L(s) = 1 | − i·2-s − i·3-s + 4-s + (1 + 2i)5-s − 6-s − 3i·8-s + 2·9-s + (2 − i)10-s − i·12-s + 2i·13-s + (2 − i)15-s − 16-s − 2i·17-s − 2i·18-s − 6·19-s + (1 + 2i)20-s + ⋯ |
L(s) = 1 | − 0.707i·2-s − 0.577i·3-s + 0.5·4-s + (0.447 + 0.894i)5-s − 0.408·6-s − 1.06i·8-s + 0.666·9-s + (0.632 − 0.316i)10-s − 0.288i·12-s + 0.554i·13-s + (0.516 − 0.258i)15-s − 0.250·16-s − 0.485i·17-s − 0.471i·18-s − 1.37·19-s + (0.223 + 0.447i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 245 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 245 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.32957 - 0.821725i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.32957 - 0.821725i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (-1 - 2i)T \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + iT - 2T^{2} \) |
| 3 | \( 1 + iT - 3T^{2} \) |
| 11 | \( 1 + 11T^{2} \) |
| 13 | \( 1 - 2iT - 13T^{2} \) |
| 17 | \( 1 + 2iT - 17T^{2} \) |
| 19 | \( 1 + 6T + 19T^{2} \) |
| 23 | \( 1 + 3iT - 23T^{2} \) |
| 29 | \( 1 + 7T + 29T^{2} \) |
| 31 | \( 1 - 2T + 31T^{2} \) |
| 37 | \( 1 - 8iT - 37T^{2} \) |
| 41 | \( 1 - 5T + 41T^{2} \) |
| 43 | \( 1 - 7iT - 43T^{2} \) |
| 47 | \( 1 - 47T^{2} \) |
| 53 | \( 1 - 6iT - 53T^{2} \) |
| 59 | \( 1 + 10T + 59T^{2} \) |
| 61 | \( 1 - 7T + 61T^{2} \) |
| 67 | \( 1 - 5iT - 67T^{2} \) |
| 71 | \( 1 + 2T + 71T^{2} \) |
| 73 | \( 1 + 6iT - 73T^{2} \) |
| 79 | \( 1 - 2T + 79T^{2} \) |
| 83 | \( 1 + 11iT - 83T^{2} \) |
| 89 | \( 1 + 9T + 89T^{2} \) |
| 97 | \( 1 - 16iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.84681627409977531747499048886, −10.98756286558056088332578216807, −10.25327295647993626477769852673, −9.351854607884083566221417858624, −7.73218485914141313641570698096, −6.80122903032974038134729394574, −6.21699066979898812751951526873, −4.22970151780495777256668162325, −2.75196144789082061150707603900, −1.71885448512894583614551319232,
1.96757377625627144750002423327, 3.99128029617419054937583513285, 5.22034242659032869267184379667, 6.06457335607048116366724981930, 7.29763084938530033112741735749, 8.315789301112807317702033567314, 9.271730083406293209770252837771, 10.32375677978690018736264978442, 11.13252314025887071708034118484, 12.46951940122934231732586921988