Properties

Label 336.3.be.d.319.2
Level $336$
Weight $3$
Character 336.319
Analytic conductor $9.155$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [336,3,Mod(79,336)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("336.79"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(336, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 0, 2])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 336 = 2^{4} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 336.be (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,-9,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.15533688251\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{6})\)
Coefficient field: 6.0.1364138928.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 35x^{4} + 364x^{2} + 972 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 319.2
Root \(3.78298i\) of defining polynomial
Character \(\chi\) \(=\) 336.319
Dual form 336.3.be.d.79.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.50000 - 0.866025i) q^{3} +(-1.15548 - 2.00135i) q^{5} +(6.36328 + 2.91696i) q^{7} +(1.50000 + 2.59808i) q^{9} +(10.0188 + 5.78434i) q^{11} -15.7937 q^{13} +4.00270i q^{15} +(4.24136 - 7.34625i) q^{17} +(2.13819 - 1.23449i) q^{19} +(-7.01876 - 9.88620i) q^{21} +(39.6945 - 22.9176i) q^{23} +(9.82973 - 17.0256i) q^{25} -5.19615i q^{27} +35.2814 q^{29} +(26.0227 + 15.0242i) q^{31} +(-10.0188 - 17.3530i) q^{33} +(-1.51479 - 16.1057i) q^{35} +(-19.6234 - 33.9887i) q^{37} +(23.6905 + 13.6777i) q^{39} +27.0405 q^{41} +1.39177i q^{43} +(3.46644 - 6.00406i) q^{45} +(-18.4102 + 10.6291i) q^{47} +(31.9827 + 37.1229i) q^{49} +(-12.7241 + 7.34625i) q^{51} +(-16.1555 + 27.9821i) q^{53} -26.7348i q^{55} -4.27639 q^{57} +(25.5711 + 14.7635i) q^{59} +(-51.6970 - 89.5418i) q^{61} +(1.96644 + 20.9077i) q^{63} +(18.2493 + 31.6087i) q^{65} +(61.9664 + 35.7763i) q^{67} -79.3890 q^{69} -71.3595i q^{71} +(-14.6234 + 25.3285i) q^{73} +(-29.4892 + 17.0256i) q^{75} +(46.8796 + 66.0317i) q^{77} +(-89.1353 + 51.4623i) q^{79} +(-4.50000 + 7.79423i) q^{81} -43.1509i q^{83} -19.6032 q^{85} +(-52.9221 - 30.5546i) q^{87} +(62.0484 + 107.471i) q^{89} +(-100.500 - 46.0695i) q^{91} +(-26.0227 - 45.0727i) q^{93} +(-4.94129 - 2.85285i) q^{95} -14.7186 q^{97} +34.7060i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 9 q^{3} + q^{5} - 11 q^{7} + 9 q^{9} + 3 q^{11} - 44 q^{13} + 8 q^{17} - 30 q^{19} + 15 q^{21} + 24 q^{23} - 14 q^{25} + 34 q^{29} - 39 q^{31} - 3 q^{33} - 90 q^{35} + 6 q^{37} + 66 q^{39} - 136 q^{41}+ \cdots - 266 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/336\mathbb{Z}\right)^\times\).

\(n\) \(85\) \(113\) \(127\) \(241\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.50000 0.866025i −0.500000 0.288675i
\(4\) 0 0
\(5\) −1.15548 2.00135i −0.231096 0.400270i 0.727035 0.686601i \(-0.240898\pi\)
−0.958131 + 0.286330i \(0.907565\pi\)
\(6\) 0 0
\(7\) 6.36328 + 2.91696i 0.909040 + 0.416708i
\(8\) 0 0
\(9\) 1.50000 + 2.59808i 0.166667 + 0.288675i
\(10\) 0 0
\(11\) 10.0188 + 5.78434i 0.910797 + 0.525849i 0.880687 0.473698i \(-0.157081\pi\)
0.0301093 + 0.999547i \(0.490414\pi\)
\(12\) 0 0
\(13\) −15.7937 −1.21490 −0.607449 0.794359i \(-0.707807\pi\)
−0.607449 + 0.794359i \(0.707807\pi\)
\(14\) 0 0
\(15\) 4.00270i 0.266847i
\(16\) 0 0
\(17\) 4.24136 7.34625i 0.249492 0.432132i −0.713893 0.700255i \(-0.753070\pi\)
0.963385 + 0.268122i \(0.0864032\pi\)
\(18\) 0 0
\(19\) 2.13819 1.23449i 0.112537 0.0649730i −0.442675 0.896682i \(-0.645971\pi\)
0.555212 + 0.831709i \(0.312637\pi\)
\(20\) 0 0
\(21\) −7.01876 9.88620i −0.334227 0.470771i
\(22\) 0 0
\(23\) 39.6945 22.9176i 1.72585 0.996418i 0.820643 0.571441i \(-0.193615\pi\)
0.905204 0.424977i \(-0.139718\pi\)
\(24\) 0 0
\(25\) 9.82973 17.0256i 0.393189 0.681023i
\(26\) 0 0
\(27\) 5.19615i 0.192450i
\(28\) 0 0
\(29\) 35.2814 1.21660 0.608300 0.793707i \(-0.291852\pi\)
0.608300 + 0.793707i \(0.291852\pi\)
\(30\) 0 0
\(31\) 26.0227 + 15.0242i 0.839443 + 0.484653i 0.857075 0.515192i \(-0.172279\pi\)
−0.0176318 + 0.999845i \(0.505613\pi\)
\(32\) 0 0
\(33\) −10.0188 17.3530i −0.303599 0.525849i
\(34\) 0 0
\(35\) −1.51479 16.1057i −0.0432798 0.460162i
\(36\) 0 0
\(37\) −19.6234 33.9887i −0.530362 0.918614i −0.999372 0.0354216i \(-0.988723\pi\)
0.469010 0.883193i \(-0.344611\pi\)
\(38\) 0 0
\(39\) 23.6905 + 13.6777i 0.607449 + 0.350711i
\(40\) 0 0
\(41\) 27.0405 0.659524 0.329762 0.944064i \(-0.393032\pi\)
0.329762 + 0.944064i \(0.393032\pi\)
\(42\) 0 0
\(43\) 1.39177i 0.0323667i 0.999869 + 0.0161834i \(0.00515155\pi\)
−0.999869 + 0.0161834i \(0.994848\pi\)
\(44\) 0 0
\(45\) 3.46644 6.00406i 0.0770321 0.133423i
\(46\) 0 0
\(47\) −18.4102 + 10.6291i −0.391705 + 0.226151i −0.682899 0.730513i \(-0.739281\pi\)
0.291193 + 0.956664i \(0.405948\pi\)
\(48\) 0 0
\(49\) 31.9827 + 37.1229i 0.652708 + 0.757609i
\(50\) 0 0
\(51\) −12.7241 + 7.34625i −0.249492 + 0.144044i
\(52\) 0 0
\(53\) −16.1555 + 27.9821i −0.304820 + 0.527964i −0.977221 0.212223i \(-0.931930\pi\)
0.672401 + 0.740187i \(0.265263\pi\)
\(54\) 0 0
\(55\) 26.7348i 0.486087i
\(56\) 0 0
\(57\) −4.27639 −0.0750244
\(58\) 0 0
\(59\) 25.5711 + 14.7635i 0.433408 + 0.250228i 0.700798 0.713360i \(-0.252828\pi\)
−0.267389 + 0.963589i \(0.586161\pi\)
\(60\) 0 0
\(61\) −51.6970 89.5418i −0.847491 1.46790i −0.883440 0.468545i \(-0.844779\pi\)
0.0359484 0.999354i \(-0.488555\pi\)
\(62\) 0 0
\(63\) 1.96644 + 20.9077i 0.0312134 + 0.331869i
\(64\) 0 0
\(65\) 18.2493 + 31.6087i 0.280758 + 0.486288i
\(66\) 0 0
\(67\) 61.9664 + 35.7763i 0.924872 + 0.533975i 0.885186 0.465237i \(-0.154031\pi\)
0.0396861 + 0.999212i \(0.487364\pi\)
\(68\) 0 0
\(69\) −79.3890 −1.15056
\(70\) 0 0
\(71\) 71.3595i 1.00506i −0.864559 0.502532i \(-0.832402\pi\)
0.864559 0.502532i \(-0.167598\pi\)
\(72\) 0 0
\(73\) −14.6234 + 25.3285i −0.200321 + 0.346965i −0.948632 0.316382i \(-0.897532\pi\)
0.748311 + 0.663348i \(0.230865\pi\)
\(74\) 0 0
\(75\) −29.4892 + 17.0256i −0.393189 + 0.227008i
\(76\) 0 0
\(77\) 46.8796 + 66.0317i 0.608825 + 0.857554i
\(78\) 0 0
\(79\) −89.1353 + 51.4623i −1.12830 + 0.651421i −0.943506 0.331357i \(-0.892494\pi\)
−0.184790 + 0.982778i \(0.559160\pi\)
\(80\) 0 0
\(81\) −4.50000 + 7.79423i −0.0555556 + 0.0962250i
\(82\) 0 0
\(83\) 43.1509i 0.519890i −0.965623 0.259945i \(-0.916296\pi\)
0.965623 0.259945i \(-0.0837044\pi\)
\(84\) 0 0
\(85\) −19.6032 −0.230626
\(86\) 0 0
\(87\) −52.9221 30.5546i −0.608300 0.351202i
\(88\) 0 0
\(89\) 62.0484 + 107.471i 0.697173 + 1.20754i 0.969443 + 0.245318i \(0.0788925\pi\)
−0.272269 + 0.962221i \(0.587774\pi\)
\(90\) 0 0
\(91\) −100.500 46.0695i −1.10439 0.506258i
\(92\) 0 0
\(93\) −26.0227 45.0727i −0.279814 0.484653i
\(94\) 0 0
\(95\) −4.94129 2.85285i −0.0520136 0.0300300i
\(96\) 0 0
\(97\) −14.7186 −0.151738 −0.0758692 0.997118i \(-0.524173\pi\)
−0.0758692 + 0.997118i \(0.524173\pi\)
\(98\) 0 0
\(99\) 34.7060i 0.350566i
\(100\) 0 0
\(101\) 41.7561 72.3238i 0.413427 0.716077i −0.581835 0.813307i \(-0.697665\pi\)
0.995262 + 0.0972301i \(0.0309983\pi\)
\(102\) 0 0
\(103\) −107.938 + 62.3179i −1.04794 + 0.605028i −0.922072 0.387019i \(-0.873505\pi\)
−0.125868 + 0.992047i \(0.540172\pi\)
\(104\) 0 0
\(105\) −11.6757 + 25.4703i −0.111197 + 0.242575i
\(106\) 0 0
\(107\) 31.2276 18.0293i 0.291847 0.168498i −0.346928 0.937892i \(-0.612775\pi\)
0.638774 + 0.769394i \(0.279442\pi\)
\(108\) 0 0
\(109\) −92.3500 + 159.955i −0.847247 + 1.46748i 0.0364077 + 0.999337i \(0.488409\pi\)
−0.883655 + 0.468139i \(0.844925\pi\)
\(110\) 0 0
\(111\) 67.9775i 0.612410i
\(112\) 0 0
\(113\) 211.813 1.87446 0.937228 0.348718i \(-0.113383\pi\)
0.937228 + 0.348718i \(0.113383\pi\)
\(114\) 0 0
\(115\) −91.7325 52.9618i −0.797674 0.460537i
\(116\) 0 0
\(117\) −23.6905 41.0332i −0.202483 0.350711i
\(118\) 0 0
\(119\) 48.4176 34.3744i 0.406871 0.288860i
\(120\) 0 0
\(121\) 6.41708 + 11.1147i 0.0530337 + 0.0918571i
\(122\) 0 0
\(123\) −40.5607 23.4177i −0.329762 0.190388i
\(124\) 0 0
\(125\) −103.206 −0.825651
\(126\) 0 0
\(127\) 35.1062i 0.276427i −0.990402 0.138213i \(-0.955864\pi\)
0.990402 0.138213i \(-0.0441360\pi\)
\(128\) 0 0
\(129\) 1.20531 2.08765i 0.00934346 0.0161834i
\(130\) 0 0
\(131\) −136.780 + 78.9699i −1.04412 + 0.602824i −0.920998 0.389568i \(-0.872624\pi\)
−0.123124 + 0.992391i \(0.539291\pi\)
\(132\) 0 0
\(133\) 17.2069 1.61837i 0.129375 0.0121682i
\(134\) 0 0
\(135\) −10.3993 + 6.00406i −0.0770321 + 0.0444745i
\(136\) 0 0
\(137\) −110.525 + 191.435i −0.806753 + 1.39734i 0.108347 + 0.994113i \(0.465444\pi\)
−0.915101 + 0.403225i \(0.867889\pi\)
\(138\) 0 0
\(139\) 136.854i 0.984563i 0.870436 + 0.492281i \(0.163837\pi\)
−0.870436 + 0.492281i \(0.836163\pi\)
\(140\) 0 0
\(141\) 36.8203 0.261137
\(142\) 0 0
\(143\) −158.233 91.3559i −1.10653 0.638853i
\(144\) 0 0
\(145\) −40.7670 70.6105i −0.281152 0.486969i
\(146\) 0 0
\(147\) −15.8247 83.3821i −0.107651 0.567225i
\(148\) 0 0
\(149\) 23.1372 + 40.0748i 0.155283 + 0.268958i 0.933162 0.359456i \(-0.117038\pi\)
−0.777879 + 0.628414i \(0.783704\pi\)
\(150\) 0 0
\(151\) 80.3543 + 46.3926i 0.532148 + 0.307236i 0.741891 0.670521i \(-0.233929\pi\)
−0.209743 + 0.977757i \(0.567263\pi\)
\(152\) 0 0
\(153\) 25.4481 0.166328
\(154\) 0 0
\(155\) 69.4409i 0.448006i
\(156\) 0 0
\(157\) 92.0129 159.371i 0.586070 1.01510i −0.408672 0.912682i \(-0.634008\pi\)
0.994741 0.102421i \(-0.0326588\pi\)
\(158\) 0 0
\(159\) 48.4664 27.9821i 0.304820 0.175988i
\(160\) 0 0
\(161\) 319.437 30.0441i 1.98408 0.186610i
\(162\) 0 0
\(163\) 57.6574 33.2885i 0.353726 0.204224i −0.312599 0.949885i \(-0.601200\pi\)
0.666325 + 0.745661i \(0.267866\pi\)
\(164\) 0 0
\(165\) −23.1530 + 40.1022i −0.140321 + 0.243043i
\(166\) 0 0
\(167\) 118.824i 0.711521i −0.934577 0.355761i \(-0.884222\pi\)
0.934577 0.355761i \(-0.115778\pi\)
\(168\) 0 0
\(169\) 80.4402 0.475978
\(170\) 0 0
\(171\) 6.41458 + 3.70346i 0.0375122 + 0.0216577i
\(172\) 0 0
\(173\) −100.210 173.568i −0.579247 1.00329i −0.995566 0.0940666i \(-0.970013\pi\)
0.416319 0.909219i \(-0.363320\pi\)
\(174\) 0 0
\(175\) 112.212 79.6657i 0.641213 0.455233i
\(176\) 0 0
\(177\) −25.5711 44.2904i −0.144469 0.250228i
\(178\) 0 0
\(179\) 160.405 + 92.6100i 0.896119 + 0.517375i 0.875939 0.482422i \(-0.160243\pi\)
0.0201800 + 0.999796i \(0.493576\pi\)
\(180\) 0 0
\(181\) −228.372 −1.26173 −0.630863 0.775894i \(-0.717299\pi\)
−0.630863 + 0.775894i \(0.717299\pi\)
\(182\) 0 0
\(183\) 179.084i 0.978599i
\(184\) 0 0
\(185\) −45.3489 + 78.5467i −0.245129 + 0.424577i
\(186\) 0 0
\(187\) 84.9863 49.0669i 0.454472 0.262390i
\(188\) 0 0
\(189\) 15.1570 33.0646i 0.0801955 0.174945i
\(190\) 0 0
\(191\) −130.239 + 75.1937i −0.681881 + 0.393684i −0.800563 0.599248i \(-0.795466\pi\)
0.118682 + 0.992932i \(0.462133\pi\)
\(192\) 0 0
\(193\) −40.7705 + 70.6165i −0.211246 + 0.365889i −0.952105 0.305772i \(-0.901085\pi\)
0.740859 + 0.671661i \(0.234419\pi\)
\(194\) 0 0
\(195\) 63.2174i 0.324192i
\(196\) 0 0
\(197\) −192.720 −0.978273 −0.489136 0.872207i \(-0.662688\pi\)
−0.489136 + 0.872207i \(0.662688\pi\)
\(198\) 0 0
\(199\) 75.8234 + 43.7767i 0.381022 + 0.219983i 0.678263 0.734819i \(-0.262733\pi\)
−0.297241 + 0.954803i \(0.596066\pi\)
\(200\) 0 0
\(201\) −61.9664 107.329i −0.308291 0.533975i
\(202\) 0 0
\(203\) 224.505 + 102.914i 1.10594 + 0.506967i
\(204\) 0 0
\(205\) −31.2448 54.1175i −0.152414 0.263988i
\(206\) 0 0
\(207\) 119.083 + 68.7529i 0.575282 + 0.332139i
\(208\) 0 0
\(209\) 28.5628 0.136664
\(210\) 0 0
\(211\) 127.785i 0.605618i −0.953051 0.302809i \(-0.902076\pi\)
0.953051 0.302809i \(-0.0979244\pi\)
\(212\) 0 0
\(213\) −61.7991 + 107.039i −0.290137 + 0.502532i
\(214\) 0 0
\(215\) 2.78542 1.60816i 0.0129554 0.00747982i
\(216\) 0 0
\(217\) 121.765 + 171.511i 0.561129 + 0.790372i
\(218\) 0 0
\(219\) 43.8702 25.3285i 0.200321 0.115655i
\(220\) 0 0
\(221\) −66.9866 + 116.024i −0.303107 + 0.524996i
\(222\) 0 0
\(223\) 283.951i 1.27332i 0.771144 + 0.636660i \(0.219685\pi\)
−0.771144 + 0.636660i \(0.780315\pi\)
\(224\) 0 0
\(225\) 58.9784 0.262126
\(226\) 0 0
\(227\) 358.164 + 206.786i 1.57782 + 0.910952i 0.995164 + 0.0982297i \(0.0313180\pi\)
0.582651 + 0.812722i \(0.302015\pi\)
\(228\) 0 0
\(229\) −80.6550 139.699i −0.352205 0.610038i 0.634430 0.772980i \(-0.281235\pi\)
−0.986636 + 0.162943i \(0.947901\pi\)
\(230\) 0 0
\(231\) −13.1342 139.646i −0.0568581 0.604530i
\(232\) 0 0
\(233\) −181.365 314.133i −0.778390 1.34821i −0.932869 0.360215i \(-0.882703\pi\)
0.154480 0.987996i \(-0.450630\pi\)
\(234\) 0 0
\(235\) 42.5452 + 24.5635i 0.181043 + 0.104525i
\(236\) 0 0
\(237\) 178.271 0.752197
\(238\) 0 0
\(239\) 342.283i 1.43215i −0.698026 0.716073i \(-0.745938\pi\)
0.698026 0.716073i \(-0.254062\pi\)
\(240\) 0 0
\(241\) 117.864 204.146i 0.489061 0.847079i −0.510859 0.859664i \(-0.670673\pi\)
0.999921 + 0.0125850i \(0.00400604\pi\)
\(242\) 0 0
\(243\) 13.5000 7.79423i 0.0555556 0.0320750i
\(244\) 0 0
\(245\) 37.3405 106.903i 0.152410 0.436341i
\(246\) 0 0
\(247\) −33.7700 + 19.4971i −0.136720 + 0.0789356i
\(248\) 0 0
\(249\) −37.3697 + 64.7263i −0.150079 + 0.259945i
\(250\) 0 0
\(251\) 409.935i 1.63321i 0.577198 + 0.816604i \(0.304146\pi\)
−0.577198 + 0.816604i \(0.695854\pi\)
\(252\) 0 0
\(253\) 530.253 2.09586
\(254\) 0 0
\(255\) 29.4049 + 16.9769i 0.115313 + 0.0665761i
\(256\) 0 0
\(257\) −193.134 334.518i −0.751494 1.30163i −0.947099 0.320943i \(-0.896000\pi\)
0.195605 0.980683i \(-0.437333\pi\)
\(258\) 0 0
\(259\) −25.7255 273.521i −0.0993264 1.05606i
\(260\) 0 0
\(261\) 52.9221 + 91.6637i 0.202767 + 0.351202i
\(262\) 0 0
\(263\) −38.7395 22.3663i −0.147298 0.0850428i 0.424539 0.905409i \(-0.360436\pi\)
−0.571838 + 0.820367i \(0.693769\pi\)
\(264\) 0 0
\(265\) 74.6694 0.281771
\(266\) 0 0
\(267\) 214.942i 0.805026i
\(268\) 0 0
\(269\) 194.507 336.897i 0.723076 1.25240i −0.236685 0.971586i \(-0.576061\pi\)
0.959761 0.280818i \(-0.0906056\pi\)
\(270\) 0 0
\(271\) 354.619 204.739i 1.30856 0.755496i 0.326701 0.945128i \(-0.394063\pi\)
0.981855 + 0.189632i \(0.0607295\pi\)
\(272\) 0 0
\(273\) 110.852 + 156.139i 0.406052 + 0.571939i
\(274\) 0 0
\(275\) 196.963 113.717i 0.716231 0.413516i
\(276\) 0 0
\(277\) −90.0281 + 155.933i −0.325011 + 0.562936i −0.981515 0.191387i \(-0.938701\pi\)
0.656503 + 0.754323i \(0.272035\pi\)
\(278\) 0 0
\(279\) 90.1454i 0.323102i
\(280\) 0 0
\(281\) −210.919 −0.750601 −0.375301 0.926903i \(-0.622461\pi\)
−0.375301 + 0.926903i \(0.622461\pi\)
\(282\) 0 0
\(283\) −212.192 122.509i −0.749794 0.432894i 0.0758257 0.997121i \(-0.475841\pi\)
−0.825619 + 0.564228i \(0.809174\pi\)
\(284\) 0 0
\(285\) 4.94129 + 8.55856i 0.0173379 + 0.0300300i
\(286\) 0 0
\(287\) 172.066 + 78.8759i 0.599534 + 0.274829i
\(288\) 0 0
\(289\) 108.522 + 187.965i 0.375508 + 0.650399i
\(290\) 0 0
\(291\) 22.0779 + 12.7467i 0.0758692 + 0.0438031i
\(292\) 0 0
\(293\) −262.124 −0.894622 −0.447311 0.894378i \(-0.647618\pi\)
−0.447311 + 0.894378i \(0.647618\pi\)
\(294\) 0 0
\(295\) 68.2357i 0.231307i
\(296\) 0 0
\(297\) 30.0563 52.0590i 0.101200 0.175283i
\(298\) 0 0
\(299\) −626.922 + 361.953i −2.09673 + 1.21055i
\(300\) 0 0
\(301\) −4.05973 + 8.85621i −0.0134875 + 0.0294226i
\(302\) 0 0
\(303\) −125.268 + 72.3238i −0.413427 + 0.238692i
\(304\) 0 0
\(305\) −119.470 + 206.928i −0.391704 + 0.678452i
\(306\) 0 0
\(307\) 146.501i 0.477203i −0.971118 0.238601i \(-0.923311\pi\)
0.971118 0.238601i \(-0.0766889\pi\)
\(308\) 0 0
\(309\) 215.876 0.698626
\(310\) 0 0
\(311\) −13.0394 7.52828i −0.0419272 0.0242067i 0.478890 0.877875i \(-0.341039\pi\)
−0.520817 + 0.853668i \(0.674373\pi\)
\(312\) 0 0
\(313\) −222.787 385.879i −0.711780 1.23284i −0.964188 0.265219i \(-0.914556\pi\)
0.252408 0.967621i \(-0.418778\pi\)
\(314\) 0 0
\(315\) 39.5715 28.0940i 0.125624 0.0891874i
\(316\) 0 0
\(317\) −47.4373 82.1638i −0.149645 0.259192i 0.781452 0.623966i \(-0.214480\pi\)
−0.931096 + 0.364774i \(0.881146\pi\)
\(318\) 0 0
\(319\) 353.476 + 204.079i 1.10807 + 0.639747i
\(320\) 0 0
\(321\) −62.4552 −0.194564
\(322\) 0 0
\(323\) 20.9436i 0.0648409i
\(324\) 0 0
\(325\) −155.248 + 268.897i −0.477685 + 0.827374i
\(326\) 0 0
\(327\) 277.050 159.955i 0.847247 0.489159i
\(328\) 0 0
\(329\) −148.154 + 13.9344i −0.450315 + 0.0423537i
\(330\) 0 0
\(331\) −60.6928 + 35.0410i −0.183362 + 0.105864i −0.588871 0.808227i \(-0.700428\pi\)
0.405509 + 0.914091i \(0.367094\pi\)
\(332\) 0 0
\(333\) 58.8702 101.966i 0.176787 0.306205i
\(334\) 0 0
\(335\) 165.356i 0.493599i
\(336\) 0 0
\(337\) 25.8353 0.0766625 0.0383313 0.999265i \(-0.487796\pi\)
0.0383313 + 0.999265i \(0.487796\pi\)
\(338\) 0 0
\(339\) −317.720 183.436i −0.937228 0.541109i
\(340\) 0 0
\(341\) 173.810 + 301.048i 0.509708 + 0.882840i
\(342\) 0 0
\(343\) 95.2292 + 329.515i 0.277636 + 0.960686i
\(344\) 0 0
\(345\) 91.7325 + 158.885i 0.265891 + 0.460537i
\(346\) 0 0
\(347\) −373.367 215.563i −1.07599 0.621220i −0.146175 0.989259i \(-0.546696\pi\)
−0.929811 + 0.368038i \(0.880029\pi\)
\(348\) 0 0
\(349\) 340.822 0.976566 0.488283 0.872685i \(-0.337623\pi\)
0.488283 + 0.872685i \(0.337623\pi\)
\(350\) 0 0
\(351\) 82.0663i 0.233807i
\(352\) 0 0
\(353\) 44.9354 77.8304i 0.127296 0.220483i −0.795332 0.606174i \(-0.792704\pi\)
0.922628 + 0.385691i \(0.126037\pi\)
\(354\) 0 0
\(355\) −142.815 + 82.4545i −0.402297 + 0.232266i
\(356\) 0 0
\(357\) −102.396 + 9.63065i −0.286822 + 0.0269766i
\(358\) 0 0
\(359\) −310.996 + 179.554i −0.866285 + 0.500150i −0.866112 0.499850i \(-0.833388\pi\)
−0.000173257 1.00000i \(0.500055\pi\)
\(360\) 0 0
\(361\) −177.452 + 307.356i −0.491557 + 0.851402i
\(362\) 0 0
\(363\) 22.2294i 0.0612380i
\(364\) 0 0
\(365\) 67.5883 0.185173
\(366\) 0 0
\(367\) −429.578 248.017i −1.17051 0.675795i −0.216711 0.976236i \(-0.569533\pi\)
−0.953800 + 0.300441i \(0.902866\pi\)
\(368\) 0 0
\(369\) 40.5607 + 70.2532i 0.109921 + 0.190388i
\(370\) 0 0
\(371\) −184.425 + 130.933i −0.497101 + 0.352920i
\(372\) 0 0
\(373\) 204.604 + 354.384i 0.548535 + 0.950091i 0.998375 + 0.0569816i \(0.0181476\pi\)
−0.449840 + 0.893109i \(0.648519\pi\)
\(374\) 0 0
\(375\) 154.809 + 89.3793i 0.412825 + 0.238345i
\(376\) 0 0
\(377\) −557.223 −1.47804
\(378\) 0 0
\(379\) 531.591i 1.40261i 0.712859 + 0.701307i \(0.247400\pi\)
−0.712859 + 0.701307i \(0.752600\pi\)
\(380\) 0 0
\(381\) −30.4028 + 52.6593i −0.0797975 + 0.138213i
\(382\) 0 0
\(383\) −646.737 + 373.394i −1.68861 + 0.974918i −0.733023 + 0.680204i \(0.761891\pi\)
−0.955585 + 0.294714i \(0.904776\pi\)
\(384\) 0 0
\(385\) 77.9842 170.121i 0.202556 0.441872i
\(386\) 0 0
\(387\) −3.61592 + 2.08765i −0.00934346 + 0.00539445i
\(388\) 0 0
\(389\) −165.746 + 287.080i −0.426082 + 0.737995i −0.996521 0.0833446i \(-0.973440\pi\)
0.570439 + 0.821340i \(0.306773\pi\)
\(390\) 0 0
\(391\) 388.807i 0.994392i
\(392\) 0 0
\(393\) 273.560 0.696081
\(394\) 0 0
\(395\) 205.988 + 118.927i 0.521490 + 0.301082i
\(396\) 0 0
\(397\) 68.2701 + 118.247i 0.171965 + 0.297852i 0.939107 0.343626i \(-0.111655\pi\)
−0.767142 + 0.641478i \(0.778322\pi\)
\(398\) 0 0
\(399\) −27.2119 12.4740i −0.0682002 0.0312633i
\(400\) 0 0
\(401\) −195.014 337.775i −0.486320 0.842331i 0.513556 0.858056i \(-0.328328\pi\)
−0.999876 + 0.0157250i \(0.994994\pi\)
\(402\) 0 0
\(403\) −410.995 237.288i −1.01984 0.588804i
\(404\) 0 0
\(405\) 20.7987 0.0513547
\(406\) 0 0
\(407\) 454.033i 1.11556i
\(408\) 0 0
\(409\) −384.516 + 666.001i −0.940137 + 1.62837i −0.174930 + 0.984581i \(0.555970\pi\)
−0.765207 + 0.643784i \(0.777363\pi\)
\(410\) 0 0
\(411\) 331.576 191.435i 0.806753 0.465779i
\(412\) 0 0
\(413\) 119.652 + 168.534i 0.289713 + 0.408072i
\(414\) 0 0
\(415\) −86.3601 + 49.8600i −0.208097 + 0.120145i
\(416\) 0 0
\(417\) 118.519 205.281i 0.284219 0.492281i
\(418\) 0 0
\(419\) 664.417i 1.58572i 0.609403 + 0.792861i \(0.291409\pi\)
−0.609403 + 0.792861i \(0.708591\pi\)
\(420\) 0 0
\(421\) 83.6243 0.198633 0.0993163 0.995056i \(-0.468334\pi\)
0.0993163 + 0.995056i \(0.468334\pi\)
\(422\) 0 0
\(423\) −55.2305 31.8873i −0.130568 0.0753837i
\(424\) 0 0
\(425\) −83.3827 144.423i −0.196195 0.339819i
\(426\) 0 0
\(427\) −67.7728 720.578i −0.158719 1.68754i
\(428\) 0 0
\(429\) 158.233 + 274.068i 0.368842 + 0.638853i
\(430\) 0 0
\(431\) −347.454 200.602i −0.806157 0.465435i 0.0394627 0.999221i \(-0.487435\pi\)
−0.845619 + 0.533786i \(0.820769\pi\)
\(432\) 0 0
\(433\) 96.9743 0.223959 0.111980 0.993711i \(-0.464281\pi\)
0.111980 + 0.993711i \(0.464281\pi\)
\(434\) 0 0
\(435\) 141.221i 0.324646i
\(436\) 0 0
\(437\) 56.5830 98.0047i 0.129481 0.224267i
\(438\) 0 0
\(439\) −378.661 + 218.620i −0.862553 + 0.497995i −0.864866 0.502002i \(-0.832597\pi\)
0.00231345 + 0.999997i \(0.499264\pi\)
\(440\) 0 0
\(441\) −48.4739 + 138.778i −0.109918 + 0.314689i
\(442\) 0 0
\(443\) 507.040 292.740i 1.14456 0.660812i 0.197004 0.980403i \(-0.436879\pi\)
0.947556 + 0.319591i \(0.103545\pi\)
\(444\) 0 0
\(445\) 143.392 248.362i 0.322228 0.558116i
\(446\) 0 0
\(447\) 80.1495i 0.179305i
\(448\) 0 0
\(449\) −430.149 −0.958016 −0.479008 0.877811i \(-0.659004\pi\)
−0.479008 + 0.877811i \(0.659004\pi\)
\(450\) 0 0
\(451\) 270.912 + 156.411i 0.600692 + 0.346810i
\(452\) 0 0
\(453\) −80.3543 139.178i −0.177383 0.307236i
\(454\) 0 0
\(455\) 23.9241 + 254.368i 0.0525805 + 0.559050i
\(456\) 0 0
\(457\) −408.249 707.109i −0.893325 1.54728i −0.835864 0.548936i \(-0.815033\pi\)
−0.0574604 0.998348i \(-0.518300\pi\)
\(458\) 0 0
\(459\) −38.1722 22.0387i −0.0831639 0.0480147i
\(460\) 0 0
\(461\) 280.569 0.608609 0.304305 0.952575i \(-0.401576\pi\)
0.304305 + 0.952575i \(0.401576\pi\)
\(462\) 0 0
\(463\) 181.939i 0.392958i 0.980508 + 0.196479i \(0.0629507\pi\)
−0.980508 + 0.196479i \(0.937049\pi\)
\(464\) 0 0
\(465\) −60.1376 + 104.161i −0.129328 + 0.224003i
\(466\) 0 0
\(467\) −76.9351 + 44.4185i −0.164743 + 0.0951146i −0.580105 0.814542i \(-0.696988\pi\)
0.415362 + 0.909656i \(0.363655\pi\)
\(468\) 0 0
\(469\) 289.952 + 408.408i 0.618234 + 0.870807i
\(470\) 0 0
\(471\) −276.039 + 159.371i −0.586070 + 0.338367i
\(472\) 0 0
\(473\) −8.05046 + 13.9438i −0.0170200 + 0.0294795i
\(474\) 0 0
\(475\) 48.5387i 0.102187i
\(476\) 0 0
\(477\) −96.9329 −0.203214
\(478\) 0 0
\(479\) 109.953 + 63.4813i 0.229547 + 0.132529i 0.610363 0.792122i \(-0.291024\pi\)
−0.380816 + 0.924651i \(0.624357\pi\)
\(480\) 0 0
\(481\) 309.926 + 536.807i 0.644336 + 1.11602i
\(482\) 0 0
\(483\) −505.174 231.574i −1.04591 0.479450i
\(484\) 0 0
\(485\) 17.0071 + 29.4572i 0.0350662 + 0.0607364i
\(486\) 0 0
\(487\) 249.054 + 143.791i 0.511404 + 0.295259i 0.733410 0.679786i \(-0.237927\pi\)
−0.222007 + 0.975045i \(0.571261\pi\)
\(488\) 0 0
\(489\) −115.315 −0.235818
\(490\) 0 0
\(491\) 23.7600i 0.0483910i −0.999707 0.0241955i \(-0.992298\pi\)
0.999707 0.0241955i \(-0.00770241\pi\)
\(492\) 0 0
\(493\) 149.641 259.186i 0.303531 0.525732i
\(494\) 0 0
\(495\) 69.4590 40.1022i 0.140321 0.0810144i
\(496\) 0 0
\(497\) 208.153 454.080i 0.418818 0.913643i
\(498\) 0 0
\(499\) −48.6932 + 28.1130i −0.0975815 + 0.0563387i −0.547997 0.836481i \(-0.684609\pi\)
0.450415 + 0.892819i \(0.351276\pi\)
\(500\) 0 0
\(501\) −102.905 + 178.236i −0.205399 + 0.355761i
\(502\) 0 0
\(503\) 913.863i 1.81683i −0.418075 0.908413i \(-0.637295\pi\)
0.418075 0.908413i \(-0.362705\pi\)
\(504\) 0 0
\(505\) −192.994 −0.382166
\(506\) 0 0
\(507\) −120.660 69.6633i −0.237989 0.137403i
\(508\) 0 0
\(509\) 449.411 + 778.404i 0.882930 + 1.52928i 0.848068 + 0.529888i \(0.177766\pi\)
0.0348625 + 0.999392i \(0.488901\pi\)
\(510\) 0 0
\(511\) −166.935 + 118.516i −0.326683 + 0.231930i
\(512\) 0 0
\(513\) −6.41458 11.1104i −0.0125041 0.0216577i
\(514\) 0 0
\(515\) 249.440 + 144.014i 0.484350 + 0.279640i
\(516\) 0 0
\(517\) −245.929 −0.475685
\(518\) 0 0
\(519\) 347.137i 0.668857i
\(520\) 0 0
\(521\) 155.780 269.819i 0.299002 0.517886i −0.676906 0.736069i \(-0.736680\pi\)
0.975908 + 0.218183i \(0.0700130\pi\)
\(522\) 0 0
\(523\) 681.450 393.436i 1.30296 0.752267i 0.322053 0.946722i \(-0.395627\pi\)
0.980911 + 0.194455i \(0.0622938\pi\)
\(524\) 0 0
\(525\) −237.311 + 22.3199i −0.452021 + 0.0425141i
\(526\) 0 0
\(527\) 220.743 127.446i 0.418868 0.241834i
\(528\) 0 0
\(529\) 785.935 1361.28i 1.48570 2.57331i
\(530\) 0 0
\(531\) 88.5808i 0.166819i
\(532\) 0 0
\(533\) −427.069 −0.801254
\(534\) 0 0
\(535\) −72.1658 41.6649i −0.134889 0.0778784i
\(536\) 0 0
\(537\) −160.405 277.830i −0.298706 0.517375i
\(538\) 0 0
\(539\) 105.696 + 556.924i 0.196097 + 1.03325i
\(540\) 0 0
\(541\) 140.349 + 243.091i 0.259425 + 0.449337i 0.966088 0.258213i \(-0.0831337\pi\)
−0.706663 + 0.707550i \(0.749800\pi\)
\(542\) 0 0
\(543\) 342.558 + 197.776i 0.630863 + 0.364229i
\(544\) 0 0
\(545\) 426.835 0.783183
\(546\) 0 0
\(547\) 153.761i 0.281099i 0.990074 + 0.140549i \(0.0448869\pi\)
−0.990074 + 0.140549i \(0.955113\pi\)
\(548\) 0 0
\(549\) 155.091 268.625i 0.282497 0.489299i
\(550\) 0 0
\(551\) 75.4384 43.5544i 0.136912 0.0790461i
\(552\) 0 0
\(553\) −717.306 + 67.4651i −1.29712 + 0.121998i
\(554\) 0 0
\(555\) 136.047 78.5467i 0.245129 0.141526i
\(556\) 0 0
\(557\) 390.366 676.135i 0.700837 1.21389i −0.267335 0.963604i \(-0.586143\pi\)
0.968173 0.250283i \(-0.0805235\pi\)
\(558\) 0 0
\(559\) 21.9811i 0.0393222i
\(560\) 0 0
\(561\) −169.973 −0.302981
\(562\) 0 0
\(563\) 811.598 + 468.577i 1.44156 + 0.832285i 0.997954 0.0639367i \(-0.0203656\pi\)
0.443606 + 0.896222i \(0.353699\pi\)
\(564\) 0 0
\(565\) −244.746 423.913i −0.433180 0.750289i
\(566\) 0 0
\(567\) −51.3702 + 36.4706i −0.0906000 + 0.0643220i
\(568\) 0 0
\(569\) 393.400 + 681.388i 0.691388 + 1.19752i 0.971383 + 0.237517i \(0.0763337\pi\)
−0.279995 + 0.960001i \(0.590333\pi\)
\(570\) 0 0
\(571\) 227.876 + 131.564i 0.399082 + 0.230410i 0.686088 0.727519i \(-0.259327\pi\)
−0.287006 + 0.957929i \(0.592660\pi\)
\(572\) 0 0
\(573\) 260.479 0.454588
\(574\) 0 0
\(575\) 901.096i 1.56712i
\(576\) 0 0
\(577\) −5.50000 + 9.52628i −0.00953206 + 0.0165100i −0.870752 0.491722i \(-0.836368\pi\)
0.861220 + 0.508232i \(0.169701\pi\)
\(578\) 0 0
\(579\) 122.311 70.6165i 0.211246 0.121963i
\(580\) 0 0
\(581\) 125.869 274.581i 0.216642 0.472601i
\(582\) 0 0
\(583\) −323.716 + 186.897i −0.555259 + 0.320579i
\(584\) 0 0
\(585\) −54.7479 + 94.8261i −0.0935861 + 0.162096i
\(586\) 0 0
\(587\) 461.546i 0.786279i −0.919479 0.393139i \(-0.871389\pi\)
0.919479 0.393139i \(-0.128611\pi\)
\(588\) 0 0
\(589\) 74.1889 0.125957
\(590\) 0 0
\(591\) 289.080 + 166.900i 0.489136 + 0.282403i
\(592\) 0 0
\(593\) 388.103 + 672.214i 0.654474 + 1.13358i 0.982025 + 0.188749i \(0.0604431\pi\)
−0.327552 + 0.944833i \(0.606224\pi\)
\(594\) 0 0
\(595\) −124.741 57.1818i −0.209649 0.0961039i
\(596\) 0 0
\(597\) −75.8234 131.330i −0.127007 0.219983i
\(598\) 0 0
\(599\) 209.520 + 120.967i 0.349783 + 0.201947i 0.664590 0.747208i \(-0.268606\pi\)
−0.314807 + 0.949156i \(0.601940\pi\)
\(600\) 0 0
\(601\) −521.217 −0.867250 −0.433625 0.901093i \(-0.642766\pi\)
−0.433625 + 0.901093i \(0.642766\pi\)
\(602\) 0 0
\(603\) 214.658i 0.355984i
\(604\) 0 0
\(605\) 14.8296 25.6857i 0.0245118 0.0424556i
\(606\) 0 0
\(607\) 986.613 569.621i 1.62539 0.938420i 0.639948 0.768419i \(-0.278956\pi\)
0.985444 0.170002i \(-0.0543773\pi\)
\(608\) 0 0
\(609\) −247.632 348.799i −0.406620 0.572740i
\(610\) 0 0
\(611\) 290.764 167.873i 0.475882 0.274751i
\(612\) 0 0
\(613\) −267.033 + 462.514i −0.435616 + 0.754510i −0.997346 0.0728114i \(-0.976803\pi\)
0.561729 + 0.827321i \(0.310136\pi\)
\(614\) 0 0
\(615\) 108.235i 0.175992i
\(616\) 0 0
\(617\) −802.979 −1.30142 −0.650712 0.759324i \(-0.725530\pi\)
−0.650712 + 0.759324i \(0.725530\pi\)
\(618\) 0 0
\(619\) −274.573 158.525i −0.443575 0.256098i 0.261538 0.965193i \(-0.415770\pi\)
−0.705113 + 0.709095i \(0.749104\pi\)
\(620\) 0 0
\(621\) −119.083 206.259i −0.191761 0.332139i
\(622\) 0 0
\(623\) 81.3432 + 864.861i 0.130567 + 1.38822i
\(624\) 0 0
\(625\) −126.490 219.087i −0.202384 0.350540i
\(626\) 0 0
\(627\) −42.8441 24.7361i −0.0683319 0.0394515i
\(628\) 0 0
\(629\) −332.919 −0.529284
\(630\) 0 0
\(631\) 1168.77i 1.85225i 0.377222 + 0.926123i \(0.376879\pi\)
−0.377222 + 0.926123i \(0.623121\pi\)
\(632\) 0 0
\(633\) −110.665 + 191.678i −0.174827 + 0.302809i
\(634\) 0 0
\(635\) −70.2598 + 40.5645i −0.110645 + 0.0638812i
\(636\) 0 0
\(637\) −505.125 586.306i −0.792974 0.920418i
\(638\) 0 0
\(639\) 185.397 107.039i 0.290137 0.167511i
\(640\) 0 0
\(641\) 8.12563 14.0740i 0.0126765 0.0219563i −0.859618 0.510938i \(-0.829298\pi\)
0.872294 + 0.488982i \(0.162632\pi\)
\(642\) 0 0
\(643\) 956.475i 1.48752i 0.668447 + 0.743760i \(0.266959\pi\)
−0.668447 + 0.743760i \(0.733041\pi\)
\(644\) 0 0
\(645\) −5.57084 −0.00863696
\(646\) 0 0
\(647\) 456.676 + 263.662i 0.705836 + 0.407515i 0.809517 0.587096i \(-0.199729\pi\)
−0.103681 + 0.994611i \(0.533062\pi\)
\(648\) 0 0
\(649\) 170.794 + 295.823i 0.263164 + 0.455814i
\(650\) 0 0
\(651\) −34.1148 362.717i −0.0524037 0.557170i
\(652\) 0 0
\(653\) −159.664 276.547i −0.244509 0.423502i 0.717484 0.696575i \(-0.245293\pi\)
−0.961993 + 0.273073i \(0.911960\pi\)
\(654\) 0 0
\(655\) 316.093 + 182.497i 0.482585 + 0.278621i
\(656\) 0 0
\(657\) −87.7404 −0.133547
\(658\) 0 0
\(659\) 289.303i 0.439004i −0.975612 0.219502i \(-0.929557\pi\)
0.975612 0.219502i \(-0.0704432\pi\)
\(660\) 0 0
\(661\) 8.20984 14.2199i 0.0124203 0.0215126i −0.859748 0.510718i \(-0.829380\pi\)
0.872169 + 0.489205i \(0.162713\pi\)
\(662\) 0 0
\(663\) 200.960 116.024i 0.303107 0.174999i
\(664\) 0 0
\(665\) −23.1212 32.5670i −0.0347687 0.0489730i
\(666\) 0 0
\(667\) 1400.48 808.565i 2.09966 1.21224i
\(668\) 0 0
\(669\) 245.908 425.926i 0.367576 0.636660i
\(670\) 0 0
\(671\) 1196.13i 1.78261i
\(672\) 0 0
\(673\) −65.5702 −0.0974297 −0.0487149 0.998813i \(-0.515513\pi\)
−0.0487149 + 0.998813i \(0.515513\pi\)
\(674\) 0 0
\(675\) −88.4675 51.0768i −0.131063 0.0756693i
\(676\) 0 0
\(677\) 595.229 + 1030.97i 0.879216 + 1.52285i 0.852203 + 0.523211i \(0.175266\pi\)
0.0270124 + 0.999635i \(0.491401\pi\)
\(678\) 0 0
\(679\) −93.6587 42.9336i −0.137936 0.0632306i
\(680\) 0 0
\(681\) −358.164 620.358i −0.525938 0.910952i
\(682\) 0 0
\(683\) −770.901 445.080i −1.12870 0.651654i −0.185091 0.982721i \(-0.559258\pi\)
−0.943607 + 0.331067i \(0.892591\pi\)
\(684\) 0 0
\(685\) 510.839 0.745751
\(686\) 0 0
\(687\) 279.397i 0.406692i
\(688\) 0 0
\(689\) 255.154 441.940i 0.370326 0.641423i
\(690\) 0 0
\(691\) −303.625 + 175.298i −0.439400 + 0.253688i −0.703343 0.710851i \(-0.748310\pi\)
0.263943 + 0.964538i \(0.414977\pi\)
\(692\) 0 0
\(693\) −101.236 + 220.844i −0.146084 + 0.318678i
\(694\) 0 0
\(695\) 273.893 158.132i 0.394091 0.227529i
\(696\) 0 0
\(697\) 114.688 198.646i 0.164546 0.285001i
\(698\) 0 0
\(699\) 628.266i 0.898807i
\(700\) 0 0
\(701\) 998.973 1.42507 0.712534 0.701637i \(-0.247547\pi\)
0.712534 + 0.701637i \(0.247547\pi\)
\(702\) 0 0
\(703\) −83.9173 48.4497i −0.119370 0.0689185i
\(704\) 0 0
\(705\) −42.5452 73.6904i −0.0603478 0.104525i
\(706\) 0 0
\(707\) 476.672 338.416i 0.674217 0.478664i
\(708\) 0 0
\(709\) −233.324 404.129i −0.329089 0.569998i 0.653243 0.757149i \(-0.273408\pi\)
−0.982331 + 0.187150i \(0.940075\pi\)
\(710\) 0 0
\(711\) −267.406 154.387i −0.376098 0.217140i
\(712\) 0 0
\(713\) 1377.28 1.93167
\(714\) 0 0
\(715\) 422.240i 0.590546i
\(716\) 0 0
\(717\) −296.426 + 513.424i −0.413425 + 0.716073i
\(718\) 0 0
\(719\) −329.811 + 190.416i −0.458707 + 0.264835i −0.711501 0.702685i \(-0.751984\pi\)
0.252793 + 0.967520i \(0.418651\pi\)
\(720\) 0 0
\(721\) −868.617 + 81.6964i −1.20474 + 0.113310i
\(722\) 0 0
\(723\) −353.591 + 204.146i −0.489061 + 0.282360i
\(724\) 0 0
\(725\) 346.806 600.686i 0.478353 0.828533i
\(726\) 0 0
\(727\) 868.875i 1.19515i −0.801813 0.597575i \(-0.796131\pi\)
0.801813 0.597575i \(-0.203869\pi\)
\(728\) 0 0
\(729\) −27.0000 −0.0370370
\(730\) 0 0
\(731\) 10.2243 + 5.90299i 0.0139867 + 0.00807522i
\(732\) 0 0
\(733\) −135.684 235.011i −0.185108 0.320616i 0.758505 0.651667i \(-0.225930\pi\)
−0.943613 + 0.331051i \(0.892597\pi\)
\(734\) 0 0
\(735\) −148.592 + 128.017i −0.202166 + 0.174173i
\(736\) 0 0
\(737\) 413.885 + 716.869i 0.561580 + 0.972686i
\(738\) 0 0
\(739\) −1121.40 647.443i −1.51746 0.876107i −0.999789 0.0205291i \(-0.993465\pi\)
−0.517673 0.855578i \(-0.673202\pi\)
\(740\) 0 0
\(741\) 67.5399 0.0911470
\(742\) 0 0
\(743\) 69.5251i 0.0935735i 0.998905 + 0.0467868i \(0.0148981\pi\)
−0.998905 + 0.0467868i \(0.985102\pi\)
\(744\) 0 0
\(745\) 53.4692 92.6113i 0.0717707 0.124310i
\(746\) 0 0
\(747\) 112.109 64.7263i 0.150079 0.0866483i
\(748\) 0 0
\(749\) 251.300 23.6357i 0.335515 0.0315563i
\(750\) 0 0
\(751\) −935.360 + 540.030i −1.24549 + 0.719082i −0.970206 0.242282i \(-0.922104\pi\)
−0.275280 + 0.961364i \(0.588771\pi\)
\(752\) 0 0
\(753\) 355.014 614.903i 0.471467 0.816604i
\(754\) 0 0
\(755\) 214.423i 0.284004i
\(756\) 0 0
\(757\) −1073.01 −1.41745 −0.708727 0.705482i \(-0.750730\pi\)
−0.708727 + 0.705482i \(0.750730\pi\)
\(758\) 0 0
\(759\) −795.379 459.212i −1.04793 0.605023i
\(760\) 0 0
\(761\) 594.859 + 1030.33i 0.781681 + 1.35391i 0.930962 + 0.365117i \(0.118971\pi\)
−0.149280 + 0.988795i \(0.547696\pi\)
\(762\) 0 0
\(763\) −1054.23 + 748.457i −1.38169 + 0.980939i
\(764\) 0 0
\(765\) −29.4049 50.9307i −0.0384377 0.0665761i
\(766\) 0 0
\(767\) −403.861 233.169i −0.526547 0.304002i
\(768\) 0 0
\(769\) 497.083 0.646402 0.323201 0.946330i \(-0.395241\pi\)
0.323201 + 0.946330i \(0.395241\pi\)
\(770\) 0 0
\(771\) 669.035i 0.867750i
\(772\) 0 0
\(773\) −610.658 + 1057.69i −0.789984 + 1.36829i 0.135992 + 0.990710i \(0.456578\pi\)
−0.925976 + 0.377583i \(0.876755\pi\)
\(774\) 0 0
\(775\) 511.593 295.368i 0.660120 0.381120i
\(776\) 0 0
\(777\) −198.287 + 432.560i −0.255196 + 0.556705i
\(778\) 0 0
\(779\) 57.8178 33.3811i 0.0742205 0.0428513i
\(780\) 0 0
\(781\) 412.767 714.934i 0.528511 0.915408i
\(782\) 0 0
\(783\) 183.327i 0.234135i
\(784\) 0 0
\(785\) −425.277 −0.541754
\(786\) 0 0
\(787\) 364.854 + 210.649i 0.463601 + 0.267660i 0.713557 0.700597i \(-0.247083\pi\)
−0.249956 + 0.968257i \(0.580416\pi\)
\(788\) 0 0
\(789\) 38.7395 + 67.0988i 0.0490995 + 0.0850428i
\(790\) 0 0
\(791\) 1347.83 + 617.851i 1.70396 + 0.781101i
\(792\) 0 0
\(793\) 816.485 + 1414.19i 1.02962 + 1.78335i
\(794\) 0 0
\(795\) −112.004 64.6656i −0.140886 0.0813404i
\(796\) 0 0
\(797\) −395.391 −0.496099 −0.248050 0.968747i \(-0.579790\pi\)
−0.248050 + 0.968747i \(0.579790\pi\)
\(798\) 0 0
\(799\) 180.327i 0.225691i
\(800\) 0 0
\(801\) −186.145 + 322.413i −0.232391 + 0.402513i
\(802\) 0 0
\(803\) −293.017 + 169.173i −0.364903 + 0.210677i
\(804\) 0 0
\(805\) −429.232 604.590i −0.533208 0.751044i
\(806\) 0 0
\(807\) −583.522 + 336.897i −0.723076 + 0.417468i
\(808\) 0 0
\(809\) 238.454 413.014i 0.294751 0.510524i −0.680176 0.733049i \(-0.738097\pi\)
0.974927 + 0.222525i \(0.0714300\pi\)
\(810\) 0 0
\(811\) 268.467i 0.331032i 0.986207 + 0.165516i \(0.0529289\pi\)
−0.986207 + 0.165516i \(0.947071\pi\)
\(812\) 0 0
\(813\) −709.238 −0.872371
\(814\) 0 0
\(815\) −133.244 76.9285i −0.163490 0.0943908i
\(816\) 0 0
\(817\) 1.71812 + 2.97587i 0.00210296 + 0.00364244i
\(818\) 0 0
\(819\) −31.0574 330.210i −0.0379211 0.403187i
\(820\) 0 0
\(821\) −323.328 560.021i −0.393822 0.682120i 0.599128 0.800653i \(-0.295514\pi\)
−0.992950 + 0.118533i \(0.962181\pi\)
\(822\) 0 0
\(823\) −181.913 105.028i −0.221037 0.127616i 0.385393 0.922752i \(-0.374066\pi\)
−0.606430 + 0.795137i \(0.707399\pi\)
\(824\) 0 0
\(825\) −393.927 −0.477487
\(826\) 0 0
\(827\) 590.763i 0.714345i −0.934038 0.357173i \(-0.883741\pi\)
0.934038 0.357173i \(-0.116259\pi\)
\(828\) 0 0
\(829\) −746.646 + 1293.23i −0.900659 + 1.55999i −0.0740183 + 0.997257i \(0.523582\pi\)
−0.826641 + 0.562730i \(0.809751\pi\)
\(830\) 0 0
\(831\) 270.084 155.933i 0.325011 0.187645i
\(832\) 0 0
\(833\) 408.364 77.5016i 0.490232 0.0930391i
\(834\) 0 0
\(835\) −237.809 + 137.299i −0.284801 + 0.164430i
\(836\) 0 0
\(837\) 78.0682 135.218i 0.0932714 0.161551i
\(838\) 0 0
\(839\) 529.587i 0.631212i 0.948890 + 0.315606i \(0.102208\pi\)
−0.948890 + 0.315606i \(0.897792\pi\)
\(840\) 0 0
\(841\) 403.776 0.480114
\(842\) 0 0
\(843\) 316.378 + 182.661i 0.375301 + 0.216680i
\(844\) 0 0
\(845\) −92.9471 160.989i −0.109997 0.190520i
\(846\) 0 0
\(847\) 8.41255 + 89.4443i 0.00993217 + 0.105601i
\(848\) 0 0
\(849\) 212.192 + 367.527i 0.249931 + 0.432894i
\(850\) 0 0
\(851\) −1557.88 899.443i −1.83065 1.05693i
\(852\) 0 0
\(853\) 544.072 0.637833 0.318917 0.947783i \(-0.396681\pi\)
0.318917 + 0.947783i \(0.396681\pi\)
\(854\) 0 0
\(855\) 17.1171i 0.0200200i
\(856\) 0 0
\(857\) −312.526 + 541.310i −0.364674 + 0.631634i −0.988724 0.149751i \(-0.952153\pi\)
0.624050 + 0.781384i \(0.285486\pi\)
\(858\) 0 0
\(859\) −648.151 + 374.210i −0.754542 + 0.435635i −0.827333 0.561712i \(-0.810143\pi\)
0.0727908 + 0.997347i \(0.476809\pi\)
\(860\) 0 0
\(861\) −189.791 267.328i −0.220431 0.310485i
\(862\) 0 0
\(863\) −750.798 + 433.473i −0.869986 + 0.502286i −0.867343 0.497710i \(-0.834174\pi\)
−0.00264216 + 0.999997i \(0.500841\pi\)
\(864\) 0 0
\(865\) −231.581 + 401.110i −0.267724 + 0.463711i
\(866\) 0 0
\(867\) 375.930i 0.433599i
\(868\) 0 0
\(869\) −1190.70 −1.37020
\(870\) 0 0
\(871\) −978.678 565.040i −1.12363 0.648726i
\(872\) 0 0
\(873\) −22.0779 38.2401i −0.0252897 0.0438031i
\(874\) 0 0
\(875\) −656.731 301.049i −0.750550 0.344055i
\(876\) 0 0
\(877\) 284.689 + 493.096i 0.324617 + 0.562253i 0.981435 0.191796i \(-0.0614313\pi\)
−0.656818 + 0.754049i \(0.728098\pi\)
\(878\) 0 0
\(879\) 393.187 + 227.006i 0.447311 + 0.258255i
\(880\) 0 0
\(881\) 781.679 0.887263 0.443632 0.896209i \(-0.353690\pi\)
0.443632 + 0.896209i \(0.353690\pi\)
\(882\) 0 0
\(883\) 1139.96i 1.29101i −0.763757 0.645504i \(-0.776647\pi\)
0.763757 0.645504i \(-0.223353\pi\)
\(884\) 0 0
\(885\) −59.0938 + 102.353i −0.0667727 + 0.115654i
\(886\) 0 0
\(887\) 131.848 76.1227i 0.148645 0.0858204i −0.423833 0.905741i \(-0.639316\pi\)
0.572478 + 0.819920i \(0.305982\pi\)
\(888\) 0 0
\(889\) 102.403 223.391i 0.115189 0.251283i
\(890\) 0 0
\(891\) −90.1689 + 52.0590i −0.101200 + 0.0584276i
\(892\) 0 0
\(893\) −26.2430 + 45.4542i −0.0293875 + 0.0509006i
\(894\) 0 0
\(895\) 428.037i 0.478253i
\(896\) 0 0
\(897\) 1253.84 1.39782
\(898\) 0 0
\(899\) 918.118 + 530.076i 1.02127 + 0.589628i
\(900\) 0 0
\(901\) 137.042 + 237.364i 0.152100 + 0.263445i
\(902\) 0 0
\(903\) 13.7593 9.76849i 0.0152373 0.0108178i
\(904\) 0 0
\(905\) 263.880 + 457.053i 0.291580 + 0.505031i
\(906\) 0 0
\(907\) −406.700 234.808i −0.448401 0.258885i 0.258754 0.965943i \(-0.416688\pi\)
−0.707155 + 0.707059i \(0.750022\pi\)
\(908\) 0 0
\(909\) 250.537 0.275618
\(910\) 0 0
\(911\) 309.559i 0.339801i −0.985461 0.169901i \(-0.945655\pi\)
0.985461 0.169901i \(-0.0543447\pi\)
\(912\) 0 0
\(913\) 249.599 432.318i 0.273383 0.473514i
\(914\) 0 0
\(915\) 358.409 206.928i 0.391704 0.226151i
\(916\) 0 0
\(917\) −1100.72 + 103.527i −1.20035 + 0.112897i
\(918\) 0 0
\(919\) −1020.42 + 589.137i −1.11035 + 0.641063i −0.938921 0.344133i \(-0.888173\pi\)
−0.171433 + 0.985196i \(0.554840\pi\)
\(920\) 0 0
\(921\) −126.874 + 219.752i −0.137757 + 0.238601i
\(922\) 0 0
\(923\) 1127.03i 1.22105i
\(924\) 0 0
\(925\) −771.571 −0.834130
\(926\) 0 0
\(927\) −323.813 186.954i −0.349313 0.201676i
\(928\) 0 0
\(929\) 141.746 + 245.511i 0.152579 + 0.264275i 0.932175 0.362008i \(-0.117909\pi\)
−0.779596 + 0.626283i \(0.784575\pi\)
\(930\) 0 0
\(931\) 114.213 + 39.8936i 0.122678 + 0.0428503i
\(932\) 0 0
\(933\) 13.0394 + 22.5848i 0.0139757 + 0.0242067i
\(934\) 0 0
\(935\) −196.400 113.392i −0.210054 0.121275i
\(936\) 0 0
\(937\) −343.658 −0.366764 −0.183382 0.983042i \(-0.558705\pi\)
−0.183382 + 0.983042i \(0.558705\pi\)
\(938\) 0 0
\(939\) 771.758i 0.821893i
\(940\) 0 0
\(941\) 307.299 532.257i 0.326566 0.565629i −0.655262 0.755402i \(-0.727442\pi\)
0.981828 + 0.189773i \(0.0607751\pi\)
\(942\) 0 0
\(943\) 1073.36 619.703i 1.13824 0.657162i
\(944\) 0 0
\(945\) −83.6875 + 7.87109i −0.0885582 + 0.00832920i
\(946\) 0 0
\(947\) 1353.87 781.658i 1.42964 0.825404i 0.432550 0.901610i \(-0.357614\pi\)
0.997092 + 0.0762056i \(0.0242805\pi\)
\(948\) 0 0
\(949\) 230.957 400.030i 0.243369 0.421528i
\(950\) 0 0
\(951\) 164.328i 0.172795i
\(952\) 0 0
\(953\) −65.3694 −0.0685933 −0.0342966 0.999412i \(-0.510919\pi\)
−0.0342966 + 0.999412i \(0.510919\pi\)
\(954\) 0 0
\(955\) 300.978 + 173.770i 0.315160 + 0.181958i
\(956\) 0 0
\(957\) −353.476 612.238i −0.369358 0.639747i
\(958\) 0 0
\(959\) −1261.71 + 895.759i −1.31565 + 0.934056i
\(960\) 0 0
\(961\) −29.0449 50.3072i −0.0302236 0.0523488i
\(962\) 0 0
\(963\) 93.6827 + 54.0878i 0.0972822 + 0.0561659i
\(964\) 0 0
\(965\) 188.438 0.195273
\(966\) 0 0
\(967\) 54.5021i 0.0563620i 0.999603 + 0.0281810i \(0.00897148\pi\)
−0.999603 + 0.0281810i \(0.991029\pi\)
\(968\) 0 0
\(969\) −18.1377 + 31.4154i −0.0187179 + 0.0324204i
\(970\) 0 0
\(971\) −1112.98 + 642.578i −1.14622 + 0.661769i −0.947963 0.318381i \(-0.896861\pi\)
−0.198255 + 0.980150i \(0.563527\pi\)
\(972\) 0 0
\(973\) −399.198 + 870.842i −0.410275 + 0.895007i
\(974\) 0 0
\(975\) 465.743 268.897i 0.477685 0.275791i
\(976\) 0 0
\(977\) −776.204 + 1344.43i −0.794477 + 1.37607i 0.128693 + 0.991684i \(0.458922\pi\)
−0.923171 + 0.384390i \(0.874412\pi\)
\(978\) 0 0
\(979\) 1435.64i 1.46643i
\(980\) 0 0
\(981\) −554.100 −0.564832
\(982\) 0 0
\(983\) −59.1187 34.1322i −0.0601411 0.0347225i 0.469628 0.882864i \(-0.344388\pi\)
−0.529769 + 0.848142i \(0.677721\pi\)
\(984\) 0 0
\(985\) 222.684 + 385.700i 0.226075 + 0.391574i
\(986\) 0 0
\(987\) 234.298 + 107.403i 0.237384 + 0.108818i
\(988\) 0 0
\(989\) 31.8960 + 55.2455i 0.0322508 + 0.0558600i
\(990\) 0 0
\(991\) 688.196 + 397.330i 0.694446 + 0.400939i 0.805275 0.592901i \(-0.202017\pi\)
−0.110829 + 0.993839i \(0.535351\pi\)
\(992\) 0 0
\(993\) 121.386 0.122241
\(994\) 0 0
\(995\) 202.332i 0.203349i
\(996\) 0 0
\(997\) 513.493 889.397i 0.515039 0.892073i −0.484809 0.874620i \(-0.661111\pi\)
0.999848 0.0174530i \(-0.00555575\pi\)
\(998\) 0 0
\(999\) −176.611 + 101.966i −0.176787 + 0.102068i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 336.3.be.d.319.2 yes 6
3.2 odd 2 1008.3.cd.h.991.2 6
4.3 odd 2 336.3.be.f.319.2 yes 6
7.2 even 3 336.3.be.f.79.2 yes 6
7.3 odd 6 2352.3.m.o.1471.2 6
7.4 even 3 2352.3.m.n.1471.5 6
12.11 even 2 1008.3.cd.i.991.2 6
21.2 odd 6 1008.3.cd.i.415.2 6
28.3 even 6 2352.3.m.o.1471.5 6
28.11 odd 6 2352.3.m.n.1471.2 6
28.23 odd 6 inner 336.3.be.d.79.2 6
84.23 even 6 1008.3.cd.h.415.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
336.3.be.d.79.2 6 28.23 odd 6 inner
336.3.be.d.319.2 yes 6 1.1 even 1 trivial
336.3.be.f.79.2 yes 6 7.2 even 3
336.3.be.f.319.2 yes 6 4.3 odd 2
1008.3.cd.h.415.2 6 84.23 even 6
1008.3.cd.h.991.2 6 3.2 odd 2
1008.3.cd.i.415.2 6 21.2 odd 6
1008.3.cd.i.991.2 6 12.11 even 2
2352.3.m.n.1471.2 6 28.11 odd 6
2352.3.m.n.1471.5 6 7.4 even 3
2352.3.m.o.1471.2 6 7.3 odd 6
2352.3.m.o.1471.5 6 28.3 even 6