
\(601\) 34.1771 1.39411 0.697056 0.717017i \(-0.254493\pi\)
0.697056 + 0.717017i \(0.254493\pi\)
\(602\) 0 0
\(603\) − 18.2462i − 0.743043i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 15.3693i − 0.623821i −0.950111 0.311911i \(-0.899031\pi\)
0.950111 0.311911i \(-0.100969\pi\)
\(608\) 0 0
\(609\) −13.1231 −0.531775
\(610\) 0 0
\(611\) −0.315342 −0.0127574
\(612\) 0 0
\(613\) 6.00000i 0.242338i 0.992632 + 0.121169i \(0.0386643\pi\)
−0.992632 + 0.121169i \(0.961336\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 21.8617i − 0.880120i −0.897968 0.440060i \(-0.854957\pi\)
0.897968 0.440060i \(-0.145043\pi\)
\(618\) 0 0
\(619\) 29.7538 1.19591 0.597953 0.801531i \(-0.295981\pi\)
0.597953 + 0.801531i \(0.295981\pi\)
\(620\) 0 0
\(621\) −11.5076 −0.461783
\(622\) 0 0
\(623\) − 25.6155i − 1.02626i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 67.2311i 2.68495i
\(628\) 0 0
\(629\) −55.0540 −2.19515
\(630\) 0 0
\(631\) −47.6847 −1.89830 −0.949148 0.314830i \(-0.898053\pi\)
−0.949148 + 0.314830i \(0.898053\pi\)
\(632\) 0 0
\(633\) 40.1771i 1.59690i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0.438447i 0.0173719i
\(638\) 0 0
\(639\) 27.3693 1.08271
\(640\) 0 0
\(641\) −8.24621 −0.325706 −0.162853 0.986650i \(-0.552070\pi\)
−0.162853 + 0.986650i \(0.552070\pi\)
\(642\) 0 0
\(643\) 35.8617i 1.41425i 0.707089 + 0.707124i \(0.250008\pi\)
−0.707089 + 0.707124i \(0.749992\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 5.12311i − 0.201410i −0.994916 0.100705i \(-0.967890\pi\)
0.994916 0.100705i \(-0.0321098\pi\)
\(648\) 0 0
\(649\) 26.2462 1.03025
\(650\) 0 0
\(651\) −26.2462 −1.02867
\(652\) 0 0
\(653\) − 4.87689i − 0.190848i −0.995437 0.0954238i \(-0.969579\pi\)
0.995437 0.0954238i \(-0.0304206\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 21.3693i 0.833696i
\(658\) 0 0
\(659\) −16.4924 −0.642454 −0.321227 0.947002i \(-0.604095\pi\)
−0.321227 + 0.947002i \(0.604095\pi\)
\(660\) 0 0
\(661\) −40.7386 −1.58455 −0.792275 0.610165i \(-0.791103\pi\)
−0.792275 + 0.610165i \(0.791103\pi\)
\(662\) 0 0
\(663\) 14.5616i 0.565524i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 16.0000i − 0.619522i
\(668\) 0 0
\(669\) 40.1771 1.55334
\(670\) 0 0
\(671\) −56.9848 −2.19988
\(672\) 0 0
\(673\) − 19.3002i − 0.743968i −0.928239 0.371984i \(-0.878678\pi\)
0.928239 0.371984i \(-0.121322\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 1.36932i 0.0526271i 0.999654 + 0.0263136i \(0.00837683\pi\)
−0.999654 + 0.0263136i \(0.991623\pi\)
\(678\) 0 0
\(679\) −21.1231 −0.810630
\(680\) 0 0
\(681\) −20.4924 −0.785271
\(682\) 0 0
\(683\) − 24.0000i − 0.918334i −0.888350 0.459167i \(-0.848148\pi\)
0.888350 0.459167i \(-0.151852\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) − 17.4384i − 0.665318i
\(688\) 0 0
\(689\) −3.12311 −0.118981
\(690\) 0 0
\(691\) 16.9848 0.646134 0.323067 0.946376i \(-0.395286\pi\)
0.323067 + 0.946376i \(0.395286\pi\)
\(692\) 0 0
\(693\) 46.7386i 1.77545i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 17.7538i 0.672473i
\(698\) 0 0
\(699\) 17.4384 0.659583
\(700\) 0 0
\(701\) 22.6307 0.854749 0.427375 0.904075i \(-0.359439\pi\)
0.427375 + 0.904075i \(0.359439\pi\)
\(702\) 0 0
\(703\) 49.6155i 1.87129i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 18.2462i − 0.686219i
\(708\) 0 0
\(709\) 24.7386 0.929079 0.464539 0.885552i \(-0.346220\pi\)
0.464539 + 0.885552i \(0.346220\pi\)
\(710\) 0 0
\(711\) 28.4924 1.06855
\(712\) 0 0
\(713\) − 32.0000i − 1.19841i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 6.56155i 0.245046i
\(718\) 0 0
\(719\) 13.1231 0.489409 0.244705 0.969598i \(-0.421309\pi\)
0.244705 + 0.969598i \(0.421309\pi\)
\(720\) 0 0
\(721\) −5.75379 −0.214282
\(722\) 0 0
\(723\) − 9.61553i − 0.357605i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 46.1080i 1.71005i 0.518587 + 0.855025i \(0.326458\pi\)
−0.518587 + 0.855025i \(0.673542\pi\)
\(728\) 0 0
\(729\) 35.9848 1.33277
\(730\) 0 0
\(731\) 30.9157 1.14346
\(732\) 0 0
\(733\) − 27.4384i − 1.01346i −0.862104 0.506731i \(-0.830854\pi\)
0.862104 0.506731i \(-0.169146\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 26.2462i − 0.966792i
\(738\) 0 0
\(739\) 10.2462 0.376913 0.188456 0.982082i \(-0.439652\pi\)
0.188456 + 0.982082i \(0.439652\pi\)
\(740\) 0 0
\(741\) 13.1231 0.482089
\(742\) 0 0
\(743\) 50.9157i 1.86792i 0.357382 + 0.933958i \(0.383669\pi\)
−0.357382 + 0.933958i \(0.616331\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) − 8.00000i − 0.292705i
\(748\) 0 0
\(749\) 10.2462 0.374388
\(750\) 0 0
\(751\) 24.9848 0.911710 0.455855 0.890054i \(-0.349334\pi\)
0.455855 + 0.890054i \(0.349334\pi\)
\(752\) 0 0
\(753\) 56.9848i 2.07664i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) − 3.12311i − 0.113511i −0.998388 0.0567556i \(-0.981924\pi\)
0.998388 0.0567556i \(-0.0180756\pi\)
\(758\) 0 0
\(759\) −104.985 −3.81071
\(760\) 0 0
\(761\) 46.4924 1.68535 0.842674 0.538423i \(-0.180980\pi\)
0.842674 + 0.538423i \(0.180980\pi\)
\(762\) 0 0
\(763\) 7.19224i 0.260376i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 5.12311i − 0.184985i
\(768\) 0 0
\(769\) −13.8617 −0.499867 −0.249934 0.968263i \(-0.580409\pi\)
−0.249934 + 0.968263i \(0.580409\pi\)
\(770\) 0 0
\(771\) 29.3002 1.05522
\(772\) 0 0
\(773\) 46.1771i 1.66087i 0.557112 + 0.830437i \(0.311909\pi\)
−0.557112 + 0.830437i \(0.688091\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 63.5464i 2.27971i
\(778\) 0 0
\(779\) 16.0000 0.573259
\(780\) 0 0
\(781\) 39.3693 1.40874
\(782\) 0 0
\(783\) − 2.87689i − 0.102812i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 16.0000i 0.570338i 0.958477 + 0.285169i \(0.0920498\pi\)
−0.958477 + 0.285169i \(0.907950\pi\)
\(788\) 0 0
\(789\) 67.2311 2.39349
\(790\) 0 0
\(791\) 47.3693 1.68426
\(792\) 0 0
\(793\) 11.1231i 0.394993i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 13.5076i 0.478463i 0.970963 + 0.239231i \(0.0768955\pi\)
−0.970963 + 0.239231i \(0.923105\pi\)
\(798\) 0 0
\(799\) 1.79261 0.0634180
\(800\) 0 0
\(801\) 35.6155 1.25841
\(802\) 0 0
\(803\) 30.7386i 1.08474i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 12.4924i 0.439754i
\(808\) 0 0
\(809\) 30.1771 1.06097 0.530485 0.847694i \(-0.322010\pi\)
0.530485 + 0.847694i \(0.322010\pi\)
\(810\) 0 0
\(811\) −46.7386 −1.64122 −0.820608 0.571492i \(-0.806365\pi\)
−0.820608 + 0.571492i \(0.806365\pi\)
\(812\) 0 0
\(813\) − 53.3002i − 1.86932i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 27.8617i − 0.974759i
\(818\) 0 0
\(819\) 9.12311 0.318787
\(820\) 0 0
\(821\) 15.4384 0.538806 0.269403 0.963028i \(-0.413174\pi\)
0.269403 + 0.963028i \(0.413174\pi\)
\(822\) 0 0
\(823\) − 9.61553i − 0.335176i −0.985857 0.167588i \(-0.946402\pi\)
0.985857 0.167588i \(-0.0535979\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 35.8617i 1.24703i 0.781809 + 0.623517i \(0.214297\pi\)
−0.781809 + 0.623517i \(0.785703\pi\)
\(828\) 0 0
\(829\) −18.4924 −0.642268 −0.321134 0.947034i \(-0.604064\pi\)
−0.321134 + 0.947034i \(0.604064\pi\)
\(830\) 0 0
\(831\) 75.2311 2.60974
\(832\) 0 0
\(833\) − 2.49242i − 0.0863573i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) − 5.75379i − 0.198880i
\(838\) 0 0
\(839\) 10.7386 0.370739 0.185369 0.982669i \(-0.440652\pi\)
0.185369 + 0.982669i \(0.440652\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 0 0
\(843\) 25.6155i 0.882246i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 39.0540i 1.34191i
\(848\) 0 0
\(849\) 21.7538 0.746588
\(850\) 0 0
\(851\) −77.4773 −2.65589
\(852\) 0 0
\(853\) − 29.6847i − 1.01638i −0.861244 0.508192i \(-0.830314\pi\)
0.861244 0.508192i \(-0.169686\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 40.7386i − 1.39161i −0.718233 0.695803i \(-0.755049\pi\)
0.718233 0.695803i \(-0.244951\pi\)
\(858\) 0 0
\(859\) −12.9848 −0.443037 −0.221519 0.975156i \(-0.571101\pi\)
−0.221519 + 0.975156i \(0.571101\pi\)
\(860\) 0 0
\(861\) 20.4924 0.698380
\(862\) 0 0
\(863\) − 49.3002i − 1.67820i −0.543979 0.839099i \(-0.683083\pi\)
0.543979 0.839099i \(-0.316917\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 39.2311i − 1.33236i
\(868\) 0 0
\(869\) 40.9848 1.39032
\(870\) 0 0
\(871\) −5.12311 −0.173590
\(872\) 0 0
\(873\) − 29.3693i − 0.994001i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 37.6847i 1.27252i 0.771474 + 0.636260i \(0.219520\pi\)
−0.771474 + 0.636260i \(0.780480\pi\)
\(878\) 0 0
\(879\) −39.5464 −1.33387
\(880\) 0 0
\(881\) −30.8078 −1.03794 −0.518970 0.854792i \(-0.673684\pi\)
−0.518970 + 0.854792i \(0.673684\pi\)
\(882\) 0 0
\(883\) 0.315342i 0.0106121i 0.999986 + 0.00530604i \(0.00168897\pi\)
−0.999986 + 0.00530604i \(0.998311\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 45.4773i 1.52698i 0.645821 + 0.763489i \(0.276515\pi\)
−0.645821 + 0.763489i \(0.723485\pi\)
\(888\) 0 0
\(889\) −26.2462 −0.880270
\(890\) 0 0
\(891\) 35.8617 1.20141
\(892\) 0 0
\(893\) − 1.61553i − 0.0540616i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 20.4924i 0.684222i
\(898\) 0 0
\(899\) 8.00000 0.266815
\(900\) 0 0
\(901\) 17.7538 0.591464
\(902\) 0 0
\(903\) − 35.6847i − 1.18751i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 20.8078i 0.690910i 0.938435 + 0.345455i \(0.112275\pi\)
−0.938435 + 0.345455i \(0.887725\pi\)
\(908\) 0 0
\(909\) 25.3693 0.841447
\(910\) 0 0
\(911\) 15.3693 0.509208 0.254604 0.967045i \(-0.418055\pi\)
0.254604 + 0.967045i \(0.418055\pi\)
\(912\) 0 0
\(913\) − 11.5076i − 0.380845i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 12.3153i − 0.406688i
\(918\) 0 0
\(919\) −24.9848 −0.824174 −0.412087 0.911145i \(-0.635200\pi\)
−0.412087 + 0.911145i \(0.635200\pi\)
\(920\) 0 0
\(921\) 33.6155 1.10767
\(922\) 0 0
\(923\) − 7.68466i − 0.252944i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) − 8.00000i − 0.262754i
\(928\) 0 0
\(929\) 9.86174 0.323553 0.161777 0.986827i \(-0.448278\pi\)
0.161777 + 0.986827i \(0.448278\pi\)
\(930\) 0 0
\(931\) −2.24621 −0.0736166
\(932\) 0 0
\(933\) − 27.8617i − 0.912152i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 36.7386i 1.20020i 0.799925 + 0.600099i \(0.204872\pi\)
−0.799925 + 0.600099i \(0.795128\pi\)
\(938\) 0 0
\(939\) −68.6695 −2.24094
\(940\) 0 0
\(941\) 55.7926 1.81879 0.909394 0.415937i \(-0.136546\pi\)
0.909394 + 0.415937i \(0.136546\pi\)
\(942\) 0 0
\(943\) 24.9848i 0.813618i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 7.36932i − 0.239471i −0.992806 0.119735i \(-0.961795\pi\)
0.992806 0.119735i \(-0.0382046\pi\)
\(948\) 0 0
\(949\) 6.00000 0.194768
\(950\) 0 0
\(951\) −31.3693 −1.01722
\(952\) 0 0
\(953\) − 18.6695i − 0.604765i −0.953187 0.302382i \(-0.902218\pi\)
0.953187 0.302382i \(-0.0977819\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) − 26.2462i − 0.848420i
\(958\) 0 0
\(959\) −8.00000 −0.258333
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 0 0
\(963\) 14.2462i 0.459078i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 2.56155i − 0.0823740i −0.999151 0.0411870i \(-0.986886\pi\)
0.999151 0.0411870i \(-0.0131139\pi\)
\(968\) 0 0
\(969\) −74.6004 −2.39651
\(970\) 0 0
\(971\) −31.6847 −1.01681 −0.508405 0.861118i \(-0.669765\pi\)
−0.508405 + 0.861118i \(0.669765\pi\)
\(972\) 0 0
\(973\) − 19.6847i − 0.631061i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 54.4924i − 1.74337i −0.490069 0.871684i \(-0.663029\pi\)
0.490069 0.871684i \(-0.336971\pi\)
\(978\) 0 0
\(979\) 51.2311 1.63735
\(980\) 0 0
\(981\) −10.0000 −0.319275
\(982\) 0 0
\(983\) 17.9309i 0.571906i 0.958244 + 0.285953i \(0.0923101\pi\)
−0.958244 + 0.285953i \(0.907690\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) − 2.06913i − 0.0658611i
\(988\) 0 0
\(989\) 43.5076 1.38346
\(990\) 0 0
\(991\) −35.8617 −1.13919 −0.569593 0.821927i \(-0.692899\pi\)
−0.569593 + 0.821927i \(0.692899\pi\)
\(992\) 0 0
\(993\) − 11.5076i − 0.365182i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 0.246211i − 0.00779759i −0.999992 0.00389879i \(-0.998759\pi\)
0.999992 0.00389879i \(-0.00124103\pi\)
\(998\) 0 0
\(999\) −13.9309 −0.440753
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2600.2.d.k.1249.4 4
5.2 odd 4 104.2.a.b.1.2 2
5.3 odd 4 2600.2.a.p.1.1 2
5.4 even 2 inner 2600.2.d.k.1249.1 4
15.2 even 4 936.2.a.j.1.2 2
20.3 even 4 5200.2.a.bw.1.2 2
20.7 even 4 208.2.a.e.1.1 2
35.27 even 4 5096.2.a.m.1.1 2
40.27 even 4 832.2.a.n.1.2 2
40.37 odd 4 832.2.a.k.1.1 2
60.47 odd 4 1872.2.a.u.1.2 2
65.2 even 12 1352.2.o.d.1161.2 8
65.7 even 12 1352.2.o.d.361.1 8
65.12 odd 4 1352.2.a.g.1.2 2
65.17 odd 12 1352.2.i.d.1329.1 4
65.22 odd 12 1352.2.i.f.1329.1 4
65.32 even 12 1352.2.o.d.361.2 8
65.37 even 12 1352.2.o.d.1161.1 8
65.42 odd 12 1352.2.i.f.529.1 4
65.47 even 4 1352.2.f.c.337.3 4
65.57 even 4 1352.2.f.c.337.4 4
65.62 odd 12 1352.2.i.d.529.1 4
80.27 even 4 3328.2.b.w.1665.4 4
80.37 odd 4 3328.2.b.y.1665.1 4
80.67 even 4 3328.2.b.w.1665.1 4
80.77 odd 4 3328.2.b.y.1665.4 4
120.77 even 4 7488.2.a.cu.1.1 2
120.107 odd 4 7488.2.a.cv.1.1 2
260.47 odd 4 2704.2.f.k.337.1 4
260.187 odd 4 2704.2.f.k.337.2 4
260.207 even 4 2704.2.a.p.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.2.a.b.1.2 2 5.2 odd 4
208.2.a.e.1.1 2 20.7 even 4
832.2.a.k.1.1 2 40.37 odd 4
832.2.a.n.1.2 2 40.27 even 4
936.2.a.j.1.2 2 15.2 even 4
1352.2.a.g.1.2 2 65.12 odd 4
1352.2.f.c.337.3 4 65.47 even 4
1352.2.f.c.337.4 4 65.57 even 4
1352.2.i.d.529.1 4 65.62 odd 12
1352.2.i.d.1329.1 4 65.17 odd 12
1352.2.i.f.529.1 4 65.42 odd 12
1352.2.i.f.1329.1 4 65.22 odd 12
1352.2.o.d.361.1 8 65.7 even 12
1352.2.o.d.361.2 8 65.32 even 12
1352.2.o.d.1161.1 8 65.37 even 12
1352.2.o.d.1161.2 8 65.2 even 12
1872.2.a.u.1.2 2 60.47 odd 4
2600.2.a.p.1.1 2 5.3 odd 4
2600.2.d.k.1249.1 4 5.4 even 2 inner
2600.2.d.k.1249.4 4 1.1 even 1 trivial
2704.2.a.p.1.1 2 260.207 even 4
2704.2.f.k.337.1 4 260.47 odd 4
2704.2.f.k.337.2 4 260.187 odd 4
3328.2.b.w.1665.1 4 80.67 even 4
3328.2.b.w.1665.4 4 80.27 even 4
3328.2.b.y.1665.1 4 80.37 odd 4
3328.2.b.y.1665.4 4 80.77 odd 4
5096.2.a.m.1.1 2 35.27 even 4
5200.2.a.bw.1.2 2 20.3 even 4
7488.2.a.cu.1.1 2 120.77 even 4
7488.2.a.cv.1.1 2 120.107 odd 4