Properties

Label 245.2.b.c.99.1
Level $245$
Weight $2$
Character 245.99
Analytic conductor $1.956$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [245,2,Mod(99,245)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(245, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("245.99"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 245 = 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 245.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,2,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.95633484952\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 35)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 99.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 245.99
Dual form 245.2.b.c.99.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} -1.00000i q^{3} +1.00000 q^{4} +(1.00000 + 2.00000i) q^{5} -1.00000 q^{6} -3.00000i q^{8} +2.00000 q^{9} +(2.00000 - 1.00000i) q^{10} -1.00000i q^{12} +2.00000i q^{13} +(2.00000 - 1.00000i) q^{15} -1.00000 q^{16} -2.00000i q^{17} -2.00000i q^{18} -6.00000 q^{19} +(1.00000 + 2.00000i) q^{20} -3.00000i q^{23} -3.00000 q^{24} +(-3.00000 + 4.00000i) q^{25} +2.00000 q^{26} -5.00000i q^{27} -7.00000 q^{29} +(-1.00000 - 2.00000i) q^{30} +2.00000 q^{31} -5.00000i q^{32} -2.00000 q^{34} +2.00000 q^{36} +8.00000i q^{37} +6.00000i q^{38} +2.00000 q^{39} +(6.00000 - 3.00000i) q^{40} +5.00000 q^{41} +7.00000i q^{43} +(2.00000 + 4.00000i) q^{45} -3.00000 q^{46} +1.00000i q^{48} +(4.00000 + 3.00000i) q^{50} -2.00000 q^{51} +2.00000i q^{52} +6.00000i q^{53} -5.00000 q^{54} +6.00000i q^{57} +7.00000i q^{58} -10.0000 q^{59} +(2.00000 - 1.00000i) q^{60} +7.00000 q^{61} -2.00000i q^{62} -7.00000 q^{64} +(-4.00000 + 2.00000i) q^{65} +5.00000i q^{67} -2.00000i q^{68} -3.00000 q^{69} -2.00000 q^{71} -6.00000i q^{72} -6.00000i q^{73} +8.00000 q^{74} +(4.00000 + 3.00000i) q^{75} -6.00000 q^{76} -2.00000i q^{78} +2.00000 q^{79} +(-1.00000 - 2.00000i) q^{80} +1.00000 q^{81} -5.00000i q^{82} -11.0000i q^{83} +(4.00000 - 2.00000i) q^{85} +7.00000 q^{86} +7.00000i q^{87} -9.00000 q^{89} +(4.00000 - 2.00000i) q^{90} -3.00000i q^{92} -2.00000i q^{93} +(-6.00000 - 12.0000i) q^{95} -5.00000 q^{96} +16.0000i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{4} + 2 q^{5} - 2 q^{6} + 4 q^{9} + 4 q^{10} + 4 q^{15} - 2 q^{16} - 12 q^{19} + 2 q^{20} - 6 q^{24} - 6 q^{25} + 4 q^{26} - 14 q^{29} - 2 q^{30} + 4 q^{31} - 4 q^{34} + 4 q^{36} + 4 q^{39} + 12 q^{40}+ \cdots - 10 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/245\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i −0.935414 0.353553i \(-0.884973\pi\)
0.935414 0.353553i \(-0.115027\pi\)
\(3\) 1.00000i 0.577350i −0.957427 0.288675i \(-0.906785\pi\)
0.957427 0.288675i \(-0.0932147\pi\)
\(4\) 1.00000 0.500000
\(5\) 1.00000 + 2.00000i 0.447214 + 0.894427i
\(6\) −1.00000 −0.408248
\(7\) 0 0
\(8\) 3.00000i 1.06066i
\(9\) 2.00000 0.666667
\(10\) 2.00000 1.00000i 0.632456 0.316228i
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 1.00000i 0.288675i
\(13\) 2.00000i 0.554700i 0.960769 + 0.277350i \(0.0894562\pi\)
−0.960769 + 0.277350i \(0.910544\pi\)
\(14\) 0 0
\(15\) 2.00000 1.00000i 0.516398 0.258199i
\(16\) −1.00000 −0.250000
\(17\) 2.00000i 0.485071i −0.970143 0.242536i \(-0.922021\pi\)
0.970143 0.242536i \(-0.0779791\pi\)
\(18\) 2.00000i 0.471405i
\(19\) −6.00000 −1.37649 −0.688247 0.725476i \(-0.741620\pi\)
−0.688247 + 0.725476i \(0.741620\pi\)
\(20\) 1.00000 + 2.00000i 0.223607 + 0.447214i
\(21\) 0 0
\(22\) 0 0
\(23\) 3.00000i 0.625543i −0.949828 0.312772i \(-0.898743\pi\)
0.949828 0.312772i \(-0.101257\pi\)
\(24\) −3.00000 −0.612372
\(25\) −3.00000 + 4.00000i −0.600000 + 0.800000i
\(26\) 2.00000 0.392232
\(27\) 5.00000i 0.962250i
\(28\) 0 0
\(29\) −7.00000 −1.29987 −0.649934 0.759991i \(-0.725203\pi\)
−0.649934 + 0.759991i \(0.725203\pi\)
\(30\) −1.00000 2.00000i −0.182574 0.365148i
\(31\) 2.00000 0.359211 0.179605 0.983739i \(-0.442518\pi\)
0.179605 + 0.983739i \(0.442518\pi\)
\(32\) 5.00000i 0.883883i
\(33\) 0 0
\(34\) −2.00000 −0.342997
\(35\) 0 0
\(36\) 2.00000 0.333333
\(37\) 8.00000i 1.31519i 0.753371 + 0.657596i \(0.228427\pi\)
−0.753371 + 0.657596i \(0.771573\pi\)
\(38\) 6.00000i 0.973329i
\(39\) 2.00000 0.320256
\(40\) 6.00000 3.00000i 0.948683 0.474342i
\(41\) 5.00000 0.780869 0.390434 0.920631i \(-0.372325\pi\)
0.390434 + 0.920631i \(0.372325\pi\)
\(42\) 0 0
\(43\) 7.00000i 1.06749i 0.845645 + 0.533745i \(0.179216\pi\)
−0.845645 + 0.533745i \(0.820784\pi\)
\(44\) 0 0
\(45\) 2.00000 + 4.00000i 0.298142 + 0.596285i
\(46\) −3.00000 −0.442326
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) 1.00000i 0.144338i
\(49\) 0 0
\(50\) 4.00000 + 3.00000i 0.565685 + 0.424264i
\(51\) −2.00000 −0.280056
\(52\) 2.00000i 0.277350i
\(53\) 6.00000i 0.824163i 0.911147 + 0.412082i \(0.135198\pi\)
−0.911147 + 0.412082i \(0.864802\pi\)
\(54\) −5.00000 −0.680414
\(55\) 0 0
\(56\) 0 0
\(57\) 6.00000i 0.794719i
\(58\) 7.00000i 0.919145i
\(59\) −10.0000 −1.30189 −0.650945 0.759125i \(-0.725627\pi\)
−0.650945 + 0.759125i \(0.725627\pi\)
\(60\) 2.00000 1.00000i 0.258199 0.129099i
\(61\) 7.00000 0.896258 0.448129 0.893969i \(-0.352090\pi\)
0.448129 + 0.893969i \(0.352090\pi\)
\(62\) 2.00000i 0.254000i
\(63\) 0 0
\(64\) −7.00000 −0.875000
\(65\) −4.00000 + 2.00000i −0.496139 + 0.248069i
\(66\) 0 0
\(67\) 5.00000i 0.610847i 0.952217 + 0.305424i \(0.0987981\pi\)
−0.952217 + 0.305424i \(0.901202\pi\)
\(68\) 2.00000i 0.242536i
\(69\) −3.00000 −0.361158
\(70\) 0 0
\(71\) −2.00000 −0.237356 −0.118678 0.992933i \(-0.537866\pi\)
−0.118678 + 0.992933i \(0.537866\pi\)
\(72\) 6.00000i 0.707107i
\(73\) 6.00000i 0.702247i −0.936329 0.351123i \(-0.885800\pi\)
0.936329 0.351123i \(-0.114200\pi\)
\(74\) 8.00000 0.929981
\(75\) 4.00000 + 3.00000i 0.461880 + 0.346410i
\(76\) −6.00000 −0.688247
\(77\) 0 0
\(78\) 2.00000i 0.226455i
\(79\) 2.00000 0.225018 0.112509 0.993651i \(-0.464111\pi\)
0.112509 + 0.993651i \(0.464111\pi\)
\(80\) −1.00000 2.00000i −0.111803 0.223607i
\(81\) 1.00000 0.111111
\(82\) 5.00000i 0.552158i
\(83\) 11.0000i 1.20741i −0.797209 0.603703i \(-0.793691\pi\)
0.797209 0.603703i \(-0.206309\pi\)
\(84\) 0 0
\(85\) 4.00000 2.00000i 0.433861 0.216930i
\(86\) 7.00000 0.754829
\(87\) 7.00000i 0.750479i
\(88\) 0 0
\(89\) −9.00000 −0.953998 −0.476999 0.878904i \(-0.658275\pi\)
−0.476999 + 0.878904i \(0.658275\pi\)
\(90\) 4.00000 2.00000i 0.421637 0.210819i
\(91\) 0 0
\(92\) 3.00000i 0.312772i
\(93\) 2.00000i 0.207390i
\(94\) 0 0
\(95\) −6.00000 12.0000i −0.615587 1.23117i
\(96\) −5.00000 −0.510310
\(97\) 16.0000i 1.62455i 0.583272 + 0.812277i \(0.301772\pi\)
−0.583272 + 0.812277i \(0.698228\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −3.00000 + 4.00000i −0.300000 + 0.400000i
\(101\) 9.00000 0.895533 0.447767 0.894150i \(-0.352219\pi\)
0.447767 + 0.894150i \(0.352219\pi\)
\(102\) 2.00000i 0.198030i
\(103\) 7.00000i 0.689730i 0.938652 + 0.344865i \(0.112075\pi\)
−0.938652 + 0.344865i \(0.887925\pi\)
\(104\) 6.00000 0.588348
\(105\) 0 0
\(106\) 6.00000 0.582772
\(107\) 11.0000i 1.06341i −0.846930 0.531705i \(-0.821551\pi\)
0.846930 0.531705i \(-0.178449\pi\)
\(108\) 5.00000i 0.481125i
\(109\) −5.00000 −0.478913 −0.239457 0.970907i \(-0.576969\pi\)
−0.239457 + 0.970907i \(0.576969\pi\)
\(110\) 0 0
\(111\) 8.00000 0.759326
\(112\) 0 0
\(113\) 6.00000i 0.564433i −0.959351 0.282216i \(-0.908930\pi\)
0.959351 0.282216i \(-0.0910696\pi\)
\(114\) 6.00000 0.561951
\(115\) 6.00000 3.00000i 0.559503 0.279751i
\(116\) −7.00000 −0.649934
\(117\) 4.00000i 0.369800i
\(118\) 10.0000i 0.920575i
\(119\) 0 0
\(120\) −3.00000 6.00000i −0.273861 0.547723i
\(121\) −11.0000 −1.00000
\(122\) 7.00000i 0.633750i
\(123\) 5.00000i 0.450835i
\(124\) 2.00000 0.179605
\(125\) −11.0000 2.00000i −0.983870 0.178885i
\(126\) 0 0
\(127\) 16.0000i 1.41977i −0.704317 0.709885i \(-0.748747\pi\)
0.704317 0.709885i \(-0.251253\pi\)
\(128\) 3.00000i 0.265165i
\(129\) 7.00000 0.616316
\(130\) 2.00000 + 4.00000i 0.175412 + 0.350823i
\(131\) 4.00000 0.349482 0.174741 0.984614i \(-0.444091\pi\)
0.174741 + 0.984614i \(0.444091\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 5.00000 0.431934
\(135\) 10.0000 5.00000i 0.860663 0.430331i
\(136\) −6.00000 −0.514496
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 3.00000i 0.255377i
\(139\) −8.00000 −0.678551 −0.339276 0.940687i \(-0.610182\pi\)
−0.339276 + 0.940687i \(0.610182\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 2.00000i 0.167836i
\(143\) 0 0
\(144\) −2.00000 −0.166667
\(145\) −7.00000 14.0000i −0.581318 1.16264i
\(146\) −6.00000 −0.496564
\(147\) 0 0
\(148\) 8.00000i 0.657596i
\(149\) −1.00000 −0.0819232 −0.0409616 0.999161i \(-0.513042\pi\)
−0.0409616 + 0.999161i \(0.513042\pi\)
\(150\) 3.00000 4.00000i 0.244949 0.326599i
\(151\) 14.0000 1.13930 0.569652 0.821886i \(-0.307078\pi\)
0.569652 + 0.821886i \(0.307078\pi\)
\(152\) 18.0000i 1.45999i
\(153\) 4.00000i 0.323381i
\(154\) 0 0
\(155\) 2.00000 + 4.00000i 0.160644 + 0.321288i
\(156\) 2.00000 0.160128
\(157\) 12.0000i 0.957704i −0.877896 0.478852i \(-0.841053\pi\)
0.877896 0.478852i \(-0.158947\pi\)
\(158\) 2.00000i 0.159111i
\(159\) 6.00000 0.475831
\(160\) 10.0000 5.00000i 0.790569 0.395285i
\(161\) 0 0
\(162\) 1.00000i 0.0785674i
\(163\) 4.00000i 0.313304i −0.987654 0.156652i \(-0.949930\pi\)
0.987654 0.156652i \(-0.0500701\pi\)
\(164\) 5.00000 0.390434
\(165\) 0 0
\(166\) −11.0000 −0.853766
\(167\) 3.00000i 0.232147i 0.993241 + 0.116073i \(0.0370308\pi\)
−0.993241 + 0.116073i \(0.962969\pi\)
\(168\) 0 0
\(169\) 9.00000 0.692308
\(170\) −2.00000 4.00000i −0.153393 0.306786i
\(171\) −12.0000 −0.917663
\(172\) 7.00000i 0.533745i
\(173\) 12.0000i 0.912343i −0.889892 0.456172i \(-0.849220\pi\)
0.889892 0.456172i \(-0.150780\pi\)
\(174\) 7.00000 0.530669
\(175\) 0 0
\(176\) 0 0
\(177\) 10.0000i 0.751646i
\(178\) 9.00000i 0.674579i
\(179\) 2.00000 0.149487 0.0747435 0.997203i \(-0.476186\pi\)
0.0747435 + 0.997203i \(0.476186\pi\)
\(180\) 2.00000 + 4.00000i 0.149071 + 0.298142i
\(181\) −3.00000 −0.222988 −0.111494 0.993765i \(-0.535564\pi\)
−0.111494 + 0.993765i \(0.535564\pi\)
\(182\) 0 0
\(183\) 7.00000i 0.517455i
\(184\) −9.00000 −0.663489
\(185\) −16.0000 + 8.00000i −1.17634 + 0.588172i
\(186\) −2.00000 −0.146647
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) −12.0000 + 6.00000i −0.870572 + 0.435286i
\(191\) 12.0000 0.868290 0.434145 0.900843i \(-0.357051\pi\)
0.434145 + 0.900843i \(0.357051\pi\)
\(192\) 7.00000i 0.505181i
\(193\) 4.00000i 0.287926i −0.989583 0.143963i \(-0.954015\pi\)
0.989583 0.143963i \(-0.0459847\pi\)
\(194\) 16.0000 1.14873
\(195\) 2.00000 + 4.00000i 0.143223 + 0.286446i
\(196\) 0 0
\(197\) 8.00000i 0.569976i 0.958531 + 0.284988i \(0.0919897\pi\)
−0.958531 + 0.284988i \(0.908010\pi\)
\(198\) 0 0
\(199\) 4.00000 0.283552 0.141776 0.989899i \(-0.454719\pi\)
0.141776 + 0.989899i \(0.454719\pi\)
\(200\) 12.0000 + 9.00000i 0.848528 + 0.636396i
\(201\) 5.00000 0.352673
\(202\) 9.00000i 0.633238i
\(203\) 0 0
\(204\) −2.00000 −0.140028
\(205\) 5.00000 + 10.0000i 0.349215 + 0.698430i
\(206\) 7.00000 0.487713
\(207\) 6.00000i 0.417029i
\(208\) 2.00000i 0.138675i
\(209\) 0 0
\(210\) 0 0
\(211\) −10.0000 −0.688428 −0.344214 0.938891i \(-0.611855\pi\)
−0.344214 + 0.938891i \(0.611855\pi\)
\(212\) 6.00000i 0.412082i
\(213\) 2.00000i 0.137038i
\(214\) −11.0000 −0.751945
\(215\) −14.0000 + 7.00000i −0.954792 + 0.477396i
\(216\) −15.0000 −1.02062
\(217\) 0 0
\(218\) 5.00000i 0.338643i
\(219\) −6.00000 −0.405442
\(220\) 0 0
\(221\) 4.00000 0.269069
\(222\) 8.00000i 0.536925i
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) 0 0
\(225\) −6.00000 + 8.00000i −0.400000 + 0.533333i
\(226\) −6.00000 −0.399114
\(227\) 20.0000i 1.32745i 0.747978 + 0.663723i \(0.231025\pi\)
−0.747978 + 0.663723i \(0.768975\pi\)
\(228\) 6.00000i 0.397360i
\(229\) 22.0000 1.45380 0.726900 0.686743i \(-0.240960\pi\)
0.726900 + 0.686743i \(0.240960\pi\)
\(230\) −3.00000 6.00000i −0.197814 0.395628i
\(231\) 0 0
\(232\) 21.0000i 1.37872i
\(233\) 14.0000i 0.917170i 0.888650 + 0.458585i \(0.151644\pi\)
−0.888650 + 0.458585i \(0.848356\pi\)
\(234\) 4.00000 0.261488
\(235\) 0 0
\(236\) −10.0000 −0.650945
\(237\) 2.00000i 0.129914i
\(238\) 0 0
\(239\) 18.0000 1.16432 0.582162 0.813073i \(-0.302207\pi\)
0.582162 + 0.813073i \(0.302207\pi\)
\(240\) −2.00000 + 1.00000i −0.129099 + 0.0645497i
\(241\) −14.0000 −0.901819 −0.450910 0.892570i \(-0.648900\pi\)
−0.450910 + 0.892570i \(0.648900\pi\)
\(242\) 11.0000i 0.707107i
\(243\) 16.0000i 1.02640i
\(244\) 7.00000 0.448129
\(245\) 0 0
\(246\) −5.00000 −0.318788
\(247\) 12.0000i 0.763542i
\(248\) 6.00000i 0.381000i
\(249\) −11.0000 −0.697097
\(250\) −2.00000 + 11.0000i −0.126491 + 0.695701i
\(251\) 30.0000 1.89358 0.946792 0.321847i \(-0.104304\pi\)
0.946792 + 0.321847i \(0.104304\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −16.0000 −1.00393
\(255\) −2.00000 4.00000i −0.125245 0.250490i
\(256\) −17.0000 −1.06250
\(257\) 20.0000i 1.24757i −0.781598 0.623783i \(-0.785595\pi\)
0.781598 0.623783i \(-0.214405\pi\)
\(258\) 7.00000i 0.435801i
\(259\) 0 0
\(260\) −4.00000 + 2.00000i −0.248069 + 0.124035i
\(261\) −14.0000 −0.866578
\(262\) 4.00000i 0.247121i
\(263\) 9.00000i 0.554964i −0.960731 0.277482i \(-0.910500\pi\)
0.960731 0.277482i \(-0.0894999\pi\)
\(264\) 0 0
\(265\) −12.0000 + 6.00000i −0.737154 + 0.368577i
\(266\) 0 0
\(267\) 9.00000i 0.550791i
\(268\) 5.00000i 0.305424i
\(269\) 11.0000 0.670682 0.335341 0.942097i \(-0.391148\pi\)
0.335341 + 0.942097i \(0.391148\pi\)
\(270\) −5.00000 10.0000i −0.304290 0.608581i
\(271\) −2.00000 −0.121491 −0.0607457 0.998153i \(-0.519348\pi\)
−0.0607457 + 0.998153i \(0.519348\pi\)
\(272\) 2.00000i 0.121268i
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) −3.00000 −0.180579
\(277\) 10.0000i 0.600842i −0.953807 0.300421i \(-0.902873\pi\)
0.953807 0.300421i \(-0.0971271\pi\)
\(278\) 8.00000i 0.479808i
\(279\) 4.00000 0.239474
\(280\) 0 0
\(281\) −14.0000 −0.835170 −0.417585 0.908638i \(-0.637123\pi\)
−0.417585 + 0.908638i \(0.637123\pi\)
\(282\) 0 0
\(283\) 16.0000i 0.951101i 0.879688 + 0.475551i \(0.157751\pi\)
−0.879688 + 0.475551i \(0.842249\pi\)
\(284\) −2.00000 −0.118678
\(285\) −12.0000 + 6.00000i −0.710819 + 0.355409i
\(286\) 0 0
\(287\) 0 0
\(288\) 10.0000i 0.589256i
\(289\) 13.0000 0.764706
\(290\) −14.0000 + 7.00000i −0.822108 + 0.411054i
\(291\) 16.0000 0.937937
\(292\) 6.00000i 0.351123i
\(293\) 24.0000i 1.40209i 0.713115 + 0.701047i \(0.247284\pi\)
−0.713115 + 0.701047i \(0.752716\pi\)
\(294\) 0 0
\(295\) −10.0000 20.0000i −0.582223 1.16445i
\(296\) 24.0000 1.39497
\(297\) 0 0
\(298\) 1.00000i 0.0579284i
\(299\) 6.00000 0.346989
\(300\) 4.00000 + 3.00000i 0.230940 + 0.173205i
\(301\) 0 0
\(302\) 14.0000i 0.805609i
\(303\) 9.00000i 0.517036i
\(304\) 6.00000 0.344124
\(305\) 7.00000 + 14.0000i 0.400819 + 0.801638i
\(306\) −4.00000 −0.228665
\(307\) 23.0000i 1.31268i −0.754466 0.656340i \(-0.772104\pi\)
0.754466 0.656340i \(-0.227896\pi\)
\(308\) 0 0
\(309\) 7.00000 0.398216
\(310\) 4.00000 2.00000i 0.227185 0.113592i
\(311\) 30.0000 1.70114 0.850572 0.525859i \(-0.176256\pi\)
0.850572 + 0.525859i \(0.176256\pi\)
\(312\) 6.00000i 0.339683i
\(313\) 24.0000i 1.35656i 0.734803 + 0.678280i \(0.237274\pi\)
−0.734803 + 0.678280i \(0.762726\pi\)
\(314\) −12.0000 −0.677199
\(315\) 0 0
\(316\) 2.00000 0.112509
\(317\) 6.00000i 0.336994i 0.985702 + 0.168497i \(0.0538913\pi\)
−0.985702 + 0.168497i \(0.946109\pi\)
\(318\) 6.00000i 0.336463i
\(319\) 0 0
\(320\) −7.00000 14.0000i −0.391312 0.782624i
\(321\) −11.0000 −0.613960
\(322\) 0 0
\(323\) 12.0000i 0.667698i
\(324\) 1.00000 0.0555556
\(325\) −8.00000 6.00000i −0.443760 0.332820i
\(326\) −4.00000 −0.221540
\(327\) 5.00000i 0.276501i
\(328\) 15.0000i 0.828236i
\(329\) 0 0
\(330\) 0 0
\(331\) 6.00000 0.329790 0.164895 0.986311i \(-0.447272\pi\)
0.164895 + 0.986311i \(0.447272\pi\)
\(332\) 11.0000i 0.603703i
\(333\) 16.0000i 0.876795i
\(334\) 3.00000 0.164153
\(335\) −10.0000 + 5.00000i −0.546358 + 0.273179i
\(336\) 0 0
\(337\) 18.0000i 0.980522i −0.871576 0.490261i \(-0.836901\pi\)
0.871576 0.490261i \(-0.163099\pi\)
\(338\) 9.00000i 0.489535i
\(339\) −6.00000 −0.325875
\(340\) 4.00000 2.00000i 0.216930 0.108465i
\(341\) 0 0
\(342\) 12.0000i 0.648886i
\(343\) 0 0
\(344\) 21.0000 1.13224
\(345\) −3.00000 6.00000i −0.161515 0.323029i
\(346\) −12.0000 −0.645124
\(347\) 15.0000i 0.805242i −0.915367 0.402621i \(-0.868099\pi\)
0.915367 0.402621i \(-0.131901\pi\)
\(348\) 7.00000i 0.375239i
\(349\) 17.0000 0.909989 0.454995 0.890494i \(-0.349641\pi\)
0.454995 + 0.890494i \(0.349641\pi\)
\(350\) 0 0
\(351\) 10.0000 0.533761
\(352\) 0 0
\(353\) 26.0000i 1.38384i −0.721974 0.691920i \(-0.756765\pi\)
0.721974 0.691920i \(-0.243235\pi\)
\(354\) 10.0000 0.531494
\(355\) −2.00000 4.00000i −0.106149 0.212298i
\(356\) −9.00000 −0.476999
\(357\) 0 0
\(358\) 2.00000i 0.105703i
\(359\) −10.0000 −0.527780 −0.263890 0.964553i \(-0.585006\pi\)
−0.263890 + 0.964553i \(0.585006\pi\)
\(360\) 12.0000 6.00000i 0.632456 0.316228i
\(361\) 17.0000 0.894737
\(362\) 3.00000i 0.157676i
\(363\) 11.0000i 0.577350i
\(364\) 0 0
\(365\) 12.0000 6.00000i 0.628109 0.314054i
\(366\) −7.00000 −0.365896
\(367\) 27.0000i 1.40939i −0.709511 0.704694i \(-0.751084\pi\)
0.709511 0.704694i \(-0.248916\pi\)
\(368\) 3.00000i 0.156386i
\(369\) 10.0000 0.520579
\(370\) 8.00000 + 16.0000i 0.415900 + 0.831800i
\(371\) 0 0
\(372\) 2.00000i 0.103695i
\(373\) 24.0000i 1.24267i −0.783544 0.621336i \(-0.786590\pi\)
0.783544 0.621336i \(-0.213410\pi\)
\(374\) 0 0
\(375\) −2.00000 + 11.0000i −0.103280 + 0.568038i
\(376\) 0 0
\(377\) 14.0000i 0.721037i
\(378\) 0 0
\(379\) 10.0000 0.513665 0.256833 0.966456i \(-0.417321\pi\)
0.256833 + 0.966456i \(0.417321\pi\)
\(380\) −6.00000 12.0000i −0.307794 0.615587i
\(381\) −16.0000 −0.819705
\(382\) 12.0000i 0.613973i
\(383\) 5.00000i 0.255488i 0.991807 + 0.127744i \(0.0407736\pi\)
−0.991807 + 0.127744i \(0.959226\pi\)
\(384\) −3.00000 −0.153093
\(385\) 0 0
\(386\) −4.00000 −0.203595
\(387\) 14.0000i 0.711660i
\(388\) 16.0000i 0.812277i
\(389\) −14.0000 −0.709828 −0.354914 0.934899i \(-0.615490\pi\)
−0.354914 + 0.934899i \(0.615490\pi\)
\(390\) 4.00000 2.00000i 0.202548 0.101274i
\(391\) −6.00000 −0.303433
\(392\) 0 0
\(393\) 4.00000i 0.201773i
\(394\) 8.00000 0.403034
\(395\) 2.00000 + 4.00000i 0.100631 + 0.201262i
\(396\) 0 0
\(397\) 16.0000i 0.803017i 0.915855 + 0.401508i \(0.131514\pi\)
−0.915855 + 0.401508i \(0.868486\pi\)
\(398\) 4.00000i 0.200502i
\(399\) 0 0
\(400\) 3.00000 4.00000i 0.150000 0.200000i
\(401\) 3.00000 0.149813 0.0749064 0.997191i \(-0.476134\pi\)
0.0749064 + 0.997191i \(0.476134\pi\)
\(402\) 5.00000i 0.249377i
\(403\) 4.00000i 0.199254i
\(404\) 9.00000 0.447767
\(405\) 1.00000 + 2.00000i 0.0496904 + 0.0993808i
\(406\) 0 0
\(407\) 0 0
\(408\) 6.00000i 0.297044i
\(409\) 25.0000 1.23617 0.618085 0.786111i \(-0.287909\pi\)
0.618085 + 0.786111i \(0.287909\pi\)
\(410\) 10.0000 5.00000i 0.493865 0.246932i
\(411\) 0 0
\(412\) 7.00000i 0.344865i
\(413\) 0 0
\(414\) −6.00000 −0.294884
\(415\) 22.0000 11.0000i 1.07994 0.539969i
\(416\) 10.0000 0.490290
\(417\) 8.00000i 0.391762i
\(418\) 0 0
\(419\) −24.0000 −1.17248 −0.586238 0.810139i \(-0.699392\pi\)
−0.586238 + 0.810139i \(0.699392\pi\)
\(420\) 0 0
\(421\) 15.0000 0.731055 0.365528 0.930800i \(-0.380889\pi\)
0.365528 + 0.930800i \(0.380889\pi\)
\(422\) 10.0000i 0.486792i
\(423\) 0 0
\(424\) 18.0000 0.874157
\(425\) 8.00000 + 6.00000i 0.388057 + 0.291043i
\(426\) 2.00000 0.0969003
\(427\) 0 0
\(428\) 11.0000i 0.531705i
\(429\) 0 0
\(430\) 7.00000 + 14.0000i 0.337570 + 0.675140i
\(431\) −32.0000 −1.54139 −0.770693 0.637207i \(-0.780090\pi\)
−0.770693 + 0.637207i \(0.780090\pi\)
\(432\) 5.00000i 0.240563i
\(433\) 2.00000i 0.0961139i −0.998845 0.0480569i \(-0.984697\pi\)
0.998845 0.0480569i \(-0.0153029\pi\)
\(434\) 0 0
\(435\) −14.0000 + 7.00000i −0.671249 + 0.335624i
\(436\) −5.00000 −0.239457
\(437\) 18.0000i 0.861057i
\(438\) 6.00000i 0.286691i
\(439\) −24.0000 −1.14546 −0.572729 0.819745i \(-0.694115\pi\)
−0.572729 + 0.819745i \(0.694115\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 4.00000i 0.190261i
\(443\) 31.0000i 1.47285i 0.676517 + 0.736427i \(0.263489\pi\)
−0.676517 + 0.736427i \(0.736511\pi\)
\(444\) 8.00000 0.379663
\(445\) −9.00000 18.0000i −0.426641 0.853282i
\(446\) 0 0
\(447\) 1.00000i 0.0472984i
\(448\) 0 0
\(449\) −31.0000 −1.46298 −0.731490 0.681852i \(-0.761175\pi\)
−0.731490 + 0.681852i \(0.761175\pi\)
\(450\) 8.00000 + 6.00000i 0.377124 + 0.282843i
\(451\) 0 0
\(452\) 6.00000i 0.282216i
\(453\) 14.0000i 0.657777i
\(454\) 20.0000 0.938647
\(455\) 0 0
\(456\) 18.0000 0.842927
\(457\) 32.0000i 1.49690i −0.663193 0.748448i \(-0.730799\pi\)
0.663193 0.748448i \(-0.269201\pi\)
\(458\) 22.0000i 1.02799i
\(459\) −10.0000 −0.466760
\(460\) 6.00000 3.00000i 0.279751 0.139876i
\(461\) 18.0000 0.838344 0.419172 0.907907i \(-0.362320\pi\)
0.419172 + 0.907907i \(0.362320\pi\)
\(462\) 0 0
\(463\) 3.00000i 0.139422i 0.997567 + 0.0697109i \(0.0222077\pi\)
−0.997567 + 0.0697109i \(0.977792\pi\)
\(464\) 7.00000 0.324967
\(465\) 4.00000 2.00000i 0.185496 0.0927478i
\(466\) 14.0000 0.648537
\(467\) 3.00000i 0.138823i −0.997588 0.0694117i \(-0.977888\pi\)
0.997588 0.0694117i \(-0.0221122\pi\)
\(468\) 4.00000i 0.184900i
\(469\) 0 0
\(470\) 0 0
\(471\) −12.0000 −0.552931
\(472\) 30.0000i 1.38086i
\(473\) 0 0
\(474\) −2.00000 −0.0918630
\(475\) 18.0000 24.0000i 0.825897 1.10120i
\(476\) 0 0
\(477\) 12.0000i 0.549442i
\(478\) 18.0000i 0.823301i
\(479\) −42.0000 −1.91903 −0.959514 0.281659i \(-0.909115\pi\)
−0.959514 + 0.281659i \(0.909115\pi\)
\(480\) −5.00000 10.0000i −0.228218 0.456435i
\(481\) −16.0000 −0.729537
\(482\) 14.0000i 0.637683i
\(483\) 0 0
\(484\) −11.0000 −0.500000
\(485\) −32.0000 + 16.0000i −1.45305 + 0.726523i
\(486\) −16.0000 −0.725775
\(487\) 12.0000i 0.543772i 0.962329 + 0.271886i \(0.0876473\pi\)
−0.962329 + 0.271886i \(0.912353\pi\)
\(488\) 21.0000i 0.950625i
\(489\) −4.00000 −0.180886
\(490\) 0 0
\(491\) −26.0000 −1.17336 −0.586682 0.809818i \(-0.699566\pi\)
−0.586682 + 0.809818i \(0.699566\pi\)
\(492\) 5.00000i 0.225417i
\(493\) 14.0000i 0.630528i
\(494\) −12.0000 −0.539906
\(495\) 0 0
\(496\) −2.00000 −0.0898027
\(497\) 0 0
\(498\) 11.0000i 0.492922i
\(499\) −16.0000 −0.716258 −0.358129 0.933672i \(-0.616585\pi\)
−0.358129 + 0.933672i \(0.616585\pi\)
\(500\) −11.0000 2.00000i −0.491935 0.0894427i
\(501\) 3.00000 0.134030
\(502\) 30.0000i 1.33897i
\(503\) 15.0000i 0.668817i −0.942428 0.334408i \(-0.891463\pi\)
0.942428 0.334408i \(-0.108537\pi\)
\(504\) 0 0
\(505\) 9.00000 + 18.0000i 0.400495 + 0.800989i
\(506\) 0 0
\(507\) 9.00000i 0.399704i
\(508\) 16.0000i 0.709885i
\(509\) −27.0000 −1.19675 −0.598377 0.801215i \(-0.704187\pi\)
−0.598377 + 0.801215i \(0.704187\pi\)
\(510\) −4.00000 + 2.00000i −0.177123 + 0.0885615i
\(511\) 0 0
\(512\) 11.0000i 0.486136i
\(513\) 30.0000i 1.32453i
\(514\) −20.0000 −0.882162
\(515\) −14.0000 + 7.00000i −0.616914 + 0.308457i
\(516\) 7.00000 0.308158
\(517\) 0 0
\(518\) 0 0
\(519\) −12.0000 −0.526742
\(520\) 6.00000 + 12.0000i 0.263117 + 0.526235i
\(521\) 14.0000 0.613351 0.306676 0.951814i \(-0.400783\pi\)
0.306676 + 0.951814i \(0.400783\pi\)
\(522\) 14.0000i 0.612763i
\(523\) 4.00000i 0.174908i 0.996169 + 0.0874539i \(0.0278730\pi\)
−0.996169 + 0.0874539i \(0.972127\pi\)
\(524\) 4.00000 0.174741
\(525\) 0 0
\(526\) −9.00000 −0.392419
\(527\) 4.00000i 0.174243i
\(528\) 0 0
\(529\) 14.0000 0.608696
\(530\) 6.00000 + 12.0000i 0.260623 + 0.521247i
\(531\) −20.0000 −0.867926
\(532\) 0 0
\(533\) 10.0000i 0.433148i
\(534\) 9.00000 0.389468
\(535\) 22.0000 11.0000i 0.951143 0.475571i
\(536\) 15.0000 0.647901
\(537\) 2.00000i 0.0863064i
\(538\) 11.0000i 0.474244i
\(539\) 0 0
\(540\) 10.0000 5.00000i 0.430331 0.215166i
\(541\) −3.00000 −0.128980 −0.0644900 0.997918i \(-0.520542\pi\)
−0.0644900 + 0.997918i \(0.520542\pi\)
\(542\) 2.00000i 0.0859074i
\(543\) 3.00000i 0.128742i
\(544\) −10.0000 −0.428746
\(545\) −5.00000 10.0000i −0.214176 0.428353i
\(546\) 0 0
\(547\) 17.0000i 0.726868i 0.931620 + 0.363434i \(0.118396\pi\)
−0.931620 + 0.363434i \(0.881604\pi\)
\(548\) 0 0
\(549\) 14.0000 0.597505
\(550\) 0 0
\(551\) 42.0000 1.78926
\(552\) 9.00000i 0.383065i
\(553\) 0 0
\(554\) −10.0000 −0.424859
\(555\) 8.00000 + 16.0000i 0.339581 + 0.679162i
\(556\) −8.00000 −0.339276
\(557\) 44.0000i 1.86434i 0.362021 + 0.932170i \(0.382087\pi\)
−0.362021 + 0.932170i \(0.617913\pi\)
\(558\) 4.00000i 0.169334i
\(559\) −14.0000 −0.592137
\(560\) 0 0
\(561\) 0 0
\(562\) 14.0000i 0.590554i
\(563\) 33.0000i 1.39078i 0.718631 + 0.695392i \(0.244769\pi\)
−0.718631 + 0.695392i \(0.755231\pi\)
\(564\) 0 0
\(565\) 12.0000 6.00000i 0.504844 0.252422i
\(566\) 16.0000 0.672530
\(567\) 0 0
\(568\) 6.00000i 0.251754i
\(569\) 18.0000 0.754599 0.377300 0.926091i \(-0.376853\pi\)
0.377300 + 0.926091i \(0.376853\pi\)
\(570\) 6.00000 + 12.0000i 0.251312 + 0.502625i
\(571\) −18.0000 −0.753277 −0.376638 0.926360i \(-0.622920\pi\)
−0.376638 + 0.926360i \(0.622920\pi\)
\(572\) 0 0
\(573\) 12.0000i 0.501307i
\(574\) 0 0
\(575\) 12.0000 + 9.00000i 0.500435 + 0.375326i
\(576\) −14.0000 −0.583333
\(577\) 32.0000i 1.33218i 0.745873 + 0.666089i \(0.232033\pi\)
−0.745873 + 0.666089i \(0.767967\pi\)
\(578\) 13.0000i 0.540729i
\(579\) −4.00000 −0.166234
\(580\) −7.00000 14.0000i −0.290659 0.581318i
\(581\) 0 0
\(582\) 16.0000i 0.663221i
\(583\) 0 0
\(584\) −18.0000 −0.744845
\(585\) −8.00000 + 4.00000i −0.330759 + 0.165380i
\(586\) 24.0000 0.991431
\(587\) 36.0000i 1.48588i 0.669359 + 0.742940i \(0.266569\pi\)
−0.669359 + 0.742940i \(0.733431\pi\)
\(588\) 0 0
\(589\) −12.0000 −0.494451
\(590\) −20.0000 + 10.0000i −0.823387 + 0.411693i
\(591\) 8.00000 0.329076
\(592\) 8.00000i 0.328798i
\(593\) 22.0000i 0.903432i 0.892162 + 0.451716i \(0.149188\pi\)
−0.892162 + 0.451716i \(0.850812\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −1.00000 −0.0409616
\(597\) 4.00000i 0.163709i
\(598\) 6.00000i 0.245358i
\(599\) 44.0000 1.79779 0.898896 0.438163i \(-0.144371\pi\)
0.898896 + 0.438163i \(0.144371\pi\)
\(600\) 9.00000 12.0000i 0.367423 0.489898i
\(601\) 10.0000 0.407909 0.203954 0.978980i \(-0.434621\pi\)
0.203954 + 0.978980i \(0.434621\pi\)
\(602\) 0 0
\(603\) 10.0000i 0.407231i
\(604\) 14.0000 0.569652
\(605\) −11.0000 22.0000i −0.447214 0.894427i
\(606\) −9.00000 −0.365600
\(607\) 33.0000i 1.33943i 0.742619 + 0.669714i \(0.233583\pi\)
−0.742619 + 0.669714i \(0.766417\pi\)
\(608\) 30.0000i 1.21666i
\(609\) 0 0
\(610\) 14.0000 7.00000i 0.566843 0.283422i
\(611\) 0 0
\(612\) 4.00000i 0.161690i
\(613\) 34.0000i 1.37325i −0.727013 0.686624i \(-0.759092\pi\)
0.727013 0.686624i \(-0.240908\pi\)
\(614\) −23.0000 −0.928204
\(615\) 10.0000 5.00000i 0.403239 0.201619i
\(616\) 0 0
\(617\) 4.00000i 0.161034i 0.996753 + 0.0805170i \(0.0256571\pi\)
−0.996753 + 0.0805170i \(0.974343\pi\)
\(618\) 7.00000i 0.281581i
\(619\) −28.0000 −1.12542 −0.562708 0.826656i \(-0.690240\pi\)
−0.562708 + 0.826656i \(0.690240\pi\)
\(620\) 2.00000 + 4.00000i 0.0803219 + 0.160644i
\(621\) −15.0000 −0.601929
\(622\) 30.0000i 1.20289i
\(623\) 0 0
\(624\) −2.00000 −0.0800641
\(625\) −7.00000 24.0000i −0.280000 0.960000i
\(626\) 24.0000 0.959233
\(627\) 0 0
\(628\) 12.0000i 0.478852i
\(629\) 16.0000 0.637962
\(630\) 0 0
\(631\) 40.0000 1.59237 0.796187 0.605050i \(-0.206847\pi\)
0.796187 + 0.605050i \(0.206847\pi\)
\(632\) 6.00000i 0.238667i
\(633\) 10.0000i 0.397464i
\(634\) 6.00000 0.238290
\(635\) 32.0000 16.0000i 1.26988 0.634941i
\(636\) 6.00000 0.237915
\(637\) 0 0
\(638\) 0 0
\(639\) −4.00000 −0.158238
\(640\) 6.00000 3.00000i 0.237171 0.118585i
\(641\) −11.0000 −0.434474 −0.217237 0.976119i \(-0.569704\pi\)
−0.217237 + 0.976119i \(0.569704\pi\)
\(642\) 11.0000i 0.434135i
\(643\) 4.00000i 0.157745i −0.996885 0.0788723i \(-0.974868\pi\)
0.996885 0.0788723i \(-0.0251319\pi\)
\(644\) 0 0
\(645\) 7.00000 + 14.0000i 0.275625 + 0.551249i
\(646\) 12.0000 0.472134
\(647\) 47.0000i 1.84776i −0.382682 0.923880i \(-0.624999\pi\)
0.382682 0.923880i \(-0.375001\pi\)
\(648\) 3.00000i 0.117851i
\(649\) 0 0
\(650\) −6.00000 + 8.00000i −0.235339 + 0.313786i
\(651\) 0 0
\(652\) 4.00000i 0.156652i
\(653\) 26.0000i 1.01746i −0.860927 0.508729i \(-0.830115\pi\)
0.860927 0.508729i \(-0.169885\pi\)
\(654\) 5.00000 0.195515
\(655\) 4.00000 + 8.00000i 0.156293 + 0.312586i
\(656\) −5.00000 −0.195217
\(657\) 12.0000i 0.468165i
\(658\) 0 0
\(659\) −6.00000 −0.233727 −0.116863 0.993148i \(-0.537284\pi\)
−0.116863 + 0.993148i \(0.537284\pi\)
\(660\) 0 0
\(661\) −9.00000 −0.350059 −0.175030 0.984563i \(-0.556002\pi\)
−0.175030 + 0.984563i \(0.556002\pi\)
\(662\) 6.00000i 0.233197i
\(663\) 4.00000i 0.155347i
\(664\) −33.0000 −1.28065
\(665\) 0 0
\(666\) 16.0000 0.619987
\(667\) 21.0000i 0.813123i
\(668\) 3.00000i 0.116073i
\(669\) 0 0
\(670\) 5.00000 + 10.0000i 0.193167 + 0.386334i
\(671\) 0 0
\(672\) 0 0
\(673\) 36.0000i 1.38770i −0.720121 0.693849i \(-0.755914\pi\)
0.720121 0.693849i \(-0.244086\pi\)
\(674\) −18.0000 −0.693334
\(675\) 20.0000 + 15.0000i 0.769800 + 0.577350i
\(676\) 9.00000 0.346154
\(677\) 14.0000i 0.538064i 0.963131 + 0.269032i \(0.0867037\pi\)
−0.963131 + 0.269032i \(0.913296\pi\)
\(678\) 6.00000i 0.230429i
\(679\) 0 0
\(680\) −6.00000 12.0000i −0.230089 0.460179i
\(681\) 20.0000 0.766402
\(682\) 0 0
\(683\) 35.0000i 1.33924i 0.742705 + 0.669619i \(0.233543\pi\)
−0.742705 + 0.669619i \(0.766457\pi\)
\(684\) −12.0000 −0.458831
\(685\) 0 0
\(686\) 0 0
\(687\) 22.0000i 0.839352i
\(688\) 7.00000i 0.266872i
\(689\) −12.0000 −0.457164
\(690\) −6.00000 + 3.00000i −0.228416 + 0.114208i
\(691\) −20.0000 −0.760836 −0.380418 0.924815i \(-0.624220\pi\)
−0.380418 + 0.924815i \(0.624220\pi\)
\(692\) 12.0000i 0.456172i
\(693\) 0 0
\(694\) −15.0000 −0.569392
\(695\) −8.00000 16.0000i −0.303457 0.606915i
\(696\) 21.0000 0.796003
\(697\) 10.0000i 0.378777i
\(698\) 17.0000i 0.643459i
\(699\) 14.0000 0.529529
\(700\) 0 0
\(701\) −1.00000 −0.0377695 −0.0188847 0.999822i \(-0.506012\pi\)
−0.0188847 + 0.999822i \(0.506012\pi\)
\(702\) 10.0000i 0.377426i
\(703\) 48.0000i 1.81035i
\(704\) 0 0
\(705\) 0 0
\(706\) −26.0000 −0.978523
\(707\) 0 0
\(708\) 10.0000i 0.375823i
\(709\) 49.0000 1.84023 0.920117 0.391644i \(-0.128094\pi\)
0.920117 + 0.391644i \(0.128094\pi\)
\(710\) −4.00000 + 2.00000i −0.150117 + 0.0750587i
\(711\) 4.00000 0.150012
\(712\) 27.0000i 1.01187i
\(713\) 6.00000i 0.224702i
\(714\) 0 0
\(715\) 0 0
\(716\) 2.00000 0.0747435
\(717\) 18.0000i 0.672222i
\(718\) 10.0000i 0.373197i
\(719\) −36.0000 −1.34257 −0.671287 0.741198i \(-0.734258\pi\)
−0.671287 + 0.741198i \(0.734258\pi\)
\(720\) −2.00000 4.00000i −0.0745356 0.149071i
\(721\) 0 0
\(722\) 17.0000i 0.632674i
\(723\) 14.0000i 0.520666i
\(724\) −3.00000 −0.111494
\(725\) 21.0000 28.0000i 0.779920 1.03989i
\(726\) 11.0000 0.408248
\(727\) 47.0000i 1.74313i 0.490277 + 0.871567i \(0.336896\pi\)
−0.490277 + 0.871567i \(0.663104\pi\)
\(728\) 0 0
\(729\) −13.0000 −0.481481
\(730\) −6.00000 12.0000i −0.222070 0.444140i
\(731\) 14.0000 0.517809
\(732\) 7.00000i 0.258727i
\(733\) 16.0000i 0.590973i −0.955347 0.295487i \(-0.904518\pi\)
0.955347 0.295487i \(-0.0954818\pi\)
\(734\) −27.0000 −0.996588
\(735\) 0 0
\(736\) −15.0000 −0.552907
\(737\) 0 0
\(738\) 10.0000i 0.368105i
\(739\) −16.0000 −0.588570 −0.294285 0.955718i \(-0.595081\pi\)
−0.294285 + 0.955718i \(0.595081\pi\)
\(740\) −16.0000 + 8.00000i −0.588172 + 0.294086i
\(741\) −12.0000 −0.440831
\(742\) 0 0
\(743\) 49.0000i 1.79764i −0.438322 0.898818i \(-0.644427\pi\)
0.438322 0.898818i \(-0.355573\pi\)
\(744\) −6.00000 −0.219971
\(745\) −1.00000 2.00000i −0.0366372 0.0732743i
\(746\) −24.0000 −0.878702
\(747\) 22.0000i 0.804938i
\(748\) 0 0
\(749\) 0 0
\(750\) 11.0000 + 2.00000i 0.401663 + 0.0730297i
\(751\) −12.0000 −0.437886 −0.218943 0.975738i \(-0.570261\pi\)
−0.218943 + 0.975738i \(0.570261\pi\)
\(752\) 0 0
\(753\) 30.0000i 1.09326i
\(754\) −14.0000 −0.509850
\(755\) 14.0000 + 28.0000i 0.509512 + 1.01902i
\(756\) 0 0
\(757\) 22.0000i 0.799604i −0.916602 0.399802i \(-0.869079\pi\)
0.916602 0.399802i \(-0.130921\pi\)
\(758\) 10.0000i 0.363216i
\(759\) 0 0
\(760\) −36.0000 + 18.0000i −1.30586 + 0.652929i
\(761\) 14.0000 0.507500 0.253750 0.967270i \(-0.418336\pi\)
0.253750 + 0.967270i \(0.418336\pi\)
\(762\) 16.0000i 0.579619i
\(763\) 0 0
\(764\) 12.0000 0.434145
\(765\) 8.00000 4.00000i 0.289241 0.144620i
\(766\) 5.00000 0.180657
\(767\) 20.0000i 0.722158i
\(768\) 17.0000i 0.613435i
\(769\) 30.0000 1.08183 0.540914 0.841078i \(-0.318079\pi\)
0.540914 + 0.841078i \(0.318079\pi\)
\(770\) 0 0
\(771\) −20.0000 −0.720282
\(772\) 4.00000i 0.143963i
\(773\) 18.0000i 0.647415i 0.946157 + 0.323708i \(0.104929\pi\)
−0.946157 + 0.323708i \(0.895071\pi\)
\(774\) 14.0000 0.503220
\(775\) −6.00000 + 8.00000i −0.215526 + 0.287368i
\(776\) 48.0000 1.72310
\(777\) 0 0
\(778\) 14.0000i 0.501924i
\(779\) −30.0000 −1.07486
\(780\) 2.00000 + 4.00000i 0.0716115 + 0.143223i
\(781\) 0 0
\(782\) 6.00000i 0.214560i
\(783\) 35.0000i 1.25080i
\(784\) 0 0
\(785\) 24.0000 12.0000i 0.856597 0.428298i
\(786\) −4.00000 −0.142675
\(787\) 17.0000i 0.605985i 0.952993 + 0.302992i \(0.0979856\pi\)
−0.952993 + 0.302992i \(0.902014\pi\)
\(788\) 8.00000i 0.284988i
\(789\) −9.00000 −0.320408
\(790\) 4.00000 2.00000i 0.142314 0.0711568i
\(791\) 0 0
\(792\) 0 0
\(793\) 14.0000i 0.497155i
\(794\) 16.0000 0.567819
\(795\) 6.00000 + 12.0000i 0.212798 + 0.425596i
\(796\) 4.00000 0.141776
\(797\) 40.0000i 1.41687i −0.705775 0.708436i \(-0.749401\pi\)
0.705775 0.708436i \(-0.250599\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 20.0000 + 15.0000i 0.707107 + 0.530330i
\(801\) −18.0000 −0.635999
\(802\) 3.00000i 0.105934i
\(803\) 0 0
\(804\) 5.00000 0.176336
\(805\) 0 0
\(806\) 4.00000 0.140894
\(807\) 11.0000i 0.387218i
\(808\) 27.0000i 0.949857i
\(809\) −9.00000 −0.316423 −0.158212 0.987405i \(-0.550573\pi\)
−0.158212 + 0.987405i \(0.550573\pi\)
\(810\) 2.00000 1.00000i 0.0702728 0.0351364i
\(811\) −2.00000 −0.0702295 −0.0351147 0.999383i \(-0.511180\pi\)
−0.0351147 + 0.999383i \(0.511180\pi\)
\(812\) 0 0
\(813\) 2.00000i 0.0701431i
\(814\) 0 0
\(815\) 8.00000 4.00000i 0.280228 0.140114i
\(816\) 2.00000 0.0700140
\(817\) 42.0000i 1.46939i
\(818\) 25.0000i 0.874105i
\(819\) 0 0
\(820\) 5.00000 + 10.0000i 0.174608 + 0.349215i
\(821\) 22.0000 0.767805 0.383903 0.923374i \(-0.374580\pi\)
0.383903 + 0.923374i \(0.374580\pi\)
\(822\) 0 0
\(823\) 25.0000i 0.871445i 0.900081 + 0.435723i \(0.143507\pi\)
−0.900081 + 0.435723i \(0.856493\pi\)
\(824\) 21.0000 0.731570
\(825\) 0 0
\(826\) 0 0
\(827\) 39.0000i 1.35616i 0.734987 + 0.678081i \(0.237188\pi\)
−0.734987 + 0.678081i \(0.762812\pi\)
\(828\) 6.00000i 0.208514i
\(829\) 30.0000 1.04194 0.520972 0.853574i \(-0.325570\pi\)
0.520972 + 0.853574i \(0.325570\pi\)
\(830\) −11.0000 22.0000i −0.381816 0.763631i
\(831\) −10.0000 −0.346896
\(832\) 14.0000i 0.485363i
\(833\) 0 0
\(834\) 8.00000 0.277017
\(835\) −6.00000 + 3.00000i −0.207639 + 0.103819i
\(836\) 0 0
\(837\) 10.0000i 0.345651i
\(838\) 24.0000i 0.829066i
\(839\) −48.0000 −1.65714 −0.828572 0.559883i \(-0.810846\pi\)
−0.828572 + 0.559883i \(0.810846\pi\)
\(840\) 0 0
\(841\) 20.0000 0.689655
\(842\) 15.0000i 0.516934i
\(843\) 14.0000i 0.482186i
\(844\) −10.0000 −0.344214
\(845\) 9.00000 + 18.0000i 0.309609 + 0.619219i
\(846\) 0 0
\(847\) 0 0
\(848\) 6.00000i 0.206041i
\(849\) 16.0000 0.549119
\(850\) 6.00000 8.00000i 0.205798 0.274398i
\(851\) 24.0000 0.822709
\(852\) 2.00000i 0.0685189i
\(853\) 6.00000i 0.205436i −0.994711 0.102718i \(-0.967246\pi\)
0.994711 0.102718i \(-0.0327539\pi\)
\(854\) 0 0
\(855\) −12.0000 24.0000i −0.410391 0.820783i
\(856\) −33.0000 −1.12792
\(857\) 12.0000i 0.409912i 0.978771 + 0.204956i \(0.0657052\pi\)
−0.978771 + 0.204956i \(0.934295\pi\)
\(858\) 0 0
\(859\) 32.0000 1.09183 0.545913 0.837842i \(-0.316183\pi\)
0.545913 + 0.837842i \(0.316183\pi\)
\(860\) −14.0000 + 7.00000i −0.477396 + 0.238698i
\(861\) 0 0
\(862\) 32.0000i 1.08992i
\(863\) 9.00000i 0.306364i −0.988198 0.153182i \(-0.951048\pi\)
0.988198 0.153182i \(-0.0489520\pi\)
\(864\) −25.0000 −0.850517
\(865\) 24.0000 12.0000i 0.816024 0.408012i
\(866\) −2.00000 −0.0679628
\(867\) 13.0000i 0.441503i
\(868\) 0 0
\(869\) 0 0
\(870\) 7.00000 + 14.0000i 0.237322 + 0.474644i
\(871\) −10.0000 −0.338837
\(872\) 15.0000i 0.507964i
\(873\) 32.0000i 1.08304i
\(874\) 18.0000 0.608859
\(875\) 0 0
\(876\) −6.00000 −0.202721
\(877\) 2.00000i 0.0675352i 0.999430 + 0.0337676i \(0.0107506\pi\)
−0.999430 + 0.0337676i \(0.989249\pi\)
\(878\) 24.0000i 0.809961i
\(879\) 24.0000 0.809500
\(880\) 0 0
\(881\) −43.0000 −1.44871 −0.724353 0.689429i \(-0.757862\pi\)
−0.724353 + 0.689429i \(0.757862\pi\)
\(882\) 0 0
\(883\) 36.0000i 1.21150i 0.795656 + 0.605748i \(0.207126\pi\)
−0.795656 + 0.605748i \(0.792874\pi\)
\(884\) 4.00000 0.134535
\(885\) −20.0000 + 10.0000i −0.672293 + 0.336146i
\(886\) 31.0000 1.04147
\(887\) 43.0000i 1.44380i −0.691998 0.721899i \(-0.743269\pi\)
0.691998 0.721899i \(-0.256731\pi\)
\(888\) 24.0000i 0.805387i
\(889\) 0 0
\(890\) −18.0000 + 9.00000i −0.603361 + 0.301681i
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 1.00000 0.0334450
\(895\) 2.00000 + 4.00000i 0.0668526 + 0.133705i
\(896\) 0 0
\(897\) 6.00000i 0.200334i
\(898\) 31.0000i 1.03448i
\(899\) −14.0000 −0.466926
\(900\) −6.00000 + 8.00000i −0.200000 + 0.266667i
\(901\) 12.0000 0.399778
\(902\) 0 0
\(903\) 0 0
\(904\) −18.0000 −0.598671
\(905\) −3.00000 6.00000i −0.0997234 0.199447i
\(906\) −14.0000 −0.465119
\(907\) 19.0000i 0.630885i 0.948945 + 0.315442i \(0.102153\pi\)
−0.948945 + 0.315442i \(0.897847\pi\)
\(908\) 20.0000i 0.663723i
\(909\) 18.0000 0.597022
\(910\) 0 0
\(911\) 24.0000 0.795155 0.397578 0.917568i \(-0.369851\pi\)
0.397578 + 0.917568i \(0.369851\pi\)
\(912\) 6.00000i 0.198680i
\(913\) 0 0
\(914\) −32.0000 −1.05847
\(915\) 14.0000 7.00000i 0.462826 0.231413i
\(916\) 22.0000 0.726900
\(917\) 0 0
\(918\) 10.0000i 0.330049i
\(919\) −34.0000 −1.12156 −0.560778 0.827966i \(-0.689498\pi\)
−0.560778 + 0.827966i \(0.689498\pi\)
\(920\) −9.00000 18.0000i −0.296721 0.593442i
\(921\) −23.0000 −0.757876
\(922\) 18.0000i 0.592798i
\(923\) 4.00000i 0.131662i
\(924\) 0 0
\(925\) −32.0000 24.0000i −1.05215 0.789115i
\(926\) 3.00000 0.0985861
\(927\) 14.0000i 0.459820i
\(928\) 35.0000i 1.14893i
\(929\) 29.0000 0.951459 0.475730 0.879592i \(-0.342184\pi\)
0.475730 + 0.879592i \(0.342184\pi\)
\(930\) −2.00000 4.00000i −0.0655826 0.131165i
\(931\) 0 0
\(932\) 14.0000i 0.458585i
\(933\) 30.0000i 0.982156i
\(934\) −3.00000 −0.0981630
\(935\) 0 0
\(936\) 12.0000 0.392232
\(937\) 8.00000i 0.261349i 0.991425 + 0.130674i \(0.0417142\pi\)
−0.991425 + 0.130674i \(0.958286\pi\)
\(938\) 0 0
\(939\) 24.0000 0.783210
\(940\) 0 0
\(941\) −18.0000 −0.586783 −0.293392 0.955992i \(-0.594784\pi\)
−0.293392 + 0.955992i \(0.594784\pi\)
\(942\) 12.0000i 0.390981i
\(943\) 15.0000i 0.488467i
\(944\) 10.0000 0.325472
\(945\) 0 0
\(946\) 0 0
\(947\) 57.0000i 1.85225i 0.377215 + 0.926126i \(0.376882\pi\)
−0.377215 + 0.926126i \(0.623118\pi\)
\(948\) 2.00000i 0.0649570i
\(949\) 12.0000 0.389536
\(950\) −24.0000 18.0000i −0.778663 0.583997i
\(951\) 6.00000 0.194563
\(952\) 0 0
\(953\) 60.0000i 1.94359i 0.235826 + 0.971795i \(0.424220\pi\)
−0.235826 + 0.971795i \(0.575780\pi\)
\(954\) 12.0000 0.388514
\(955\) 12.0000 + 24.0000i 0.388311 + 0.776622i
\(956\) 18.0000 0.582162
\(957\) 0 0
\(958\) 42.0000i 1.35696i
\(959\) 0 0
\(960\) −14.0000 + 7.00000i −0.451848 + 0.225924i
\(961\) −27.0000 −0.870968
\(962\) 16.0000i 0.515861i
\(963\) 22.0000i 0.708940i
\(964\) −14.0000 −0.450910
\(965\) 8.00000 4.00000i 0.257529 0.128765i
\(966\) 0 0
\(967\) 13.0000i 0.418052i 0.977910 + 0.209026i \(0.0670293\pi\)
−0.977910 + 0.209026i \(0.932971\pi\)
\(968\) 33.0000i 1.06066i
\(969\) 12.0000 0.385496
\(970\) 16.0000 + 32.0000i 0.513729 + 1.02746i
\(971\) −32.0000 −1.02693 −0.513464 0.858111i \(-0.671638\pi\)
−0.513464 + 0.858111i \(0.671638\pi\)
\(972\) 16.0000i 0.513200i
\(973\) 0 0
\(974\) 12.0000 0.384505
\(975\) −6.00000 + 8.00000i −0.192154 + 0.256205i
\(976\) −7.00000 −0.224065
\(977\) 60.0000i 1.91957i −0.280736 0.959785i \(-0.590579\pi\)
0.280736 0.959785i \(-0.409421\pi\)
\(978\) 4.00000i 0.127906i
\(979\) 0 0
\(980\) 0 0
\(981\) −10.0000 −0.319275
\(982\) 26.0000i 0.829693i
\(983\) 3.00000i 0.0956851i 0.998855 + 0.0478426i \(0.0152346\pi\)
−0.998855 + 0.0478426i \(0.984765\pi\)
\(984\) −15.0000 −0.478183
\(985\) −16.0000 + 8.00000i −0.509802 + 0.254901i
\(986\) 14.0000 0.445851
\(987\) 0 0
\(988\) 12.0000i 0.381771i
\(989\) 21.0000 0.667761
\(990\) 0 0
\(991\) −50.0000 −1.58830 −0.794151 0.607720i \(-0.792084\pi\)
−0.794151 + 0.607720i \(0.792084\pi\)
\(992\) 10.0000i 0.317500i
\(993\) 6.00000i 0.190404i
\(994\) 0 0
\(995\) 4.00000 + 8.00000i 0.126809 + 0.253617i
\(996\) −11.0000 −0.348548
\(997\) 2.00000i 0.0633406i 0.999498 + 0.0316703i \(0.0100827\pi\)
−0.999498 + 0.0316703i \(0.989917\pi\)
\(998\) 16.0000i 0.506471i
\(999\) 40.0000 1.26554
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 245.2.b.c.99.1 2
3.2 odd 2 2205.2.d.d.1324.2 2
5.2 odd 4 1225.2.a.f.1.1 1
5.3 odd 4 1225.2.a.d.1.1 1
5.4 even 2 inner 245.2.b.c.99.2 2
7.2 even 3 35.2.j.a.4.1 4
7.3 odd 6 245.2.j.c.79.2 4
7.4 even 3 35.2.j.a.9.2 yes 4
7.5 odd 6 245.2.j.c.214.1 4
7.6 odd 2 245.2.b.b.99.1 2
15.14 odd 2 2205.2.d.d.1324.1 2
21.2 odd 6 315.2.bf.a.109.2 4
21.11 odd 6 315.2.bf.a.289.1 4
21.20 even 2 2205.2.d.e.1324.2 2
28.11 odd 6 560.2.bw.b.289.2 4
28.23 odd 6 560.2.bw.b.529.1 4
35.2 odd 12 175.2.e.a.151.1 2
35.4 even 6 35.2.j.a.9.1 yes 4
35.9 even 6 35.2.j.a.4.2 yes 4
35.13 even 4 1225.2.a.b.1.1 1
35.18 odd 12 175.2.e.b.51.1 2
35.19 odd 6 245.2.j.c.214.2 4
35.23 odd 12 175.2.e.b.151.1 2
35.24 odd 6 245.2.j.c.79.1 4
35.27 even 4 1225.2.a.g.1.1 1
35.32 odd 12 175.2.e.a.51.1 2
35.34 odd 2 245.2.b.b.99.2 2
105.44 odd 6 315.2.bf.a.109.1 4
105.74 odd 6 315.2.bf.a.289.2 4
105.104 even 2 2205.2.d.e.1324.1 2
140.39 odd 6 560.2.bw.b.289.1 4
140.79 odd 6 560.2.bw.b.529.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.2.j.a.4.1 4 7.2 even 3
35.2.j.a.4.2 yes 4 35.9 even 6
35.2.j.a.9.1 yes 4 35.4 even 6
35.2.j.a.9.2 yes 4 7.4 even 3
175.2.e.a.51.1 2 35.32 odd 12
175.2.e.a.151.1 2 35.2 odd 12
175.2.e.b.51.1 2 35.18 odd 12
175.2.e.b.151.1 2 35.23 odd 12
245.2.b.b.99.1 2 7.6 odd 2
245.2.b.b.99.2 2 35.34 odd 2
245.2.b.c.99.1 2 1.1 even 1 trivial
245.2.b.c.99.2 2 5.4 even 2 inner
245.2.j.c.79.1 4 35.24 odd 6
245.2.j.c.79.2 4 7.3 odd 6
245.2.j.c.214.1 4 7.5 odd 6
245.2.j.c.214.2 4 35.19 odd 6
315.2.bf.a.109.1 4 105.44 odd 6
315.2.bf.a.109.2 4 21.2 odd 6
315.2.bf.a.289.1 4 21.11 odd 6
315.2.bf.a.289.2 4 105.74 odd 6
560.2.bw.b.289.1 4 140.39 odd 6
560.2.bw.b.289.2 4 28.11 odd 6
560.2.bw.b.529.1 4 28.23 odd 6
560.2.bw.b.529.2 4 140.79 odd 6
1225.2.a.b.1.1 1 35.13 even 4
1225.2.a.d.1.1 1 5.3 odd 4
1225.2.a.f.1.1 1 5.2 odd 4
1225.2.a.g.1.1 1 35.27 even 4
2205.2.d.d.1324.1 2 15.14 odd 2
2205.2.d.d.1324.2 2 3.2 odd 2
2205.2.d.e.1324.1 2 105.104 even 2
2205.2.d.e.1324.2 2 21.20 even 2