Properties

Label 2352.3.m.o.1471.2
Level $2352$
Weight $3$
Character 2352.1471
Analytic conductor $64.087$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2352,3,Mod(1471,2352)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2352, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2352.1471"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2352 = 2^{4} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2352.m (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,0,2,0,0,0,-18,0,0,0,44,0,0,0,16,0,0,0,0,0,0,0,28,0,0,0, 34,0,0,0,-6,0,0,0,-12,0,0,0,136] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(41)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(64.0873581775\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.1364138928.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 35x^{4} + 364x^{2} + 972 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: no (minimal twist has level 336)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1471.2
Root \(3.78298i\) of defining polynomial
Character \(\chi\) \(=\) 2352.1471
Dual form 2352.3.m.o.1471.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.73205i q^{3} -2.31096 q^{5} -3.00000 q^{9} -11.5687i q^{11} +15.7937 q^{13} +4.00270i q^{15} +8.48271 q^{17} -2.46897i q^{19} +45.8352i q^{23} -19.6595 q^{25} +5.19615i q^{27} +35.2814 q^{29} +30.0485i q^{31} -20.0375 q^{33} +39.2468 q^{37} -27.3554i q^{39} -27.0405 q^{41} +1.39177i q^{43} +6.93289 q^{45} +21.2582i q^{47} -14.6925i q^{51} +32.3110 q^{53} +26.7348i q^{55} -4.27639 q^{57} +29.5269i q^{59} -103.394 q^{61} -36.4986 q^{65} -71.5527i q^{67} +79.3890 q^{69} -71.3595i q^{71} -29.2468 q^{73} +34.0512i q^{75} -102.925i q^{79} +9.00000 q^{81} +43.1509i q^{83} -19.6032 q^{85} -61.1091i q^{87} +124.097 q^{89} +52.0455 q^{93} +5.70571i q^{95} +14.7186 q^{97} +34.7060i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{5} - 18 q^{9} + 44 q^{13} + 16 q^{17} + 28 q^{25} + 34 q^{29} - 6 q^{33} - 12 q^{37} + 136 q^{41} - 6 q^{45} + 178 q^{53} + 60 q^{57} - 100 q^{61} + 368 q^{65} + 48 q^{69} + 72 q^{73} + 54 q^{81}+ \cdots + 266 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2352\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1471\) \(1765\) \(2257\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 1.73205i − 0.577350i
\(4\) 0 0
\(5\) −2.31096 −0.462193 −0.231096 0.972931i \(-0.574231\pi\)
−0.231096 + 0.972931i \(0.574231\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −3.00000 −0.333333
\(10\) 0 0
\(11\) − 11.5687i − 1.05170i −0.850578 0.525849i \(-0.823748\pi\)
0.850578 0.525849i \(-0.176252\pi\)
\(12\) 0 0
\(13\) 15.7937 1.21490 0.607449 0.794359i \(-0.292193\pi\)
0.607449 + 0.794359i \(0.292193\pi\)
\(14\) 0 0
\(15\) 4.00270i 0.266847i
\(16\) 0 0
\(17\) 8.48271 0.498983 0.249492 0.968377i \(-0.419737\pi\)
0.249492 + 0.968377i \(0.419737\pi\)
\(18\) 0 0
\(19\) − 2.46897i − 0.129946i −0.997887 0.0649730i \(-0.979304\pi\)
0.997887 0.0649730i \(-0.0206961\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 45.8352i 1.99284i 0.0845609 + 0.996418i \(0.473051\pi\)
−0.0845609 + 0.996418i \(0.526949\pi\)
\(24\) 0 0
\(25\) −19.6595 −0.786378
\(26\) 0 0
\(27\) 5.19615i 0.192450i
\(28\) 0 0
\(29\) 35.2814 1.21660 0.608300 0.793707i \(-0.291852\pi\)
0.608300 + 0.793707i \(0.291852\pi\)
\(30\) 0 0
\(31\) 30.0485i 0.969305i 0.874707 + 0.484653i \(0.161054\pi\)
−0.874707 + 0.484653i \(0.838946\pi\)
\(32\) 0 0
\(33\) −20.0375 −0.607198
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 39.2468 1.06072 0.530362 0.847771i \(-0.322056\pi\)
0.530362 + 0.847771i \(0.322056\pi\)
\(38\) 0 0
\(39\) − 27.3554i − 0.701422i
\(40\) 0 0
\(41\) −27.0405 −0.659524 −0.329762 0.944064i \(-0.606968\pi\)
−0.329762 + 0.944064i \(0.606968\pi\)
\(42\) 0 0
\(43\) 1.39177i 0.0323667i 0.999869 + 0.0161834i \(0.00515155\pi\)
−0.999869 + 0.0161834i \(0.994848\pi\)
\(44\) 0 0
\(45\) 6.93289 0.154064
\(46\) 0 0
\(47\) 21.2582i 0.452302i 0.974092 + 0.226151i \(0.0726144\pi\)
−0.974092 + 0.226151i \(0.927386\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) − 14.6925i − 0.288088i
\(52\) 0 0
\(53\) 32.3110 0.609641 0.304820 0.952410i \(-0.401404\pi\)
0.304820 + 0.952410i \(0.401404\pi\)
\(54\) 0 0
\(55\) 26.7348i 0.486087i
\(56\) 0 0
\(57\) −4.27639 −0.0750244
\(58\) 0 0
\(59\) 29.5269i 0.500457i 0.968187 + 0.250228i \(0.0805057\pi\)
−0.968187 + 0.250228i \(0.919494\pi\)
\(60\) 0 0
\(61\) −103.394 −1.69498 −0.847491 0.530809i \(-0.821888\pi\)
−0.847491 + 0.530809i \(0.821888\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −36.4986 −0.561517
\(66\) 0 0
\(67\) − 71.5527i − 1.06795i −0.845500 0.533975i \(-0.820698\pi\)
0.845500 0.533975i \(-0.179302\pi\)
\(68\) 0 0
\(69\) 79.3890 1.15056
\(70\) 0 0
\(71\) − 71.3595i − 1.00506i −0.864559 0.502532i \(-0.832402\pi\)
0.864559 0.502532i \(-0.167598\pi\)
\(72\) 0 0
\(73\) −29.2468 −0.400641 −0.200321 0.979730i \(-0.564198\pi\)
−0.200321 + 0.979730i \(0.564198\pi\)
\(74\) 0 0
\(75\) 34.0512i 0.454016i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) − 102.925i − 1.30284i −0.758716 0.651421i \(-0.774173\pi\)
0.758716 0.651421i \(-0.225827\pi\)
\(80\) 0 0
\(81\) 9.00000 0.111111
\(82\) 0 0
\(83\) 43.1509i 0.519890i 0.965623 + 0.259945i \(0.0837044\pi\)
−0.965623 + 0.259945i \(0.916296\pi\)
\(84\) 0 0
\(85\) −19.6032 −0.230626
\(86\) 0 0
\(87\) − 61.1091i − 0.702404i
\(88\) 0 0
\(89\) 124.097 1.39435 0.697173 0.716903i \(-0.254441\pi\)
0.697173 + 0.716903i \(0.254441\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 52.0455 0.559629
\(94\) 0 0
\(95\) 5.70571i 0.0600601i
\(96\) 0 0
\(97\) 14.7186 0.151738 0.0758692 0.997118i \(-0.475827\pi\)
0.0758692 + 0.997118i \(0.475827\pi\)
\(98\) 0 0
\(99\) 34.7060i 0.350566i
\(100\) 0 0
\(101\) 83.5123 0.826854 0.413427 0.910537i \(-0.364332\pi\)
0.413427 + 0.910537i \(0.364332\pi\)
\(102\) 0 0
\(103\) 124.636i 1.21006i 0.796204 + 0.605028i \(0.206838\pi\)
−0.796204 + 0.605028i \(0.793162\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 36.0585i 0.336995i 0.985702 + 0.168498i \(0.0538916\pi\)
−0.985702 + 0.168498i \(0.946108\pi\)
\(108\) 0 0
\(109\) 184.700 1.69449 0.847247 0.531199i \(-0.178258\pi\)
0.847247 + 0.531199i \(0.178258\pi\)
\(110\) 0 0
\(111\) − 67.9775i − 0.612410i
\(112\) 0 0
\(113\) 211.813 1.87446 0.937228 0.348718i \(-0.113383\pi\)
0.937228 + 0.348718i \(0.113383\pi\)
\(114\) 0 0
\(115\) − 105.924i − 0.921074i
\(116\) 0 0
\(117\) −47.3810 −0.404966
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −12.8342 −0.106067
\(122\) 0 0
\(123\) 46.8355i 0.380776i
\(124\) 0 0
\(125\) 103.206 0.825651
\(126\) 0 0
\(127\) − 35.1062i − 0.276427i −0.990402 0.138213i \(-0.955864\pi\)
0.990402 0.138213i \(-0.0441360\pi\)
\(128\) 0 0
\(129\) 2.41061 0.0186869
\(130\) 0 0
\(131\) 157.940i 1.20565i 0.797874 + 0.602824i \(0.205958\pi\)
−0.797874 + 0.602824i \(0.794042\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) − 12.0081i − 0.0889490i
\(136\) 0 0
\(137\) 221.050 1.61351 0.806753 0.590888i \(-0.201223\pi\)
0.806753 + 0.590888i \(0.201223\pi\)
\(138\) 0 0
\(139\) − 136.854i − 0.984563i −0.870436 0.492281i \(-0.836163\pi\)
0.870436 0.492281i \(-0.163837\pi\)
\(140\) 0 0
\(141\) 36.8203 0.261137
\(142\) 0 0
\(143\) − 182.712i − 1.27771i
\(144\) 0 0
\(145\) −81.5339 −0.562303
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −46.2744 −0.310566 −0.155283 0.987870i \(-0.549629\pi\)
−0.155283 + 0.987870i \(0.549629\pi\)
\(150\) 0 0
\(151\) − 92.7852i − 0.614471i −0.951633 0.307236i \(-0.900596\pi\)
0.951633 0.307236i \(-0.0994040\pi\)
\(152\) 0 0
\(153\) −25.4481 −0.166328
\(154\) 0 0
\(155\) − 69.4409i − 0.448006i
\(156\) 0 0
\(157\) 184.026 1.17214 0.586070 0.810261i \(-0.300675\pi\)
0.586070 + 0.810261i \(0.300675\pi\)
\(158\) 0 0
\(159\) − 55.9642i − 0.351976i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 66.5771i 0.408448i 0.978924 + 0.204224i \(0.0654671\pi\)
−0.978924 + 0.204224i \(0.934533\pi\)
\(164\) 0 0
\(165\) 46.3060 0.280642
\(166\) 0 0
\(167\) 118.824i 0.711521i 0.934577 + 0.355761i \(0.115778\pi\)
−0.934577 + 0.355761i \(0.884222\pi\)
\(168\) 0 0
\(169\) 80.4402 0.475978
\(170\) 0 0
\(171\) 7.40692i 0.0433153i
\(172\) 0 0
\(173\) −200.419 −1.15849 −0.579247 0.815152i \(-0.696653\pi\)
−0.579247 + 0.815152i \(0.696653\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 51.1422 0.288939
\(178\) 0 0
\(179\) − 185.220i − 1.03475i −0.855759 0.517375i \(-0.826909\pi\)
0.855759 0.517375i \(-0.173091\pi\)
\(180\) 0 0
\(181\) 228.372 1.26173 0.630863 0.775894i \(-0.282701\pi\)
0.630863 + 0.775894i \(0.282701\pi\)
\(182\) 0 0
\(183\) 179.084i 0.978599i
\(184\) 0 0
\(185\) −90.6979 −0.490259
\(186\) 0 0
\(187\) − 98.1337i − 0.524779i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) − 150.387i − 0.787369i −0.919246 0.393684i \(-0.871200\pi\)
0.919246 0.393684i \(-0.128800\pi\)
\(192\) 0 0
\(193\) 81.5410 0.422492 0.211246 0.977433i \(-0.432248\pi\)
0.211246 + 0.977433i \(0.432248\pi\)
\(194\) 0 0
\(195\) 63.2174i 0.324192i
\(196\) 0 0
\(197\) −192.720 −0.978273 −0.489136 0.872207i \(-0.662688\pi\)
−0.489136 + 0.872207i \(0.662688\pi\)
\(198\) 0 0
\(199\) 87.5533i 0.439966i 0.975504 + 0.219983i \(0.0706003\pi\)
−0.975504 + 0.219983i \(0.929400\pi\)
\(200\) 0 0
\(201\) −123.933 −0.616582
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 62.4895 0.304827
\(206\) 0 0
\(207\) − 137.506i − 0.664279i
\(208\) 0 0
\(209\) −28.5628 −0.136664
\(210\) 0 0
\(211\) − 127.785i − 0.605618i −0.953051 0.302809i \(-0.902076\pi\)
0.953051 0.302809i \(-0.0979244\pi\)
\(212\) 0 0
\(213\) −123.598 −0.580273
\(214\) 0 0
\(215\) − 3.21632i − 0.0149596i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 50.6569i 0.231310i
\(220\) 0 0
\(221\) 133.973 0.606214
\(222\) 0 0
\(223\) − 283.951i − 1.27332i −0.771144 0.636660i \(-0.780315\pi\)
0.771144 0.636660i \(-0.219685\pi\)
\(224\) 0 0
\(225\) 58.9784 0.262126
\(226\) 0 0
\(227\) 413.572i 1.82190i 0.412512 + 0.910952i \(0.364651\pi\)
−0.412512 + 0.910952i \(0.635349\pi\)
\(228\) 0 0
\(229\) −161.310 −0.704411 −0.352205 0.935923i \(-0.614568\pi\)
−0.352205 + 0.935923i \(0.614568\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 362.730 1.55678 0.778390 0.627781i \(-0.216037\pi\)
0.778390 + 0.627781i \(0.216037\pi\)
\(234\) 0 0
\(235\) − 49.1269i − 0.209051i
\(236\) 0 0
\(237\) −178.271 −0.752197
\(238\) 0 0
\(239\) − 342.283i − 1.43215i −0.698026 0.716073i \(-0.745938\pi\)
0.698026 0.716073i \(-0.254062\pi\)
\(240\) 0 0
\(241\) 235.728 0.978123 0.489061 0.872249i \(-0.337339\pi\)
0.489061 + 0.872249i \(0.337339\pi\)
\(242\) 0 0
\(243\) − 15.5885i − 0.0641500i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 38.9942i − 0.157871i
\(248\) 0 0
\(249\) 74.7395 0.300159
\(250\) 0 0
\(251\) − 409.935i − 1.63321i −0.577198 0.816604i \(-0.695854\pi\)
0.577198 0.816604i \(-0.304146\pi\)
\(252\) 0 0
\(253\) 530.253 2.09586
\(254\) 0 0
\(255\) 33.9538i 0.133152i
\(256\) 0 0
\(257\) −386.268 −1.50299 −0.751494 0.659740i \(-0.770666\pi\)
−0.751494 + 0.659740i \(0.770666\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −105.844 −0.405533
\(262\) 0 0
\(263\) 44.7325i 0.170086i 0.996377 + 0.0850428i \(0.0271027\pi\)
−0.996377 + 0.0850428i \(0.972897\pi\)
\(264\) 0 0
\(265\) −74.6694 −0.281771
\(266\) 0 0
\(267\) − 214.942i − 0.805026i
\(268\) 0 0
\(269\) 389.015 1.44615 0.723076 0.690769i \(-0.242728\pi\)
0.723076 + 0.690769i \(0.242728\pi\)
\(270\) 0 0
\(271\) − 409.479i − 1.51099i −0.655154 0.755496i \(-0.727396\pi\)
0.655154 0.755496i \(-0.272604\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 227.434i 0.827032i
\(276\) 0 0
\(277\) 180.056 0.650022 0.325011 0.945710i \(-0.394632\pi\)
0.325011 + 0.945710i \(0.394632\pi\)
\(278\) 0 0
\(279\) − 90.1454i − 0.323102i
\(280\) 0 0
\(281\) −210.919 −0.750601 −0.375301 0.926903i \(-0.622461\pi\)
−0.375301 + 0.926903i \(0.622461\pi\)
\(282\) 0 0
\(283\) − 245.018i − 0.865787i −0.901445 0.432894i \(-0.857493\pi\)
0.901445 0.432894i \(-0.142507\pi\)
\(284\) 0 0
\(285\) 9.88258 0.0346757
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −217.044 −0.751016
\(290\) 0 0
\(291\) − 25.4934i − 0.0876062i
\(292\) 0 0
\(293\) 262.124 0.894622 0.447311 0.894378i \(-0.352382\pi\)
0.447311 + 0.894378i \(0.352382\pi\)
\(294\) 0 0
\(295\) − 68.2357i − 0.231307i
\(296\) 0 0
\(297\) 60.1126 0.202399
\(298\) 0 0
\(299\) 723.907i 2.42109i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) − 144.648i − 0.477385i
\(304\) 0 0
\(305\) 238.940 0.783408
\(306\) 0 0
\(307\) 146.501i 0.477203i 0.971118 + 0.238601i \(0.0766889\pi\)
−0.971118 + 0.238601i \(0.923311\pi\)
\(308\) 0 0
\(309\) 215.876 0.698626
\(310\) 0 0
\(311\) − 15.0566i − 0.0484134i −0.999707 0.0242067i \(-0.992294\pi\)
0.999707 0.0242067i \(-0.00770598\pi\)
\(312\) 0 0
\(313\) −445.575 −1.42356 −0.711780 0.702402i \(-0.752111\pi\)
−0.711780 + 0.702402i \(0.752111\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 94.8746 0.299289 0.149645 0.988740i \(-0.452187\pi\)
0.149645 + 0.988740i \(0.452187\pi\)
\(318\) 0 0
\(319\) − 408.159i − 1.27949i
\(320\) 0 0
\(321\) 62.4552 0.194564
\(322\) 0 0
\(323\) − 20.9436i − 0.0648409i
\(324\) 0 0
\(325\) −310.495 −0.955369
\(326\) 0 0
\(327\) − 319.910i − 0.978317i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) − 70.0820i − 0.211728i −0.994381 0.105864i \(-0.966239\pi\)
0.994381 0.105864i \(-0.0337608\pi\)
\(332\) 0 0
\(333\) −117.740 −0.353575
\(334\) 0 0
\(335\) 165.356i 0.493599i
\(336\) 0 0
\(337\) 25.8353 0.0766625 0.0383313 0.999265i \(-0.487796\pi\)
0.0383313 + 0.999265i \(0.487796\pi\)
\(338\) 0 0
\(339\) − 366.872i − 1.08222i
\(340\) 0 0
\(341\) 347.621 1.01942
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −183.465 −0.531782
\(346\) 0 0
\(347\) 431.127i 1.24244i 0.783636 + 0.621220i \(0.213363\pi\)
−0.783636 + 0.621220i \(0.786637\pi\)
\(348\) 0 0
\(349\) −340.822 −0.976566 −0.488283 0.872685i \(-0.662377\pi\)
−0.488283 + 0.872685i \(0.662377\pi\)
\(350\) 0 0
\(351\) 82.0663i 0.233807i
\(352\) 0 0
\(353\) 89.8708 0.254591 0.127296 0.991865i \(-0.459370\pi\)
0.127296 + 0.991865i \(0.459370\pi\)
\(354\) 0 0
\(355\) 164.909i 0.464533i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) − 359.108i − 1.00030i −0.865939 0.500150i \(-0.833278\pi\)
0.865939 0.500150i \(-0.166722\pi\)
\(360\) 0 0
\(361\) 354.904 0.983114
\(362\) 0 0
\(363\) 22.2294i 0.0612380i
\(364\) 0 0
\(365\) 67.5883 0.185173
\(366\) 0 0
\(367\) − 496.034i − 1.35159i −0.737090 0.675795i \(-0.763800\pi\)
0.737090 0.675795i \(-0.236200\pi\)
\(368\) 0 0
\(369\) 81.1214 0.219841
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −409.207 −1.09707 −0.548535 0.836128i \(-0.684814\pi\)
−0.548535 + 0.836128i \(0.684814\pi\)
\(374\) 0 0
\(375\) − 178.759i − 0.476690i
\(376\) 0 0
\(377\) 557.223 1.47804
\(378\) 0 0
\(379\) 531.591i 1.40261i 0.712859 + 0.701307i \(0.247400\pi\)
−0.712859 + 0.701307i \(0.752600\pi\)
\(380\) 0 0
\(381\) −60.8057 −0.159595
\(382\) 0 0
\(383\) 746.787i 1.94984i 0.222563 + 0.974918i \(0.428558\pi\)
−0.222563 + 0.974918i \(0.571442\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 4.17530i − 0.0107889i
\(388\) 0 0
\(389\) 331.492 0.852164 0.426082 0.904685i \(-0.359894\pi\)
0.426082 + 0.904685i \(0.359894\pi\)
\(390\) 0 0
\(391\) 388.807i 0.994392i
\(392\) 0 0
\(393\) 273.560 0.696081
\(394\) 0 0
\(395\) 237.855i 0.602164i
\(396\) 0 0
\(397\) 136.540 0.343930 0.171965 0.985103i \(-0.444988\pi\)
0.171965 + 0.985103i \(0.444988\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 390.029 0.972640 0.486320 0.873781i \(-0.338339\pi\)
0.486320 + 0.873781i \(0.338339\pi\)
\(402\) 0 0
\(403\) 474.576i 1.17761i
\(404\) 0 0
\(405\) −20.7987 −0.0513547
\(406\) 0 0
\(407\) − 454.033i − 1.11556i
\(408\) 0 0
\(409\) −769.032 −1.88027 −0.940137 0.340797i \(-0.889303\pi\)
−0.940137 + 0.340797i \(0.889303\pi\)
\(410\) 0 0
\(411\) − 382.871i − 0.931559i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) − 99.7200i − 0.240289i
\(416\) 0 0
\(417\) −237.038 −0.568438
\(418\) 0 0
\(419\) − 664.417i − 1.58572i −0.609403 0.792861i \(-0.708591\pi\)
0.609403 0.792861i \(-0.291409\pi\)
\(420\) 0 0
\(421\) 83.6243 0.198633 0.0993163 0.995056i \(-0.468334\pi\)
0.0993163 + 0.995056i \(0.468334\pi\)
\(422\) 0 0
\(423\) − 63.7746i − 0.150767i
\(424\) 0 0
\(425\) −166.765 −0.392389
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −316.466 −0.737683
\(430\) 0 0
\(431\) 401.205i 0.930870i 0.885082 + 0.465435i \(0.154102\pi\)
−0.885082 + 0.465435i \(0.845898\pi\)
\(432\) 0 0
\(433\) −96.9743 −0.223959 −0.111980 0.993711i \(-0.535719\pi\)
−0.111980 + 0.993711i \(0.535719\pi\)
\(434\) 0 0
\(435\) 141.221i 0.324646i
\(436\) 0 0
\(437\) 113.166 0.258961
\(438\) 0 0
\(439\) 437.240i 0.995990i 0.867180 + 0.497995i \(0.165930\pi\)
−0.867180 + 0.497995i \(0.834070\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 585.479i 1.32162i 0.750552 + 0.660812i \(0.229788\pi\)
−0.750552 + 0.660812i \(0.770212\pi\)
\(444\) 0 0
\(445\) −286.783 −0.644457
\(446\) 0 0
\(447\) 80.1495i 0.179305i
\(448\) 0 0
\(449\) −430.149 −0.958016 −0.479008 0.877811i \(-0.659004\pi\)
−0.479008 + 0.877811i \(0.659004\pi\)
\(450\) 0 0
\(451\) 312.822i 0.693620i
\(452\) 0 0
\(453\) −160.709 −0.354765
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 816.499 1.78665 0.893325 0.449412i \(-0.148366\pi\)
0.893325 + 0.449412i \(0.148366\pi\)
\(458\) 0 0
\(459\) 44.0775i 0.0960293i
\(460\) 0 0
\(461\) −280.569 −0.608609 −0.304305 0.952575i \(-0.598424\pi\)
−0.304305 + 0.952575i \(0.598424\pi\)
\(462\) 0 0
\(463\) 181.939i 0.392958i 0.980508 + 0.196479i \(0.0629507\pi\)
−0.980508 + 0.196479i \(0.937049\pi\)
\(464\) 0 0
\(465\) −120.275 −0.258656
\(466\) 0 0
\(467\) 88.8370i 0.190229i 0.995466 + 0.0951146i \(0.0303217\pi\)
−0.995466 + 0.0951146i \(0.969678\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) − 318.742i − 0.676735i
\(472\) 0 0
\(473\) 16.1009 0.0340400
\(474\) 0 0
\(475\) 48.5387i 0.102187i
\(476\) 0 0
\(477\) −96.9329 −0.203214
\(478\) 0 0
\(479\) 126.963i 0.265058i 0.991179 + 0.132529i \(0.0423097\pi\)
−0.991179 + 0.132529i \(0.957690\pi\)
\(480\) 0 0
\(481\) 619.851 1.28867
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −34.0142 −0.0701323
\(486\) 0 0
\(487\) − 287.582i − 0.590518i −0.955417 0.295259i \(-0.904594\pi\)
0.955417 0.295259i \(-0.0954059\pi\)
\(488\) 0 0
\(489\) 115.315 0.235818
\(490\) 0 0
\(491\) − 23.7600i − 0.0483910i −0.999707 0.0241955i \(-0.992298\pi\)
0.999707 0.0241955i \(-0.00770241\pi\)
\(492\) 0 0
\(493\) 299.282 0.607062
\(494\) 0 0
\(495\) − 80.2043i − 0.162029i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) − 56.2260i − 0.112677i −0.998412 0.0563387i \(-0.982057\pi\)
0.998412 0.0563387i \(-0.0179427\pi\)
\(500\) 0 0
\(501\) 205.809 0.410797
\(502\) 0 0
\(503\) 913.863i 1.81683i 0.418075 + 0.908413i \(0.362705\pi\)
−0.418075 + 0.908413i \(0.637295\pi\)
\(504\) 0 0
\(505\) −192.994 −0.382166
\(506\) 0 0
\(507\) − 139.327i − 0.274806i
\(508\) 0 0
\(509\) 898.823 1.76586 0.882930 0.469504i \(-0.155567\pi\)
0.882930 + 0.469504i \(0.155567\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 12.8292 0.0250081
\(514\) 0 0
\(515\) − 288.029i − 0.559279i
\(516\) 0 0
\(517\) 245.929 0.475685
\(518\) 0 0
\(519\) 347.137i 0.668857i
\(520\) 0 0
\(521\) 311.560 0.598004 0.299002 0.954253i \(-0.403346\pi\)
0.299002 + 0.954253i \(0.403346\pi\)
\(522\) 0 0
\(523\) − 786.871i − 1.50453i −0.658859 0.752267i \(-0.728960\pi\)
0.658859 0.752267i \(-0.271040\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 254.893i 0.483667i
\(528\) 0 0
\(529\) −1571.87 −2.97140
\(530\) 0 0
\(531\) − 88.5808i − 0.166819i
\(532\) 0 0
\(533\) −427.069 −0.801254
\(534\) 0 0
\(535\) − 83.3299i − 0.155757i
\(536\) 0 0
\(537\) −320.811 −0.597413
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −280.698 −0.518850 −0.259425 0.965763i \(-0.583533\pi\)
−0.259425 + 0.965763i \(0.583533\pi\)
\(542\) 0 0
\(543\) − 395.552i − 0.728458i
\(544\) 0 0
\(545\) −426.835 −0.783183
\(546\) 0 0
\(547\) 153.761i 0.281099i 0.990074 + 0.140549i \(0.0448869\pi\)
−0.990074 + 0.140549i \(0.955113\pi\)
\(548\) 0 0
\(549\) 310.182 0.564994
\(550\) 0 0
\(551\) − 87.1088i − 0.158092i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 157.093i 0.283051i
\(556\) 0 0
\(557\) −780.733 −1.40167 −0.700837 0.713321i \(-0.747190\pi\)
−0.700837 + 0.713321i \(0.747190\pi\)
\(558\) 0 0
\(559\) 21.9811i 0.0393222i
\(560\) 0 0
\(561\) −169.973 −0.302981
\(562\) 0 0
\(563\) 937.153i 1.66457i 0.554348 + 0.832285i \(0.312968\pi\)
−0.554348 + 0.832285i \(0.687032\pi\)
\(564\) 0 0
\(565\) −489.493 −0.866359
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −786.799 −1.38278 −0.691388 0.722484i \(-0.743000\pi\)
−0.691388 + 0.722484i \(0.743000\pi\)
\(570\) 0 0
\(571\) − 263.128i − 0.460820i −0.973094 0.230410i \(-0.925993\pi\)
0.973094 0.230410i \(-0.0740067\pi\)
\(572\) 0 0
\(573\) −260.479 −0.454588
\(574\) 0 0
\(575\) − 901.096i − 1.56712i
\(576\) 0 0
\(577\) −11.0000 −0.0190641 −0.00953206 0.999955i \(-0.503034\pi\)
−0.00953206 + 0.999955i \(0.503034\pi\)
\(578\) 0 0
\(579\) − 141.233i − 0.243926i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) − 373.795i − 0.641158i
\(584\) 0 0
\(585\) 109.496 0.187172
\(586\) 0 0
\(587\) 461.546i 0.786279i 0.919479 + 0.393139i \(0.128611\pi\)
−0.919479 + 0.393139i \(0.871389\pi\)
\(588\) 0 0
\(589\) 74.1889 0.125957
\(590\) 0 0
\(591\) 333.800i 0.564806i
\(592\) 0 0
\(593\) 776.206 1.30895 0.654474 0.756085i \(-0.272890\pi\)
0.654474 + 0.756085i \(0.272890\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 151.647 0.254015
\(598\) 0 0
\(599\) − 241.933i − 0.403895i −0.979396 0.201947i \(-0.935273\pi\)
0.979396 0.201947i \(-0.0647270\pi\)
\(600\) 0 0
\(601\) 521.217 0.867250 0.433625 0.901093i \(-0.357234\pi\)
0.433625 + 0.901093i \(0.357234\pi\)
\(602\) 0 0
\(603\) 214.658i 0.355984i
\(604\) 0 0
\(605\) 29.6593 0.0490236
\(606\) 0 0
\(607\) − 1139.24i − 1.87684i −0.345496 0.938420i \(-0.612289\pi\)
0.345496 0.938420i \(-0.387711\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 335.745i 0.549501i
\(612\) 0 0
\(613\) 534.066 0.871233 0.435616 0.900132i \(-0.356530\pi\)
0.435616 + 0.900132i \(0.356530\pi\)
\(614\) 0 0
\(615\) − 108.235i − 0.175992i
\(616\) 0 0
\(617\) −802.979 −1.30142 −0.650712 0.759324i \(-0.725530\pi\)
−0.650712 + 0.759324i \(0.725530\pi\)
\(618\) 0 0
\(619\) − 317.050i − 0.512196i −0.966651 0.256098i \(-0.917563\pi\)
0.966651 0.256098i \(-0.0824370\pi\)
\(620\) 0 0
\(621\) −238.167 −0.383522
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 252.980 0.404769
\(626\) 0 0
\(627\) 49.4721i 0.0789029i
\(628\) 0 0
\(629\) 332.919 0.529284
\(630\) 0 0
\(631\) 1168.77i 1.85225i 0.377222 + 0.926123i \(0.376879\pi\)
−0.377222 + 0.926123i \(0.623121\pi\)
\(632\) 0 0
\(633\) −221.331 −0.349654
\(634\) 0 0
\(635\) 81.1291i 0.127762i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 214.078i 0.335021i
\(640\) 0 0
\(641\) −16.2513 −0.0253530 −0.0126765 0.999920i \(-0.504035\pi\)
−0.0126765 + 0.999920i \(0.504035\pi\)
\(642\) 0 0
\(643\) − 956.475i − 1.48752i −0.668447 0.743760i \(-0.733041\pi\)
0.668447 0.743760i \(-0.266959\pi\)
\(644\) 0 0
\(645\) −5.57084 −0.00863696
\(646\) 0 0
\(647\) 527.324i 0.815029i 0.913199 + 0.407515i \(0.133604\pi\)
−0.913199 + 0.407515i \(0.866396\pi\)
\(648\) 0 0
\(649\) 341.587 0.526329
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 319.329 0.489018 0.244509 0.969647i \(-0.421373\pi\)
0.244509 + 0.969647i \(0.421373\pi\)
\(654\) 0 0
\(655\) − 364.993i − 0.557241i
\(656\) 0 0
\(657\) 87.7404 0.133547
\(658\) 0 0
\(659\) − 289.303i − 0.439004i −0.975612 0.219502i \(-0.929557\pi\)
0.975612 0.219502i \(-0.0704432\pi\)
\(660\) 0 0
\(661\) 16.4197 0.0248407 0.0124203 0.999923i \(-0.496046\pi\)
0.0124203 + 0.999923i \(0.496046\pi\)
\(662\) 0 0
\(663\) − 232.048i − 0.349998i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 1617.13i 2.42448i
\(668\) 0 0
\(669\) −491.817 −0.735152
\(670\) 0 0
\(671\) 1196.13i 1.78261i
\(672\) 0 0
\(673\) −65.5702 −0.0974297 −0.0487149 0.998813i \(-0.515513\pi\)
−0.0487149 + 0.998813i \(0.515513\pi\)
\(674\) 0 0
\(675\) − 102.154i − 0.151339i
\(676\) 0 0
\(677\) 1190.46 1.75843 0.879216 0.476424i \(-0.158067\pi\)
0.879216 + 0.476424i \(0.158067\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 716.328 1.05188
\(682\) 0 0
\(683\) 890.160i 1.30331i 0.758516 + 0.651654i \(0.225925\pi\)
−0.758516 + 0.651654i \(0.774075\pi\)
\(684\) 0 0
\(685\) −510.839 −0.745751
\(686\) 0 0
\(687\) 279.397i 0.406692i
\(688\) 0 0
\(689\) 510.309 0.740651
\(690\) 0 0
\(691\) 350.596i 0.507375i 0.967286 + 0.253688i \(0.0816435\pi\)
−0.967286 + 0.253688i \(0.918356\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 316.265i 0.455058i
\(696\) 0 0
\(697\) −229.377 −0.329091
\(698\) 0 0
\(699\) − 628.266i − 0.898807i
\(700\) 0 0
\(701\) 998.973 1.42507 0.712534 0.701637i \(-0.247547\pi\)
0.712534 + 0.701637i \(0.247547\pi\)
\(702\) 0 0
\(703\) − 96.8994i − 0.137837i
\(704\) 0 0
\(705\) −85.0904 −0.120696
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 466.648 0.658177 0.329089 0.944299i \(-0.393259\pi\)
0.329089 + 0.944299i \(0.393259\pi\)
\(710\) 0 0
\(711\) 308.774i 0.434281i
\(712\) 0 0
\(713\) −1377.28 −1.93167
\(714\) 0 0
\(715\) 422.240i 0.590546i
\(716\) 0 0
\(717\) −592.851 −0.826850
\(718\) 0 0
\(719\) 380.832i 0.529670i 0.964294 + 0.264835i \(0.0853174\pi\)
−0.964294 + 0.264835i \(0.914683\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) − 408.292i − 0.564720i
\(724\) 0 0
\(725\) −693.613 −0.956707
\(726\) 0 0
\(727\) 868.875i 1.19515i 0.801813 + 0.597575i \(0.203869\pi\)
−0.801813 + 0.597575i \(0.796131\pi\)
\(728\) 0 0
\(729\) −27.0000 −0.0370370
\(730\) 0 0
\(731\) 11.8060i 0.0161504i
\(732\) 0 0
\(733\) −271.368 −0.370215 −0.185108 0.982718i \(-0.559263\pi\)
−0.185108 + 0.982718i \(0.559263\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −827.770 −1.12316
\(738\) 0 0
\(739\) 1294.89i 1.75221i 0.482116 + 0.876107i \(0.339868\pi\)
−0.482116 + 0.876107i \(0.660132\pi\)
\(740\) 0 0
\(741\) −67.5399 −0.0911470
\(742\) 0 0
\(743\) 69.5251i 0.0935735i 0.998905 + 0.0467868i \(0.0148981\pi\)
−0.998905 + 0.0467868i \(0.985102\pi\)
\(744\) 0 0
\(745\) 106.938 0.143541
\(746\) 0 0
\(747\) − 129.453i − 0.173297i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) − 1080.06i − 1.43816i −0.694925 0.719082i \(-0.744563\pi\)
0.694925 0.719082i \(-0.255437\pi\)
\(752\) 0 0
\(753\) −710.029 −0.942933
\(754\) 0 0
\(755\) 214.423i 0.284004i
\(756\) 0 0
\(757\) −1073.01 −1.41745 −0.708727 0.705482i \(-0.750730\pi\)
−0.708727 + 0.705482i \(0.750730\pi\)
\(758\) 0 0
\(759\) − 918.425i − 1.21005i
\(760\) 0 0
\(761\) 1189.72 1.56336 0.781681 0.623678i \(-0.214362\pi\)
0.781681 + 0.623678i \(0.214362\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 58.8097 0.0768754
\(766\) 0 0
\(767\) 466.339i 0.608004i
\(768\) 0 0
\(769\) −497.083 −0.646402 −0.323201 0.946330i \(-0.604759\pi\)
−0.323201 + 0.946330i \(0.604759\pi\)
\(770\) 0 0
\(771\) 669.035i 0.867750i
\(772\) 0 0
\(773\) −1221.32 −1.57997 −0.789984 0.613127i \(-0.789911\pi\)
−0.789984 + 0.613127i \(0.789911\pi\)
\(774\) 0 0
\(775\) − 590.736i − 0.762240i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 66.7623i 0.0857025i
\(780\) 0 0
\(781\) −825.534 −1.05702
\(782\) 0 0
\(783\) 183.327i 0.234135i
\(784\) 0 0
\(785\) −425.277 −0.541754
\(786\) 0 0
\(787\) 421.297i 0.535321i 0.963513 + 0.267660i \(0.0862505\pi\)
−0.963513 + 0.267660i \(0.913750\pi\)
\(788\) 0 0
\(789\) 77.4790 0.0981990
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −1632.97 −2.05923
\(794\) 0 0
\(795\) 129.331i 0.162681i
\(796\) 0 0
\(797\) 395.391 0.496099 0.248050 0.968747i \(-0.420210\pi\)
0.248050 + 0.968747i \(0.420210\pi\)
\(798\) 0 0
\(799\) 180.327i 0.225691i
\(800\) 0 0
\(801\) −372.291 −0.464782
\(802\) 0 0
\(803\) 338.347i 0.421353i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) − 673.793i − 0.834936i
\(808\) 0 0
\(809\) −476.907 −0.589502 −0.294751 0.955574i \(-0.595237\pi\)
−0.294751 + 0.955574i \(0.595237\pi\)
\(810\) 0 0
\(811\) − 268.467i − 0.331032i −0.986207 0.165516i \(-0.947071\pi\)
0.986207 0.165516i \(-0.0529289\pi\)
\(812\) 0 0
\(813\) −709.238 −0.872371
\(814\) 0 0
\(815\) − 153.857i − 0.188782i
\(816\) 0 0
\(817\) 3.43624 0.00420592
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 646.656 0.787645 0.393822 0.919187i \(-0.371153\pi\)
0.393822 + 0.919187i \(0.371153\pi\)
\(822\) 0 0
\(823\) 210.056i 0.255232i 0.991824 + 0.127616i \(0.0407324\pi\)
−0.991824 + 0.127616i \(0.959268\pi\)
\(824\) 0 0
\(825\) 393.927 0.477487
\(826\) 0 0
\(827\) − 590.763i − 0.714345i −0.934038 0.357173i \(-0.883741\pi\)
0.934038 0.357173i \(-0.116259\pi\)
\(828\) 0 0
\(829\) −1493.29 −1.80132 −0.900659 0.434527i \(-0.856916\pi\)
−0.900659 + 0.434527i \(0.856916\pi\)
\(830\) 0 0
\(831\) − 311.867i − 0.375291i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) − 274.598i − 0.328860i
\(836\) 0 0
\(837\) −156.136 −0.186543
\(838\) 0 0
\(839\) − 529.587i − 0.631212i −0.948890 0.315606i \(-0.897792\pi\)
0.948890 0.315606i \(-0.102208\pi\)
\(840\) 0 0
\(841\) 403.776 0.480114
\(842\) 0 0
\(843\) 365.322i 0.433360i
\(844\) 0 0
\(845\) −185.894 −0.219993
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −424.383 −0.499862
\(850\) 0 0
\(851\) 1798.89i 2.11385i
\(852\) 0 0
\(853\) −544.072 −0.637833 −0.318917 0.947783i \(-0.603319\pi\)
−0.318917 + 0.947783i \(0.603319\pi\)
\(854\) 0 0
\(855\) − 17.1171i − 0.0200200i
\(856\) 0 0
\(857\) −625.051 −0.729348 −0.364674 0.931135i \(-0.618820\pi\)
−0.364674 + 0.931135i \(0.618820\pi\)
\(858\) 0 0
\(859\) 748.421i 0.871270i 0.900123 + 0.435635i \(0.143476\pi\)
−0.900123 + 0.435635i \(0.856524\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) − 866.946i − 1.00457i −0.864701 0.502286i \(-0.832492\pi\)
0.864701 0.502286i \(-0.167508\pi\)
\(864\) 0 0
\(865\) 463.162 0.535447
\(866\) 0 0
\(867\) 375.930i 0.433599i
\(868\) 0 0
\(869\) −1190.70 −1.37020
\(870\) 0 0
\(871\) − 1130.08i − 1.29745i
\(872\) 0 0
\(873\) −44.1559 −0.0505795
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −569.378 −0.649234 −0.324617 0.945846i \(-0.605235\pi\)
−0.324617 + 0.945846i \(0.605235\pi\)
\(878\) 0 0
\(879\) − 454.013i − 0.516511i
\(880\) 0 0
\(881\) −781.679 −0.887263 −0.443632 0.896209i \(-0.646310\pi\)
−0.443632 + 0.896209i \(0.646310\pi\)
\(882\) 0 0
\(883\) − 1139.96i − 1.29101i −0.763757 0.645504i \(-0.776647\pi\)
0.763757 0.645504i \(-0.223353\pi\)
\(884\) 0 0
\(885\) −118.188 −0.133545
\(886\) 0 0
\(887\) − 152.245i − 0.171641i −0.996311 0.0858204i \(-0.972649\pi\)
0.996311 0.0858204i \(-0.0273511\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) − 104.118i − 0.116855i
\(892\) 0 0
\(893\) 52.4860 0.0587749
\(894\) 0 0
\(895\) 428.037i 0.478253i
\(896\) 0 0
\(897\) 1253.84 1.39782
\(898\) 0 0
\(899\) 1060.15i 1.17926i
\(900\) 0 0
\(901\) 274.085 0.304200
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −527.760 −0.583160
\(906\) 0 0
\(907\) 469.617i 0.517769i 0.965908 + 0.258885i \(0.0833549\pi\)
−0.965908 + 0.258885i \(0.916645\pi\)
\(908\) 0 0
\(909\) −250.537 −0.275618
\(910\) 0 0
\(911\) − 309.559i − 0.339801i −0.985461 0.169901i \(-0.945655\pi\)
0.985461 0.169901i \(-0.0543447\pi\)
\(912\) 0 0
\(913\) 499.198 0.546767
\(914\) 0 0
\(915\) − 413.855i − 0.452301i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) − 1178.27i − 1.28213i −0.767488 0.641063i \(-0.778494\pi\)
0.767488 0.641063i \(-0.221506\pi\)
\(920\) 0 0
\(921\) 253.748 0.275513
\(922\) 0 0
\(923\) − 1127.03i − 1.22105i
\(924\) 0 0
\(925\) −771.571 −0.834130
\(926\) 0 0
\(927\) − 373.907i − 0.403352i
\(928\) 0 0
\(929\) 283.492 0.305158 0.152579 0.988291i \(-0.451242\pi\)
0.152579 + 0.988291i \(0.451242\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −26.0787 −0.0279515
\(934\) 0 0
\(935\) 226.783i 0.242549i
\(936\) 0 0
\(937\) 343.658 0.366764 0.183382 0.983042i \(-0.441295\pi\)
0.183382 + 0.983042i \(0.441295\pi\)
\(938\) 0 0
\(939\) 771.758i 0.821893i
\(940\) 0 0
\(941\) 614.597 0.653132 0.326566 0.945174i \(-0.394108\pi\)
0.326566 + 0.945174i \(0.394108\pi\)
\(942\) 0 0
\(943\) − 1239.41i − 1.31432i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1563.32i 1.65081i 0.564542 + 0.825404i \(0.309053\pi\)
−0.564542 + 0.825404i \(0.690947\pi\)
\(948\) 0 0
\(949\) −461.915 −0.486738
\(950\) 0 0
\(951\) − 164.328i − 0.172795i
\(952\) 0 0
\(953\) −65.3694 −0.0685933 −0.0342966 0.999412i \(-0.510919\pi\)
−0.0342966 + 0.999412i \(0.510919\pi\)
\(954\) 0 0
\(955\) 347.540i 0.363916i
\(956\) 0 0
\(957\) −706.952 −0.738716
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 58.0898 0.0604472
\(962\) 0 0
\(963\) − 108.176i − 0.112332i
\(964\) 0 0
\(965\) −188.438 −0.195273
\(966\) 0 0
\(967\) 54.5021i 0.0563620i 0.999603 + 0.0281810i \(0.00897148\pi\)
−0.999603 + 0.0281810i \(0.991029\pi\)
\(968\) 0 0
\(969\) −36.2754 −0.0374359
\(970\) 0 0
\(971\) 1285.16i 1.32354i 0.749708 + 0.661769i \(0.230194\pi\)
−0.749708 + 0.661769i \(0.769806\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 537.793i 0.551583i
\(976\) 0 0
\(977\) 1552.41 1.58895 0.794477 0.607294i \(-0.207745\pi\)
0.794477 + 0.607294i \(0.207745\pi\)
\(978\) 0 0
\(979\) − 1435.64i − 1.46643i
\(980\) 0 0
\(981\) −554.100 −0.564832
\(982\) 0 0
\(983\) − 68.2644i − 0.0694450i −0.999397 0.0347225i \(-0.988945\pi\)
0.999397 0.0347225i \(-0.0110547\pi\)
\(984\) 0 0
\(985\) 445.368 0.452150
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −63.7920 −0.0645016
\(990\) 0 0
\(991\) − 794.660i − 0.801877i −0.916105 0.400939i \(-0.868684\pi\)
0.916105 0.400939i \(-0.131316\pi\)
\(992\) 0 0
\(993\) −121.386 −0.122241
\(994\) 0 0
\(995\) − 202.332i − 0.203349i
\(996\) 0 0
\(997\) 1026.99 1.03008 0.515039 0.857167i \(-0.327778\pi\)
0.515039 + 0.857167i \(0.327778\pi\)
\(998\) 0 0
\(999\) 203.932i 0.204137i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2352.3.m.o.1471.2 6
4.3 odd 2 inner 2352.3.m.o.1471.5 6
7.3 odd 6 336.3.be.f.79.2 yes 6
7.5 odd 6 336.3.be.d.319.2 yes 6
7.6 odd 2 2352.3.m.n.1471.5 6
21.5 even 6 1008.3.cd.h.991.2 6
21.17 even 6 1008.3.cd.i.415.2 6
28.3 even 6 336.3.be.d.79.2 6
28.19 even 6 336.3.be.f.319.2 yes 6
28.27 even 2 2352.3.m.n.1471.2 6
84.47 odd 6 1008.3.cd.i.991.2 6
84.59 odd 6 1008.3.cd.h.415.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
336.3.be.d.79.2 6 28.3 even 6
336.3.be.d.319.2 yes 6 7.5 odd 6
336.3.be.f.79.2 yes 6 7.3 odd 6
336.3.be.f.319.2 yes 6 28.19 even 6
1008.3.cd.h.415.2 6 84.59 odd 6
1008.3.cd.h.991.2 6 21.5 even 6
1008.3.cd.i.415.2 6 21.17 even 6
1008.3.cd.i.991.2 6 84.47 odd 6
2352.3.m.n.1471.2 6 28.27 even 2
2352.3.m.n.1471.5 6 7.6 odd 2
2352.3.m.o.1471.2 6 1.1 even 1 trivial
2352.3.m.o.1471.5 6 4.3 odd 2 inner