Properties

Label 2592.2.a.v.1.4
Level $2592$
Weight $2$
Character 2592.1
Self dual yes
Analytic conductor $20.697$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2592,2,Mod(1,2592)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2592, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2592.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2592 = 2^{5} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2592.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,0,0,-4,0,-8,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(20.6972242039\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{3}, \sqrt{7})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 5x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(2.18890\) of defining polynomial
Character \(\chi\) \(=\) 2592.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.64575 q^{5} -0.913701 q^{7} -5.58258 q^{11} +2.58258 q^{13} -1.73205 q^{17} -7.84190 q^{19} +1.58258 q^{23} +2.00000 q^{25} -0.818350 q^{29} -1.82740 q^{31} -2.41742 q^{35} -6.58258 q^{37} -8.75560 q^{41} +7.84190 q^{43} -8.00000 q^{47} -6.16515 q^{49} +8.75560 q^{53} -14.7701 q^{55} -8.00000 q^{59} -10.5826 q^{61} +6.83285 q^{65} +7.84190 q^{67} -9.58258 q^{71} +12.1652 q^{73} +5.10080 q^{77} +14.7701 q^{79} +3.16515 q^{83} -4.58258 q^{85} -8.85095 q^{89} -2.35970 q^{91} -20.7477 q^{95} +13.1652 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{11} - 8 q^{13} - 12 q^{23} + 8 q^{25} - 28 q^{35} - 8 q^{37} - 32 q^{47} + 12 q^{49} - 32 q^{59} - 24 q^{61} - 20 q^{71} + 12 q^{73} - 24 q^{83} - 28 q^{95} + 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.64575 1.18322 0.591608 0.806226i \(-0.298493\pi\)
0.591608 + 0.806226i \(0.298493\pi\)
\(6\) 0 0
\(7\) −0.913701 −0.345346 −0.172673 0.984979i \(-0.555240\pi\)
−0.172673 + 0.984979i \(0.555240\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −5.58258 −1.68321 −0.841605 0.540094i \(-0.818389\pi\)
−0.841605 + 0.540094i \(0.818389\pi\)
\(12\) 0 0
\(13\) 2.58258 0.716278 0.358139 0.933668i \(-0.383411\pi\)
0.358139 + 0.933668i \(0.383411\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1.73205 −0.420084 −0.210042 0.977692i \(-0.567360\pi\)
−0.210042 + 0.977692i \(0.567360\pi\)
\(18\) 0 0
\(19\) −7.84190 −1.79906 −0.899528 0.436863i \(-0.856089\pi\)
−0.899528 + 0.436863i \(0.856089\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.58258 0.329990 0.164995 0.986294i \(-0.447239\pi\)
0.164995 + 0.986294i \(0.447239\pi\)
\(24\) 0 0
\(25\) 2.00000 0.400000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −0.818350 −0.151964 −0.0759819 0.997109i \(-0.524209\pi\)
−0.0759819 + 0.997109i \(0.524209\pi\)
\(30\) 0 0
\(31\) −1.82740 −0.328211 −0.164105 0.986443i \(-0.552474\pi\)
−0.164105 + 0.986443i \(0.552474\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −2.41742 −0.408619
\(36\) 0 0
\(37\) −6.58258 −1.08217 −0.541084 0.840968i \(-0.681986\pi\)
−0.541084 + 0.840968i \(0.681986\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −8.75560 −1.36740 −0.683698 0.729765i \(-0.739629\pi\)
−0.683698 + 0.729765i \(0.739629\pi\)
\(42\) 0 0
\(43\) 7.84190 1.19588 0.597940 0.801541i \(-0.295986\pi\)
0.597940 + 0.801541i \(0.295986\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −8.00000 −1.16692 −0.583460 0.812142i \(-0.698301\pi\)
−0.583460 + 0.812142i \(0.698301\pi\)
\(48\) 0 0
\(49\) −6.16515 −0.880736
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 8.75560 1.20267 0.601337 0.798995i \(-0.294635\pi\)
0.601337 + 0.798995i \(0.294635\pi\)
\(54\) 0 0
\(55\) −14.7701 −1.99160
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −8.00000 −1.04151 −0.520756 0.853706i \(-0.674350\pi\)
−0.520756 + 0.853706i \(0.674350\pi\)
\(60\) 0 0
\(61\) −10.5826 −1.35496 −0.677480 0.735541i \(-0.736928\pi\)
−0.677480 + 0.735541i \(0.736928\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 6.83285 0.847511
\(66\) 0 0
\(67\) 7.84190 0.958041 0.479021 0.877804i \(-0.340992\pi\)
0.479021 + 0.877804i \(0.340992\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −9.58258 −1.13724 −0.568621 0.822599i \(-0.692523\pi\)
−0.568621 + 0.822599i \(0.692523\pi\)
\(72\) 0 0
\(73\) 12.1652 1.42382 0.711912 0.702269i \(-0.247830\pi\)
0.711912 + 0.702269i \(0.247830\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 5.10080 0.581290
\(78\) 0 0
\(79\) 14.7701 1.66177 0.830883 0.556447i \(-0.187836\pi\)
0.830883 + 0.556447i \(0.187836\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 3.16515 0.347421 0.173710 0.984797i \(-0.444424\pi\)
0.173710 + 0.984797i \(0.444424\pi\)
\(84\) 0 0
\(85\) −4.58258 −0.497050
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −8.85095 −0.938199 −0.469100 0.883145i \(-0.655421\pi\)
−0.469100 + 0.883145i \(0.655421\pi\)
\(90\) 0 0
\(91\) −2.35970 −0.247364
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −20.7477 −2.12867
\(96\) 0 0
\(97\) 13.1652 1.33672 0.668359 0.743839i \(-0.266997\pi\)
0.668359 + 0.743839i \(0.266997\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −13.8564 −1.37876 −0.689382 0.724398i \(-0.742118\pi\)
−0.689382 + 0.724398i \(0.742118\pi\)
\(102\) 0 0
\(103\) 19.3386 1.90549 0.952745 0.303772i \(-0.0982460\pi\)
0.952745 + 0.303772i \(0.0982460\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −11.1652 −1.07938 −0.539688 0.841865i \(-0.681458\pi\)
−0.539688 + 0.841865i \(0.681458\pi\)
\(108\) 0 0
\(109\) −5.41742 −0.518895 −0.259448 0.965757i \(-0.583540\pi\)
−0.259448 + 0.965757i \(0.583540\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1.92275 0.180877 0.0904386 0.995902i \(-0.471173\pi\)
0.0904386 + 0.995902i \(0.471173\pi\)
\(114\) 0 0
\(115\) 4.18710 0.390449
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 1.58258 0.145074
\(120\) 0 0
\(121\) 20.1652 1.83320
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −7.93725 −0.709930
\(126\) 0 0
\(127\) −12.9427 −1.14848 −0.574240 0.818687i \(-0.694702\pi\)
−0.574240 + 0.818687i \(0.694702\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −5.58258 −0.487752 −0.243876 0.969806i \(-0.578419\pi\)
−0.243876 + 0.969806i \(0.578419\pi\)
\(132\) 0 0
\(133\) 7.16515 0.621297
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 8.66025 0.739895 0.369948 0.929053i \(-0.379376\pi\)
0.369948 + 0.929053i \(0.379376\pi\)
\(138\) 0 0
\(139\) −1.82740 −0.154998 −0.0774991 0.996992i \(-0.524693\pi\)
−0.0774991 + 0.996992i \(0.524693\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −14.4174 −1.20565
\(144\) 0 0
\(145\) −2.16515 −0.179806
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 14.8655 1.21783 0.608913 0.793237i \(-0.291606\pi\)
0.608913 + 0.793237i \(0.291606\pi\)
\(150\) 0 0
\(151\) 19.3386 1.57375 0.786877 0.617110i \(-0.211697\pi\)
0.786877 + 0.617110i \(0.211697\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −4.83485 −0.388344
\(156\) 0 0
\(157\) −11.4174 −0.911210 −0.455605 0.890182i \(-0.650577\pi\)
−0.455605 + 0.890182i \(0.650577\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −1.44600 −0.113961
\(162\) 0 0
\(163\) −17.5112 −1.37158 −0.685792 0.727798i \(-0.740544\pi\)
−0.685792 + 0.727798i \(0.740544\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −6.41742 −0.496595 −0.248298 0.968684i \(-0.579871\pi\)
−0.248298 + 0.968684i \(0.579871\pi\)
\(168\) 0 0
\(169\) −6.33030 −0.486946
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −18.3296 −1.39357 −0.696785 0.717280i \(-0.745387\pi\)
−0.696785 + 0.717280i \(0.745387\pi\)
\(174\) 0 0
\(175\) −1.82740 −0.138139
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) 2.00000 0.148659 0.0743294 0.997234i \(-0.476318\pi\)
0.0743294 + 0.997234i \(0.476318\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −17.4159 −1.28044
\(186\) 0 0
\(187\) 9.66930 0.707090
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −1.58258 −0.114511 −0.0572556 0.998360i \(-0.518235\pi\)
−0.0572556 + 0.998360i \(0.518235\pi\)
\(192\) 0 0
\(193\) 6.16515 0.443777 0.221889 0.975072i \(-0.428778\pi\)
0.221889 + 0.975072i \(0.428778\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 19.9663 1.42254 0.711269 0.702920i \(-0.248121\pi\)
0.711269 + 0.702920i \(0.248121\pi\)
\(198\) 0 0
\(199\) 3.65480 0.259082 0.129541 0.991574i \(-0.458650\pi\)
0.129541 + 0.991574i \(0.458650\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0.747727 0.0524802
\(204\) 0 0
\(205\) −23.1652 −1.61792
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 43.7780 3.02819
\(210\) 0 0
\(211\) 6.01450 0.414055 0.207028 0.978335i \(-0.433621\pi\)
0.207028 + 0.978335i \(0.433621\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 20.7477 1.41498
\(216\) 0 0
\(217\) 1.66970 0.113346
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −4.47315 −0.300897
\(222\) 0 0
\(223\) −20.2523 −1.35619 −0.678097 0.734972i \(-0.737195\pi\)
−0.678097 + 0.734972i \(0.737195\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −16.7477 −1.11159 −0.555793 0.831321i \(-0.687585\pi\)
−0.555793 + 0.831321i \(0.687585\pi\)
\(228\) 0 0
\(229\) −23.7477 −1.56929 −0.784647 0.619943i \(-0.787156\pi\)
−0.784647 + 0.619943i \(0.787156\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 21.0707 1.38038 0.690192 0.723626i \(-0.257526\pi\)
0.690192 + 0.723626i \(0.257526\pi\)
\(234\) 0 0
\(235\) −21.1660 −1.38072
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 27.1652 1.75717 0.878584 0.477588i \(-0.158489\pi\)
0.878584 + 0.477588i \(0.158489\pi\)
\(240\) 0 0
\(241\) 1.00000 0.0644157 0.0322078 0.999481i \(-0.489746\pi\)
0.0322078 + 0.999481i \(0.489746\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −16.3115 −1.04210
\(246\) 0 0
\(247\) −20.2523 −1.28862
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −13.5826 −0.857325 −0.428662 0.903465i \(-0.641015\pi\)
−0.428662 + 0.903465i \(0.641015\pi\)
\(252\) 0 0
\(253\) −8.83485 −0.555442
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −7.02355 −0.438117 −0.219059 0.975712i \(-0.570299\pi\)
−0.219059 + 0.975712i \(0.570299\pi\)
\(258\) 0 0
\(259\) 6.01450 0.373723
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −30.3303 −1.87025 −0.935123 0.354322i \(-0.884712\pi\)
−0.935123 + 0.354322i \(0.884712\pi\)
\(264\) 0 0
\(265\) 23.1652 1.42302
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −21.7937 −1.32878 −0.664391 0.747385i \(-0.731309\pi\)
−0.664391 + 0.747385i \(0.731309\pi\)
\(270\) 0 0
\(271\) −2.74110 −0.166510 −0.0832550 0.996528i \(-0.526532\pi\)
−0.0832550 + 0.996528i \(0.526532\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −11.1652 −0.673284
\(276\) 0 0
\(277\) 16.3303 0.981193 0.490596 0.871387i \(-0.336779\pi\)
0.490596 + 0.871387i \(0.336779\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −7.21425 −0.430366 −0.215183 0.976574i \(-0.569035\pi\)
−0.215183 + 0.976574i \(0.569035\pi\)
\(282\) 0 0
\(283\) 3.65480 0.217255 0.108628 0.994083i \(-0.465354\pi\)
0.108628 + 0.994083i \(0.465354\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 8.00000 0.472225
\(288\) 0 0
\(289\) −14.0000 −0.823529
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −1.00905 −0.0589494 −0.0294747 0.999566i \(-0.509383\pi\)
−0.0294747 + 0.999566i \(0.509383\pi\)
\(294\) 0 0
\(295\) −21.1660 −1.23233
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 4.08712 0.236364
\(300\) 0 0
\(301\) −7.16515 −0.412992
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −27.9989 −1.60321
\(306\) 0 0
\(307\) 19.3386 1.10371 0.551856 0.833939i \(-0.313920\pi\)
0.551856 + 0.833939i \(0.313920\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 3.16515 0.179479 0.0897396 0.995965i \(-0.471397\pi\)
0.0897396 + 0.995965i \(0.471397\pi\)
\(312\) 0 0
\(313\) 19.0000 1.07394 0.536972 0.843600i \(-0.319568\pi\)
0.536972 + 0.843600i \(0.319568\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −20.3477 −1.14284 −0.571419 0.820658i \(-0.693607\pi\)
−0.571419 + 0.820658i \(0.693607\pi\)
\(318\) 0 0
\(319\) 4.56850 0.255787
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 13.5826 0.755755
\(324\) 0 0
\(325\) 5.16515 0.286511
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 7.30960 0.402992
\(330\) 0 0
\(331\) −25.3531 −1.39353 −0.696767 0.717298i \(-0.745379\pi\)
−0.696767 + 0.717298i \(0.745379\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 20.7477 1.13357
\(336\) 0 0
\(337\) −1.16515 −0.0634698 −0.0317349 0.999496i \(-0.510103\pi\)
−0.0317349 + 0.999496i \(0.510103\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 10.2016 0.552448
\(342\) 0 0
\(343\) 12.0290 0.649505
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 26.4174 1.41816 0.709081 0.705127i \(-0.249110\pi\)
0.709081 + 0.705127i \(0.249110\pi\)
\(348\) 0 0
\(349\) −17.1652 −0.918829 −0.459415 0.888222i \(-0.651941\pi\)
−0.459415 + 0.888222i \(0.651941\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 10.2016 0.542977 0.271488 0.962442i \(-0.412484\pi\)
0.271488 + 0.962442i \(0.412484\pi\)
\(354\) 0 0
\(355\) −25.3531 −1.34560
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −23.9129 −1.26207 −0.631037 0.775753i \(-0.717370\pi\)
−0.631037 + 0.775753i \(0.717370\pi\)
\(360\) 0 0
\(361\) 42.4955 2.23660
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 32.1860 1.68469
\(366\) 0 0
\(367\) 5.48220 0.286169 0.143084 0.989710i \(-0.454298\pi\)
0.143084 + 0.989710i \(0.454298\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −8.00000 −0.415339
\(372\) 0 0
\(373\) 14.0000 0.724893 0.362446 0.932005i \(-0.381942\pi\)
0.362446 + 0.932005i \(0.381942\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −2.11345 −0.108848
\(378\) 0 0
\(379\) 15.6838 0.805623 0.402812 0.915283i \(-0.368033\pi\)
0.402812 + 0.915283i \(0.368033\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −6.41742 −0.327915 −0.163958 0.986467i \(-0.552426\pi\)
−0.163958 + 0.986467i \(0.552426\pi\)
\(384\) 0 0
\(385\) 13.4955 0.687792
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −1.44600 −0.0733151 −0.0366576 0.999328i \(-0.511671\pi\)
−0.0366576 + 0.999328i \(0.511671\pi\)
\(390\) 0 0
\(391\) −2.74110 −0.138623
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 39.0780 1.96623
\(396\) 0 0
\(397\) −9.74773 −0.489224 −0.244612 0.969621i \(-0.578661\pi\)
−0.244612 + 0.969621i \(0.578661\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 10.4877 0.523729 0.261864 0.965105i \(-0.415663\pi\)
0.261864 + 0.965105i \(0.415663\pi\)
\(402\) 0 0
\(403\) −4.71940 −0.235090
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 36.7477 1.82152
\(408\) 0 0
\(409\) −2.16515 −0.107060 −0.0535299 0.998566i \(-0.517047\pi\)
−0.0535299 + 0.998566i \(0.517047\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 7.30960 0.359682
\(414\) 0 0
\(415\) 8.37420 0.411073
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 11.1652 0.545453 0.272727 0.962092i \(-0.412075\pi\)
0.272727 + 0.962092i \(0.412075\pi\)
\(420\) 0 0
\(421\) −8.58258 −0.418289 −0.209145 0.977885i \(-0.567068\pi\)
−0.209145 + 0.977885i \(0.567068\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −3.46410 −0.168034
\(426\) 0 0
\(427\) 9.66930 0.467930
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 20.8348 1.00358 0.501790 0.864990i \(-0.332675\pi\)
0.501790 + 0.864990i \(0.332675\pi\)
\(432\) 0 0
\(433\) 13.3303 0.640613 0.320307 0.947314i \(-0.396214\pi\)
0.320307 + 0.947314i \(0.396214\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −12.4104 −0.593670
\(438\) 0 0
\(439\) 21.1660 1.01020 0.505099 0.863061i \(-0.331456\pi\)
0.505099 + 0.863061i \(0.331456\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 36.6606 1.74180 0.870899 0.491462i \(-0.163537\pi\)
0.870899 + 0.491462i \(0.163537\pi\)
\(444\) 0 0
\(445\) −23.4174 −1.11009
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −18.9572 −0.894646 −0.447323 0.894372i \(-0.647623\pi\)
−0.447323 + 0.894372i \(0.647623\pi\)
\(450\) 0 0
\(451\) 48.8788 2.30161
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −6.24318 −0.292685
\(456\) 0 0
\(457\) −10.1652 −0.475506 −0.237753 0.971326i \(-0.576411\pi\)
−0.237753 + 0.971326i \(0.576411\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 26.2668 1.22337 0.611684 0.791102i \(-0.290493\pi\)
0.611684 + 0.791102i \(0.290493\pi\)
\(462\) 0 0
\(463\) 17.5112 0.813815 0.406907 0.913469i \(-0.366607\pi\)
0.406907 + 0.913469i \(0.366607\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −19.1652 −0.886857 −0.443429 0.896310i \(-0.646238\pi\)
−0.443429 + 0.896310i \(0.646238\pi\)
\(468\) 0 0
\(469\) −7.16515 −0.330856
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −43.7780 −2.01292
\(474\) 0 0
\(475\) −15.6838 −0.719622
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 4.74773 0.216929 0.108465 0.994100i \(-0.465407\pi\)
0.108465 + 0.994100i \(0.465407\pi\)
\(480\) 0 0
\(481\) −17.0000 −0.775133
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 34.8317 1.58163
\(486\) 0 0
\(487\) 29.5402 1.33859 0.669297 0.742995i \(-0.266595\pi\)
0.669297 + 0.742995i \(0.266595\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −5.58258 −0.251938 −0.125969 0.992034i \(-0.540204\pi\)
−0.125969 + 0.992034i \(0.540204\pi\)
\(492\) 0 0
\(493\) 1.41742 0.0638376
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 8.75560 0.392743
\(498\) 0 0
\(499\) −18.0435 −0.807738 −0.403869 0.914817i \(-0.632335\pi\)
−0.403869 + 0.914817i \(0.632335\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −3.16515 −0.141127 −0.0705636 0.997507i \(-0.522480\pi\)
−0.0705636 + 0.997507i \(0.522480\pi\)
\(504\) 0 0
\(505\) −36.6606 −1.63138
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −1.44600 −0.0640928 −0.0320464 0.999486i \(-0.510202\pi\)
−0.0320464 + 0.999486i \(0.510202\pi\)
\(510\) 0 0
\(511\) −11.1153 −0.491712
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 51.1652 2.25461
\(516\) 0 0
\(517\) 44.6606 1.96417
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 26.2668 1.15077 0.575385 0.817883i \(-0.304852\pi\)
0.575385 + 0.817883i \(0.304852\pi\)
\(522\) 0 0
\(523\) 37.3821 1.63461 0.817303 0.576208i \(-0.195468\pi\)
0.817303 + 0.576208i \(0.195468\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 3.16515 0.137876
\(528\) 0 0
\(529\) −20.4955 −0.891107
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −22.6120 −0.979435
\(534\) 0 0
\(535\) −29.5402 −1.27713
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 34.4174 1.48246
\(540\) 0 0
\(541\) −42.9129 −1.84497 −0.922484 0.386034i \(-0.873845\pi\)
−0.922484 + 0.386034i \(0.873845\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −14.3332 −0.613965
\(546\) 0 0
\(547\) −13.8564 −0.592457 −0.296229 0.955117i \(-0.595729\pi\)
−0.296229 + 0.955117i \(0.595729\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 6.41742 0.273391
\(552\) 0 0
\(553\) −13.4955 −0.573885
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −28.5312 −1.20890 −0.604452 0.796641i \(-0.706608\pi\)
−0.604452 + 0.796641i \(0.706608\pi\)
\(558\) 0 0
\(559\) 20.2523 0.856581
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 24.0000 1.01148 0.505740 0.862686i \(-0.331220\pi\)
0.505740 + 0.862686i \(0.331220\pi\)
\(564\) 0 0
\(565\) 5.08712 0.214017
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −31.2723 −1.31100 −0.655501 0.755195i \(-0.727542\pi\)
−0.655501 + 0.755195i \(0.727542\pi\)
\(570\) 0 0
\(571\) 21.1660 0.885770 0.442885 0.896578i \(-0.353955\pi\)
0.442885 + 0.896578i \(0.353955\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 3.16515 0.131996
\(576\) 0 0
\(577\) −0.165151 −0.00687534 −0.00343767 0.999994i \(-0.501094\pi\)
−0.00343767 + 0.999994i \(0.501094\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −2.89200 −0.119980
\(582\) 0 0
\(583\) −48.8788 −2.02435
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −13.5826 −0.560613 −0.280306 0.959911i \(-0.590436\pi\)
−0.280306 + 0.959911i \(0.590436\pi\)
\(588\) 0 0
\(589\) 14.3303 0.590470
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −12.1244 −0.497888 −0.248944 0.968518i \(-0.580083\pi\)
−0.248944 + 0.968518i \(0.580083\pi\)
\(594\) 0 0
\(595\) 4.18710 0.171654
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 12.8348 0.524418 0.262209 0.965011i \(-0.415549\pi\)
0.262209 + 0.965011i \(0.415549\pi\)
\(600\) 0 0
\(601\) 40.4955 1.65184 0.825922 0.563784i \(-0.190655\pi\)
0.825922 + 0.563784i \(0.190655\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 53.3520 2.16907
\(606\) 0 0
\(607\) 6.39590 0.259602 0.129801 0.991540i \(-0.458566\pi\)
0.129801 + 0.991540i \(0.458566\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −20.6606 −0.835839
\(612\) 0 0
\(613\) 30.0000 1.21169 0.605844 0.795583i \(-0.292835\pi\)
0.605844 + 0.795583i \(0.292835\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 21.0707 0.848273 0.424136 0.905598i \(-0.360578\pi\)
0.424136 + 0.905598i \(0.360578\pi\)
\(618\) 0 0
\(619\) 8.37420 0.336588 0.168294 0.985737i \(-0.446174\pi\)
0.168294 + 0.985737i \(0.446174\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 8.08712 0.324004
\(624\) 0 0
\(625\) −31.0000 −1.24000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 11.4014 0.454602
\(630\) 0 0
\(631\) 12.0290 0.478867 0.239434 0.970913i \(-0.423038\pi\)
0.239434 + 0.970913i \(0.423038\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −34.2432 −1.35890
\(636\) 0 0
\(637\) −15.9220 −0.630851
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −1.92275 −0.0759441 −0.0379721 0.999279i \(-0.512090\pi\)
−0.0379721 + 0.999279i \(0.512090\pi\)
\(642\) 0 0
\(643\) −5.48220 −0.216197 −0.108098 0.994140i \(-0.534476\pi\)
−0.108098 + 0.994140i \(0.534476\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 31.9129 1.25462 0.627312 0.778768i \(-0.284155\pi\)
0.627312 + 0.778768i \(0.284155\pi\)
\(648\) 0 0
\(649\) 44.6606 1.75308
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 36.4684 1.42712 0.713560 0.700594i \(-0.247082\pi\)
0.713560 + 0.700594i \(0.247082\pi\)
\(654\) 0 0
\(655\) −14.7701 −0.577116
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 7.25227 0.282508 0.141254 0.989973i \(-0.454887\pi\)
0.141254 + 0.989973i \(0.454887\pi\)
\(660\) 0 0
\(661\) 15.7477 0.612516 0.306258 0.951949i \(-0.400923\pi\)
0.306258 + 0.951949i \(0.400923\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 18.9572 0.735129
\(666\) 0 0
\(667\) −1.29510 −0.0501465
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 59.0780 2.28068
\(672\) 0 0
\(673\) −40.1652 −1.54825 −0.774126 0.633031i \(-0.781811\pi\)
−0.774126 + 0.633031i \(0.781811\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −16.0652 −0.617436 −0.308718 0.951154i \(-0.599900\pi\)
−0.308718 + 0.951154i \(0.599900\pi\)
\(678\) 0 0
\(679\) −12.0290 −0.461631
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −24.0000 −0.918334 −0.459167 0.888350i \(-0.651852\pi\)
−0.459167 + 0.888350i \(0.651852\pi\)
\(684\) 0 0
\(685\) 22.9129 0.875456
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 22.6120 0.861449
\(690\) 0 0
\(691\) −21.6983 −0.825443 −0.412721 0.910857i \(-0.635422\pi\)
−0.412721 + 0.910857i \(0.635422\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −4.83485 −0.183396
\(696\) 0 0
\(697\) 15.1652 0.574421
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −20.3477 −0.768521 −0.384260 0.923225i \(-0.625543\pi\)
−0.384260 + 0.923225i \(0.625543\pi\)
\(702\) 0 0
\(703\) 51.6199 1.94688
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 12.6606 0.476151
\(708\) 0 0
\(709\) 8.25227 0.309921 0.154960 0.987921i \(-0.450475\pi\)
0.154960 + 0.987921i \(0.450475\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −2.89200 −0.108306
\(714\) 0 0
\(715\) −38.1449 −1.42654
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 47.9129 1.78685 0.893424 0.449214i \(-0.148296\pi\)
0.893424 + 0.449214i \(0.148296\pi\)
\(720\) 0 0
\(721\) −17.6697 −0.658054
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −1.63670 −0.0607855
\(726\) 0 0
\(727\) −16.5975 −0.615567 −0.307784 0.951456i \(-0.599587\pi\)
−0.307784 + 0.951456i \(0.599587\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −13.5826 −0.502370
\(732\) 0 0
\(733\) −4.33030 −0.159943 −0.0799717 0.996797i \(-0.525483\pi\)
−0.0799717 + 0.996797i \(0.525483\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −43.7780 −1.61258
\(738\) 0 0
\(739\) −42.3320 −1.55721 −0.778604 0.627515i \(-0.784072\pi\)
−0.778604 + 0.627515i \(0.784072\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 6.33030 0.232236 0.116118 0.993235i \(-0.462955\pi\)
0.116118 + 0.993235i \(0.462955\pi\)
\(744\) 0 0
\(745\) 39.3303 1.44095
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 10.2016 0.372759
\(750\) 0 0
\(751\) −37.7635 −1.37801 −0.689005 0.724756i \(-0.741952\pi\)
−0.689005 + 0.724756i \(0.741952\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 51.1652 1.86209
\(756\) 0 0
\(757\) 18.0000 0.654221 0.327111 0.944986i \(-0.393925\pi\)
0.327111 + 0.944986i \(0.393925\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 22.5167 0.816228 0.408114 0.912931i \(-0.366187\pi\)
0.408114 + 0.912931i \(0.366187\pi\)
\(762\) 0 0
\(763\) 4.94990 0.179199
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −20.6606 −0.746011
\(768\) 0 0
\(769\) 22.1652 0.799296 0.399648 0.916669i \(-0.369132\pi\)
0.399648 + 0.916669i \(0.369132\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −9.95536 −0.358069 −0.179035 0.983843i \(-0.557297\pi\)
−0.179035 + 0.983843i \(0.557297\pi\)
\(774\) 0 0
\(775\) −3.65480 −0.131284
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 68.6606 2.46002
\(780\) 0 0
\(781\) 53.4955 1.91422
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −30.2077 −1.07816
\(786\) 0 0
\(787\) 15.1515 0.540093 0.270046 0.962847i \(-0.412961\pi\)
0.270046 + 0.962847i \(0.412961\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −1.75682 −0.0624653
\(792\) 0 0
\(793\) −27.3303 −0.970528
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −44.5964 −1.57968 −0.789842 0.613310i \(-0.789838\pi\)
−0.789842 + 0.613310i \(0.789838\pi\)
\(798\) 0 0
\(799\) 13.8564 0.490204
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −67.9129 −2.39659
\(804\) 0 0
\(805\) −3.82576 −0.134840
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 45.1287 1.58664 0.793320 0.608805i \(-0.208351\pi\)
0.793320 + 0.608805i \(0.208351\pi\)
\(810\) 0 0
\(811\) −3.65480 −0.128337 −0.0641687 0.997939i \(-0.520440\pi\)
−0.0641687 + 0.997939i \(0.520440\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −46.3303 −1.62288
\(816\) 0 0
\(817\) −61.4955 −2.15145
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −9.76465 −0.340789 −0.170394 0.985376i \(-0.554504\pi\)
−0.170394 + 0.985376i \(0.554504\pi\)
\(822\) 0 0
\(823\) 24.0580 0.838610 0.419305 0.907846i \(-0.362274\pi\)
0.419305 + 0.907846i \(0.362274\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −8.74773 −0.304188 −0.152094 0.988366i \(-0.548602\pi\)
−0.152094 + 0.988366i \(0.548602\pi\)
\(828\) 0 0
\(829\) 8.33030 0.289323 0.144662 0.989481i \(-0.453791\pi\)
0.144662 + 0.989481i \(0.453791\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 10.6784 0.369983
\(834\) 0 0
\(835\) −16.9789 −0.587579
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 44.7477 1.54486 0.772432 0.635098i \(-0.219040\pi\)
0.772432 + 0.635098i \(0.219040\pi\)
\(840\) 0 0
\(841\) −28.3303 −0.976907
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −16.7484 −0.576163
\(846\) 0 0
\(847\) −18.4249 −0.633087
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −10.4174 −0.357105
\(852\) 0 0
\(853\) −0.330303 −0.0113094 −0.00565468 0.999984i \(-0.501800\pi\)
−0.00565468 + 0.999984i \(0.501800\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −24.1534 −0.825063 −0.412532 0.910943i \(-0.635355\pi\)
−0.412532 + 0.910943i \(0.635355\pi\)
\(858\) 0 0
\(859\) −48.8788 −1.66772 −0.833862 0.551973i \(-0.813875\pi\)
−0.833862 + 0.551973i \(0.813875\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −49.4083 −1.68188 −0.840940 0.541129i \(-0.817997\pi\)
−0.840940 + 0.541129i \(0.817997\pi\)
\(864\) 0 0
\(865\) −48.4955 −1.64889
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −82.4552 −2.79710
\(870\) 0 0
\(871\) 20.2523 0.686223
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 7.25227 0.245172
\(876\) 0 0
\(877\) −40.0780 −1.35334 −0.676669 0.736287i \(-0.736577\pi\)
−0.676669 + 0.736287i \(0.736577\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −1.44600 −0.0487170 −0.0243585 0.999703i \(-0.507754\pi\)
−0.0243585 + 0.999703i \(0.507754\pi\)
\(882\) 0 0
\(883\) 9.13701 0.307485 0.153742 0.988111i \(-0.450867\pi\)
0.153742 + 0.988111i \(0.450867\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 25.5826 0.858979 0.429489 0.903072i \(-0.358694\pi\)
0.429489 + 0.903072i \(0.358694\pi\)
\(888\) 0 0
\(889\) 11.8258 0.396623
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 62.7352 2.09935
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 1.49545 0.0498762
\(900\) 0 0
\(901\) −15.1652 −0.505224
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 5.29150 0.175895
\(906\) 0 0
\(907\) −22.9934 −0.763484 −0.381742 0.924269i \(-0.624676\pi\)
−0.381742 + 0.924269i \(0.624676\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −22.4174 −0.742722 −0.371361 0.928488i \(-0.621109\pi\)
−0.371361 + 0.928488i \(0.621109\pi\)
\(912\) 0 0
\(913\) −17.6697 −0.584782
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 5.10080 0.168443
\(918\) 0 0
\(919\) −30.4539 −1.00458 −0.502291 0.864699i \(-0.667509\pi\)
−0.502291 + 0.864699i \(0.667509\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −24.7477 −0.814581
\(924\) 0 0
\(925\) −13.1652 −0.432868
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −15.5885 −0.511441 −0.255720 0.966751i \(-0.582313\pi\)
−0.255720 + 0.966751i \(0.582313\pi\)
\(930\) 0 0
\(931\) 48.3465 1.58449
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 25.5826 0.836640
\(936\) 0 0
\(937\) 2.16515 0.0707324 0.0353662 0.999374i \(-0.488740\pi\)
0.0353662 + 0.999374i \(0.488740\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −8.12795 −0.264964 −0.132482 0.991185i \(-0.542295\pi\)
−0.132482 + 0.991185i \(0.542295\pi\)
\(942\) 0 0
\(943\) −13.8564 −0.451227
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 47.0780 1.52983 0.764915 0.644131i \(-0.222781\pi\)
0.764915 + 0.644131i \(0.222781\pi\)
\(948\) 0 0
\(949\) 31.4174 1.01985
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 48.7835 1.58025 0.790126 0.612945i \(-0.210015\pi\)
0.790126 + 0.612945i \(0.210015\pi\)
\(954\) 0 0
\(955\) −4.18710 −0.135491
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −7.91288 −0.255520
\(960\) 0 0
\(961\) −27.6606 −0.892278
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 16.3115 0.525084
\(966\) 0 0
\(967\) 30.4539 0.979332 0.489666 0.871910i \(-0.337119\pi\)
0.489666 + 0.871910i \(0.337119\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0.747727 0.0239957 0.0119979 0.999928i \(-0.496181\pi\)
0.0119979 + 0.999928i \(0.496181\pi\)
\(972\) 0 0
\(973\) 1.66970 0.0535280
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 18.9572 0.606495 0.303247 0.952912i \(-0.401929\pi\)
0.303247 + 0.952912i \(0.401929\pi\)
\(978\) 0 0
\(979\) 49.4111 1.57919
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −57.4955 −1.83382 −0.916910 0.399094i \(-0.869325\pi\)
−0.916910 + 0.399094i \(0.869325\pi\)
\(984\) 0 0
\(985\) 52.8258 1.68317
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 12.4104 0.394628
\(990\) 0 0
\(991\) −12.9427 −0.411139 −0.205569 0.978643i \(-0.565905\pi\)
−0.205569 + 0.978643i \(0.565905\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 9.66970 0.306550
\(996\) 0 0
\(997\) 10.2523 0.324693 0.162346 0.986734i \(-0.448094\pi\)
0.162346 + 0.986734i \(0.448094\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2592.2.a.v.1.4 yes 4
3.2 odd 2 2592.2.a.w.1.2 yes 4
4.3 odd 2 2592.2.a.w.1.3 yes 4
8.3 odd 2 5184.2.a.cd.1.1 4
8.5 even 2 5184.2.a.ce.1.2 4
9.2 odd 6 2592.2.i.bg.1729.3 8
9.4 even 3 2592.2.i.bh.865.1 8
9.5 odd 6 2592.2.i.bg.865.3 8
9.7 even 3 2592.2.i.bh.1729.1 8
12.11 even 2 inner 2592.2.a.v.1.1 4
24.5 odd 2 5184.2.a.cd.1.4 4
24.11 even 2 5184.2.a.ce.1.3 4
36.7 odd 6 2592.2.i.bg.1729.2 8
36.11 even 6 2592.2.i.bh.1729.4 8
36.23 even 6 2592.2.i.bh.865.4 8
36.31 odd 6 2592.2.i.bg.865.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2592.2.a.v.1.1 4 12.11 even 2 inner
2592.2.a.v.1.4 yes 4 1.1 even 1 trivial
2592.2.a.w.1.2 yes 4 3.2 odd 2
2592.2.a.w.1.3 yes 4 4.3 odd 2
2592.2.i.bg.865.2 8 36.31 odd 6
2592.2.i.bg.865.3 8 9.5 odd 6
2592.2.i.bg.1729.2 8 36.7 odd 6
2592.2.i.bg.1729.3 8 9.2 odd 6
2592.2.i.bh.865.1 8 9.4 even 3
2592.2.i.bh.865.4 8 36.23 even 6
2592.2.i.bh.1729.1 8 9.7 even 3
2592.2.i.bh.1729.4 8 36.11 even 6
5184.2.a.cd.1.1 4 8.3 odd 2
5184.2.a.cd.1.4 4 24.5 odd 2
5184.2.a.ce.1.2 4 8.5 even 2
5184.2.a.ce.1.3 4 24.11 even 2