Properties

Label 2592.2.i.bh.865.4
Level $2592$
Weight $2$
Character 2592.865
Analytic conductor $20.697$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2592,2,Mod(865,2592)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2592.865"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2592, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2592 = 2^{5} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2592.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,0,0,4,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.6972242039\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.49787136.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 3x^{6} + 5x^{4} + 12x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 865.4
Root \(0.228425 + 1.39564i\) of defining polynomial
Character \(\chi\) \(=\) 2592.865
Dual form 2592.2.i.bh.1729.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.32288 + 2.29129i) q^{5} +(-0.456850 + 0.791288i) q^{7} +(2.79129 - 4.83465i) q^{11} +(-1.29129 - 2.23658i) q^{13} +1.73205 q^{17} +7.84190 q^{19} +(-0.791288 - 1.37055i) q^{23} +(-1.00000 + 1.73205i) q^{25} +(-0.409175 + 0.708712i) q^{29} +(-0.913701 - 1.58258i) q^{31} -2.41742 q^{35} -6.58258 q^{37} +(-4.37780 - 7.58258i) q^{41} +(3.92095 - 6.79129i) q^{43} +(4.00000 - 6.92820i) q^{47} +(3.08258 + 5.33918i) q^{49} -8.75560 q^{53} +14.7701 q^{55} +(4.00000 + 6.92820i) q^{59} +(5.29129 - 9.16478i) q^{61} +(3.41643 - 5.91742i) q^{65} +(3.92095 + 6.79129i) q^{67} -9.58258 q^{71} +12.1652 q^{73} +(2.55040 + 4.41742i) q^{77} +(7.38505 - 12.7913i) q^{79} +(-1.58258 + 2.74110i) q^{83} +(2.29129 + 3.96863i) q^{85} +8.85095 q^{89} +2.35970 q^{91} +(10.3739 + 17.9681i) q^{95} +(-6.58258 + 11.4014i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{11} + 8 q^{13} + 12 q^{23} - 8 q^{25} - 56 q^{35} - 16 q^{37} + 32 q^{47} - 12 q^{49} + 32 q^{59} + 24 q^{61} - 40 q^{71} + 24 q^{73} + 24 q^{83} + 28 q^{95} - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2592\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(1217\) \(2431\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.32288 + 2.29129i 0.591608 + 1.02470i 0.994016 + 0.109235i \(0.0348400\pi\)
−0.402408 + 0.915460i \(0.631827\pi\)
\(6\) 0 0
\(7\) −0.456850 + 0.791288i −0.172673 + 0.299079i −0.939354 0.342950i \(-0.888574\pi\)
0.766680 + 0.642029i \(0.221907\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.79129 4.83465i 0.841605 1.45770i −0.0469323 0.998898i \(-0.514945\pi\)
0.888537 0.458804i \(-0.151722\pi\)
\(12\) 0 0
\(13\) −1.29129 2.23658i −0.358139 0.620315i 0.629511 0.776991i \(-0.283255\pi\)
−0.987650 + 0.156677i \(0.949922\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.73205 0.420084 0.210042 0.977692i \(-0.432640\pi\)
0.210042 + 0.977692i \(0.432640\pi\)
\(18\) 0 0
\(19\) 7.84190 1.79906 0.899528 0.436863i \(-0.143911\pi\)
0.899528 + 0.436863i \(0.143911\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −0.791288 1.37055i −0.164995 0.285780i 0.771659 0.636037i \(-0.219427\pi\)
−0.936653 + 0.350257i \(0.886094\pi\)
\(24\) 0 0
\(25\) −1.00000 + 1.73205i −0.200000 + 0.346410i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −0.409175 + 0.708712i −0.0759819 + 0.131605i −0.901513 0.432752i \(-0.857542\pi\)
0.825531 + 0.564357i \(0.190876\pi\)
\(30\) 0 0
\(31\) −0.913701 1.58258i −0.164105 0.284239i 0.772232 0.635341i \(-0.219140\pi\)
−0.936337 + 0.351102i \(0.885807\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −2.41742 −0.408619
\(36\) 0 0
\(37\) −6.58258 −1.08217 −0.541084 0.840968i \(-0.681986\pi\)
−0.541084 + 0.840968i \(0.681986\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −4.37780 7.58258i −0.683698 1.18420i −0.973844 0.227217i \(-0.927037\pi\)
0.290146 0.956982i \(-0.406296\pi\)
\(42\) 0 0
\(43\) 3.92095 6.79129i 0.597940 1.03566i −0.395185 0.918601i \(-0.629320\pi\)
0.993125 0.117060i \(-0.0373471\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 4.00000 6.92820i 0.583460 1.01058i −0.411606 0.911362i \(-0.635032\pi\)
0.995066 0.0992202i \(-0.0316348\pi\)
\(48\) 0 0
\(49\) 3.08258 + 5.33918i 0.440368 + 0.762740i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −8.75560 −1.20267 −0.601337 0.798995i \(-0.705365\pi\)
−0.601337 + 0.798995i \(0.705365\pi\)
\(54\) 0 0
\(55\) 14.7701 1.99160
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 4.00000 + 6.92820i 0.520756 + 0.901975i 0.999709 + 0.0241347i \(0.00768307\pi\)
−0.478953 + 0.877841i \(0.658984\pi\)
\(60\) 0 0
\(61\) 5.29129 9.16478i 0.677480 1.17343i −0.298257 0.954485i \(-0.596405\pi\)
0.975737 0.218944i \(-0.0702613\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 3.41643 5.91742i 0.423756 0.733966i
\(66\) 0 0
\(67\) 3.92095 + 6.79129i 0.479021 + 0.829688i 0.999711 0.0240579i \(-0.00765861\pi\)
−0.520690 + 0.853746i \(0.674325\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −9.58258 −1.13724 −0.568621 0.822599i \(-0.692523\pi\)
−0.568621 + 0.822599i \(0.692523\pi\)
\(72\) 0 0
\(73\) 12.1652 1.42382 0.711912 0.702269i \(-0.247830\pi\)
0.711912 + 0.702269i \(0.247830\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 2.55040 + 4.41742i 0.290645 + 0.503412i
\(78\) 0 0
\(79\) 7.38505 12.7913i 0.830883 1.43913i −0.0664551 0.997789i \(-0.521169\pi\)
0.897339 0.441343i \(-0.145498\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −1.58258 + 2.74110i −0.173710 + 0.300875i −0.939714 0.341961i \(-0.888909\pi\)
0.766004 + 0.642836i \(0.222242\pi\)
\(84\) 0 0
\(85\) 2.29129 + 3.96863i 0.248525 + 0.430458i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 8.85095 0.938199 0.469100 0.883145i \(-0.344579\pi\)
0.469100 + 0.883145i \(0.344579\pi\)
\(90\) 0 0
\(91\) 2.35970 0.247364
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 10.3739 + 17.9681i 1.06434 + 1.84348i
\(96\) 0 0
\(97\) −6.58258 + 11.4014i −0.668359 + 1.15763i 0.310003 + 0.950735i \(0.399670\pi\)
−0.978363 + 0.206897i \(0.933664\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −6.92820 + 12.0000i −0.689382 + 1.19404i 0.282656 + 0.959221i \(0.408784\pi\)
−0.972038 + 0.234823i \(0.924549\pi\)
\(102\) 0 0
\(103\) 9.66930 + 16.7477i 0.952745 + 1.65020i 0.739446 + 0.673216i \(0.235087\pi\)
0.213299 + 0.976987i \(0.431579\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −11.1652 −1.07938 −0.539688 0.841865i \(-0.681458\pi\)
−0.539688 + 0.841865i \(0.681458\pi\)
\(108\) 0 0
\(109\) −5.41742 −0.518895 −0.259448 0.965757i \(-0.583540\pi\)
−0.259448 + 0.965757i \(0.583540\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0.961376 + 1.66515i 0.0904386 + 0.156644i 0.907696 0.419629i \(-0.137840\pi\)
−0.817257 + 0.576273i \(0.804506\pi\)
\(114\) 0 0
\(115\) 2.09355 3.62614i 0.195225 0.338139i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −0.791288 + 1.37055i −0.0725372 + 0.125638i
\(120\) 0 0
\(121\) −10.0826 17.4635i −0.916598 1.58759i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 7.93725 0.709930
\(126\) 0 0
\(127\) 12.9427 1.14848 0.574240 0.818687i \(-0.305298\pi\)
0.574240 + 0.818687i \(0.305298\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 2.79129 + 4.83465i 0.243876 + 0.422406i 0.961815 0.273700i \(-0.0882477\pi\)
−0.717939 + 0.696106i \(0.754914\pi\)
\(132\) 0 0
\(133\) −3.58258 + 6.20520i −0.310649 + 0.538059i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 4.33013 7.50000i 0.369948 0.640768i −0.619609 0.784910i \(-0.712709\pi\)
0.989557 + 0.144142i \(0.0460423\pi\)
\(138\) 0 0
\(139\) −0.913701 1.58258i −0.0774991 0.134232i 0.824671 0.565612i \(-0.191360\pi\)
−0.902170 + 0.431380i \(0.858027\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −14.4174 −1.20565
\(144\) 0 0
\(145\) −2.16515 −0.179806
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 7.43273 + 12.8739i 0.608913 + 1.05467i 0.991420 + 0.130715i \(0.0417274\pi\)
−0.382507 + 0.923953i \(0.624939\pi\)
\(150\) 0 0
\(151\) 9.66930 16.7477i 0.786877 1.36291i −0.140995 0.990010i \(-0.545030\pi\)
0.927871 0.372900i \(-0.121637\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 2.41742 4.18710i 0.194172 0.336316i
\(156\) 0 0
\(157\) 5.70871 + 9.88778i 0.455605 + 0.789131i 0.998723 0.0505257i \(-0.0160897\pi\)
−0.543118 + 0.839656i \(0.682756\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 1.44600 0.113961
\(162\) 0 0
\(163\) 17.5112 1.37158 0.685792 0.727798i \(-0.259456\pi\)
0.685792 + 0.727798i \(0.259456\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 3.20871 + 5.55765i 0.248298 + 0.430064i 0.963054 0.269310i \(-0.0867956\pi\)
−0.714756 + 0.699374i \(0.753462\pi\)
\(168\) 0 0
\(169\) 3.16515 5.48220i 0.243473 0.421708i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −9.16478 + 15.8739i −0.696785 + 1.20687i 0.272790 + 0.962074i \(0.412054\pi\)
−0.969575 + 0.244794i \(0.921280\pi\)
\(174\) 0 0
\(175\) −0.913701 1.58258i −0.0690693 0.119631i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) 2.00000 0.148659 0.0743294 0.997234i \(-0.476318\pi\)
0.0743294 + 0.997234i \(0.476318\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −8.70793 15.0826i −0.640220 1.10889i
\(186\) 0 0
\(187\) 4.83465 8.37386i 0.353545 0.612358i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0.791288 1.37055i 0.0572556 0.0991696i −0.835977 0.548765i \(-0.815098\pi\)
0.893233 + 0.449595i \(0.148432\pi\)
\(192\) 0 0
\(193\) −3.08258 5.33918i −0.221889 0.384322i 0.733493 0.679697i \(-0.237889\pi\)
−0.955381 + 0.295375i \(0.904555\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −19.9663 −1.42254 −0.711269 0.702920i \(-0.751879\pi\)
−0.711269 + 0.702920i \(0.751879\pi\)
\(198\) 0 0
\(199\) −3.65480 −0.259082 −0.129541 0.991574i \(-0.541350\pi\)
−0.129541 + 0.991574i \(0.541350\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −0.373864 0.647551i −0.0262401 0.0454491i
\(204\) 0 0
\(205\) 11.5826 20.0616i 0.808962 1.40116i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 21.8890 37.9129i 1.51409 2.62249i
\(210\) 0 0
\(211\) 3.00725 + 5.20871i 0.207028 + 0.358583i 0.950777 0.309876i \(-0.100288\pi\)
−0.743749 + 0.668459i \(0.766954\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 20.7477 1.41498
\(216\) 0 0
\(217\) 1.66970 0.113346
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −2.23658 3.87386i −0.150448 0.260584i
\(222\) 0 0
\(223\) −10.1262 + 17.5390i −0.678097 + 1.17450i 0.297456 + 0.954736i \(0.403862\pi\)
−0.975553 + 0.219764i \(0.929471\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 8.37386 14.5040i 0.555793 0.962661i −0.442049 0.896991i \(-0.645748\pi\)
0.997841 0.0656703i \(-0.0209186\pi\)
\(228\) 0 0
\(229\) 11.8739 + 20.5661i 0.784647 + 1.35905i 0.929210 + 0.369553i \(0.120489\pi\)
−0.144563 + 0.989496i \(0.546178\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −21.0707 −1.38038 −0.690192 0.723626i \(-0.742474\pi\)
−0.690192 + 0.723626i \(0.742474\pi\)
\(234\) 0 0
\(235\) 21.1660 1.38072
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −13.5826 23.5257i −0.878584 1.52175i −0.852895 0.522082i \(-0.825156\pi\)
−0.0256883 0.999670i \(-0.508178\pi\)
\(240\) 0 0
\(241\) −0.500000 + 0.866025i −0.0322078 + 0.0557856i −0.881680 0.471848i \(-0.843587\pi\)
0.849472 + 0.527633i \(0.176921\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −8.15573 + 14.1261i −0.521050 + 0.902486i
\(246\) 0 0
\(247\) −10.1262 17.5390i −0.644312 1.11598i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −13.5826 −0.857325 −0.428662 0.903465i \(-0.641015\pi\)
−0.428662 + 0.903465i \(0.641015\pi\)
\(252\) 0 0
\(253\) −8.83485 −0.555442
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −3.51178 6.08258i −0.219059 0.379421i 0.735462 0.677566i \(-0.236965\pi\)
−0.954520 + 0.298146i \(0.903632\pi\)
\(258\) 0 0
\(259\) 3.00725 5.20871i 0.186862 0.323654i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 15.1652 26.2668i 0.935123 1.61968i 0.160709 0.987002i \(-0.448622\pi\)
0.774414 0.632679i \(-0.218045\pi\)
\(264\) 0 0
\(265\) −11.5826 20.0616i −0.711512 1.23237i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 21.7937 1.32878 0.664391 0.747385i \(-0.268691\pi\)
0.664391 + 0.747385i \(0.268691\pi\)
\(270\) 0 0
\(271\) 2.74110 0.166510 0.0832550 0.996528i \(-0.473468\pi\)
0.0832550 + 0.996528i \(0.473468\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 5.58258 + 9.66930i 0.336642 + 0.583081i
\(276\) 0 0
\(277\) −8.16515 + 14.1425i −0.490596 + 0.849738i −0.999941 0.0108245i \(-0.996554\pi\)
0.509345 + 0.860562i \(0.329888\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −3.60713 + 6.24773i −0.215183 + 0.372708i −0.953329 0.301933i \(-0.902368\pi\)
0.738146 + 0.674641i \(0.235702\pi\)
\(282\) 0 0
\(283\) 1.82740 + 3.16515i 0.108628 + 0.188149i 0.915215 0.402967i \(-0.132021\pi\)
−0.806587 + 0.591116i \(0.798688\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 8.00000 0.472225
\(288\) 0 0
\(289\) −14.0000 −0.823529
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −0.504525 0.873864i −0.0294747 0.0510517i 0.850912 0.525309i \(-0.176050\pi\)
−0.880386 + 0.474257i \(0.842717\pi\)
\(294\) 0 0
\(295\) −10.5830 + 18.3303i −0.616166 + 1.06723i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −2.04356 + 3.53955i −0.118182 + 0.204698i
\(300\) 0 0
\(301\) 3.58258 + 6.20520i 0.206496 + 0.357662i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 27.9989 1.60321
\(306\) 0 0
\(307\) −19.3386 −1.10371 −0.551856 0.833939i \(-0.686080\pi\)
−0.551856 + 0.833939i \(0.686080\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −1.58258 2.74110i −0.0897396 0.155434i 0.817661 0.575699i \(-0.195270\pi\)
−0.907401 + 0.420266i \(0.861937\pi\)
\(312\) 0 0
\(313\) −9.50000 + 16.4545i −0.536972 + 0.930062i 0.462093 + 0.886831i \(0.347098\pi\)
−0.999065 + 0.0432311i \(0.986235\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −10.1738 + 17.6216i −0.571419 + 0.989727i 0.425001 + 0.905193i \(0.360274\pi\)
−0.996421 + 0.0845344i \(0.973060\pi\)
\(318\) 0 0
\(319\) 2.28425 + 3.95644i 0.127894 + 0.221518i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 13.5826 0.755755
\(324\) 0 0
\(325\) 5.16515 0.286511
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 3.65480 + 6.33030i 0.201496 + 0.349001i
\(330\) 0 0
\(331\) −12.6766 + 21.9564i −0.696767 + 1.20684i 0.272815 + 0.962067i \(0.412045\pi\)
−0.969582 + 0.244769i \(0.921288\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −10.3739 + 17.9681i −0.566785 + 0.981700i
\(336\) 0 0
\(337\) 0.582576 + 1.00905i 0.0317349 + 0.0549665i 0.881457 0.472265i \(-0.156563\pi\)
−0.849722 + 0.527231i \(0.823230\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −10.2016 −0.552448
\(342\) 0 0
\(343\) −12.0290 −0.649505
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −13.2087 22.8782i −0.709081 1.22816i −0.965198 0.261518i \(-0.915777\pi\)
0.256118 0.966646i \(-0.417557\pi\)
\(348\) 0 0
\(349\) 8.58258 14.8655i 0.459415 0.795730i −0.539515 0.841976i \(-0.681393\pi\)
0.998930 + 0.0462461i \(0.0147258\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 5.10080 8.83485i 0.271488 0.470232i −0.697755 0.716337i \(-0.745818\pi\)
0.969243 + 0.246105i \(0.0791508\pi\)
\(354\) 0 0
\(355\) −12.6766 21.9564i −0.672802 1.16533i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −23.9129 −1.26207 −0.631037 0.775753i \(-0.717370\pi\)
−0.631037 + 0.775753i \(0.717370\pi\)
\(360\) 0 0
\(361\) 42.4955 2.23660
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 16.0930 + 27.8739i 0.842345 + 1.45898i
\(366\) 0 0
\(367\) 2.74110 4.74773i 0.143084 0.247829i −0.785572 0.618770i \(-0.787631\pi\)
0.928657 + 0.370941i \(0.120965\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 4.00000 6.92820i 0.207670 0.359694i
\(372\) 0 0
\(373\) −7.00000 12.1244i −0.362446 0.627775i 0.625917 0.779890i \(-0.284725\pi\)
−0.988363 + 0.152115i \(0.951392\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 2.11345 0.108848
\(378\) 0 0
\(379\) −15.6838 −0.805623 −0.402812 0.915283i \(-0.631967\pi\)
−0.402812 + 0.915283i \(0.631967\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 3.20871 + 5.55765i 0.163958 + 0.283983i 0.936285 0.351242i \(-0.114241\pi\)
−0.772327 + 0.635225i \(0.780907\pi\)
\(384\) 0 0
\(385\) −6.74773 + 11.6874i −0.343896 + 0.595645i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −0.723000 + 1.25227i −0.0366576 + 0.0634928i −0.883772 0.467918i \(-0.845004\pi\)
0.847115 + 0.531410i \(0.178338\pi\)
\(390\) 0 0
\(391\) −1.37055 2.37386i −0.0693117 0.120051i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 39.0780 1.96623
\(396\) 0 0
\(397\) −9.74773 −0.489224 −0.244612 0.969621i \(-0.578661\pi\)
−0.244612 + 0.969621i \(0.578661\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 5.24383 + 9.08258i 0.261864 + 0.453562i 0.966737 0.255771i \(-0.0823294\pi\)
−0.704873 + 0.709333i \(0.748996\pi\)
\(402\) 0 0
\(403\) −2.35970 + 4.08712i −0.117545 + 0.203594i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −18.3739 + 31.8245i −0.910759 + 1.57748i
\(408\) 0 0
\(409\) 1.08258 + 1.87508i 0.0535299 + 0.0927165i 0.891549 0.452925i \(-0.149619\pi\)
−0.838019 + 0.545641i \(0.816286\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −7.30960 −0.359682
\(414\) 0 0
\(415\) −8.37420 −0.411073
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −5.58258 9.66930i −0.272727 0.472376i 0.696832 0.717234i \(-0.254592\pi\)
−0.969559 + 0.244858i \(0.921259\pi\)
\(420\) 0 0
\(421\) 4.29129 7.43273i 0.209145 0.362249i −0.742301 0.670067i \(-0.766265\pi\)
0.951445 + 0.307818i \(0.0995987\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −1.73205 + 3.00000i −0.0840168 + 0.145521i
\(426\) 0 0
\(427\) 4.83465 + 8.37386i 0.233965 + 0.405240i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 20.8348 1.00358 0.501790 0.864990i \(-0.332675\pi\)
0.501790 + 0.864990i \(0.332675\pi\)
\(432\) 0 0
\(433\) 13.3303 0.640613 0.320307 0.947314i \(-0.396214\pi\)
0.320307 + 0.947314i \(0.396214\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −6.20520 10.7477i −0.296835 0.514134i
\(438\) 0 0
\(439\) 10.5830 18.3303i 0.505099 0.874858i −0.494883 0.868959i \(-0.664789\pi\)
0.999983 0.00589819i \(-0.00187746\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −18.3303 + 31.7490i −0.870899 + 1.50844i −0.00983083 + 0.999952i \(0.503129\pi\)
−0.861068 + 0.508490i \(0.830204\pi\)
\(444\) 0 0
\(445\) 11.7087 + 20.2801i 0.555046 + 0.961368i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 18.9572 0.894646 0.447323 0.894372i \(-0.352377\pi\)
0.447323 + 0.894372i \(0.352377\pi\)
\(450\) 0 0
\(451\) −48.8788 −2.30161
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 3.12159 + 5.40675i 0.146342 + 0.253473i
\(456\) 0 0
\(457\) 5.08258 8.80328i 0.237753 0.411800i −0.722316 0.691563i \(-0.756922\pi\)
0.960069 + 0.279763i \(0.0902558\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 13.1334 22.7477i 0.611684 1.05947i −0.379273 0.925285i \(-0.623826\pi\)
0.990957 0.134182i \(-0.0428408\pi\)
\(462\) 0 0
\(463\) 8.75560 + 15.1652i 0.406907 + 0.704784i 0.994541 0.104343i \(-0.0332738\pi\)
−0.587634 + 0.809127i \(0.699940\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −19.1652 −0.886857 −0.443429 0.896310i \(-0.646238\pi\)
−0.443429 + 0.896310i \(0.646238\pi\)
\(468\) 0 0
\(469\) −7.16515 −0.330856
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −21.8890 37.9129i −1.00646 1.74324i
\(474\) 0 0
\(475\) −7.84190 + 13.5826i −0.359811 + 0.623211i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −2.37386 + 4.11165i −0.108465 + 0.187866i −0.915148 0.403117i \(-0.867927\pi\)
0.806684 + 0.590983i \(0.201260\pi\)
\(480\) 0 0
\(481\) 8.50000 + 14.7224i 0.387567 + 0.671285i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −34.8317 −1.58163
\(486\) 0 0
\(487\) −29.5402 −1.33859 −0.669297 0.742995i \(-0.733405\pi\)
−0.669297 + 0.742995i \(0.733405\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 2.79129 + 4.83465i 0.125969 + 0.218185i 0.922111 0.386925i \(-0.126463\pi\)
−0.796142 + 0.605109i \(0.793129\pi\)
\(492\) 0 0
\(493\) −0.708712 + 1.22753i −0.0319188 + 0.0552850i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 4.37780 7.58258i 0.196371 0.340125i
\(498\) 0 0
\(499\) −9.02175 15.6261i −0.403869 0.699522i 0.590320 0.807169i \(-0.299002\pi\)
−0.994189 + 0.107647i \(0.965668\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −3.16515 −0.141127 −0.0705636 0.997507i \(-0.522480\pi\)
−0.0705636 + 0.997507i \(0.522480\pi\)
\(504\) 0 0
\(505\) −36.6606 −1.63138
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −0.723000 1.25227i −0.0320464 0.0555060i 0.849557 0.527496i \(-0.176869\pi\)
−0.881604 + 0.471990i \(0.843536\pi\)
\(510\) 0 0
\(511\) −5.55765 + 9.62614i −0.245856 + 0.425835i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −25.5826 + 44.3103i −1.12730 + 1.95255i
\(516\) 0 0
\(517\) −22.3303 38.6772i −0.982086 1.70102i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −26.2668 −1.15077 −0.575385 0.817883i \(-0.695148\pi\)
−0.575385 + 0.817883i \(0.695148\pi\)
\(522\) 0 0
\(523\) −37.3821 −1.63461 −0.817303 0.576208i \(-0.804532\pi\)
−0.817303 + 0.576208i \(0.804532\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −1.58258 2.74110i −0.0689381 0.119404i
\(528\) 0 0
\(529\) 10.2477 17.7496i 0.445553 0.771721i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −11.3060 + 19.5826i −0.489717 + 0.848216i
\(534\) 0 0
\(535\) −14.7701 25.5826i −0.638567 1.10603i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 34.4174 1.48246
\(540\) 0 0
\(541\) −42.9129 −1.84497 −0.922484 0.386034i \(-0.873845\pi\)
−0.922484 + 0.386034i \(0.873845\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −7.16658 12.4129i −0.306983 0.531709i
\(546\) 0 0
\(547\) −6.92820 + 12.0000i −0.296229 + 0.513083i −0.975270 0.221017i \(-0.929062\pi\)
0.679041 + 0.734100i \(0.262396\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −3.20871 + 5.55765i −0.136696 + 0.236764i
\(552\) 0 0
\(553\) 6.74773 + 11.6874i 0.286943 + 0.496999i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 28.5312 1.20890 0.604452 0.796641i \(-0.293392\pi\)
0.604452 + 0.796641i \(0.293392\pi\)
\(558\) 0 0
\(559\) −20.2523 −0.856581
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −12.0000 20.7846i −0.505740 0.875967i −0.999978 0.00664037i \(-0.997886\pi\)
0.494238 0.869326i \(-0.335447\pi\)
\(564\) 0 0
\(565\) −2.54356 + 4.40558i −0.107008 + 0.185344i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −15.6361 + 27.0826i −0.655501 + 1.13536i 0.326267 + 0.945278i \(0.394209\pi\)
−0.981768 + 0.190083i \(0.939124\pi\)
\(570\) 0 0
\(571\) 10.5830 + 18.3303i 0.442885 + 0.767099i 0.997902 0.0647396i \(-0.0206217\pi\)
−0.555017 + 0.831839i \(0.687288\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 3.16515 0.131996
\(576\) 0 0
\(577\) −0.165151 −0.00687534 −0.00343767 0.999994i \(-0.501094\pi\)
−0.00343767 + 0.999994i \(0.501094\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −1.44600 2.50455i −0.0599902 0.103906i
\(582\) 0 0
\(583\) −24.4394 + 42.3303i −1.01218 + 1.75314i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 6.79129 11.7629i 0.280306 0.485505i −0.691154 0.722708i \(-0.742897\pi\)
0.971460 + 0.237203i \(0.0762306\pi\)
\(588\) 0 0
\(589\) −7.16515 12.4104i −0.295235 0.511362i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 12.1244 0.497888 0.248944 0.968518i \(-0.419917\pi\)
0.248944 + 0.968518i \(0.419917\pi\)
\(594\) 0 0
\(595\) −4.18710 −0.171654
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −6.41742 11.1153i −0.262209 0.454159i 0.704620 0.709585i \(-0.251118\pi\)
−0.966829 + 0.255426i \(0.917784\pi\)
\(600\) 0 0
\(601\) −20.2477 + 35.0701i −0.825922 + 1.43054i 0.0752906 + 0.997162i \(0.476012\pi\)
−0.901213 + 0.433377i \(0.857322\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 26.6760 46.2042i 1.08453 1.87847i
\(606\) 0 0
\(607\) 3.19795 + 5.53901i 0.129801 + 0.224822i 0.923599 0.383359i \(-0.125233\pi\)
−0.793798 + 0.608181i \(0.791900\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −20.6606 −0.835839
\(612\) 0 0
\(613\) 30.0000 1.21169 0.605844 0.795583i \(-0.292835\pi\)
0.605844 + 0.795583i \(0.292835\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 10.5353 + 18.2477i 0.424136 + 0.734626i 0.996339 0.0854862i \(-0.0272444\pi\)
−0.572203 + 0.820112i \(0.693911\pi\)
\(618\) 0 0
\(619\) 4.18710 7.25227i 0.168294 0.291493i −0.769526 0.638615i \(-0.779508\pi\)
0.937820 + 0.347122i \(0.112841\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −4.04356 + 7.00365i −0.162002 + 0.280595i
\(624\) 0 0
\(625\) 15.5000 + 26.8468i 0.620000 + 1.07387i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −11.4014 −0.454602
\(630\) 0 0
\(631\) −12.0290 −0.478867 −0.239434 0.970913i \(-0.576962\pi\)
−0.239434 + 0.970913i \(0.576962\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 17.1216 + 29.6555i 0.679450 + 1.17684i
\(636\) 0 0
\(637\) 7.96099 13.7888i 0.315426 0.546333i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −0.961376 + 1.66515i −0.0379721 + 0.0657695i −0.884387 0.466755i \(-0.845423\pi\)
0.846415 + 0.532524i \(0.178756\pi\)
\(642\) 0 0
\(643\) −2.74110 4.74773i −0.108098 0.187232i 0.806901 0.590686i \(-0.201143\pi\)
−0.915000 + 0.403454i \(0.867810\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 31.9129 1.25462 0.627312 0.778768i \(-0.284155\pi\)
0.627312 + 0.778768i \(0.284155\pi\)
\(648\) 0 0
\(649\) 44.6606 1.75308
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 18.2342 + 31.5826i 0.713560 + 1.23592i 0.963512 + 0.267664i \(0.0862516\pi\)
−0.249953 + 0.968258i \(0.580415\pi\)
\(654\) 0 0
\(655\) −7.38505 + 12.7913i −0.288558 + 0.499797i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −3.62614 + 6.28065i −0.141254 + 0.244659i −0.927969 0.372657i \(-0.878447\pi\)
0.786715 + 0.617316i \(0.211780\pi\)
\(660\) 0 0
\(661\) −7.87386 13.6379i −0.306258 0.530454i 0.671283 0.741201i \(-0.265744\pi\)
−0.977541 + 0.210747i \(0.932410\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −18.9572 −0.735129
\(666\) 0 0
\(667\) 1.29510 0.0501465
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −29.5390 51.1631i −1.14034 1.97513i
\(672\) 0 0
\(673\) 20.0826 34.7840i 0.774126 1.34083i −0.161158 0.986929i \(-0.551523\pi\)
0.935284 0.353898i \(-0.115144\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −8.03260 + 13.9129i −0.308718 + 0.534715i −0.978082 0.208219i \(-0.933233\pi\)
0.669364 + 0.742934i \(0.266567\pi\)
\(678\) 0 0
\(679\) −6.01450 10.4174i −0.230815 0.399784i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −24.0000 −0.918334 −0.459167 0.888350i \(-0.651852\pi\)
−0.459167 + 0.888350i \(0.651852\pi\)
\(684\) 0 0
\(685\) 22.9129 0.875456
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 11.3060 + 19.5826i 0.430725 + 0.746037i
\(690\) 0 0
\(691\) −10.8492 + 18.7913i −0.412721 + 0.714854i −0.995186 0.0980015i \(-0.968755\pi\)
0.582465 + 0.812856i \(0.302088\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 2.41742 4.18710i 0.0916981 0.158826i
\(696\) 0 0
\(697\) −7.58258 13.1334i −0.287211 0.497463i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 20.3477 0.768521 0.384260 0.923225i \(-0.374457\pi\)
0.384260 + 0.923225i \(0.374457\pi\)
\(702\) 0 0
\(703\) −51.6199 −1.94688
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −6.33030 10.9644i −0.238076 0.412359i
\(708\) 0 0
\(709\) −4.12614 + 7.14668i −0.154960 + 0.268399i −0.933045 0.359761i \(-0.882858\pi\)
0.778084 + 0.628160i \(0.216192\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −1.44600 + 2.50455i −0.0541531 + 0.0937960i
\(714\) 0 0
\(715\) −19.0725 33.0345i −0.713270 1.23542i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 47.9129 1.78685 0.893424 0.449214i \(-0.148296\pi\)
0.893424 + 0.449214i \(0.148296\pi\)
\(720\) 0 0
\(721\) −17.6697 −0.658054
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −0.818350 1.41742i −0.0303928 0.0526418i
\(726\) 0 0
\(727\) −8.29875 + 14.3739i −0.307784 + 0.533097i −0.977877 0.209180i \(-0.932921\pi\)
0.670093 + 0.742277i \(0.266254\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 6.79129 11.7629i 0.251185 0.435065i
\(732\) 0 0
\(733\) 2.16515 + 3.75015i 0.0799717 + 0.138515i 0.903237 0.429141i \(-0.141184\pi\)
−0.823266 + 0.567656i \(0.807850\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 43.7780 1.61258
\(738\) 0 0
\(739\) 42.3320 1.55721 0.778604 0.627515i \(-0.215928\pi\)
0.778604 + 0.627515i \(0.215928\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −3.16515 5.48220i −0.116118 0.201123i 0.802108 0.597179i \(-0.203712\pi\)
−0.918226 + 0.396056i \(0.870378\pi\)
\(744\) 0 0
\(745\) −19.6652 + 34.0610i −0.720475 + 1.24790i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 5.10080 8.83485i 0.186379 0.322818i
\(750\) 0 0
\(751\) −18.8818 32.7042i −0.689005 1.19339i −0.972160 0.234318i \(-0.924714\pi\)
0.283155 0.959074i \(-0.408619\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 51.1652 1.86209
\(756\) 0 0
\(757\) 18.0000 0.654221 0.327111 0.944986i \(-0.393925\pi\)
0.327111 + 0.944986i \(0.393925\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 11.2583 + 19.5000i 0.408114 + 0.706874i 0.994678 0.103028i \(-0.0328532\pi\)
−0.586564 + 0.809903i \(0.699520\pi\)
\(762\) 0 0
\(763\) 2.47495 4.28674i 0.0895993 0.155190i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 10.3303 17.8926i 0.373006 0.646065i
\(768\) 0 0
\(769\) −11.0826 19.1956i −0.399648 0.692210i 0.594034 0.804440i \(-0.297534\pi\)
−0.993682 + 0.112229i \(0.964201\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 9.95536 0.358069 0.179035 0.983843i \(-0.442703\pi\)
0.179035 + 0.983843i \(0.442703\pi\)
\(774\) 0 0
\(775\) 3.65480 0.131284
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −34.3303 59.4618i −1.23001 2.13044i
\(780\) 0 0
\(781\) −26.7477 + 46.3284i −0.957109 + 1.65776i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −15.1038 + 26.1606i −0.539079 + 0.933712i
\(786\) 0 0
\(787\) 7.57575 + 13.1216i 0.270046 + 0.467734i 0.968873 0.247557i \(-0.0796276\pi\)
−0.698827 + 0.715291i \(0.746294\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −1.75682 −0.0624653
\(792\) 0 0
\(793\) −27.3303 −0.970528
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −22.2982 38.6216i −0.789842 1.36805i −0.926063 0.377368i \(-0.876829\pi\)
0.136221 0.990678i \(-0.456504\pi\)
\(798\) 0 0
\(799\) 6.92820 12.0000i 0.245102 0.424529i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 33.9564 58.8143i 1.19830 2.07551i
\(804\) 0 0
\(805\) 1.91288 + 3.31320i 0.0674201 + 0.116775i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −45.1287 −1.58664 −0.793320 0.608805i \(-0.791649\pi\)
−0.793320 + 0.608805i \(0.791649\pi\)
\(810\) 0 0
\(811\) 3.65480 0.128337 0.0641687 0.997939i \(-0.479560\pi\)
0.0641687 + 0.997939i \(0.479560\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 23.1652 + 40.1232i 0.811440 + 1.40546i
\(816\) 0 0
\(817\) 30.7477 53.2566i 1.07573 1.86321i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −4.88233 + 8.45644i −0.170394 + 0.295132i −0.938558 0.345122i \(-0.887838\pi\)
0.768163 + 0.640254i \(0.221171\pi\)
\(822\) 0 0
\(823\) 12.0290 + 20.8348i 0.419305 + 0.726257i 0.995870 0.0907942i \(-0.0289405\pi\)
−0.576565 + 0.817051i \(0.695607\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −8.74773 −0.304188 −0.152094 0.988366i \(-0.548602\pi\)
−0.152094 + 0.988366i \(0.548602\pi\)
\(828\) 0 0
\(829\) 8.33030 0.289323 0.144662 0.989481i \(-0.453791\pi\)
0.144662 + 0.989481i \(0.453791\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 5.33918 + 9.24773i 0.184992 + 0.320415i
\(834\) 0 0
\(835\) −8.48945 + 14.7042i −0.293790 + 0.508859i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −22.3739 + 38.7527i −0.772432 + 1.33789i 0.163795 + 0.986494i \(0.447626\pi\)
−0.936227 + 0.351396i \(0.885707\pi\)
\(840\) 0 0
\(841\) 14.1652 + 24.5348i 0.488453 + 0.846026i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 16.7484 0.576163
\(846\) 0 0
\(847\) 18.4249 0.633087
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 5.20871 + 9.02175i 0.178552 + 0.309262i
\(852\) 0 0
\(853\) 0.165151 0.286051i 0.00565468 0.00979419i −0.863184 0.504889i \(-0.831533\pi\)
0.868839 + 0.495095i \(0.164867\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −12.0767 + 20.9174i −0.412532 + 0.714526i −0.995166 0.0982089i \(-0.968689\pi\)
0.582634 + 0.812734i \(0.302022\pi\)
\(858\) 0 0
\(859\) −24.4394 42.3303i −0.833862 1.44429i −0.894954 0.446159i \(-0.852792\pi\)
0.0610917 0.998132i \(-0.480542\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −49.4083 −1.68188 −0.840940 0.541129i \(-0.817997\pi\)
−0.840940 + 0.541129i \(0.817997\pi\)
\(864\) 0 0
\(865\) −48.4955 −1.64889
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −41.2276 71.4083i −1.39855 2.42236i
\(870\) 0 0
\(871\) 10.1262 17.5390i 0.343112 0.594287i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −3.62614 + 6.28065i −0.122586 + 0.212325i
\(876\) 0 0
\(877\) 20.0390 + 34.7086i 0.676669 + 1.17203i 0.975978 + 0.217869i \(0.0699107\pi\)
−0.299308 + 0.954156i \(0.596756\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 1.44600 0.0487170 0.0243585 0.999703i \(-0.492246\pi\)
0.0243585 + 0.999703i \(0.492246\pi\)
\(882\) 0 0
\(883\) −9.13701 −0.307485 −0.153742 0.988111i \(-0.549133\pi\)
−0.153742 + 0.988111i \(0.549133\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −12.7913 22.1552i −0.429489 0.743897i 0.567338 0.823485i \(-0.307973\pi\)
−0.996828 + 0.0795872i \(0.974640\pi\)
\(888\) 0 0
\(889\) −5.91288 + 10.2414i −0.198312 + 0.343486i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 31.3676 54.3303i 1.04968 1.81809i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 1.49545 0.0498762
\(900\) 0 0
\(901\) −15.1652 −0.505224
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 2.64575 + 4.58258i 0.0879477 + 0.152330i
\(906\) 0 0
\(907\) −11.4967 + 19.9129i −0.381742 + 0.661196i −0.991311 0.131536i \(-0.958009\pi\)
0.609569 + 0.792733i \(0.291342\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 11.2087 19.4141i 0.371361 0.643216i −0.618414 0.785852i \(-0.712224\pi\)
0.989775 + 0.142636i \(0.0455578\pi\)
\(912\) 0 0
\(913\) 8.83485 + 15.3024i 0.292391 + 0.506436i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −5.10080 −0.168443
\(918\) 0 0
\(919\) 30.4539 1.00458 0.502291 0.864699i \(-0.332491\pi\)
0.502291 + 0.864699i \(0.332491\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 12.3739 + 21.4322i 0.407291 + 0.705448i
\(924\) 0 0
\(925\) 6.58258 11.4014i 0.216434 0.374874i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −7.79423 + 13.5000i −0.255720 + 0.442921i −0.965091 0.261915i \(-0.915646\pi\)
0.709371 + 0.704836i \(0.248979\pi\)
\(930\) 0 0
\(931\) 24.1733 + 41.8693i 0.792247 + 1.37221i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 25.5826 0.836640
\(936\) 0 0
\(937\) 2.16515 0.0707324 0.0353662 0.999374i \(-0.488740\pi\)
0.0353662 + 0.999374i \(0.488740\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −4.06398 7.03901i −0.132482 0.229465i 0.792151 0.610325i \(-0.208961\pi\)
−0.924633 + 0.380860i \(0.875628\pi\)
\(942\) 0 0
\(943\) −6.92820 + 12.0000i −0.225613 + 0.390774i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −23.5390 + 40.7708i −0.764915 + 1.32487i 0.175376 + 0.984501i \(0.443886\pi\)
−0.940291 + 0.340371i \(0.889448\pi\)
\(948\) 0 0
\(949\) −15.7087 27.2083i −0.509926 0.883218i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −48.7835 −1.58025 −0.790126 0.612945i \(-0.789985\pi\)
−0.790126 + 0.612945i \(0.789985\pi\)
\(954\) 0 0
\(955\) 4.18710 0.135491
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 3.95644 + 6.85275i 0.127760 + 0.221287i
\(960\) 0 0
\(961\) 13.8303 23.9548i 0.446139 0.772735i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 8.15573 14.1261i 0.262542 0.454736i
\(966\) 0 0
\(967\) 15.2270 + 26.3739i 0.489666 + 0.848126i 0.999929 0.0118919i \(-0.00378541\pi\)
−0.510263 + 0.860018i \(0.670452\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0.747727 0.0239957 0.0119979 0.999928i \(-0.496181\pi\)
0.0119979 + 0.999928i \(0.496181\pi\)
\(972\) 0 0
\(973\) 1.66970 0.0535280
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 9.47860 + 16.4174i 0.303247 + 0.525240i 0.976870 0.213836i \(-0.0685958\pi\)
−0.673622 + 0.739076i \(0.735262\pi\)
\(978\) 0 0
\(979\) 24.7056 42.7913i 0.789593 1.36762i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 28.7477 49.7925i 0.916910 1.58813i 0.112830 0.993614i \(-0.464009\pi\)
0.804080 0.594521i \(-0.202658\pi\)
\(984\) 0 0
\(985\) −26.4129 45.7484i −0.841584 1.45767i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −12.4104 −0.394628
\(990\) 0 0
\(991\) 12.9427 0.411139 0.205569 0.978643i \(-0.434095\pi\)
0.205569 + 0.978643i \(0.434095\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −4.83485 8.37420i −0.153275 0.265480i
\(996\) 0 0
\(997\) −5.12614 + 8.87873i −0.162346 + 0.281192i −0.935710 0.352771i \(-0.885240\pi\)
0.773363 + 0.633963i \(0.218573\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2592.2.i.bh.865.4 8
3.2 odd 2 2592.2.i.bg.865.2 8
4.3 odd 2 2592.2.i.bg.865.3 8
9.2 odd 6 2592.2.a.w.1.3 yes 4
9.4 even 3 inner 2592.2.i.bh.1729.4 8
9.5 odd 6 2592.2.i.bg.1729.2 8
9.7 even 3 2592.2.a.v.1.1 4
12.11 even 2 inner 2592.2.i.bh.865.1 8
36.7 odd 6 2592.2.a.w.1.2 yes 4
36.11 even 6 2592.2.a.v.1.4 yes 4
36.23 even 6 inner 2592.2.i.bh.1729.1 8
36.31 odd 6 2592.2.i.bg.1729.3 8
72.11 even 6 5184.2.a.ce.1.2 4
72.29 odd 6 5184.2.a.cd.1.1 4
72.43 odd 6 5184.2.a.cd.1.4 4
72.61 even 6 5184.2.a.ce.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2592.2.a.v.1.1 4 9.7 even 3
2592.2.a.v.1.4 yes 4 36.11 even 6
2592.2.a.w.1.2 yes 4 36.7 odd 6
2592.2.a.w.1.3 yes 4 9.2 odd 6
2592.2.i.bg.865.2 8 3.2 odd 2
2592.2.i.bg.865.3 8 4.3 odd 2
2592.2.i.bg.1729.2 8 9.5 odd 6
2592.2.i.bg.1729.3 8 36.31 odd 6
2592.2.i.bh.865.1 8 12.11 even 2 inner
2592.2.i.bh.865.4 8 1.1 even 1 trivial
2592.2.i.bh.1729.1 8 36.23 even 6 inner
2592.2.i.bh.1729.4 8 9.4 even 3 inner
5184.2.a.cd.1.1 4 72.29 odd 6
5184.2.a.cd.1.4 4 72.43 odd 6
5184.2.a.ce.1.2 4 72.11 even 6
5184.2.a.ce.1.3 4 72.61 even 6