Properties

Label 175.2.e.b.51.1
Level $175$
Weight $2$
Character 175.51
Analytic conductor $1.397$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [175,2,Mod(51,175)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(175, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("175.51"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 175.e (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.39738203537\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 35)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 51.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 175.51
Dual form 175.2.e.b.151.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{2} +(-0.500000 - 0.866025i) q^{3} +(0.500000 + 0.866025i) q^{4} -1.00000 q^{6} +(0.500000 - 2.59808i) q^{7} +3.00000 q^{8} +(1.00000 - 1.73205i) q^{9} +(0.500000 - 0.866025i) q^{12} -2.00000 q^{13} +(-2.00000 - 1.73205i) q^{14} +(0.500000 - 0.866025i) q^{16} +(1.00000 + 1.73205i) q^{17} +(-1.00000 - 1.73205i) q^{18} +(-3.00000 + 5.19615i) q^{19} +(-2.50000 + 0.866025i) q^{21} +(-1.50000 + 2.59808i) q^{23} +(-1.50000 - 2.59808i) q^{24} +(-1.00000 + 1.73205i) q^{26} -5.00000 q^{27} +(2.50000 - 0.866025i) q^{28} +7.00000 q^{29} +(-1.00000 - 1.73205i) q^{31} +(2.50000 + 4.33013i) q^{32} +2.00000 q^{34} +2.00000 q^{36} +(-4.00000 + 6.92820i) q^{37} +(3.00000 + 5.19615i) q^{38} +(1.00000 + 1.73205i) q^{39} +5.00000 q^{41} +(-0.500000 + 2.59808i) q^{42} -7.00000 q^{43} +(1.50000 + 2.59808i) q^{46} -1.00000 q^{48} +(-6.50000 - 2.59808i) q^{49} +(1.00000 - 1.73205i) q^{51} +(-1.00000 - 1.73205i) q^{52} +(3.00000 + 5.19615i) q^{53} +(-2.50000 + 4.33013i) q^{54} +(1.50000 - 7.79423i) q^{56} +6.00000 q^{57} +(3.50000 - 6.06218i) q^{58} +(-5.00000 - 8.66025i) q^{59} +(-3.50000 + 6.06218i) q^{61} -2.00000 q^{62} +(-4.00000 - 3.46410i) q^{63} +7.00000 q^{64} +(-2.50000 - 4.33013i) q^{67} +(-1.00000 + 1.73205i) q^{68} +3.00000 q^{69} -2.00000 q^{71} +(3.00000 - 5.19615i) q^{72} +(-3.00000 - 5.19615i) q^{73} +(4.00000 + 6.92820i) q^{74} -6.00000 q^{76} +2.00000 q^{78} +(1.00000 - 1.73205i) q^{79} +(-0.500000 - 0.866025i) q^{81} +(2.50000 - 4.33013i) q^{82} +11.0000 q^{83} +(-2.00000 - 1.73205i) q^{84} +(-3.50000 + 6.06218i) q^{86} +(-3.50000 - 6.06218i) q^{87} +(-4.50000 + 7.79423i) q^{89} +(-1.00000 + 5.19615i) q^{91} -3.00000 q^{92} +(-1.00000 + 1.73205i) q^{93} +(2.50000 - 4.33013i) q^{96} +16.0000 q^{97} +(-5.50000 + 4.33013i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} - q^{3} + q^{4} - 2 q^{6} + q^{7} + 6 q^{8} + 2 q^{9} + q^{12} - 4 q^{13} - 4 q^{14} + q^{16} + 2 q^{17} - 2 q^{18} - 6 q^{19} - 5 q^{21} - 3 q^{23} - 3 q^{24} - 2 q^{26} - 10 q^{27} + 5 q^{28}+ \cdots - 11 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/175\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 0.866025i 0.353553 0.612372i −0.633316 0.773893i \(-0.718307\pi\)
0.986869 + 0.161521i \(0.0516399\pi\)
\(3\) −0.500000 0.866025i −0.288675 0.500000i 0.684819 0.728714i \(-0.259881\pi\)
−0.973494 + 0.228714i \(0.926548\pi\)
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) 0 0
\(6\) −1.00000 −0.408248
\(7\) 0.500000 2.59808i 0.188982 0.981981i
\(8\) 3.00000 1.06066
\(9\) 1.00000 1.73205i 0.333333 0.577350i
\(10\) 0 0
\(11\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(12\) 0.500000 0.866025i 0.144338 0.250000i
\(13\) −2.00000 −0.554700 −0.277350 0.960769i \(-0.589456\pi\)
−0.277350 + 0.960769i \(0.589456\pi\)
\(14\) −2.00000 1.73205i −0.534522 0.462910i
\(15\) 0 0
\(16\) 0.500000 0.866025i 0.125000 0.216506i
\(17\) 1.00000 + 1.73205i 0.242536 + 0.420084i 0.961436 0.275029i \(-0.0886875\pi\)
−0.718900 + 0.695113i \(0.755354\pi\)
\(18\) −1.00000 1.73205i −0.235702 0.408248i
\(19\) −3.00000 + 5.19615i −0.688247 + 1.19208i 0.284157 + 0.958778i \(0.408286\pi\)
−0.972404 + 0.233301i \(0.925047\pi\)
\(20\) 0 0
\(21\) −2.50000 + 0.866025i −0.545545 + 0.188982i
\(22\) 0 0
\(23\) −1.50000 + 2.59808i −0.312772 + 0.541736i −0.978961 0.204046i \(-0.934591\pi\)
0.666190 + 0.745782i \(0.267924\pi\)
\(24\) −1.50000 2.59808i −0.306186 0.530330i
\(25\) 0 0
\(26\) −1.00000 + 1.73205i −0.196116 + 0.339683i
\(27\) −5.00000 −0.962250
\(28\) 2.50000 0.866025i 0.472456 0.163663i
\(29\) 7.00000 1.29987 0.649934 0.759991i \(-0.274797\pi\)
0.649934 + 0.759991i \(0.274797\pi\)
\(30\) 0 0
\(31\) −1.00000 1.73205i −0.179605 0.311086i 0.762140 0.647412i \(-0.224149\pi\)
−0.941745 + 0.336327i \(0.890815\pi\)
\(32\) 2.50000 + 4.33013i 0.441942 + 0.765466i
\(33\) 0 0
\(34\) 2.00000 0.342997
\(35\) 0 0
\(36\) 2.00000 0.333333
\(37\) −4.00000 + 6.92820i −0.657596 + 1.13899i 0.323640 + 0.946180i \(0.395093\pi\)
−0.981236 + 0.192809i \(0.938240\pi\)
\(38\) 3.00000 + 5.19615i 0.486664 + 0.842927i
\(39\) 1.00000 + 1.73205i 0.160128 + 0.277350i
\(40\) 0 0
\(41\) 5.00000 0.780869 0.390434 0.920631i \(-0.372325\pi\)
0.390434 + 0.920631i \(0.372325\pi\)
\(42\) −0.500000 + 2.59808i −0.0771517 + 0.400892i
\(43\) −7.00000 −1.06749 −0.533745 0.845645i \(-0.679216\pi\)
−0.533745 + 0.845645i \(0.679216\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 1.50000 + 2.59808i 0.221163 + 0.383065i
\(47\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(48\) −1.00000 −0.144338
\(49\) −6.50000 2.59808i −0.928571 0.371154i
\(50\) 0 0
\(51\) 1.00000 1.73205i 0.140028 0.242536i
\(52\) −1.00000 1.73205i −0.138675 0.240192i
\(53\) 3.00000 + 5.19615i 0.412082 + 0.713746i 0.995117 0.0987002i \(-0.0314685\pi\)
−0.583036 + 0.812447i \(0.698135\pi\)
\(54\) −2.50000 + 4.33013i −0.340207 + 0.589256i
\(55\) 0 0
\(56\) 1.50000 7.79423i 0.200446 1.04155i
\(57\) 6.00000 0.794719
\(58\) 3.50000 6.06218i 0.459573 0.796003i
\(59\) −5.00000 8.66025i −0.650945 1.12747i −0.982894 0.184172i \(-0.941040\pi\)
0.331949 0.943297i \(-0.392294\pi\)
\(60\) 0 0
\(61\) −3.50000 + 6.06218i −0.448129 + 0.776182i −0.998264 0.0588933i \(-0.981243\pi\)
0.550135 + 0.835076i \(0.314576\pi\)
\(62\) −2.00000 −0.254000
\(63\) −4.00000 3.46410i −0.503953 0.436436i
\(64\) 7.00000 0.875000
\(65\) 0 0
\(66\) 0 0
\(67\) −2.50000 4.33013i −0.305424 0.529009i 0.671932 0.740613i \(-0.265465\pi\)
−0.977356 + 0.211604i \(0.932131\pi\)
\(68\) −1.00000 + 1.73205i −0.121268 + 0.210042i
\(69\) 3.00000 0.361158
\(70\) 0 0
\(71\) −2.00000 −0.237356 −0.118678 0.992933i \(-0.537866\pi\)
−0.118678 + 0.992933i \(0.537866\pi\)
\(72\) 3.00000 5.19615i 0.353553 0.612372i
\(73\) −3.00000 5.19615i −0.351123 0.608164i 0.635323 0.772246i \(-0.280867\pi\)
−0.986447 + 0.164083i \(0.947534\pi\)
\(74\) 4.00000 + 6.92820i 0.464991 + 0.805387i
\(75\) 0 0
\(76\) −6.00000 −0.688247
\(77\) 0 0
\(78\) 2.00000 0.226455
\(79\) 1.00000 1.73205i 0.112509 0.194871i −0.804272 0.594261i \(-0.797445\pi\)
0.916781 + 0.399390i \(0.130778\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 2.50000 4.33013i 0.276079 0.478183i
\(83\) 11.0000 1.20741 0.603703 0.797209i \(-0.293691\pi\)
0.603703 + 0.797209i \(0.293691\pi\)
\(84\) −2.00000 1.73205i −0.218218 0.188982i
\(85\) 0 0
\(86\) −3.50000 + 6.06218i −0.377415 + 0.653701i
\(87\) −3.50000 6.06218i −0.375239 0.649934i
\(88\) 0 0
\(89\) −4.50000 + 7.79423i −0.476999 + 0.826187i −0.999653 0.0263586i \(-0.991609\pi\)
0.522654 + 0.852545i \(0.324942\pi\)
\(90\) 0 0
\(91\) −1.00000 + 5.19615i −0.104828 + 0.544705i
\(92\) −3.00000 −0.312772
\(93\) −1.00000 + 1.73205i −0.103695 + 0.179605i
\(94\) 0 0
\(95\) 0 0
\(96\) 2.50000 4.33013i 0.255155 0.441942i
\(97\) 16.0000 1.62455 0.812277 0.583272i \(-0.198228\pi\)
0.812277 + 0.583272i \(0.198228\pi\)
\(98\) −5.50000 + 4.33013i −0.555584 + 0.437409i
\(99\) 0 0
\(100\) 0 0
\(101\) −4.50000 7.79423i −0.447767 0.775555i 0.550474 0.834853i \(-0.314447\pi\)
−0.998240 + 0.0592978i \(0.981114\pi\)
\(102\) −1.00000 1.73205i −0.0990148 0.171499i
\(103\) 3.50000 6.06218i 0.344865 0.597324i −0.640464 0.767988i \(-0.721258\pi\)
0.985329 + 0.170664i \(0.0545913\pi\)
\(104\) −6.00000 −0.588348
\(105\) 0 0
\(106\) 6.00000 0.582772
\(107\) 5.50000 9.52628i 0.531705 0.920940i −0.467610 0.883935i \(-0.654885\pi\)
0.999315 0.0370053i \(-0.0117818\pi\)
\(108\) −2.50000 4.33013i −0.240563 0.416667i
\(109\) −2.50000 4.33013i −0.239457 0.414751i 0.721102 0.692829i \(-0.243636\pi\)
−0.960558 + 0.278078i \(0.910303\pi\)
\(110\) 0 0
\(111\) 8.00000 0.759326
\(112\) −2.00000 1.73205i −0.188982 0.163663i
\(113\) 6.00000 0.564433 0.282216 0.959351i \(-0.408930\pi\)
0.282216 + 0.959351i \(0.408930\pi\)
\(114\) 3.00000 5.19615i 0.280976 0.486664i
\(115\) 0 0
\(116\) 3.50000 + 6.06218i 0.324967 + 0.562859i
\(117\) −2.00000 + 3.46410i −0.184900 + 0.320256i
\(118\) −10.0000 −0.920575
\(119\) 5.00000 1.73205i 0.458349 0.158777i
\(120\) 0 0
\(121\) 5.50000 9.52628i 0.500000 0.866025i
\(122\) 3.50000 + 6.06218i 0.316875 + 0.548844i
\(123\) −2.50000 4.33013i −0.225417 0.390434i
\(124\) 1.00000 1.73205i 0.0898027 0.155543i
\(125\) 0 0
\(126\) −5.00000 + 1.73205i −0.445435 + 0.154303i
\(127\) −16.0000 −1.41977 −0.709885 0.704317i \(-0.751253\pi\)
−0.709885 + 0.704317i \(0.751253\pi\)
\(128\) −1.50000 + 2.59808i −0.132583 + 0.229640i
\(129\) 3.50000 + 6.06218i 0.308158 + 0.533745i
\(130\) 0 0
\(131\) −2.00000 + 3.46410i −0.174741 + 0.302660i −0.940072 0.340977i \(-0.889242\pi\)
0.765331 + 0.643637i \(0.222575\pi\)
\(132\) 0 0
\(133\) 12.0000 + 10.3923i 1.04053 + 0.901127i
\(134\) −5.00000 −0.431934
\(135\) 0 0
\(136\) 3.00000 + 5.19615i 0.257248 + 0.445566i
\(137\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(138\) 1.50000 2.59808i 0.127688 0.221163i
\(139\) 8.00000 0.678551 0.339276 0.940687i \(-0.389818\pi\)
0.339276 + 0.940687i \(0.389818\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −1.00000 + 1.73205i −0.0839181 + 0.145350i
\(143\) 0 0
\(144\) −1.00000 1.73205i −0.0833333 0.144338i
\(145\) 0 0
\(146\) −6.00000 −0.496564
\(147\) 1.00000 + 6.92820i 0.0824786 + 0.571429i
\(148\) −8.00000 −0.657596
\(149\) −0.500000 + 0.866025i −0.0409616 + 0.0709476i −0.885779 0.464107i \(-0.846375\pi\)
0.844818 + 0.535054i \(0.179709\pi\)
\(150\) 0 0
\(151\) −7.00000 12.1244i −0.569652 0.986666i −0.996600 0.0823900i \(-0.973745\pi\)
0.426948 0.904276i \(-0.359589\pi\)
\(152\) −9.00000 + 15.5885i −0.729996 + 1.26439i
\(153\) 4.00000 0.323381
\(154\) 0 0
\(155\) 0 0
\(156\) −1.00000 + 1.73205i −0.0800641 + 0.138675i
\(157\) 6.00000 + 10.3923i 0.478852 + 0.829396i 0.999706 0.0242497i \(-0.00771967\pi\)
−0.520854 + 0.853646i \(0.674386\pi\)
\(158\) −1.00000 1.73205i −0.0795557 0.137795i
\(159\) 3.00000 5.19615i 0.237915 0.412082i
\(160\) 0 0
\(161\) 6.00000 + 5.19615i 0.472866 + 0.409514i
\(162\) −1.00000 −0.0785674
\(163\) −2.00000 + 3.46410i −0.156652 + 0.271329i −0.933659 0.358162i \(-0.883403\pi\)
0.777007 + 0.629492i \(0.216737\pi\)
\(164\) 2.50000 + 4.33013i 0.195217 + 0.338126i
\(165\) 0 0
\(166\) 5.50000 9.52628i 0.426883 0.739383i
\(167\) 3.00000 0.232147 0.116073 0.993241i \(-0.462969\pi\)
0.116073 + 0.993241i \(0.462969\pi\)
\(168\) −7.50000 + 2.59808i −0.578638 + 0.200446i
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) 6.00000 + 10.3923i 0.458831 + 0.794719i
\(172\) −3.50000 6.06218i −0.266872 0.462237i
\(173\) −6.00000 + 10.3923i −0.456172 + 0.790112i −0.998755 0.0498898i \(-0.984113\pi\)
0.542583 + 0.840002i \(0.317446\pi\)
\(174\) −7.00000 −0.530669
\(175\) 0 0
\(176\) 0 0
\(177\) −5.00000 + 8.66025i −0.375823 + 0.650945i
\(178\) 4.50000 + 7.79423i 0.337289 + 0.584202i
\(179\) 1.00000 + 1.73205i 0.0747435 + 0.129460i 0.900975 0.433872i \(-0.142853\pi\)
−0.826231 + 0.563331i \(0.809520\pi\)
\(180\) 0 0
\(181\) −3.00000 −0.222988 −0.111494 0.993765i \(-0.535564\pi\)
−0.111494 + 0.993765i \(0.535564\pi\)
\(182\) 4.00000 + 3.46410i 0.296500 + 0.256776i
\(183\) 7.00000 0.517455
\(184\) −4.50000 + 7.79423i −0.331744 + 0.574598i
\(185\) 0 0
\(186\) 1.00000 + 1.73205i 0.0733236 + 0.127000i
\(187\) 0 0
\(188\) 0 0
\(189\) −2.50000 + 12.9904i −0.181848 + 0.944911i
\(190\) 0 0
\(191\) −6.00000 + 10.3923i −0.434145 + 0.751961i −0.997225 0.0744412i \(-0.976283\pi\)
0.563081 + 0.826402i \(0.309616\pi\)
\(192\) −3.50000 6.06218i −0.252591 0.437500i
\(193\) −2.00000 3.46410i −0.143963 0.249351i 0.785022 0.619467i \(-0.212651\pi\)
−0.928986 + 0.370116i \(0.879318\pi\)
\(194\) 8.00000 13.8564i 0.574367 0.994832i
\(195\) 0 0
\(196\) −1.00000 6.92820i −0.0714286 0.494872i
\(197\) 8.00000 0.569976 0.284988 0.958531i \(-0.408010\pi\)
0.284988 + 0.958531i \(0.408010\pi\)
\(198\) 0 0
\(199\) 2.00000 + 3.46410i 0.141776 + 0.245564i 0.928166 0.372168i \(-0.121385\pi\)
−0.786389 + 0.617731i \(0.788052\pi\)
\(200\) 0 0
\(201\) −2.50000 + 4.33013i −0.176336 + 0.305424i
\(202\) −9.00000 −0.633238
\(203\) 3.50000 18.1865i 0.245652 1.27644i
\(204\) 2.00000 0.140028
\(205\) 0 0
\(206\) −3.50000 6.06218i −0.243857 0.422372i
\(207\) 3.00000 + 5.19615i 0.208514 + 0.361158i
\(208\) −1.00000 + 1.73205i −0.0693375 + 0.120096i
\(209\) 0 0
\(210\) 0 0
\(211\) −10.0000 −0.688428 −0.344214 0.938891i \(-0.611855\pi\)
−0.344214 + 0.938891i \(0.611855\pi\)
\(212\) −3.00000 + 5.19615i −0.206041 + 0.356873i
\(213\) 1.00000 + 1.73205i 0.0685189 + 0.118678i
\(214\) −5.50000 9.52628i −0.375972 0.651203i
\(215\) 0 0
\(216\) −15.0000 −1.02062
\(217\) −5.00000 + 1.73205i −0.339422 + 0.117579i
\(218\) −5.00000 −0.338643
\(219\) −3.00000 + 5.19615i −0.202721 + 0.351123i
\(220\) 0 0
\(221\) −2.00000 3.46410i −0.134535 0.233021i
\(222\) 4.00000 6.92820i 0.268462 0.464991i
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 12.5000 4.33013i 0.835191 0.289319i
\(225\) 0 0
\(226\) 3.00000 5.19615i 0.199557 0.345643i
\(227\) −10.0000 17.3205i −0.663723 1.14960i −0.979630 0.200812i \(-0.935642\pi\)
0.315906 0.948790i \(-0.397691\pi\)
\(228\) 3.00000 + 5.19615i 0.198680 + 0.344124i
\(229\) 11.0000 19.0526i 0.726900 1.25903i −0.231287 0.972886i \(-0.574293\pi\)
0.958187 0.286143i \(-0.0923732\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 21.0000 1.37872
\(233\) 7.00000 12.1244i 0.458585 0.794293i −0.540301 0.841472i \(-0.681690\pi\)
0.998886 + 0.0471787i \(0.0150230\pi\)
\(234\) 2.00000 + 3.46410i 0.130744 + 0.226455i
\(235\) 0 0
\(236\) 5.00000 8.66025i 0.325472 0.563735i
\(237\) −2.00000 −0.129914
\(238\) 1.00000 5.19615i 0.0648204 0.336817i
\(239\) −18.0000 −1.16432 −0.582162 0.813073i \(-0.697793\pi\)
−0.582162 + 0.813073i \(0.697793\pi\)
\(240\) 0 0
\(241\) 7.00000 + 12.1244i 0.450910 + 0.780998i 0.998443 0.0557856i \(-0.0177663\pi\)
−0.547533 + 0.836784i \(0.684433\pi\)
\(242\) −5.50000 9.52628i −0.353553 0.612372i
\(243\) −8.00000 + 13.8564i −0.513200 + 0.888889i
\(244\) −7.00000 −0.448129
\(245\) 0 0
\(246\) −5.00000 −0.318788
\(247\) 6.00000 10.3923i 0.381771 0.661247i
\(248\) −3.00000 5.19615i −0.190500 0.329956i
\(249\) −5.50000 9.52628i −0.348548 0.603703i
\(250\) 0 0
\(251\) 30.0000 1.89358 0.946792 0.321847i \(-0.104304\pi\)
0.946792 + 0.321847i \(0.104304\pi\)
\(252\) 1.00000 5.19615i 0.0629941 0.327327i
\(253\) 0 0
\(254\) −8.00000 + 13.8564i −0.501965 + 0.869428i
\(255\) 0 0
\(256\) 8.50000 + 14.7224i 0.531250 + 0.920152i
\(257\) 10.0000 17.3205i 0.623783 1.08042i −0.364992 0.931011i \(-0.618928\pi\)
0.988775 0.149413i \(-0.0477384\pi\)
\(258\) 7.00000 0.435801
\(259\) 16.0000 + 13.8564i 0.994192 + 0.860995i
\(260\) 0 0
\(261\) 7.00000 12.1244i 0.433289 0.750479i
\(262\) 2.00000 + 3.46410i 0.123560 + 0.214013i
\(263\) −4.50000 7.79423i −0.277482 0.480613i 0.693276 0.720672i \(-0.256167\pi\)
−0.970758 + 0.240059i \(0.922833\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 15.0000 5.19615i 0.919709 0.318597i
\(267\) 9.00000 0.550791
\(268\) 2.50000 4.33013i 0.152712 0.264505i
\(269\) 5.50000 + 9.52628i 0.335341 + 0.580828i 0.983550 0.180635i \(-0.0578152\pi\)
−0.648209 + 0.761462i \(0.724482\pi\)
\(270\) 0 0
\(271\) 1.00000 1.73205i 0.0607457 0.105215i −0.834053 0.551684i \(-0.813985\pi\)
0.894799 + 0.446469i \(0.147319\pi\)
\(272\) 2.00000 0.121268
\(273\) 5.00000 1.73205i 0.302614 0.104828i
\(274\) 0 0
\(275\) 0 0
\(276\) 1.50000 + 2.59808i 0.0902894 + 0.156386i
\(277\) 5.00000 + 8.66025i 0.300421 + 0.520344i 0.976231 0.216731i \(-0.0695395\pi\)
−0.675810 + 0.737075i \(0.736206\pi\)
\(278\) 4.00000 6.92820i 0.239904 0.415526i
\(279\) −4.00000 −0.239474
\(280\) 0 0
\(281\) −14.0000 −0.835170 −0.417585 0.908638i \(-0.637123\pi\)
−0.417585 + 0.908638i \(0.637123\pi\)
\(282\) 0 0
\(283\) 8.00000 + 13.8564i 0.475551 + 0.823678i 0.999608 0.0280052i \(-0.00891551\pi\)
−0.524057 + 0.851683i \(0.675582\pi\)
\(284\) −1.00000 1.73205i −0.0593391 0.102778i
\(285\) 0 0
\(286\) 0 0
\(287\) 2.50000 12.9904i 0.147570 0.766798i
\(288\) 10.0000 0.589256
\(289\) 6.50000 11.2583i 0.382353 0.662255i
\(290\) 0 0
\(291\) −8.00000 13.8564i −0.468968 0.812277i
\(292\) 3.00000 5.19615i 0.175562 0.304082i
\(293\) −24.0000 −1.40209 −0.701047 0.713115i \(-0.747284\pi\)
−0.701047 + 0.713115i \(0.747284\pi\)
\(294\) 6.50000 + 2.59808i 0.379088 + 0.151523i
\(295\) 0 0
\(296\) −12.0000 + 20.7846i −0.697486 + 1.20808i
\(297\) 0 0
\(298\) 0.500000 + 0.866025i 0.0289642 + 0.0501675i
\(299\) 3.00000 5.19615i 0.173494 0.300501i
\(300\) 0 0
\(301\) −3.50000 + 18.1865i −0.201737 + 1.04825i
\(302\) −14.0000 −0.805609
\(303\) −4.50000 + 7.79423i −0.258518 + 0.447767i
\(304\) 3.00000 + 5.19615i 0.172062 + 0.298020i
\(305\) 0 0
\(306\) 2.00000 3.46410i 0.114332 0.198030i
\(307\) −23.0000 −1.31268 −0.656340 0.754466i \(-0.727896\pi\)
−0.656340 + 0.754466i \(0.727896\pi\)
\(308\) 0 0
\(309\) −7.00000 −0.398216
\(310\) 0 0
\(311\) −15.0000 25.9808i −0.850572 1.47323i −0.880693 0.473688i \(-0.842923\pi\)
0.0301210 0.999546i \(-0.490411\pi\)
\(312\) 3.00000 + 5.19615i 0.169842 + 0.294174i
\(313\) 12.0000 20.7846i 0.678280 1.17482i −0.297218 0.954810i \(-0.596059\pi\)
0.975499 0.220006i \(-0.0706077\pi\)
\(314\) 12.0000 0.677199
\(315\) 0 0
\(316\) 2.00000 0.112509
\(317\) −3.00000 + 5.19615i −0.168497 + 0.291845i −0.937892 0.346929i \(-0.887225\pi\)
0.769395 + 0.638774i \(0.220558\pi\)
\(318\) −3.00000 5.19615i −0.168232 0.291386i
\(319\) 0 0
\(320\) 0 0
\(321\) −11.0000 −0.613960
\(322\) 7.50000 2.59808i 0.417959 0.144785i
\(323\) −12.0000 −0.667698
\(324\) 0.500000 0.866025i 0.0277778 0.0481125i
\(325\) 0 0
\(326\) 2.00000 + 3.46410i 0.110770 + 0.191859i
\(327\) −2.50000 + 4.33013i −0.138250 + 0.239457i
\(328\) 15.0000 0.828236
\(329\) 0 0
\(330\) 0 0
\(331\) −3.00000 + 5.19615i −0.164895 + 0.285606i −0.936618 0.350352i \(-0.886062\pi\)
0.771723 + 0.635959i \(0.219395\pi\)
\(332\) 5.50000 + 9.52628i 0.301852 + 0.522823i
\(333\) 8.00000 + 13.8564i 0.438397 + 0.759326i
\(334\) 1.50000 2.59808i 0.0820763 0.142160i
\(335\) 0 0
\(336\) −0.500000 + 2.59808i −0.0272772 + 0.141737i
\(337\) −18.0000 −0.980522 −0.490261 0.871576i \(-0.663099\pi\)
−0.490261 + 0.871576i \(0.663099\pi\)
\(338\) −4.50000 + 7.79423i −0.244768 + 0.423950i
\(339\) −3.00000 5.19615i −0.162938 0.282216i
\(340\) 0 0
\(341\) 0 0
\(342\) 12.0000 0.648886
\(343\) −10.0000 + 15.5885i −0.539949 + 0.841698i
\(344\) −21.0000 −1.13224
\(345\) 0 0
\(346\) 6.00000 + 10.3923i 0.322562 + 0.558694i
\(347\) 7.50000 + 12.9904i 0.402621 + 0.697360i 0.994041 0.109003i \(-0.0347659\pi\)
−0.591420 + 0.806363i \(0.701433\pi\)
\(348\) 3.50000 6.06218i 0.187620 0.324967i
\(349\) −17.0000 −0.909989 −0.454995 0.890494i \(-0.650359\pi\)
−0.454995 + 0.890494i \(0.650359\pi\)
\(350\) 0 0
\(351\) 10.0000 0.533761
\(352\) 0 0
\(353\) −13.0000 22.5167i −0.691920 1.19844i −0.971208 0.238233i \(-0.923432\pi\)
0.279288 0.960207i \(-0.409902\pi\)
\(354\) 5.00000 + 8.66025i 0.265747 + 0.460287i
\(355\) 0 0
\(356\) −9.00000 −0.476999
\(357\) −4.00000 3.46410i −0.211702 0.183340i
\(358\) 2.00000 0.105703
\(359\) −5.00000 + 8.66025i −0.263890 + 0.457071i −0.967272 0.253741i \(-0.918339\pi\)
0.703382 + 0.710812i \(0.251672\pi\)
\(360\) 0 0
\(361\) −8.50000 14.7224i −0.447368 0.774865i
\(362\) −1.50000 + 2.59808i −0.0788382 + 0.136552i
\(363\) −11.0000 −0.577350
\(364\) −5.00000 + 1.73205i −0.262071 + 0.0907841i
\(365\) 0 0
\(366\) 3.50000 6.06218i 0.182948 0.316875i
\(367\) 13.5000 + 23.3827i 0.704694 + 1.22057i 0.966802 + 0.255528i \(0.0822492\pi\)
−0.262108 + 0.965039i \(0.584418\pi\)
\(368\) 1.50000 + 2.59808i 0.0781929 + 0.135434i
\(369\) 5.00000 8.66025i 0.260290 0.450835i
\(370\) 0 0
\(371\) 15.0000 5.19615i 0.778761 0.269771i
\(372\) −2.00000 −0.103695
\(373\) −12.0000 + 20.7846i −0.621336 + 1.07619i 0.367901 + 0.929865i \(0.380077\pi\)
−0.989237 + 0.146321i \(0.953257\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −14.0000 −0.721037
\(378\) 10.0000 + 8.66025i 0.514344 + 0.445435i
\(379\) −10.0000 −0.513665 −0.256833 0.966456i \(-0.582679\pi\)
−0.256833 + 0.966456i \(0.582679\pi\)
\(380\) 0 0
\(381\) 8.00000 + 13.8564i 0.409852 + 0.709885i
\(382\) 6.00000 + 10.3923i 0.306987 + 0.531717i
\(383\) 2.50000 4.33013i 0.127744 0.221259i −0.795058 0.606533i \(-0.792560\pi\)
0.922802 + 0.385274i \(0.125893\pi\)
\(384\) 3.00000 0.153093
\(385\) 0 0
\(386\) −4.00000 −0.203595
\(387\) −7.00000 + 12.1244i −0.355830 + 0.616316i
\(388\) 8.00000 + 13.8564i 0.406138 + 0.703452i
\(389\) −7.00000 12.1244i −0.354914 0.614729i 0.632189 0.774814i \(-0.282157\pi\)
−0.987103 + 0.160085i \(0.948823\pi\)
\(390\) 0 0
\(391\) −6.00000 −0.303433
\(392\) −19.5000 7.79423i −0.984899 0.393668i
\(393\) 4.00000 0.201773
\(394\) 4.00000 6.92820i 0.201517 0.349038i
\(395\) 0 0
\(396\) 0 0
\(397\) −8.00000 + 13.8564i −0.401508 + 0.695433i −0.993908 0.110211i \(-0.964847\pi\)
0.592400 + 0.805644i \(0.298181\pi\)
\(398\) 4.00000 0.200502
\(399\) 3.00000 15.5885i 0.150188 0.780399i
\(400\) 0 0
\(401\) −1.50000 + 2.59808i −0.0749064 + 0.129742i −0.901046 0.433724i \(-0.857199\pi\)
0.826139 + 0.563466i \(0.190532\pi\)
\(402\) 2.50000 + 4.33013i 0.124689 + 0.215967i
\(403\) 2.00000 + 3.46410i 0.0996271 + 0.172559i
\(404\) 4.50000 7.79423i 0.223883 0.387777i
\(405\) 0 0
\(406\) −14.0000 12.1244i −0.694808 0.601722i
\(407\) 0 0
\(408\) 3.00000 5.19615i 0.148522 0.257248i
\(409\) 12.5000 + 21.6506i 0.618085 + 1.07056i 0.989835 + 0.142222i \(0.0454247\pi\)
−0.371750 + 0.928333i \(0.621242\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 7.00000 0.344865
\(413\) −25.0000 + 8.66025i −1.23017 + 0.426143i
\(414\) 6.00000 0.294884
\(415\) 0 0
\(416\) −5.00000 8.66025i −0.245145 0.424604i
\(417\) −4.00000 6.92820i −0.195881 0.339276i
\(418\) 0 0
\(419\) 24.0000 1.17248 0.586238 0.810139i \(-0.300608\pi\)
0.586238 + 0.810139i \(0.300608\pi\)
\(420\) 0 0
\(421\) 15.0000 0.731055 0.365528 0.930800i \(-0.380889\pi\)
0.365528 + 0.930800i \(0.380889\pi\)
\(422\) −5.00000 + 8.66025i −0.243396 + 0.421575i
\(423\) 0 0
\(424\) 9.00000 + 15.5885i 0.437079 + 0.757042i
\(425\) 0 0
\(426\) 2.00000 0.0969003
\(427\) 14.0000 + 12.1244i 0.677507 + 0.586739i
\(428\) 11.0000 0.531705
\(429\) 0 0
\(430\) 0 0
\(431\) 16.0000 + 27.7128i 0.770693 + 1.33488i 0.937184 + 0.348836i \(0.113423\pi\)
−0.166491 + 0.986043i \(0.553244\pi\)
\(432\) −2.50000 + 4.33013i −0.120281 + 0.208333i
\(433\) 2.00000 0.0961139 0.0480569 0.998845i \(-0.484697\pi\)
0.0480569 + 0.998845i \(0.484697\pi\)
\(434\) −1.00000 + 5.19615i −0.0480015 + 0.249423i
\(435\) 0 0
\(436\) 2.50000 4.33013i 0.119728 0.207375i
\(437\) −9.00000 15.5885i −0.430528 0.745697i
\(438\) 3.00000 + 5.19615i 0.143346 + 0.248282i
\(439\) −12.0000 + 20.7846i −0.572729 + 0.991995i 0.423556 + 0.905870i \(0.360782\pi\)
−0.996284 + 0.0861252i \(0.972552\pi\)
\(440\) 0 0
\(441\) −11.0000 + 8.66025i −0.523810 + 0.412393i
\(442\) −4.00000 −0.190261
\(443\) 15.5000 26.8468i 0.736427 1.27553i −0.217667 0.976023i \(-0.569845\pi\)
0.954094 0.299506i \(-0.0968220\pi\)
\(444\) 4.00000 + 6.92820i 0.189832 + 0.328798i
\(445\) 0 0
\(446\) 0 0
\(447\) 1.00000 0.0472984
\(448\) 3.50000 18.1865i 0.165359 0.859233i
\(449\) 31.0000 1.46298 0.731490 0.681852i \(-0.238825\pi\)
0.731490 + 0.681852i \(0.238825\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 3.00000 + 5.19615i 0.141108 + 0.244406i
\(453\) −7.00000 + 12.1244i −0.328889 + 0.569652i
\(454\) −20.0000 −0.938647
\(455\) 0 0
\(456\) 18.0000 0.842927
\(457\) 16.0000 27.7128i 0.748448 1.29635i −0.200118 0.979772i \(-0.564132\pi\)
0.948566 0.316579i \(-0.102534\pi\)
\(458\) −11.0000 19.0526i −0.513996 0.890268i
\(459\) −5.00000 8.66025i −0.233380 0.404226i
\(460\) 0 0
\(461\) 18.0000 0.838344 0.419172 0.907907i \(-0.362320\pi\)
0.419172 + 0.907907i \(0.362320\pi\)
\(462\) 0 0
\(463\) −3.00000 −0.139422 −0.0697109 0.997567i \(-0.522208\pi\)
−0.0697109 + 0.997567i \(0.522208\pi\)
\(464\) 3.50000 6.06218i 0.162483 0.281430i
\(465\) 0 0
\(466\) −7.00000 12.1244i −0.324269 0.561650i
\(467\) 1.50000 2.59808i 0.0694117 0.120225i −0.829231 0.558906i \(-0.811221\pi\)
0.898642 + 0.438682i \(0.144554\pi\)
\(468\) −4.00000 −0.184900
\(469\) −12.5000 + 4.33013i −0.577196 + 0.199947i
\(470\) 0 0
\(471\) 6.00000 10.3923i 0.276465 0.478852i
\(472\) −15.0000 25.9808i −0.690431 1.19586i
\(473\) 0 0
\(474\) −1.00000 + 1.73205i −0.0459315 + 0.0795557i
\(475\) 0 0
\(476\) 4.00000 + 3.46410i 0.183340 + 0.158777i
\(477\) 12.0000 0.549442
\(478\) −9.00000 + 15.5885i −0.411650 + 0.712999i
\(479\) −21.0000 36.3731i −0.959514 1.66193i −0.723681 0.690134i \(-0.757551\pi\)
−0.235833 0.971794i \(-0.575782\pi\)
\(480\) 0 0
\(481\) 8.00000 13.8564i 0.364769 0.631798i
\(482\) 14.0000 0.637683
\(483\) 1.50000 7.79423i 0.0682524 0.354650i
\(484\) 11.0000 0.500000
\(485\) 0 0
\(486\) 8.00000 + 13.8564i 0.362887 + 0.628539i
\(487\) −6.00000 10.3923i −0.271886 0.470920i 0.697459 0.716625i \(-0.254314\pi\)
−0.969345 + 0.245705i \(0.920981\pi\)
\(488\) −10.5000 + 18.1865i −0.475313 + 0.823266i
\(489\) 4.00000 0.180886
\(490\) 0 0
\(491\) −26.0000 −1.17336 −0.586682 0.809818i \(-0.699566\pi\)
−0.586682 + 0.809818i \(0.699566\pi\)
\(492\) 2.50000 4.33013i 0.112709 0.195217i
\(493\) 7.00000 + 12.1244i 0.315264 + 0.546054i
\(494\) −6.00000 10.3923i −0.269953 0.467572i
\(495\) 0 0
\(496\) −2.00000 −0.0898027
\(497\) −1.00000 + 5.19615i −0.0448561 + 0.233079i
\(498\) −11.0000 −0.492922
\(499\) −8.00000 + 13.8564i −0.358129 + 0.620298i −0.987648 0.156687i \(-0.949919\pi\)
0.629519 + 0.776985i \(0.283252\pi\)
\(500\) 0 0
\(501\) −1.50000 2.59808i −0.0670151 0.116073i
\(502\) 15.0000 25.9808i 0.669483 1.15958i
\(503\) 15.0000 0.668817 0.334408 0.942428i \(-0.391463\pi\)
0.334408 + 0.942428i \(0.391463\pi\)
\(504\) −12.0000 10.3923i −0.534522 0.462910i
\(505\) 0 0
\(506\) 0 0
\(507\) 4.50000 + 7.79423i 0.199852 + 0.346154i
\(508\) −8.00000 13.8564i −0.354943 0.614779i
\(509\) −13.5000 + 23.3827i −0.598377 + 1.03642i 0.394684 + 0.918817i \(0.370854\pi\)
−0.993061 + 0.117602i \(0.962479\pi\)
\(510\) 0 0
\(511\) −15.0000 + 5.19615i −0.663561 + 0.229864i
\(512\) 11.0000 0.486136
\(513\) 15.0000 25.9808i 0.662266 1.14708i
\(514\) −10.0000 17.3205i −0.441081 0.763975i
\(515\) 0 0
\(516\) −3.50000 + 6.06218i −0.154079 + 0.266872i
\(517\) 0 0
\(518\) 20.0000 6.92820i 0.878750 0.304408i
\(519\) 12.0000 0.526742
\(520\) 0 0
\(521\) −7.00000 12.1244i −0.306676 0.531178i 0.670957 0.741496i \(-0.265883\pi\)
−0.977633 + 0.210318i \(0.932550\pi\)
\(522\) −7.00000 12.1244i −0.306382 0.530669i
\(523\) 2.00000 3.46410i 0.0874539 0.151475i −0.818980 0.573822i \(-0.805460\pi\)
0.906434 + 0.422347i \(0.138794\pi\)
\(524\) −4.00000 −0.174741
\(525\) 0 0
\(526\) −9.00000 −0.392419
\(527\) 2.00000 3.46410i 0.0871214 0.150899i
\(528\) 0 0
\(529\) 7.00000 + 12.1244i 0.304348 + 0.527146i
\(530\) 0 0
\(531\) −20.0000 −0.867926
\(532\) −3.00000 + 15.5885i −0.130066 + 0.675845i
\(533\) −10.0000 −0.433148
\(534\) 4.50000 7.79423i 0.194734 0.337289i
\(535\) 0 0
\(536\) −7.50000 12.9904i −0.323951 0.561099i
\(537\) 1.00000 1.73205i 0.0431532 0.0747435i
\(538\) 11.0000 0.474244
\(539\) 0 0
\(540\) 0 0
\(541\) 1.50000 2.59808i 0.0644900 0.111700i −0.831978 0.554809i \(-0.812791\pi\)
0.896468 + 0.443109i \(0.146125\pi\)
\(542\) −1.00000 1.73205i −0.0429537 0.0743980i
\(543\) 1.50000 + 2.59808i 0.0643712 + 0.111494i
\(544\) −5.00000 + 8.66025i −0.214373 + 0.371305i
\(545\) 0 0
\(546\) 1.00000 5.19615i 0.0427960 0.222375i
\(547\) 17.0000 0.726868 0.363434 0.931620i \(-0.381604\pi\)
0.363434 + 0.931620i \(0.381604\pi\)
\(548\) 0 0
\(549\) 7.00000 + 12.1244i 0.298753 + 0.517455i
\(550\) 0 0
\(551\) −21.0000 + 36.3731i −0.894630 + 1.54954i
\(552\) 9.00000 0.383065
\(553\) −4.00000 3.46410i −0.170097 0.147309i
\(554\) 10.0000 0.424859
\(555\) 0 0
\(556\) 4.00000 + 6.92820i 0.169638 + 0.293821i
\(557\) −22.0000 38.1051i −0.932170 1.61457i −0.779604 0.626272i \(-0.784580\pi\)
−0.152566 0.988293i \(-0.548754\pi\)
\(558\) −2.00000 + 3.46410i −0.0846668 + 0.146647i
\(559\) 14.0000 0.592137
\(560\) 0 0
\(561\) 0 0
\(562\) −7.00000 + 12.1244i −0.295277 + 0.511435i
\(563\) 16.5000 + 28.5788i 0.695392 + 1.20445i 0.970048 + 0.242912i \(0.0781026\pi\)
−0.274656 + 0.961542i \(0.588564\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 16.0000 0.672530
\(567\) −2.50000 + 0.866025i −0.104990 + 0.0363696i
\(568\) −6.00000 −0.251754
\(569\) 9.00000 15.5885i 0.377300 0.653502i −0.613369 0.789797i \(-0.710186\pi\)
0.990668 + 0.136295i \(0.0435194\pi\)
\(570\) 0 0
\(571\) 9.00000 + 15.5885i 0.376638 + 0.652357i 0.990571 0.137002i \(-0.0437466\pi\)
−0.613933 + 0.789359i \(0.710413\pi\)
\(572\) 0 0
\(573\) 12.0000 0.501307
\(574\) −10.0000 8.66025i −0.417392 0.361472i
\(575\) 0 0
\(576\) 7.00000 12.1244i 0.291667 0.505181i
\(577\) −16.0000 27.7128i −0.666089 1.15370i −0.978989 0.203913i \(-0.934634\pi\)
0.312900 0.949786i \(-0.398699\pi\)
\(578\) −6.50000 11.2583i −0.270364 0.468285i
\(579\) −2.00000 + 3.46410i −0.0831172 + 0.143963i
\(580\) 0 0
\(581\) 5.50000 28.5788i 0.228178 1.18565i
\(582\) −16.0000 −0.663221
\(583\) 0 0
\(584\) −9.00000 15.5885i −0.372423 0.645055i
\(585\) 0 0
\(586\) −12.0000 + 20.7846i −0.495715 + 0.858604i
\(587\) 36.0000 1.48588 0.742940 0.669359i \(-0.233431\pi\)
0.742940 + 0.669359i \(0.233431\pi\)
\(588\) −5.50000 + 4.33013i −0.226816 + 0.178571i
\(589\) 12.0000 0.494451
\(590\) 0 0
\(591\) −4.00000 6.92820i −0.164538 0.284988i
\(592\) 4.00000 + 6.92820i 0.164399 + 0.284747i
\(593\) 11.0000 19.0526i 0.451716 0.782395i −0.546777 0.837278i \(-0.684145\pi\)
0.998493 + 0.0548835i \(0.0174787\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −1.00000 −0.0409616
\(597\) 2.00000 3.46410i 0.0818546 0.141776i
\(598\) −3.00000 5.19615i −0.122679 0.212486i
\(599\) 22.0000 + 38.1051i 0.898896 + 1.55693i 0.828908 + 0.559385i \(0.188963\pi\)
0.0699877 + 0.997548i \(0.477704\pi\)
\(600\) 0 0
\(601\) 10.0000 0.407909 0.203954 0.978980i \(-0.434621\pi\)
0.203954 + 0.978980i \(0.434621\pi\)
\(602\) 14.0000 + 12.1244i 0.570597 + 0.494152i
\(603\) −10.0000 −0.407231
\(604\) 7.00000 12.1244i 0.284826 0.493333i
\(605\) 0 0
\(606\) 4.50000 + 7.79423i 0.182800 + 0.316619i
\(607\) −16.5000 + 28.5788i −0.669714 + 1.15998i 0.308270 + 0.951299i \(0.400250\pi\)
−0.977984 + 0.208680i \(0.933083\pi\)
\(608\) −30.0000 −1.21666
\(609\) −17.5000 + 6.06218i −0.709136 + 0.245652i
\(610\) 0 0
\(611\) 0 0
\(612\) 2.00000 + 3.46410i 0.0808452 + 0.140028i
\(613\) −17.0000 29.4449i −0.686624 1.18927i −0.972924 0.231127i \(-0.925759\pi\)
0.286300 0.958140i \(-0.407575\pi\)
\(614\) −11.5000 + 19.9186i −0.464102 + 0.803849i
\(615\) 0 0
\(616\) 0 0
\(617\) 4.00000 0.161034 0.0805170 0.996753i \(-0.474343\pi\)
0.0805170 + 0.996753i \(0.474343\pi\)
\(618\) −3.50000 + 6.06218i −0.140791 + 0.243857i
\(619\) −14.0000 24.2487i −0.562708 0.974638i −0.997259 0.0739910i \(-0.976426\pi\)
0.434551 0.900647i \(-0.356907\pi\)
\(620\) 0 0
\(621\) 7.50000 12.9904i 0.300965 0.521286i
\(622\) −30.0000 −1.20289
\(623\) 18.0000 + 15.5885i 0.721155 + 0.624538i
\(624\) 2.00000 0.0800641
\(625\) 0 0
\(626\) −12.0000 20.7846i −0.479616 0.830720i
\(627\) 0 0
\(628\) −6.00000 + 10.3923i −0.239426 + 0.414698i
\(629\) −16.0000 −0.637962
\(630\) 0 0
\(631\) 40.0000 1.59237 0.796187 0.605050i \(-0.206847\pi\)
0.796187 + 0.605050i \(0.206847\pi\)
\(632\) 3.00000 5.19615i 0.119334 0.206692i
\(633\) 5.00000 + 8.66025i 0.198732 + 0.344214i
\(634\) 3.00000 + 5.19615i 0.119145 + 0.206366i
\(635\) 0 0
\(636\) 6.00000 0.237915
\(637\) 13.0000 + 5.19615i 0.515079 + 0.205879i
\(638\) 0 0
\(639\) −2.00000 + 3.46410i −0.0791188 + 0.137038i
\(640\) 0 0
\(641\) 5.50000 + 9.52628i 0.217237 + 0.376265i 0.953962 0.299927i \(-0.0969622\pi\)
−0.736725 + 0.676192i \(0.763629\pi\)
\(642\) −5.50000 + 9.52628i −0.217068 + 0.375972i
\(643\) 4.00000 0.157745 0.0788723 0.996885i \(-0.474868\pi\)
0.0788723 + 0.996885i \(0.474868\pi\)
\(644\) −1.50000 + 7.79423i −0.0591083 + 0.307136i
\(645\) 0 0
\(646\) −6.00000 + 10.3923i −0.236067 + 0.408880i
\(647\) 23.5000 + 40.7032i 0.923880 + 1.60021i 0.793352 + 0.608763i \(0.208334\pi\)
0.130528 + 0.991445i \(0.458333\pi\)
\(648\) −1.50000 2.59808i −0.0589256 0.102062i
\(649\) 0 0
\(650\) 0 0
\(651\) 4.00000 + 3.46410i 0.156772 + 0.135769i
\(652\) −4.00000 −0.156652
\(653\) −13.0000 + 22.5167i −0.508729 + 0.881145i 0.491220 + 0.871036i \(0.336551\pi\)
−0.999949 + 0.0101092i \(0.996782\pi\)
\(654\) 2.50000 + 4.33013i 0.0977577 + 0.169321i
\(655\) 0 0
\(656\) 2.50000 4.33013i 0.0976086 0.169063i
\(657\) −12.0000 −0.468165
\(658\) 0 0
\(659\) 6.00000 0.233727 0.116863 0.993148i \(-0.462716\pi\)
0.116863 + 0.993148i \(0.462716\pi\)
\(660\) 0 0
\(661\) 4.50000 + 7.79423i 0.175030 + 0.303160i 0.940172 0.340701i \(-0.110665\pi\)
−0.765142 + 0.643862i \(0.777331\pi\)
\(662\) 3.00000 + 5.19615i 0.116598 + 0.201954i
\(663\) −2.00000 + 3.46410i −0.0776736 + 0.134535i
\(664\) 33.0000 1.28065
\(665\) 0 0
\(666\) 16.0000 0.619987
\(667\) −10.5000 + 18.1865i −0.406562 + 0.704185i
\(668\) 1.50000 + 2.59808i 0.0580367 + 0.100523i
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) −10.0000 8.66025i −0.385758 0.334077i
\(673\) 36.0000 1.38770 0.693849 0.720121i \(-0.255914\pi\)
0.693849 + 0.720121i \(0.255914\pi\)
\(674\) −9.00000 + 15.5885i −0.346667 + 0.600445i
\(675\) 0 0
\(676\) −4.50000 7.79423i −0.173077 0.299778i
\(677\) −7.00000 + 12.1244i −0.269032 + 0.465977i −0.968612 0.248577i \(-0.920037\pi\)
0.699580 + 0.714554i \(0.253370\pi\)
\(678\) −6.00000 −0.230429
\(679\) 8.00000 41.5692i 0.307012 1.59528i
\(680\) 0 0
\(681\) −10.0000 + 17.3205i −0.383201 + 0.663723i
\(682\) 0 0
\(683\) 17.5000 + 30.3109i 0.669619 + 1.15981i 0.978011 + 0.208555i \(0.0668759\pi\)
−0.308392 + 0.951259i \(0.599791\pi\)
\(684\) −6.00000 + 10.3923i −0.229416 + 0.397360i
\(685\) 0 0
\(686\) 8.50000 + 16.4545i 0.324532 + 0.628235i
\(687\) −22.0000 −0.839352
\(688\) −3.50000 + 6.06218i −0.133436 + 0.231118i
\(689\) −6.00000 10.3923i −0.228582 0.395915i
\(690\) 0 0
\(691\) 10.0000 17.3205i 0.380418 0.658903i −0.610704 0.791859i \(-0.709113\pi\)
0.991122 + 0.132956i \(0.0424468\pi\)
\(692\) −12.0000 −0.456172
\(693\) 0 0
\(694\) 15.0000 0.569392
\(695\) 0 0
\(696\) −10.5000 18.1865i −0.398001 0.689359i
\(697\) 5.00000 + 8.66025i 0.189389 + 0.328031i
\(698\) −8.50000 + 14.7224i −0.321730 + 0.557252i
\(699\) −14.0000 −0.529529
\(700\) 0 0
\(701\) −1.00000 −0.0377695 −0.0188847 0.999822i \(-0.506012\pi\)
−0.0188847 + 0.999822i \(0.506012\pi\)
\(702\) 5.00000 8.66025i 0.188713 0.326860i
\(703\) −24.0000 41.5692i −0.905177 1.56781i
\(704\) 0 0
\(705\) 0 0
\(706\) −26.0000 −0.978523
\(707\) −22.5000 + 7.79423i −0.846200 + 0.293132i
\(708\) −10.0000 −0.375823
\(709\) 24.5000 42.4352i 0.920117 1.59369i 0.120885 0.992667i \(-0.461427\pi\)
0.799232 0.601023i \(-0.205240\pi\)
\(710\) 0 0
\(711\) −2.00000 3.46410i −0.0750059 0.129914i
\(712\) −13.5000 + 23.3827i −0.505934 + 0.876303i
\(713\) 6.00000 0.224702
\(714\) −5.00000 + 1.73205i −0.187120 + 0.0648204i
\(715\) 0 0
\(716\) −1.00000 + 1.73205i −0.0373718 + 0.0647298i
\(717\) 9.00000 + 15.5885i 0.336111 + 0.582162i
\(718\) 5.00000 + 8.66025i 0.186598 + 0.323198i
\(719\) −18.0000 + 31.1769i −0.671287 + 1.16270i 0.306253 + 0.951950i \(0.400925\pi\)
−0.977539 + 0.210752i \(0.932409\pi\)
\(720\) 0 0
\(721\) −14.0000 12.1244i −0.521387 0.451535i
\(722\) −17.0000 −0.632674
\(723\) 7.00000 12.1244i 0.260333 0.450910i
\(724\) −1.50000 2.59808i −0.0557471 0.0965567i
\(725\) 0 0
\(726\) −5.50000 + 9.52628i −0.204124 + 0.353553i
\(727\) 47.0000 1.74313 0.871567 0.490277i \(-0.163104\pi\)
0.871567 + 0.490277i \(0.163104\pi\)
\(728\) −3.00000 + 15.5885i −0.111187 + 0.577747i
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) −7.00000 12.1244i −0.258904 0.448435i
\(732\) 3.50000 + 6.06218i 0.129364 + 0.224065i
\(733\) −8.00000 + 13.8564i −0.295487 + 0.511798i −0.975098 0.221774i \(-0.928815\pi\)
0.679611 + 0.733572i \(0.262148\pi\)
\(734\) 27.0000 0.996588
\(735\) 0 0
\(736\) −15.0000 −0.552907
\(737\) 0 0
\(738\) −5.00000 8.66025i −0.184053 0.318788i
\(739\) −8.00000 13.8564i −0.294285 0.509716i 0.680534 0.732717i \(-0.261748\pi\)
−0.974818 + 0.223001i \(0.928415\pi\)
\(740\) 0 0
\(741\) −12.0000 −0.440831
\(742\) 3.00000 15.5885i 0.110133 0.572270i
\(743\) 49.0000 1.79764 0.898818 0.438322i \(-0.144427\pi\)
0.898818 + 0.438322i \(0.144427\pi\)
\(744\) −3.00000 + 5.19615i −0.109985 + 0.190500i
\(745\) 0 0
\(746\) 12.0000 + 20.7846i 0.439351 + 0.760979i
\(747\) 11.0000 19.0526i 0.402469 0.697097i
\(748\) 0 0
\(749\) −22.0000 19.0526i −0.803863 0.696165i
\(750\) 0 0
\(751\) 6.00000 10.3923i 0.218943 0.379221i −0.735542 0.677479i \(-0.763072\pi\)
0.954485 + 0.298259i \(0.0964058\pi\)
\(752\) 0 0
\(753\) −15.0000 25.9808i −0.546630 0.946792i
\(754\) −7.00000 + 12.1244i −0.254925 + 0.441543i
\(755\) 0 0
\(756\) −12.5000 + 4.33013i −0.454621 + 0.157485i
\(757\) −22.0000 −0.799604 −0.399802 0.916602i \(-0.630921\pi\)
−0.399802 + 0.916602i \(0.630921\pi\)
\(758\) −5.00000 + 8.66025i −0.181608 + 0.314555i
\(759\) 0 0
\(760\) 0 0
\(761\) −7.00000 + 12.1244i −0.253750 + 0.439508i −0.964555 0.263881i \(-0.914997\pi\)
0.710805 + 0.703389i \(0.248331\pi\)
\(762\) 16.0000 0.579619
\(763\) −12.5000 + 4.33013i −0.452530 + 0.156761i
\(764\) −12.0000 −0.434145
\(765\) 0 0
\(766\) −2.50000 4.33013i −0.0903287 0.156454i
\(767\) 10.0000 + 17.3205i 0.361079 + 0.625407i
\(768\) 8.50000 14.7224i 0.306717 0.531250i
\(769\) −30.0000 −1.08183 −0.540914 0.841078i \(-0.681921\pi\)
−0.540914 + 0.841078i \(0.681921\pi\)
\(770\) 0 0
\(771\) −20.0000 −0.720282
\(772\) 2.00000 3.46410i 0.0719816 0.124676i
\(773\) 9.00000 + 15.5885i 0.323708 + 0.560678i 0.981250 0.192740i \(-0.0617373\pi\)
−0.657542 + 0.753418i \(0.728404\pi\)
\(774\) 7.00000 + 12.1244i 0.251610 + 0.435801i
\(775\) 0 0
\(776\) 48.0000 1.72310
\(777\) 4.00000 20.7846i 0.143499 0.745644i
\(778\) −14.0000 −0.501924
\(779\) −15.0000 + 25.9808i −0.537431 + 0.930857i
\(780\) 0 0
\(781\) 0 0
\(782\) −3.00000 + 5.19615i −0.107280 + 0.185814i
\(783\) −35.0000 −1.25080
\(784\) −5.50000 + 4.33013i −0.196429 + 0.154647i
\(785\) 0 0
\(786\) 2.00000 3.46410i 0.0713376 0.123560i
\(787\) −8.50000 14.7224i −0.302992 0.524798i 0.673820 0.738896i \(-0.264652\pi\)
−0.976812 + 0.214097i \(0.931319\pi\)
\(788\) 4.00000 + 6.92820i 0.142494 + 0.246807i
\(789\) −4.50000 + 7.79423i −0.160204 + 0.277482i
\(790\) 0 0
\(791\) 3.00000 15.5885i 0.106668 0.554262i
\(792\) 0 0
\(793\) 7.00000 12.1244i 0.248577 0.430548i
\(794\) 8.00000 + 13.8564i 0.283909 + 0.491745i
\(795\) 0 0
\(796\) −2.00000 + 3.46410i −0.0708881 + 0.122782i
\(797\) −40.0000 −1.41687 −0.708436 0.705775i \(-0.750599\pi\)
−0.708436 + 0.705775i \(0.750599\pi\)
\(798\) −12.0000 10.3923i −0.424795 0.367884i
\(799\) 0 0
\(800\) 0 0
\(801\) 9.00000 + 15.5885i 0.317999 + 0.550791i
\(802\) 1.50000 + 2.59808i 0.0529668 + 0.0917413i
\(803\) 0 0
\(804\) −5.00000 −0.176336
\(805\) 0 0
\(806\) 4.00000 0.140894
\(807\) 5.50000 9.52628i 0.193609 0.335341i
\(808\) −13.5000 23.3827i −0.474928 0.822600i
\(809\) −4.50000 7.79423i −0.158212 0.274030i 0.776012 0.630718i \(-0.217239\pi\)
−0.934224 + 0.356687i \(0.883906\pi\)
\(810\) 0 0
\(811\) −2.00000 −0.0702295 −0.0351147 0.999383i \(-0.511180\pi\)
−0.0351147 + 0.999383i \(0.511180\pi\)
\(812\) 17.5000 6.06218i 0.614130 0.212741i
\(813\) −2.00000 −0.0701431
\(814\) 0 0
\(815\) 0 0
\(816\) −1.00000 1.73205i −0.0350070 0.0606339i
\(817\) 21.0000 36.3731i 0.734697 1.27253i
\(818\) 25.0000 0.874105
\(819\) 8.00000 + 6.92820i 0.279543 + 0.242091i
\(820\) 0 0
\(821\) −11.0000 + 19.0526i −0.383903 + 0.664939i −0.991616 0.129217i \(-0.958754\pi\)
0.607714 + 0.794156i \(0.292087\pi\)
\(822\) 0 0
\(823\) 12.5000 + 21.6506i 0.435723 + 0.754694i 0.997354 0.0726937i \(-0.0231595\pi\)
−0.561632 + 0.827387i \(0.689826\pi\)
\(824\) 10.5000 18.1865i 0.365785 0.633558i
\(825\) 0 0
\(826\) −5.00000 + 25.9808i −0.173972 + 0.903986i
\(827\) 39.0000 1.35616 0.678081 0.734987i \(-0.262812\pi\)
0.678081 + 0.734987i \(0.262812\pi\)
\(828\) −3.00000 + 5.19615i −0.104257 + 0.180579i
\(829\) 15.0000 + 25.9808i 0.520972 + 0.902349i 0.999703 + 0.0243876i \(0.00776357\pi\)
−0.478731 + 0.877962i \(0.658903\pi\)
\(830\) 0 0
\(831\) 5.00000 8.66025i 0.173448 0.300421i
\(832\) −14.0000 −0.485363
\(833\) −2.00000 13.8564i −0.0692959 0.480096i
\(834\) −8.00000 −0.277017
\(835\) 0 0
\(836\) 0 0
\(837\) 5.00000 + 8.66025i 0.172825 + 0.299342i
\(838\) 12.0000 20.7846i 0.414533 0.717992i
\(839\) 48.0000 1.65714 0.828572 0.559883i \(-0.189154\pi\)
0.828572 + 0.559883i \(0.189154\pi\)
\(840\) 0 0
\(841\) 20.0000 0.689655
\(842\) 7.50000 12.9904i 0.258467 0.447678i
\(843\) 7.00000 + 12.1244i 0.241093 + 0.417585i
\(844\) −5.00000 8.66025i −0.172107 0.298098i
\(845\) 0 0
\(846\) 0 0
\(847\) −22.0000 19.0526i −0.755929 0.654654i
\(848\) 6.00000 0.206041
\(849\) 8.00000 13.8564i 0.274559 0.475551i
\(850\) 0 0
\(851\) −12.0000 20.7846i −0.411355 0.712487i
\(852\) −1.00000 + 1.73205i −0.0342594 + 0.0593391i
\(853\) 6.00000 0.205436 0.102718 0.994711i \(-0.467246\pi\)
0.102718 + 0.994711i \(0.467246\pi\)
\(854\) 17.5000 6.06218i 0.598838 0.207443i
\(855\) 0 0
\(856\) 16.5000 28.5788i 0.563958 0.976805i
\(857\) −6.00000 10.3923i −0.204956 0.354994i 0.745163 0.666883i \(-0.232372\pi\)
−0.950119 + 0.311888i \(0.899038\pi\)
\(858\) 0 0
\(859\) 16.0000 27.7128i 0.545913 0.945549i −0.452636 0.891695i \(-0.649516\pi\)
0.998549 0.0538535i \(-0.0171504\pi\)
\(860\) 0 0
\(861\) −12.5000 + 4.33013i −0.425999 + 0.147570i
\(862\) 32.0000 1.08992
\(863\) −4.50000 + 7.79423i −0.153182 + 0.265319i −0.932395 0.361440i \(-0.882285\pi\)
0.779214 + 0.626758i \(0.215619\pi\)
\(864\) −12.5000 21.6506i −0.425259 0.736570i
\(865\) 0 0
\(866\) 1.00000 1.73205i 0.0339814 0.0588575i
\(867\) −13.0000 −0.441503
\(868\) −4.00000 3.46410i −0.135769 0.117579i
\(869\) 0 0
\(870\) 0 0
\(871\) 5.00000 + 8.66025i 0.169419 + 0.293442i
\(872\) −7.50000 12.9904i −0.253982 0.439910i
\(873\) 16.0000 27.7128i 0.541518 0.937937i
\(874\) −18.0000 −0.608859
\(875\) 0 0
\(876\) −6.00000 −0.202721
\(877\) −1.00000 + 1.73205i −0.0337676 + 0.0584872i −0.882415 0.470471i \(-0.844084\pi\)
0.848648 + 0.528958i \(0.177417\pi\)
\(878\) 12.0000 + 20.7846i 0.404980 + 0.701447i
\(879\) 12.0000 + 20.7846i 0.404750 + 0.701047i
\(880\) 0 0
\(881\) −43.0000 −1.44871 −0.724353 0.689429i \(-0.757862\pi\)
−0.724353 + 0.689429i \(0.757862\pi\)
\(882\) 2.00000 + 13.8564i 0.0673435 + 0.466569i
\(883\) −36.0000 −1.21150 −0.605748 0.795656i \(-0.707126\pi\)
−0.605748 + 0.795656i \(0.707126\pi\)
\(884\) 2.00000 3.46410i 0.0672673 0.116510i
\(885\) 0 0
\(886\) −15.5000 26.8468i −0.520733 0.901935i
\(887\) 21.5000 37.2391i 0.721899 1.25037i −0.238338 0.971182i \(-0.576603\pi\)
0.960238 0.279184i \(-0.0900640\pi\)
\(888\) 24.0000 0.805387
\(889\) −8.00000 + 41.5692i −0.268311 + 1.39419i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0.500000 0.866025i 0.0167225 0.0289642i
\(895\) 0 0
\(896\) 6.00000 + 5.19615i 0.200446 + 0.173591i
\(897\) −6.00000 −0.200334
\(898\) 15.5000 26.8468i 0.517242 0.895889i
\(899\) −7.00000 12.1244i −0.233463 0.404370i
\(900\) 0 0
\(901\) −6.00000 + 10.3923i −0.199889 + 0.346218i
\(902\) 0 0
\(903\) 17.5000 6.06218i 0.582364 0.201737i
\(904\) 18.0000 0.598671
\(905\) 0 0
\(906\) 7.00000 + 12.1244i 0.232559 + 0.402805i
\(907\) −9.50000 16.4545i −0.315442 0.546362i 0.664089 0.747653i \(-0.268820\pi\)
−0.979531 + 0.201291i \(0.935486\pi\)
\(908\) 10.0000 17.3205i 0.331862 0.574801i
\(909\) −18.0000 −0.597022
\(910\) 0 0
\(911\) 24.0000 0.795155 0.397578 0.917568i \(-0.369851\pi\)
0.397578 + 0.917568i \(0.369851\pi\)
\(912\) 3.00000 5.19615i 0.0993399 0.172062i
\(913\) 0 0
\(914\) −16.0000 27.7128i −0.529233 0.916658i
\(915\) 0 0
\(916\) 22.0000 0.726900
\(917\) 8.00000 + 6.92820i 0.264183 + 0.228789i
\(918\) −10.0000 −0.330049
\(919\) −17.0000 + 29.4449i −0.560778 + 0.971296i 0.436650 + 0.899631i \(0.356165\pi\)
−0.997429 + 0.0716652i \(0.977169\pi\)
\(920\) 0 0
\(921\) 11.5000 + 19.9186i 0.378938 + 0.656340i
\(922\) 9.00000 15.5885i 0.296399 0.513378i
\(923\) 4.00000 0.131662
\(924\) 0 0
\(925\) 0 0
\(926\) −1.50000 + 2.59808i −0.0492931 + 0.0853781i
\(927\) −7.00000 12.1244i −0.229910 0.398216i
\(928\) 17.5000 + 30.3109i 0.574466 + 0.995004i
\(929\) 14.5000 25.1147i 0.475730 0.823988i −0.523884 0.851790i \(-0.675517\pi\)
0.999613 + 0.0278019i \(0.00885076\pi\)
\(930\) 0 0
\(931\) 33.0000 25.9808i 1.08153 0.851485i
\(932\) 14.0000 0.458585
\(933\) −15.0000 + 25.9808i −0.491078 + 0.850572i
\(934\) −1.50000 2.59808i −0.0490815 0.0850117i
\(935\) 0 0
\(936\) −6.00000 + 10.3923i −0.196116 + 0.339683i
\(937\) 8.00000 0.261349 0.130674 0.991425i \(-0.458286\pi\)
0.130674 + 0.991425i \(0.458286\pi\)
\(938\) −2.50000 + 12.9904i −0.0816279 + 0.424151i
\(939\) −24.0000 −0.783210
\(940\) 0 0
\(941\) 9.00000 + 15.5885i 0.293392 + 0.508169i 0.974609 0.223912i \(-0.0718827\pi\)
−0.681218 + 0.732081i \(0.738549\pi\)
\(942\) −6.00000 10.3923i −0.195491 0.338600i
\(943\) −7.50000 + 12.9904i −0.244234 + 0.423025i
\(944\) −10.0000 −0.325472
\(945\) 0 0
\(946\) 0 0
\(947\) −28.5000 + 49.3634i −0.926126 + 1.60410i −0.136385 + 0.990656i \(0.543548\pi\)
−0.789741 + 0.613441i \(0.789785\pi\)
\(948\) −1.00000 1.73205i −0.0324785 0.0562544i
\(949\) 6.00000 + 10.3923i 0.194768 + 0.337348i
\(950\) 0 0
\(951\) 6.00000 0.194563
\(952\) 15.0000 5.19615i 0.486153 0.168408i
\(953\) −60.0000 −1.94359 −0.971795 0.235826i \(-0.924220\pi\)
−0.971795 + 0.235826i \(0.924220\pi\)
\(954\) 6.00000 10.3923i 0.194257 0.336463i
\(955\) 0 0
\(956\) −9.00000 15.5885i −0.291081 0.504167i
\(957\) 0 0
\(958\) −42.0000 −1.35696
\(959\) 0 0
\(960\) 0 0
\(961\) 13.5000 23.3827i 0.435484 0.754280i
\(962\) −8.00000 13.8564i −0.257930 0.446748i
\(963\) −11.0000 19.0526i −0.354470 0.613960i
\(964\) −7.00000 + 12.1244i −0.225455 + 0.390499i
\(965\) 0 0
\(966\) −6.00000 5.19615i −0.193047 0.167183i
\(967\) 13.0000 0.418052 0.209026 0.977910i \(-0.432971\pi\)
0.209026 + 0.977910i \(0.432971\pi\)
\(968\) 16.5000 28.5788i 0.530330 0.918559i
\(969\) 6.00000 + 10.3923i 0.192748 + 0.333849i
\(970\) 0 0
\(971\) 16.0000 27.7128i 0.513464 0.889346i −0.486414 0.873729i \(-0.661695\pi\)
0.999878 0.0156178i \(-0.00497150\pi\)
\(972\) −16.0000 −0.513200
\(973\) 4.00000 20.7846i 0.128234 0.666324i
\(974\) −12.0000 −0.384505
\(975\) 0 0
\(976\) 3.50000 + 6.06218i 0.112032 + 0.194046i
\(977\) 30.0000 + 51.9615i 0.959785 + 1.66240i 0.723017 + 0.690830i \(0.242755\pi\)
0.236768 + 0.971566i \(0.423912\pi\)
\(978\) 2.00000 3.46410i 0.0639529 0.110770i
\(979\) 0 0
\(980\) 0 0
\(981\) −10.0000 −0.319275
\(982\) −13.0000 + 22.5167i −0.414847 + 0.718536i
\(983\) 1.50000 + 2.59808i 0.0478426 + 0.0828658i 0.888955 0.457995i \(-0.151432\pi\)
−0.841112 + 0.540860i \(0.818099\pi\)
\(984\) −7.50000 12.9904i −0.239091 0.414118i
\(985\) 0 0
\(986\) 14.0000 0.445851
\(987\) 0 0
\(988\) 12.0000 0.381771
\(989\) 10.5000 18.1865i 0.333881 0.578298i
\(990\) 0 0
\(991\) 25.0000 + 43.3013i 0.794151 + 1.37551i 0.923377 + 0.383895i \(0.125418\pi\)
−0.129226 + 0.991615i \(0.541249\pi\)
\(992\) 5.00000 8.66025i 0.158750 0.274963i
\(993\) 6.00000 0.190404
\(994\) 4.00000 + 3.46410i 0.126872 + 0.109875i
\(995\) 0 0
\(996\) 5.50000 9.52628i 0.174274 0.301852i
\(997\) −1.00000 1.73205i −0.0316703 0.0548546i 0.849756 0.527176i \(-0.176749\pi\)
−0.881426 + 0.472322i \(0.843416\pi\)
\(998\) 8.00000 + 13.8564i 0.253236 + 0.438617i
\(999\) 20.0000 34.6410i 0.632772 1.09599i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 175.2.e.b.51.1 2
5.2 odd 4 35.2.j.a.9.2 yes 4
5.3 odd 4 35.2.j.a.9.1 yes 4
5.4 even 2 175.2.e.a.51.1 2
7.2 even 3 1225.2.a.d.1.1 1
7.4 even 3 inner 175.2.e.b.151.1 2
7.5 odd 6 1225.2.a.b.1.1 1
15.2 even 4 315.2.bf.a.289.1 4
15.8 even 4 315.2.bf.a.289.2 4
20.3 even 4 560.2.bw.b.289.1 4
20.7 even 4 560.2.bw.b.289.2 4
35.2 odd 12 245.2.b.c.99.1 2
35.3 even 12 245.2.j.c.214.2 4
35.4 even 6 175.2.e.a.151.1 2
35.9 even 6 1225.2.a.f.1.1 1
35.12 even 12 245.2.b.b.99.1 2
35.13 even 4 245.2.j.c.79.1 4
35.17 even 12 245.2.j.c.214.1 4
35.18 odd 12 35.2.j.a.4.2 yes 4
35.19 odd 6 1225.2.a.g.1.1 1
35.23 odd 12 245.2.b.c.99.2 2
35.27 even 4 245.2.j.c.79.2 4
35.32 odd 12 35.2.j.a.4.1 4
35.33 even 12 245.2.b.b.99.2 2
105.2 even 12 2205.2.d.d.1324.2 2
105.23 even 12 2205.2.d.d.1324.1 2
105.32 even 12 315.2.bf.a.109.2 4
105.47 odd 12 2205.2.d.e.1324.2 2
105.53 even 12 315.2.bf.a.109.1 4
105.68 odd 12 2205.2.d.e.1324.1 2
140.67 even 12 560.2.bw.b.529.1 4
140.123 even 12 560.2.bw.b.529.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.2.j.a.4.1 4 35.32 odd 12
35.2.j.a.4.2 yes 4 35.18 odd 12
35.2.j.a.9.1 yes 4 5.3 odd 4
35.2.j.a.9.2 yes 4 5.2 odd 4
175.2.e.a.51.1 2 5.4 even 2
175.2.e.a.151.1 2 35.4 even 6
175.2.e.b.51.1 2 1.1 even 1 trivial
175.2.e.b.151.1 2 7.4 even 3 inner
245.2.b.b.99.1 2 35.12 even 12
245.2.b.b.99.2 2 35.33 even 12
245.2.b.c.99.1 2 35.2 odd 12
245.2.b.c.99.2 2 35.23 odd 12
245.2.j.c.79.1 4 35.13 even 4
245.2.j.c.79.2 4 35.27 even 4
245.2.j.c.214.1 4 35.17 even 12
245.2.j.c.214.2 4 35.3 even 12
315.2.bf.a.109.1 4 105.53 even 12
315.2.bf.a.109.2 4 105.32 even 12
315.2.bf.a.289.1 4 15.2 even 4
315.2.bf.a.289.2 4 15.8 even 4
560.2.bw.b.289.1 4 20.3 even 4
560.2.bw.b.289.2 4 20.7 even 4
560.2.bw.b.529.1 4 140.67 even 12
560.2.bw.b.529.2 4 140.123 even 12
1225.2.a.b.1.1 1 7.5 odd 6
1225.2.a.d.1.1 1 7.2 even 3
1225.2.a.f.1.1 1 35.9 even 6
1225.2.a.g.1.1 1 35.19 odd 6
2205.2.d.d.1324.1 2 105.23 even 12
2205.2.d.d.1324.2 2 105.2 even 12
2205.2.d.e.1324.1 2 105.68 odd 12
2205.2.d.e.1324.2 2 105.47 odd 12