L(s) = 1 | + (1.32 + 2.29i)5-s + (−0.456 + 0.791i)7-s + (2.79 − 4.83i)11-s + (−1.29 − 2.23i)13-s + 1.73·17-s + 7.84·19-s + (−0.791 − 1.37i)23-s + (−1 + 1.73i)25-s + (−0.409 + 0.708i)29-s + (−0.913 − 1.58i)31-s − 2.41·35-s − 6.58·37-s + (−4.37 − 7.58i)41-s + (3.92 − 6.79i)43-s + (4 − 6.92i)47-s + ⋯ |
L(s) = 1 | + (0.591 + 1.02i)5-s + (−0.172 + 0.299i)7-s + (0.841 − 1.45i)11-s + (−0.358 − 0.620i)13-s + 0.420·17-s + 1.79·19-s + (−0.164 − 0.285i)23-s + (−0.200 + 0.346i)25-s + (−0.0759 + 0.131i)29-s + (−0.164 − 0.284i)31-s − 0.408·35-s − 1.08·37-s + (−0.683 − 1.18i)41-s + (0.597 − 1.03i)43-s + (0.583 − 1.01i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2592 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.984 + 0.173i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2592 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.984 + 0.173i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.145061163\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.145061163\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + (-1.32 - 2.29i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (0.456 - 0.791i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-2.79 + 4.83i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (1.29 + 2.23i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 - 1.73T + 17T^{2} \) |
| 19 | \( 1 - 7.84T + 19T^{2} \) |
| 23 | \( 1 + (0.791 + 1.37i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (0.409 - 0.708i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (0.913 + 1.58i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 6.58T + 37T^{2} \) |
| 41 | \( 1 + (4.37 + 7.58i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-3.92 + 6.79i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-4 + 6.92i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 8.75T + 53T^{2} \) |
| 59 | \( 1 + (-4 - 6.92i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-5.29 + 9.16i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-3.92 - 6.79i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 9.58T + 71T^{2} \) |
| 73 | \( 1 - 12.1T + 73T^{2} \) |
| 79 | \( 1 + (-7.38 + 12.7i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (1.58 - 2.74i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 - 8.85T + 89T^{2} \) |
| 97 | \( 1 + (6.58 - 11.4i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.987550637213294532980703753636, −8.086801781190963022093289093879, −7.21574316137431605020746652818, −6.56226189530236380632379128341, −5.70005929004706978301596824789, −5.31594551092845348506671714325, −3.66278736409601517714357922497, −3.22004524748805475231914288794, −2.25318924791222571994124853498, −0.829091832534125342814151458773,
1.17104853430639920076666067478, 1.84988568341296879821389145449, 3.23833999423820003251451336338, 4.30099929750020059023623601420, 4.94943124874321688961522933335, 5.65183404770742852165554820014, 6.74847059587232548366009214240, 7.28356580205000145608635942343, 8.150141696751519427469795470447, 9.180213741796496065655651775320