Properties

Label 336.3.be.d.79.2
Level $336$
Weight $3$
Character 336.79
Analytic conductor $9.155$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [336,3,Mod(79,336)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(336, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 0, 2])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("336.79"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 336 = 2^{4} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 336.be (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,-9,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.15533688251\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{6})\)
Coefficient field: 6.0.1364138928.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 35x^{4} + 364x^{2} + 972 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 79.2
Root \(-3.78298i\) of defining polynomial
Character \(\chi\) \(=\) 336.79
Dual form 336.3.be.d.319.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.50000 + 0.866025i) q^{3} +(-1.15548 + 2.00135i) q^{5} +(6.36328 - 2.91696i) q^{7} +(1.50000 - 2.59808i) q^{9} +(10.0188 - 5.78434i) q^{11} -15.7937 q^{13} -4.00270i q^{15} +(4.24136 + 7.34625i) q^{17} +(2.13819 + 1.23449i) q^{19} +(-7.01876 + 9.88620i) q^{21} +(39.6945 + 22.9176i) q^{23} +(9.82973 + 17.0256i) q^{25} +5.19615i q^{27} +35.2814 q^{29} +(26.0227 - 15.0242i) q^{31} +(-10.0188 + 17.3530i) q^{33} +(-1.51479 + 16.1057i) q^{35} +(-19.6234 + 33.9887i) q^{37} +(23.6905 - 13.6777i) q^{39} +27.0405 q^{41} -1.39177i q^{43} +(3.46644 + 6.00406i) q^{45} +(-18.4102 - 10.6291i) q^{47} +(31.9827 - 37.1229i) q^{49} +(-12.7241 - 7.34625i) q^{51} +(-16.1555 - 27.9821i) q^{53} +26.7348i q^{55} -4.27639 q^{57} +(25.5711 - 14.7635i) q^{59} +(-51.6970 + 89.5418i) q^{61} +(1.96644 - 20.9077i) q^{63} +(18.2493 - 31.6087i) q^{65} +(61.9664 - 35.7763i) q^{67} -79.3890 q^{69} +71.3595i q^{71} +(-14.6234 - 25.3285i) q^{73} +(-29.4892 - 17.0256i) q^{75} +(46.8796 - 66.0317i) q^{77} +(-89.1353 - 51.4623i) q^{79} +(-4.50000 - 7.79423i) q^{81} +43.1509i q^{83} -19.6032 q^{85} +(-52.9221 + 30.5546i) q^{87} +(62.0484 - 107.471i) q^{89} +(-100.500 + 46.0695i) q^{91} +(-26.0227 + 45.0727i) q^{93} +(-4.94129 + 2.85285i) q^{95} -14.7186 q^{97} -34.7060i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 9 q^{3} + q^{5} - 11 q^{7} + 9 q^{9} + 3 q^{11} - 44 q^{13} + 8 q^{17} - 30 q^{19} + 15 q^{21} + 24 q^{23} - 14 q^{25} + 34 q^{29} - 39 q^{31} - 3 q^{33} - 90 q^{35} + 6 q^{37} + 66 q^{39} - 136 q^{41}+ \cdots - 266 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/336\mathbb{Z}\right)^\times\).

\(n\) \(85\) \(113\) \(127\) \(241\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.50000 + 0.866025i −0.500000 + 0.288675i
\(4\) 0 0
\(5\) −1.15548 + 2.00135i −0.231096 + 0.400270i −0.958131 0.286330i \(-0.907565\pi\)
0.727035 + 0.686601i \(0.240898\pi\)
\(6\) 0 0
\(7\) 6.36328 2.91696i 0.909040 0.416708i
\(8\) 0 0
\(9\) 1.50000 2.59808i 0.166667 0.288675i
\(10\) 0 0
\(11\) 10.0188 5.78434i 0.910797 0.525849i 0.0301093 0.999547i \(-0.490414\pi\)
0.880687 + 0.473698i \(0.157081\pi\)
\(12\) 0 0
\(13\) −15.7937 −1.21490 −0.607449 0.794359i \(-0.707807\pi\)
−0.607449 + 0.794359i \(0.707807\pi\)
\(14\) 0 0
\(15\) 4.00270i 0.266847i
\(16\) 0 0
\(17\) 4.24136 + 7.34625i 0.249492 + 0.432132i 0.963385 0.268122i \(-0.0864032\pi\)
−0.713893 + 0.700255i \(0.753070\pi\)
\(18\) 0 0
\(19\) 2.13819 + 1.23449i 0.112537 + 0.0649730i 0.555212 0.831709i \(-0.312637\pi\)
−0.442675 + 0.896682i \(0.645971\pi\)
\(20\) 0 0
\(21\) −7.01876 + 9.88620i −0.334227 + 0.470771i
\(22\) 0 0
\(23\) 39.6945 + 22.9176i 1.72585 + 0.996418i 0.905204 + 0.424977i \(0.139718\pi\)
0.820643 + 0.571441i \(0.193615\pi\)
\(24\) 0 0
\(25\) 9.82973 + 17.0256i 0.393189 + 0.681023i
\(26\) 0 0
\(27\) 5.19615i 0.192450i
\(28\) 0 0
\(29\) 35.2814 1.21660 0.608300 0.793707i \(-0.291852\pi\)
0.608300 + 0.793707i \(0.291852\pi\)
\(30\) 0 0
\(31\) 26.0227 15.0242i 0.839443 0.484653i −0.0176318 0.999845i \(-0.505613\pi\)
0.857075 + 0.515192i \(0.172279\pi\)
\(32\) 0 0
\(33\) −10.0188 + 17.3530i −0.303599 + 0.525849i
\(34\) 0 0
\(35\) −1.51479 + 16.1057i −0.0432798 + 0.460162i
\(36\) 0 0
\(37\) −19.6234 + 33.9887i −0.530362 + 0.918614i 0.469010 + 0.883193i \(0.344611\pi\)
−0.999372 + 0.0354216i \(0.988723\pi\)
\(38\) 0 0
\(39\) 23.6905 13.6777i 0.607449 0.350711i
\(40\) 0 0
\(41\) 27.0405 0.659524 0.329762 0.944064i \(-0.393032\pi\)
0.329762 + 0.944064i \(0.393032\pi\)
\(42\) 0 0
\(43\) 1.39177i 0.0323667i −0.999869 0.0161834i \(-0.994848\pi\)
0.999869 0.0161834i \(-0.00515155\pi\)
\(44\) 0 0
\(45\) 3.46644 + 6.00406i 0.0770321 + 0.133423i
\(46\) 0 0
\(47\) −18.4102 10.6291i −0.391705 0.226151i 0.291193 0.956664i \(-0.405948\pi\)
−0.682899 + 0.730513i \(0.739281\pi\)
\(48\) 0 0
\(49\) 31.9827 37.1229i 0.652708 0.757609i
\(50\) 0 0
\(51\) −12.7241 7.34625i −0.249492 0.144044i
\(52\) 0 0
\(53\) −16.1555 27.9821i −0.304820 0.527964i 0.672401 0.740187i \(-0.265263\pi\)
−0.977221 + 0.212223i \(0.931930\pi\)
\(54\) 0 0
\(55\) 26.7348i 0.486087i
\(56\) 0 0
\(57\) −4.27639 −0.0750244
\(58\) 0 0
\(59\) 25.5711 14.7635i 0.433408 0.250228i −0.267389 0.963589i \(-0.586161\pi\)
0.700798 + 0.713360i \(0.252828\pi\)
\(60\) 0 0
\(61\) −51.6970 + 89.5418i −0.847491 + 1.46790i 0.0359484 + 0.999354i \(0.488555\pi\)
−0.883440 + 0.468545i \(0.844779\pi\)
\(62\) 0 0
\(63\) 1.96644 20.9077i 0.0312134 0.331869i
\(64\) 0 0
\(65\) 18.2493 31.6087i 0.280758 0.486288i
\(66\) 0 0
\(67\) 61.9664 35.7763i 0.924872 0.533975i 0.0396861 0.999212i \(-0.487364\pi\)
0.885186 + 0.465237i \(0.154031\pi\)
\(68\) 0 0
\(69\) −79.3890 −1.15056
\(70\) 0 0
\(71\) 71.3595i 1.00506i 0.864559 + 0.502532i \(0.167598\pi\)
−0.864559 + 0.502532i \(0.832402\pi\)
\(72\) 0 0
\(73\) −14.6234 25.3285i −0.200321 0.346965i 0.748311 0.663348i \(-0.230865\pi\)
−0.948632 + 0.316382i \(0.897532\pi\)
\(74\) 0 0
\(75\) −29.4892 17.0256i −0.393189 0.227008i
\(76\) 0 0
\(77\) 46.8796 66.0317i 0.608825 0.857554i
\(78\) 0 0
\(79\) −89.1353 51.4623i −1.12830 0.651421i −0.184790 0.982778i \(-0.559160\pi\)
−0.943506 + 0.331357i \(0.892494\pi\)
\(80\) 0 0
\(81\) −4.50000 7.79423i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) 43.1509i 0.519890i 0.965623 + 0.259945i \(0.0837044\pi\)
−0.965623 + 0.259945i \(0.916296\pi\)
\(84\) 0 0
\(85\) −19.6032 −0.230626
\(86\) 0 0
\(87\) −52.9221 + 30.5546i −0.608300 + 0.351202i
\(88\) 0 0
\(89\) 62.0484 107.471i 0.697173 1.20754i −0.272269 0.962221i \(-0.587774\pi\)
0.969443 0.245318i \(-0.0788925\pi\)
\(90\) 0 0
\(91\) −100.500 + 46.0695i −1.10439 + 0.506258i
\(92\) 0 0
\(93\) −26.0227 + 45.0727i −0.279814 + 0.484653i
\(94\) 0 0
\(95\) −4.94129 + 2.85285i −0.0520136 + 0.0300300i
\(96\) 0 0
\(97\) −14.7186 −0.151738 −0.0758692 0.997118i \(-0.524173\pi\)
−0.0758692 + 0.997118i \(0.524173\pi\)
\(98\) 0 0
\(99\) 34.7060i 0.350566i
\(100\) 0 0
\(101\) 41.7561 + 72.3238i 0.413427 + 0.716077i 0.995262 0.0972301i \(-0.0309983\pi\)
−0.581835 + 0.813307i \(0.697665\pi\)
\(102\) 0 0
\(103\) −107.938 62.3179i −1.04794 0.605028i −0.125868 0.992047i \(-0.540172\pi\)
−0.922072 + 0.387019i \(0.873505\pi\)
\(104\) 0 0
\(105\) −11.6757 25.4703i −0.111197 0.242575i
\(106\) 0 0
\(107\) 31.2276 + 18.0293i 0.291847 + 0.168498i 0.638774 0.769394i \(-0.279442\pi\)
−0.346928 + 0.937892i \(0.612775\pi\)
\(108\) 0 0
\(109\) −92.3500 159.955i −0.847247 1.46748i −0.883655 0.468139i \(-0.844925\pi\)
0.0364077 0.999337i \(-0.488409\pi\)
\(110\) 0 0
\(111\) 67.9775i 0.612410i
\(112\) 0 0
\(113\) 211.813 1.87446 0.937228 0.348718i \(-0.113383\pi\)
0.937228 + 0.348718i \(0.113383\pi\)
\(114\) 0 0
\(115\) −91.7325 + 52.9618i −0.797674 + 0.460537i
\(116\) 0 0
\(117\) −23.6905 + 41.0332i −0.202483 + 0.350711i
\(118\) 0 0
\(119\) 48.4176 + 34.3744i 0.406871 + 0.288860i
\(120\) 0 0
\(121\) 6.41708 11.1147i 0.0530337 0.0918571i
\(122\) 0 0
\(123\) −40.5607 + 23.4177i −0.329762 + 0.190388i
\(124\) 0 0
\(125\) −103.206 −0.825651
\(126\) 0 0
\(127\) 35.1062i 0.276427i 0.990402 + 0.138213i \(0.0441360\pi\)
−0.990402 + 0.138213i \(0.955864\pi\)
\(128\) 0 0
\(129\) 1.20531 + 2.08765i 0.00934346 + 0.0161834i
\(130\) 0 0
\(131\) −136.780 78.9699i −1.04412 0.602824i −0.123124 0.992391i \(-0.539291\pi\)
−0.920998 + 0.389568i \(0.872624\pi\)
\(132\) 0 0
\(133\) 17.2069 + 1.61837i 0.129375 + 0.0121682i
\(134\) 0 0
\(135\) −10.3993 6.00406i −0.0770321 0.0444745i
\(136\) 0 0
\(137\) −110.525 191.435i −0.806753 1.39734i −0.915101 0.403225i \(-0.867889\pi\)
0.108347 0.994113i \(-0.465444\pi\)
\(138\) 0 0
\(139\) 136.854i 0.984563i −0.870436 0.492281i \(-0.836163\pi\)
0.870436 0.492281i \(-0.163837\pi\)
\(140\) 0 0
\(141\) 36.8203 0.261137
\(142\) 0 0
\(143\) −158.233 + 91.3559i −1.10653 + 0.638853i
\(144\) 0 0
\(145\) −40.7670 + 70.6105i −0.281152 + 0.486969i
\(146\) 0 0
\(147\) −15.8247 + 83.3821i −0.107651 + 0.567225i
\(148\) 0 0
\(149\) 23.1372 40.0748i 0.155283 0.268958i −0.777879 0.628414i \(-0.783704\pi\)
0.933162 + 0.359456i \(0.117038\pi\)
\(150\) 0 0
\(151\) 80.3543 46.3926i 0.532148 0.307236i −0.209743 0.977757i \(-0.567263\pi\)
0.741891 + 0.670521i \(0.233929\pi\)
\(152\) 0 0
\(153\) 25.4481 0.166328
\(154\) 0 0
\(155\) 69.4409i 0.448006i
\(156\) 0 0
\(157\) 92.0129 + 159.371i 0.586070 + 1.01510i 0.994741 + 0.102421i \(0.0326588\pi\)
−0.408672 + 0.912682i \(0.634008\pi\)
\(158\) 0 0
\(159\) 48.4664 + 27.9821i 0.304820 + 0.175988i
\(160\) 0 0
\(161\) 319.437 + 30.0441i 1.98408 + 0.186610i
\(162\) 0 0
\(163\) 57.6574 + 33.2885i 0.353726 + 0.204224i 0.666325 0.745661i \(-0.267866\pi\)
−0.312599 + 0.949885i \(0.601200\pi\)
\(164\) 0 0
\(165\) −23.1530 40.1022i −0.140321 0.243043i
\(166\) 0 0
\(167\) 118.824i 0.711521i 0.934577 + 0.355761i \(0.115778\pi\)
−0.934577 + 0.355761i \(0.884222\pi\)
\(168\) 0 0
\(169\) 80.4402 0.475978
\(170\) 0 0
\(171\) 6.41458 3.70346i 0.0375122 0.0216577i
\(172\) 0 0
\(173\) −100.210 + 173.568i −0.579247 + 1.00329i 0.416319 + 0.909219i \(0.363320\pi\)
−0.995566 + 0.0940666i \(0.970013\pi\)
\(174\) 0 0
\(175\) 112.212 + 79.6657i 0.641213 + 0.455233i
\(176\) 0 0
\(177\) −25.5711 + 44.2904i −0.144469 + 0.250228i
\(178\) 0 0
\(179\) 160.405 92.6100i 0.896119 0.517375i 0.0201800 0.999796i \(-0.493576\pi\)
0.875939 + 0.482422i \(0.160243\pi\)
\(180\) 0 0
\(181\) −228.372 −1.26173 −0.630863 0.775894i \(-0.717299\pi\)
−0.630863 + 0.775894i \(0.717299\pi\)
\(182\) 0 0
\(183\) 179.084i 0.978599i
\(184\) 0 0
\(185\) −45.3489 78.5467i −0.245129 0.424577i
\(186\) 0 0
\(187\) 84.9863 + 49.0669i 0.454472 + 0.262390i
\(188\) 0 0
\(189\) 15.1570 + 33.0646i 0.0801955 + 0.174945i
\(190\) 0 0
\(191\) −130.239 75.1937i −0.681881 0.393684i 0.118682 0.992932i \(-0.462133\pi\)
−0.800563 + 0.599248i \(0.795466\pi\)
\(192\) 0 0
\(193\) −40.7705 70.6165i −0.211246 0.365889i 0.740859 0.671661i \(-0.234419\pi\)
−0.952105 + 0.305772i \(0.901085\pi\)
\(194\) 0 0
\(195\) 63.2174i 0.324192i
\(196\) 0 0
\(197\) −192.720 −0.978273 −0.489136 0.872207i \(-0.662688\pi\)
−0.489136 + 0.872207i \(0.662688\pi\)
\(198\) 0 0
\(199\) 75.8234 43.7767i 0.381022 0.219983i −0.297241 0.954803i \(-0.596066\pi\)
0.678263 + 0.734819i \(0.262733\pi\)
\(200\) 0 0
\(201\) −61.9664 + 107.329i −0.308291 + 0.533975i
\(202\) 0 0
\(203\) 224.505 102.914i 1.10594 0.506967i
\(204\) 0 0
\(205\) −31.2448 + 54.1175i −0.152414 + 0.263988i
\(206\) 0 0
\(207\) 119.083 68.7529i 0.575282 0.332139i
\(208\) 0 0
\(209\) 28.5628 0.136664
\(210\) 0 0
\(211\) 127.785i 0.605618i 0.953051 + 0.302809i \(0.0979244\pi\)
−0.953051 + 0.302809i \(0.902076\pi\)
\(212\) 0 0
\(213\) −61.7991 107.039i −0.290137 0.502532i
\(214\) 0 0
\(215\) 2.78542 + 1.60816i 0.0129554 + 0.00747982i
\(216\) 0 0
\(217\) 121.765 171.511i 0.561129 0.790372i
\(218\) 0 0
\(219\) 43.8702 + 25.3285i 0.200321 + 0.115655i
\(220\) 0 0
\(221\) −66.9866 116.024i −0.303107 0.524996i
\(222\) 0 0
\(223\) 283.951i 1.27332i −0.771144 0.636660i \(-0.780315\pi\)
0.771144 0.636660i \(-0.219685\pi\)
\(224\) 0 0
\(225\) 58.9784 0.262126
\(226\) 0 0
\(227\) 358.164 206.786i 1.57782 0.910952i 0.582651 0.812722i \(-0.302015\pi\)
0.995164 0.0982297i \(-0.0313180\pi\)
\(228\) 0 0
\(229\) −80.6550 + 139.699i −0.352205 + 0.610038i −0.986636 0.162943i \(-0.947901\pi\)
0.634430 + 0.772980i \(0.281235\pi\)
\(230\) 0 0
\(231\) −13.1342 + 139.646i −0.0568581 + 0.604530i
\(232\) 0 0
\(233\) −181.365 + 314.133i −0.778390 + 1.34821i 0.154480 + 0.987996i \(0.450630\pi\)
−0.932869 + 0.360215i \(0.882703\pi\)
\(234\) 0 0
\(235\) 42.5452 24.5635i 0.181043 0.104525i
\(236\) 0 0
\(237\) 178.271 0.752197
\(238\) 0 0
\(239\) 342.283i 1.43215i 0.698026 + 0.716073i \(0.254062\pi\)
−0.698026 + 0.716073i \(0.745938\pi\)
\(240\) 0 0
\(241\) 117.864 + 204.146i 0.489061 + 0.847079i 0.999921 0.0125850i \(-0.00400604\pi\)
−0.510859 + 0.859664i \(0.670673\pi\)
\(242\) 0 0
\(243\) 13.5000 + 7.79423i 0.0555556 + 0.0320750i
\(244\) 0 0
\(245\) 37.3405 + 106.903i 0.152410 + 0.436341i
\(246\) 0 0
\(247\) −33.7700 19.4971i −0.136720 0.0789356i
\(248\) 0 0
\(249\) −37.3697 64.7263i −0.150079 0.259945i
\(250\) 0 0
\(251\) 409.935i 1.63321i −0.577198 0.816604i \(-0.695854\pi\)
0.577198 0.816604i \(-0.304146\pi\)
\(252\) 0 0
\(253\) 530.253 2.09586
\(254\) 0 0
\(255\) 29.4049 16.9769i 0.115313 0.0665761i
\(256\) 0 0
\(257\) −193.134 + 334.518i −0.751494 + 1.30163i 0.195605 + 0.980683i \(0.437333\pi\)
−0.947099 + 0.320943i \(0.896000\pi\)
\(258\) 0 0
\(259\) −25.7255 + 273.521i −0.0993264 + 1.05606i
\(260\) 0 0
\(261\) 52.9221 91.6637i 0.202767 0.351202i
\(262\) 0 0
\(263\) −38.7395 + 22.3663i −0.147298 + 0.0850428i −0.571838 0.820367i \(-0.693769\pi\)
0.424539 + 0.905409i \(0.360436\pi\)
\(264\) 0 0
\(265\) 74.6694 0.281771
\(266\) 0 0
\(267\) 214.942i 0.805026i
\(268\) 0 0
\(269\) 194.507 + 336.897i 0.723076 + 1.25240i 0.959761 + 0.280818i \(0.0906056\pi\)
−0.236685 + 0.971586i \(0.576061\pi\)
\(270\) 0 0
\(271\) 354.619 + 204.739i 1.30856 + 0.755496i 0.981855 0.189632i \(-0.0607295\pi\)
0.326701 + 0.945128i \(0.394063\pi\)
\(272\) 0 0
\(273\) 110.852 156.139i 0.406052 0.571939i
\(274\) 0 0
\(275\) 196.963 + 113.717i 0.716231 + 0.413516i
\(276\) 0 0
\(277\) −90.0281 155.933i −0.325011 0.562936i 0.656503 0.754323i \(-0.272035\pi\)
−0.981515 + 0.191387i \(0.938701\pi\)
\(278\) 0 0
\(279\) 90.1454i 0.323102i
\(280\) 0 0
\(281\) −210.919 −0.750601 −0.375301 0.926903i \(-0.622461\pi\)
−0.375301 + 0.926903i \(0.622461\pi\)
\(282\) 0 0
\(283\) −212.192 + 122.509i −0.749794 + 0.432894i −0.825619 0.564228i \(-0.809174\pi\)
0.0758257 + 0.997121i \(0.475841\pi\)
\(284\) 0 0
\(285\) 4.94129 8.55856i 0.0173379 0.0300300i
\(286\) 0 0
\(287\) 172.066 78.8759i 0.599534 0.274829i
\(288\) 0 0
\(289\) 108.522 187.965i 0.375508 0.650399i
\(290\) 0 0
\(291\) 22.0779 12.7467i 0.0758692 0.0438031i
\(292\) 0 0
\(293\) −262.124 −0.894622 −0.447311 0.894378i \(-0.647618\pi\)
−0.447311 + 0.894378i \(0.647618\pi\)
\(294\) 0 0
\(295\) 68.2357i 0.231307i
\(296\) 0 0
\(297\) 30.0563 + 52.0590i 0.101200 + 0.175283i
\(298\) 0 0
\(299\) −626.922 361.953i −2.09673 1.21055i
\(300\) 0 0
\(301\) −4.05973 8.85621i −0.0134875 0.0294226i
\(302\) 0 0
\(303\) −125.268 72.3238i −0.413427 0.238692i
\(304\) 0 0
\(305\) −119.470 206.928i −0.391704 0.678452i
\(306\) 0 0
\(307\) 146.501i 0.477203i 0.971118 + 0.238601i \(0.0766889\pi\)
−0.971118 + 0.238601i \(0.923311\pi\)
\(308\) 0 0
\(309\) 215.876 0.698626
\(310\) 0 0
\(311\) −13.0394 + 7.52828i −0.0419272 + 0.0242067i −0.520817 0.853668i \(-0.674373\pi\)
0.478890 + 0.877875i \(0.341039\pi\)
\(312\) 0 0
\(313\) −222.787 + 385.879i −0.711780 + 1.23284i 0.252408 + 0.967621i \(0.418778\pi\)
−0.964188 + 0.265219i \(0.914556\pi\)
\(314\) 0 0
\(315\) 39.5715 + 28.0940i 0.125624 + 0.0891874i
\(316\) 0 0
\(317\) −47.4373 + 82.1638i −0.149645 + 0.259192i −0.931096 0.364774i \(-0.881146\pi\)
0.781452 + 0.623966i \(0.214480\pi\)
\(318\) 0 0
\(319\) 353.476 204.079i 1.10807 0.639747i
\(320\) 0 0
\(321\) −62.4552 −0.194564
\(322\) 0 0
\(323\) 20.9436i 0.0648409i
\(324\) 0 0
\(325\) −155.248 268.897i −0.477685 0.827374i
\(326\) 0 0
\(327\) 277.050 + 159.955i 0.847247 + 0.489159i
\(328\) 0 0
\(329\) −148.154 13.9344i −0.450315 0.0423537i
\(330\) 0 0
\(331\) −60.6928 35.0410i −0.183362 0.105864i 0.405509 0.914091i \(-0.367094\pi\)
−0.588871 + 0.808227i \(0.700428\pi\)
\(332\) 0 0
\(333\) 58.8702 + 101.966i 0.176787 + 0.306205i
\(334\) 0 0
\(335\) 165.356i 0.493599i
\(336\) 0 0
\(337\) 25.8353 0.0766625 0.0383313 0.999265i \(-0.487796\pi\)
0.0383313 + 0.999265i \(0.487796\pi\)
\(338\) 0 0
\(339\) −317.720 + 183.436i −0.937228 + 0.541109i
\(340\) 0 0
\(341\) 173.810 301.048i 0.509708 0.882840i
\(342\) 0 0
\(343\) 95.2292 329.515i 0.277636 0.960686i
\(344\) 0 0
\(345\) 91.7325 158.885i 0.265891 0.460537i
\(346\) 0 0
\(347\) −373.367 + 215.563i −1.07599 + 0.621220i −0.929811 0.368038i \(-0.880029\pi\)
−0.146175 + 0.989259i \(0.546696\pi\)
\(348\) 0 0
\(349\) 340.822 0.976566 0.488283 0.872685i \(-0.337623\pi\)
0.488283 + 0.872685i \(0.337623\pi\)
\(350\) 0 0
\(351\) 82.0663i 0.233807i
\(352\) 0 0
\(353\) 44.9354 + 77.8304i 0.127296 + 0.220483i 0.922628 0.385691i \(-0.126037\pi\)
−0.795332 + 0.606174i \(0.792704\pi\)
\(354\) 0 0
\(355\) −142.815 82.4545i −0.402297 0.232266i
\(356\) 0 0
\(357\) −102.396 9.63065i −0.286822 0.0269766i
\(358\) 0 0
\(359\) −310.996 179.554i −0.866285 0.500150i −0.000173257 1.00000i \(-0.500055\pi\)
−0.866112 + 0.499850i \(0.833388\pi\)
\(360\) 0 0
\(361\) −177.452 307.356i −0.491557 0.851402i
\(362\) 0 0
\(363\) 22.2294i 0.0612380i
\(364\) 0 0
\(365\) 67.5883 0.185173
\(366\) 0 0
\(367\) −429.578 + 248.017i −1.17051 + 0.675795i −0.953800 0.300441i \(-0.902866\pi\)
−0.216711 + 0.976236i \(0.569533\pi\)
\(368\) 0 0
\(369\) 40.5607 70.2532i 0.109921 0.190388i
\(370\) 0 0
\(371\) −184.425 130.933i −0.497101 0.352920i
\(372\) 0 0
\(373\) 204.604 354.384i 0.548535 0.950091i −0.449840 0.893109i \(-0.648519\pi\)
0.998375 0.0569816i \(-0.0181476\pi\)
\(374\) 0 0
\(375\) 154.809 89.3793i 0.412825 0.238345i
\(376\) 0 0
\(377\) −557.223 −1.47804
\(378\) 0 0
\(379\) 531.591i 1.40261i −0.712859 0.701307i \(-0.752600\pi\)
0.712859 0.701307i \(-0.247400\pi\)
\(380\) 0 0
\(381\) −30.4028 52.6593i −0.0797975 0.138213i
\(382\) 0 0
\(383\) −646.737 373.394i −1.68861 0.974918i −0.955585 0.294714i \(-0.904776\pi\)
−0.733023 0.680204i \(-0.761891\pi\)
\(384\) 0 0
\(385\) 77.9842 + 170.121i 0.202556 + 0.441872i
\(386\) 0 0
\(387\) −3.61592 2.08765i −0.00934346 0.00539445i
\(388\) 0 0
\(389\) −165.746 287.080i −0.426082 0.737995i 0.570439 0.821340i \(-0.306773\pi\)
−0.996521 + 0.0833446i \(0.973440\pi\)
\(390\) 0 0
\(391\) 388.807i 0.994392i
\(392\) 0 0
\(393\) 273.560 0.696081
\(394\) 0 0
\(395\) 205.988 118.927i 0.521490 0.301082i
\(396\) 0 0
\(397\) 68.2701 118.247i 0.171965 0.297852i −0.767142 0.641478i \(-0.778322\pi\)
0.939107 + 0.343626i \(0.111655\pi\)
\(398\) 0 0
\(399\) −27.2119 + 12.4740i −0.0682002 + 0.0312633i
\(400\) 0 0
\(401\) −195.014 + 337.775i −0.486320 + 0.842331i −0.999876 0.0157250i \(-0.994994\pi\)
0.513556 + 0.858056i \(0.328328\pi\)
\(402\) 0 0
\(403\) −410.995 + 237.288i −1.01984 + 0.588804i
\(404\) 0 0
\(405\) 20.7987 0.0513547
\(406\) 0 0
\(407\) 454.033i 1.11556i
\(408\) 0 0
\(409\) −384.516 666.001i −0.940137 1.62837i −0.765207 0.643784i \(-0.777363\pi\)
−0.174930 0.984581i \(-0.555970\pi\)
\(410\) 0 0
\(411\) 331.576 + 191.435i 0.806753 + 0.465779i
\(412\) 0 0
\(413\) 119.652 168.534i 0.289713 0.408072i
\(414\) 0 0
\(415\) −86.3601 49.8600i −0.208097 0.120145i
\(416\) 0 0
\(417\) 118.519 + 205.281i 0.284219 + 0.492281i
\(418\) 0 0
\(419\) 664.417i 1.58572i −0.609403 0.792861i \(-0.708591\pi\)
0.609403 0.792861i \(-0.291409\pi\)
\(420\) 0 0
\(421\) 83.6243 0.198633 0.0993163 0.995056i \(-0.468334\pi\)
0.0993163 + 0.995056i \(0.468334\pi\)
\(422\) 0 0
\(423\) −55.2305 + 31.8873i −0.130568 + 0.0753837i
\(424\) 0 0
\(425\) −83.3827 + 144.423i −0.196195 + 0.339819i
\(426\) 0 0
\(427\) −67.7728 + 720.578i −0.158719 + 1.68754i
\(428\) 0 0
\(429\) 158.233 274.068i 0.368842 0.638853i
\(430\) 0 0
\(431\) −347.454 + 200.602i −0.806157 + 0.465435i −0.845619 0.533786i \(-0.820769\pi\)
0.0394627 + 0.999221i \(0.487435\pi\)
\(432\) 0 0
\(433\) 96.9743 0.223959 0.111980 0.993711i \(-0.464281\pi\)
0.111980 + 0.993711i \(0.464281\pi\)
\(434\) 0 0
\(435\) 141.221i 0.324646i
\(436\) 0 0
\(437\) 56.5830 + 98.0047i 0.129481 + 0.224267i
\(438\) 0 0
\(439\) −378.661 218.620i −0.862553 0.497995i 0.00231345 0.999997i \(-0.499264\pi\)
−0.864866 + 0.502002i \(0.832597\pi\)
\(440\) 0 0
\(441\) −48.4739 138.778i −0.109918 0.314689i
\(442\) 0 0
\(443\) 507.040 + 292.740i 1.14456 + 0.660812i 0.947556 0.319591i \(-0.103545\pi\)
0.197004 + 0.980403i \(0.436879\pi\)
\(444\) 0 0
\(445\) 143.392 + 248.362i 0.322228 + 0.558116i
\(446\) 0 0
\(447\) 80.1495i 0.179305i
\(448\) 0 0
\(449\) −430.149 −0.958016 −0.479008 0.877811i \(-0.659004\pi\)
−0.479008 + 0.877811i \(0.659004\pi\)
\(450\) 0 0
\(451\) 270.912 156.411i 0.600692 0.346810i
\(452\) 0 0
\(453\) −80.3543 + 139.178i −0.177383 + 0.307236i
\(454\) 0 0
\(455\) 23.9241 254.368i 0.0525805 0.559050i
\(456\) 0 0
\(457\) −408.249 + 707.109i −0.893325 + 1.54728i −0.0574604 + 0.998348i \(0.518300\pi\)
−0.835864 + 0.548936i \(0.815033\pi\)
\(458\) 0 0
\(459\) −38.1722 + 22.0387i −0.0831639 + 0.0480147i
\(460\) 0 0
\(461\) 280.569 0.608609 0.304305 0.952575i \(-0.401576\pi\)
0.304305 + 0.952575i \(0.401576\pi\)
\(462\) 0 0
\(463\) 181.939i 0.392958i −0.980508 0.196479i \(-0.937049\pi\)
0.980508 0.196479i \(-0.0629507\pi\)
\(464\) 0 0
\(465\) −60.1376 104.161i −0.129328 0.224003i
\(466\) 0 0
\(467\) −76.9351 44.4185i −0.164743 0.0951146i 0.415362 0.909656i \(-0.363655\pi\)
−0.580105 + 0.814542i \(0.696988\pi\)
\(468\) 0 0
\(469\) 289.952 408.408i 0.618234 0.870807i
\(470\) 0 0
\(471\) −276.039 159.371i −0.586070 0.338367i
\(472\) 0 0
\(473\) −8.05046 13.9438i −0.0170200 0.0294795i
\(474\) 0 0
\(475\) 48.5387i 0.102187i
\(476\) 0 0
\(477\) −96.9329 −0.203214
\(478\) 0 0
\(479\) 109.953 63.4813i 0.229547 0.132529i −0.380816 0.924651i \(-0.624357\pi\)
0.610363 + 0.792122i \(0.291024\pi\)
\(480\) 0 0
\(481\) 309.926 536.807i 0.644336 1.11602i
\(482\) 0 0
\(483\) −505.174 + 231.574i −1.04591 + 0.479450i
\(484\) 0 0
\(485\) 17.0071 29.4572i 0.0350662 0.0607364i
\(486\) 0 0
\(487\) 249.054 143.791i 0.511404 0.295259i −0.222007 0.975045i \(-0.571261\pi\)
0.733410 + 0.679786i \(0.237927\pi\)
\(488\) 0 0
\(489\) −115.315 −0.235818
\(490\) 0 0
\(491\) 23.7600i 0.0483910i 0.999707 + 0.0241955i \(0.00770241\pi\)
−0.999707 + 0.0241955i \(0.992298\pi\)
\(492\) 0 0
\(493\) 149.641 + 259.186i 0.303531 + 0.525732i
\(494\) 0 0
\(495\) 69.4590 + 40.1022i 0.140321 + 0.0810144i
\(496\) 0 0
\(497\) 208.153 + 454.080i 0.418818 + 0.913643i
\(498\) 0 0
\(499\) −48.6932 28.1130i −0.0975815 0.0563387i 0.450415 0.892819i \(-0.351276\pi\)
−0.547997 + 0.836481i \(0.684609\pi\)
\(500\) 0 0
\(501\) −102.905 178.236i −0.205399 0.355761i
\(502\) 0 0
\(503\) 913.863i 1.81683i 0.418075 + 0.908413i \(0.362705\pi\)
−0.418075 + 0.908413i \(0.637295\pi\)
\(504\) 0 0
\(505\) −192.994 −0.382166
\(506\) 0 0
\(507\) −120.660 + 69.6633i −0.237989 + 0.137403i
\(508\) 0 0
\(509\) 449.411 778.404i 0.882930 1.52928i 0.0348625 0.999392i \(-0.488901\pi\)
0.848068 0.529888i \(-0.177766\pi\)
\(510\) 0 0
\(511\) −166.935 118.516i −0.326683 0.231930i
\(512\) 0 0
\(513\) −6.41458 + 11.1104i −0.0125041 + 0.0216577i
\(514\) 0 0
\(515\) 249.440 144.014i 0.484350 0.279640i
\(516\) 0 0
\(517\) −245.929 −0.475685
\(518\) 0 0
\(519\) 347.137i 0.668857i
\(520\) 0 0
\(521\) 155.780 + 269.819i 0.299002 + 0.517886i 0.975908 0.218183i \(-0.0700130\pi\)
−0.676906 + 0.736069i \(0.736680\pi\)
\(522\) 0 0
\(523\) 681.450 + 393.436i 1.30296 + 0.752267i 0.980911 0.194455i \(-0.0622938\pi\)
0.322053 + 0.946722i \(0.395627\pi\)
\(524\) 0 0
\(525\) −237.311 22.3199i −0.452021 0.0425141i
\(526\) 0 0
\(527\) 220.743 + 127.446i 0.418868 + 0.241834i
\(528\) 0 0
\(529\) 785.935 + 1361.28i 1.48570 + 2.57331i
\(530\) 0 0
\(531\) 88.5808i 0.166819i
\(532\) 0 0
\(533\) −427.069 −0.801254
\(534\) 0 0
\(535\) −72.1658 + 41.6649i −0.134889 + 0.0778784i
\(536\) 0 0
\(537\) −160.405 + 277.830i −0.298706 + 0.517375i
\(538\) 0 0
\(539\) 105.696 556.924i 0.196097 1.03325i
\(540\) 0 0
\(541\) 140.349 243.091i 0.259425 0.449337i −0.706663 0.707550i \(-0.749800\pi\)
0.966088 + 0.258213i \(0.0831337\pi\)
\(542\) 0 0
\(543\) 342.558 197.776i 0.630863 0.364229i
\(544\) 0 0
\(545\) 426.835 0.783183
\(546\) 0 0
\(547\) 153.761i 0.281099i −0.990074 0.140549i \(-0.955113\pi\)
0.990074 0.140549i \(-0.0448869\pi\)
\(548\) 0 0
\(549\) 155.091 + 268.625i 0.282497 + 0.489299i
\(550\) 0 0
\(551\) 75.4384 + 43.5544i 0.136912 + 0.0790461i
\(552\) 0 0
\(553\) −717.306 67.4651i −1.29712 0.121998i
\(554\) 0 0
\(555\) 136.047 + 78.5467i 0.245129 + 0.141526i
\(556\) 0 0
\(557\) 390.366 + 676.135i 0.700837 + 1.21389i 0.968173 + 0.250283i \(0.0805235\pi\)
−0.267335 + 0.963604i \(0.586143\pi\)
\(558\) 0 0
\(559\) 21.9811i 0.0393222i
\(560\) 0 0
\(561\) −169.973 −0.302981
\(562\) 0 0
\(563\) 811.598 468.577i 1.44156 0.832285i 0.443606 0.896222i \(-0.353699\pi\)
0.997954 + 0.0639367i \(0.0203656\pi\)
\(564\) 0 0
\(565\) −244.746 + 423.913i −0.433180 + 0.750289i
\(566\) 0 0
\(567\) −51.3702 36.4706i −0.0906000 0.0643220i
\(568\) 0 0
\(569\) 393.400 681.388i 0.691388 1.19752i −0.279995 0.960001i \(-0.590333\pi\)
0.971383 0.237517i \(-0.0763337\pi\)
\(570\) 0 0
\(571\) 227.876 131.564i 0.399082 0.230410i −0.287006 0.957929i \(-0.592660\pi\)
0.686088 + 0.727519i \(0.259327\pi\)
\(572\) 0 0
\(573\) 260.479 0.454588
\(574\) 0 0
\(575\) 901.096i 1.56712i
\(576\) 0 0
\(577\) −5.50000 9.52628i −0.00953206 0.0165100i 0.861220 0.508232i \(-0.169701\pi\)
−0.870752 + 0.491722i \(0.836368\pi\)
\(578\) 0 0
\(579\) 122.311 + 70.6165i 0.211246 + 0.121963i
\(580\) 0 0
\(581\) 125.869 + 274.581i 0.216642 + 0.472601i
\(582\) 0 0
\(583\) −323.716 186.897i −0.555259 0.320579i
\(584\) 0 0
\(585\) −54.7479 94.8261i −0.0935861 0.162096i
\(586\) 0 0
\(587\) 461.546i 0.786279i 0.919479 + 0.393139i \(0.128611\pi\)
−0.919479 + 0.393139i \(0.871389\pi\)
\(588\) 0 0
\(589\) 74.1889 0.125957
\(590\) 0 0
\(591\) 289.080 166.900i 0.489136 0.282403i
\(592\) 0 0
\(593\) 388.103 672.214i 0.654474 1.13358i −0.327552 0.944833i \(-0.606224\pi\)
0.982025 0.188749i \(-0.0604431\pi\)
\(594\) 0 0
\(595\) −124.741 + 57.1818i −0.209649 + 0.0961039i
\(596\) 0 0
\(597\) −75.8234 + 131.330i −0.127007 + 0.219983i
\(598\) 0 0
\(599\) 209.520 120.967i 0.349783 0.201947i −0.314807 0.949156i \(-0.601940\pi\)
0.664590 + 0.747208i \(0.268606\pi\)
\(600\) 0 0
\(601\) −521.217 −0.867250 −0.433625 0.901093i \(-0.642766\pi\)
−0.433625 + 0.901093i \(0.642766\pi\)
\(602\) 0 0
\(603\) 214.658i 0.355984i
\(604\) 0 0
\(605\) 14.8296 + 25.6857i 0.0245118 + 0.0424556i
\(606\) 0 0
\(607\) 986.613 + 569.621i 1.62539 + 0.938420i 0.985444 + 0.170002i \(0.0543773\pi\)
0.639948 + 0.768419i \(0.278956\pi\)
\(608\) 0 0
\(609\) −247.632 + 348.799i −0.406620 + 0.572740i
\(610\) 0 0
\(611\) 290.764 + 167.873i 0.475882 + 0.274751i
\(612\) 0 0
\(613\) −267.033 462.514i −0.435616 0.754510i 0.561729 0.827321i \(-0.310136\pi\)
−0.997346 + 0.0728114i \(0.976803\pi\)
\(614\) 0 0
\(615\) 108.235i 0.175992i
\(616\) 0 0
\(617\) −802.979 −1.30142 −0.650712 0.759324i \(-0.725530\pi\)
−0.650712 + 0.759324i \(0.725530\pi\)
\(618\) 0 0
\(619\) −274.573 + 158.525i −0.443575 + 0.256098i −0.705113 0.709095i \(-0.749104\pi\)
0.261538 + 0.965193i \(0.415770\pi\)
\(620\) 0 0
\(621\) −119.083 + 206.259i −0.191761 + 0.332139i
\(622\) 0 0
\(623\) 81.3432 864.861i 0.130567 1.38822i
\(624\) 0 0
\(625\) −126.490 + 219.087i −0.202384 + 0.350540i
\(626\) 0 0
\(627\) −42.8441 + 24.7361i −0.0683319 + 0.0394515i
\(628\) 0 0
\(629\) −332.919 −0.529284
\(630\) 0 0
\(631\) 1168.77i 1.85225i −0.377222 0.926123i \(-0.623121\pi\)
0.377222 0.926123i \(-0.376879\pi\)
\(632\) 0 0
\(633\) −110.665 191.678i −0.174827 0.302809i
\(634\) 0 0
\(635\) −70.2598 40.5645i −0.110645 0.0638812i
\(636\) 0 0
\(637\) −505.125 + 586.306i −0.792974 + 0.920418i
\(638\) 0 0
\(639\) 185.397 + 107.039i 0.290137 + 0.167511i
\(640\) 0 0
\(641\) 8.12563 + 14.0740i 0.0126765 + 0.0219563i 0.872294 0.488982i \(-0.162632\pi\)
−0.859618 + 0.510938i \(0.829298\pi\)
\(642\) 0 0
\(643\) 956.475i 1.48752i −0.668447 0.743760i \(-0.733041\pi\)
0.668447 0.743760i \(-0.266959\pi\)
\(644\) 0 0
\(645\) −5.57084 −0.00863696
\(646\) 0 0
\(647\) 456.676 263.662i 0.705836 0.407515i −0.103681 0.994611i \(-0.533062\pi\)
0.809517 + 0.587096i \(0.199729\pi\)
\(648\) 0 0
\(649\) 170.794 295.823i 0.263164 0.455814i
\(650\) 0 0
\(651\) −34.1148 + 362.717i −0.0524037 + 0.557170i
\(652\) 0 0
\(653\) −159.664 + 276.547i −0.244509 + 0.423502i −0.961993 0.273073i \(-0.911960\pi\)
0.717484 + 0.696575i \(0.245293\pi\)
\(654\) 0 0
\(655\) 316.093 182.497i 0.482585 0.278621i
\(656\) 0 0
\(657\) −87.7404 −0.133547
\(658\) 0 0
\(659\) 289.303i 0.439004i 0.975612 + 0.219502i \(0.0704432\pi\)
−0.975612 + 0.219502i \(0.929557\pi\)
\(660\) 0 0
\(661\) 8.20984 + 14.2199i 0.0124203 + 0.0215126i 0.872169 0.489205i \(-0.162713\pi\)
−0.859748 + 0.510718i \(0.829380\pi\)
\(662\) 0 0
\(663\) 200.960 + 116.024i 0.303107 + 0.174999i
\(664\) 0 0
\(665\) −23.1212 + 32.5670i −0.0347687 + 0.0489730i
\(666\) 0 0
\(667\) 1400.48 + 808.565i 2.09966 + 1.21224i
\(668\) 0 0
\(669\) 245.908 + 425.926i 0.367576 + 0.636660i
\(670\) 0 0
\(671\) 1196.13i 1.78261i
\(672\) 0 0
\(673\) −65.5702 −0.0974297 −0.0487149 0.998813i \(-0.515513\pi\)
−0.0487149 + 0.998813i \(0.515513\pi\)
\(674\) 0 0
\(675\) −88.4675 + 51.0768i −0.131063 + 0.0756693i
\(676\) 0 0
\(677\) 595.229 1030.97i 0.879216 1.52285i 0.0270124 0.999635i \(-0.491401\pi\)
0.852203 0.523211i \(-0.175266\pi\)
\(678\) 0 0
\(679\) −93.6587 + 42.9336i −0.137936 + 0.0632306i
\(680\) 0 0
\(681\) −358.164 + 620.358i −0.525938 + 0.910952i
\(682\) 0 0
\(683\) −770.901 + 445.080i −1.12870 + 0.651654i −0.943607 0.331067i \(-0.892591\pi\)
−0.185091 + 0.982721i \(0.559258\pi\)
\(684\) 0 0
\(685\) 510.839 0.745751
\(686\) 0 0
\(687\) 279.397i 0.406692i
\(688\) 0 0
\(689\) 255.154 + 441.940i 0.370326 + 0.641423i
\(690\) 0 0
\(691\) −303.625 175.298i −0.439400 0.253688i 0.263943 0.964538i \(-0.414977\pi\)
−0.703343 + 0.710851i \(0.748310\pi\)
\(692\) 0 0
\(693\) −101.236 220.844i −0.146084 0.318678i
\(694\) 0 0
\(695\) 273.893 + 158.132i 0.394091 + 0.227529i
\(696\) 0 0
\(697\) 114.688 + 198.646i 0.164546 + 0.285001i
\(698\) 0 0
\(699\) 628.266i 0.898807i
\(700\) 0 0
\(701\) 998.973 1.42507 0.712534 0.701637i \(-0.247547\pi\)
0.712534 + 0.701637i \(0.247547\pi\)
\(702\) 0 0
\(703\) −83.9173 + 48.4497i −0.119370 + 0.0689185i
\(704\) 0 0
\(705\) −42.5452 + 73.6904i −0.0603478 + 0.104525i
\(706\) 0 0
\(707\) 476.672 + 338.416i 0.674217 + 0.478664i
\(708\) 0 0
\(709\) −233.324 + 404.129i −0.329089 + 0.569998i −0.982331 0.187150i \(-0.940075\pi\)
0.653243 + 0.757149i \(0.273408\pi\)
\(710\) 0 0
\(711\) −267.406 + 154.387i −0.376098 + 0.217140i
\(712\) 0 0
\(713\) 1377.28 1.93167
\(714\) 0 0
\(715\) 422.240i 0.590546i
\(716\) 0 0
\(717\) −296.426 513.424i −0.413425 0.716073i
\(718\) 0 0
\(719\) −329.811 190.416i −0.458707 0.264835i 0.252793 0.967520i \(-0.418651\pi\)
−0.711501 + 0.702685i \(0.751984\pi\)
\(720\) 0 0
\(721\) −868.617 81.6964i −1.20474 0.113310i
\(722\) 0 0
\(723\) −353.591 204.146i −0.489061 0.282360i
\(724\) 0 0
\(725\) 346.806 + 600.686i 0.478353 + 0.828533i
\(726\) 0 0
\(727\) 868.875i 1.19515i 0.801813 + 0.597575i \(0.203869\pi\)
−0.801813 + 0.597575i \(0.796131\pi\)
\(728\) 0 0
\(729\) −27.0000 −0.0370370
\(730\) 0 0
\(731\) 10.2243 5.90299i 0.0139867 0.00807522i
\(732\) 0 0
\(733\) −135.684 + 235.011i −0.185108 + 0.320616i −0.943613 0.331051i \(-0.892597\pi\)
0.758505 + 0.651667i \(0.225930\pi\)
\(734\) 0 0
\(735\) −148.592 128.017i −0.202166 0.174173i
\(736\) 0 0
\(737\) 413.885 716.869i 0.561580 0.972686i
\(738\) 0 0
\(739\) −1121.40 + 647.443i −1.51746 + 0.876107i −0.517673 + 0.855578i \(0.673202\pi\)
−0.999789 + 0.0205291i \(0.993465\pi\)
\(740\) 0 0
\(741\) 67.5399 0.0911470
\(742\) 0 0
\(743\) 69.5251i 0.0935735i −0.998905 0.0467868i \(-0.985102\pi\)
0.998905 0.0467868i \(-0.0148981\pi\)
\(744\) 0 0
\(745\) 53.4692 + 92.6113i 0.0717707 + 0.124310i
\(746\) 0 0
\(747\) 112.109 + 64.7263i 0.150079 + 0.0866483i
\(748\) 0 0
\(749\) 251.300 + 23.6357i 0.335515 + 0.0315563i
\(750\) 0 0
\(751\) −935.360 540.030i −1.24549 0.719082i −0.275280 0.961364i \(-0.588771\pi\)
−0.970206 + 0.242282i \(0.922104\pi\)
\(752\) 0 0
\(753\) 355.014 + 614.903i 0.471467 + 0.816604i
\(754\) 0 0
\(755\) 214.423i 0.284004i
\(756\) 0 0
\(757\) −1073.01 −1.41745 −0.708727 0.705482i \(-0.750730\pi\)
−0.708727 + 0.705482i \(0.750730\pi\)
\(758\) 0 0
\(759\) −795.379 + 459.212i −1.04793 + 0.605023i
\(760\) 0 0
\(761\) 594.859 1030.33i 0.781681 1.35391i −0.149280 0.988795i \(-0.547696\pi\)
0.930962 0.365117i \(-0.118971\pi\)
\(762\) 0 0
\(763\) −1054.23 748.457i −1.38169 0.980939i
\(764\) 0 0
\(765\) −29.4049 + 50.9307i −0.0384377 + 0.0665761i
\(766\) 0 0
\(767\) −403.861 + 233.169i −0.526547 + 0.304002i
\(768\) 0 0
\(769\) 497.083 0.646402 0.323201 0.946330i \(-0.395241\pi\)
0.323201 + 0.946330i \(0.395241\pi\)
\(770\) 0 0
\(771\) 669.035i 0.867750i
\(772\) 0 0
\(773\) −610.658 1057.69i −0.789984 1.36829i −0.925976 0.377583i \(-0.876755\pi\)
0.135992 0.990710i \(-0.456578\pi\)
\(774\) 0 0
\(775\) 511.593 + 295.368i 0.660120 + 0.381120i
\(776\) 0 0
\(777\) −198.287 432.560i −0.255196 0.556705i
\(778\) 0 0
\(779\) 57.8178 + 33.3811i 0.0742205 + 0.0428513i
\(780\) 0 0
\(781\) 412.767 + 714.934i 0.528511 + 0.915408i
\(782\) 0 0
\(783\) 183.327i 0.234135i
\(784\) 0 0
\(785\) −425.277 −0.541754
\(786\) 0 0
\(787\) 364.854 210.649i 0.463601 0.267660i −0.249956 0.968257i \(-0.580416\pi\)
0.713557 + 0.700597i \(0.247083\pi\)
\(788\) 0 0
\(789\) 38.7395 67.0988i 0.0490995 0.0850428i
\(790\) 0 0
\(791\) 1347.83 617.851i 1.70396 0.781101i
\(792\) 0 0
\(793\) 816.485 1414.19i 1.02962 1.78335i
\(794\) 0 0
\(795\) −112.004 + 64.6656i −0.140886 + 0.0813404i
\(796\) 0 0
\(797\) −395.391 −0.496099 −0.248050 0.968747i \(-0.579790\pi\)
−0.248050 + 0.968747i \(0.579790\pi\)
\(798\) 0 0
\(799\) 180.327i 0.225691i
\(800\) 0 0
\(801\) −186.145 322.413i −0.232391 0.402513i
\(802\) 0 0
\(803\) −293.017 169.173i −0.364903 0.210677i
\(804\) 0 0
\(805\) −429.232 + 604.590i −0.533208 + 0.751044i
\(806\) 0 0
\(807\) −583.522 336.897i −0.723076 0.417468i
\(808\) 0 0
\(809\) 238.454 + 413.014i 0.294751 + 0.510524i 0.974927 0.222525i \(-0.0714300\pi\)
−0.680176 + 0.733049i \(0.738097\pi\)
\(810\) 0 0
\(811\) 268.467i 0.331032i −0.986207 0.165516i \(-0.947071\pi\)
0.986207 0.165516i \(-0.0529289\pi\)
\(812\) 0 0
\(813\) −709.238 −0.872371
\(814\) 0 0
\(815\) −133.244 + 76.9285i −0.163490 + 0.0943908i
\(816\) 0 0
\(817\) 1.71812 2.97587i 0.00210296 0.00364244i
\(818\) 0 0
\(819\) −31.0574 + 330.210i −0.0379211 + 0.403187i
\(820\) 0 0
\(821\) −323.328 + 560.021i −0.393822 + 0.682120i −0.992950 0.118533i \(-0.962181\pi\)
0.599128 + 0.800653i \(0.295514\pi\)
\(822\) 0 0
\(823\) −181.913 + 105.028i −0.221037 + 0.127616i −0.606430 0.795137i \(-0.707399\pi\)
0.385393 + 0.922752i \(0.374066\pi\)
\(824\) 0 0
\(825\) −393.927 −0.477487
\(826\) 0 0
\(827\) 590.763i 0.714345i 0.934038 + 0.357173i \(0.116259\pi\)
−0.934038 + 0.357173i \(0.883741\pi\)
\(828\) 0 0
\(829\) −746.646 1293.23i −0.900659 1.55999i −0.826641 0.562730i \(-0.809751\pi\)
−0.0740183 0.997257i \(-0.523582\pi\)
\(830\) 0 0
\(831\) 270.084 + 155.933i 0.325011 + 0.187645i
\(832\) 0 0
\(833\) 408.364 + 77.5016i 0.490232 + 0.0930391i
\(834\) 0 0
\(835\) −237.809 137.299i −0.284801 0.164430i
\(836\) 0 0
\(837\) 78.0682 + 135.218i 0.0932714 + 0.161551i
\(838\) 0 0
\(839\) 529.587i 0.631212i −0.948890 0.315606i \(-0.897792\pi\)
0.948890 0.315606i \(-0.102208\pi\)
\(840\) 0 0
\(841\) 403.776 0.480114
\(842\) 0 0
\(843\) 316.378 182.661i 0.375301 0.216680i
\(844\) 0 0
\(845\) −92.9471 + 160.989i −0.109997 + 0.190520i
\(846\) 0 0
\(847\) 8.41255 89.4443i 0.00993217 0.105601i
\(848\) 0 0
\(849\) 212.192 367.527i 0.249931 0.432894i
\(850\) 0 0
\(851\) −1557.88 + 899.443i −1.83065 + 1.05693i
\(852\) 0 0
\(853\) 544.072 0.637833 0.318917 0.947783i \(-0.396681\pi\)
0.318917 + 0.947783i \(0.396681\pi\)
\(854\) 0 0
\(855\) 17.1171i 0.0200200i
\(856\) 0 0
\(857\) −312.526 541.310i −0.364674 0.631634i 0.624050 0.781384i \(-0.285486\pi\)
−0.988724 + 0.149751i \(0.952153\pi\)
\(858\) 0 0
\(859\) −648.151 374.210i −0.754542 0.435635i 0.0727908 0.997347i \(-0.476809\pi\)
−0.827333 + 0.561712i \(0.810143\pi\)
\(860\) 0 0
\(861\) −189.791 + 267.328i −0.220431 + 0.310485i
\(862\) 0 0
\(863\) −750.798 433.473i −0.869986 0.502286i −0.00264216 0.999997i \(-0.500841\pi\)
−0.867343 + 0.497710i \(0.834174\pi\)
\(864\) 0 0
\(865\) −231.581 401.110i −0.267724 0.463711i
\(866\) 0 0
\(867\) 375.930i 0.433599i
\(868\) 0 0
\(869\) −1190.70 −1.37020
\(870\) 0 0
\(871\) −978.678 + 565.040i −1.12363 + 0.648726i
\(872\) 0 0
\(873\) −22.0779 + 38.2401i −0.0252897 + 0.0438031i
\(874\) 0 0
\(875\) −656.731 + 301.049i −0.750550 + 0.344055i
\(876\) 0 0
\(877\) 284.689 493.096i 0.324617 0.562253i −0.656818 0.754049i \(-0.728098\pi\)
0.981435 + 0.191796i \(0.0614313\pi\)
\(878\) 0 0
\(879\) 393.187 227.006i 0.447311 0.258255i
\(880\) 0 0
\(881\) 781.679 0.887263 0.443632 0.896209i \(-0.353690\pi\)
0.443632 + 0.896209i \(0.353690\pi\)
\(882\) 0 0
\(883\) 1139.96i 1.29101i 0.763757 + 0.645504i \(0.223353\pi\)
−0.763757 + 0.645504i \(0.776647\pi\)
\(884\) 0 0
\(885\) −59.0938 102.353i −0.0667727 0.115654i
\(886\) 0 0
\(887\) 131.848 + 76.1227i 0.148645 + 0.0858204i 0.572478 0.819920i \(-0.305982\pi\)
−0.423833 + 0.905741i \(0.639316\pi\)
\(888\) 0 0
\(889\) 102.403 + 223.391i 0.115189 + 0.251283i
\(890\) 0 0
\(891\) −90.1689 52.0590i −0.101200 0.0584276i
\(892\) 0 0
\(893\) −26.2430 45.4542i −0.0293875 0.0509006i
\(894\) 0 0
\(895\) 428.037i 0.478253i
\(896\) 0 0
\(897\) 1253.84 1.39782
\(898\) 0 0
\(899\) 918.118 530.076i 1.02127 0.589628i
\(900\) 0 0
\(901\) 137.042 237.364i 0.152100 0.263445i
\(902\) 0 0
\(903\) 13.7593 + 9.76849i 0.0152373 + 0.0108178i
\(904\) 0 0
\(905\) 263.880 457.053i 0.291580 0.505031i
\(906\) 0 0
\(907\) −406.700 + 234.808i −0.448401 + 0.258885i −0.707155 0.707059i \(-0.750022\pi\)
0.258754 + 0.965943i \(0.416688\pi\)
\(908\) 0 0
\(909\) 250.537 0.275618
\(910\) 0 0
\(911\) 309.559i 0.339801i 0.985461 + 0.169901i \(0.0543447\pi\)
−0.985461 + 0.169901i \(0.945655\pi\)
\(912\) 0 0
\(913\) 249.599 + 432.318i 0.273383 + 0.473514i
\(914\) 0 0
\(915\) 358.409 + 206.928i 0.391704 + 0.226151i
\(916\) 0 0
\(917\) −1100.72 103.527i −1.20035 0.112897i
\(918\) 0 0
\(919\) −1020.42 589.137i −1.11035 0.641063i −0.171433 0.985196i \(-0.554840\pi\)
−0.938921 + 0.344133i \(0.888173\pi\)
\(920\) 0 0
\(921\) −126.874 219.752i −0.137757 0.238601i
\(922\) 0 0
\(923\) 1127.03i 1.22105i
\(924\) 0 0
\(925\) −771.571 −0.834130
\(926\) 0 0
\(927\) −323.813 + 186.954i −0.349313 + 0.201676i
\(928\) 0 0
\(929\) 141.746 245.511i 0.152579 0.264275i −0.779596 0.626283i \(-0.784575\pi\)
0.932175 + 0.362008i \(0.117909\pi\)
\(930\) 0 0
\(931\) 114.213 39.8936i 0.122678 0.0428503i
\(932\) 0 0
\(933\) 13.0394 22.5848i 0.0139757 0.0242067i
\(934\) 0 0
\(935\) −196.400 + 113.392i −0.210054 + 0.121275i
\(936\) 0 0
\(937\) −343.658 −0.366764 −0.183382 0.983042i \(-0.558705\pi\)
−0.183382 + 0.983042i \(0.558705\pi\)
\(938\) 0 0
\(939\) 771.758i 0.821893i
\(940\) 0 0
\(941\) 307.299 + 532.257i 0.326566 + 0.565629i 0.981828 0.189773i \(-0.0607751\pi\)
−0.655262 + 0.755402i \(0.727442\pi\)
\(942\) 0 0
\(943\) 1073.36 + 619.703i 1.13824 + 0.657162i
\(944\) 0 0
\(945\) −83.6875 7.87109i −0.0885582 0.00832920i
\(946\) 0 0
\(947\) 1353.87 + 781.658i 1.42964 + 0.825404i 0.997092 0.0762056i \(-0.0242805\pi\)
0.432550 + 0.901610i \(0.357614\pi\)
\(948\) 0 0
\(949\) 230.957 + 400.030i 0.243369 + 0.421528i
\(950\) 0 0
\(951\) 164.328i 0.172795i
\(952\) 0 0
\(953\) −65.3694 −0.0685933 −0.0342966 0.999412i \(-0.510919\pi\)
−0.0342966 + 0.999412i \(0.510919\pi\)
\(954\) 0 0
\(955\) 300.978 173.770i 0.315160 0.181958i
\(956\) 0 0
\(957\) −353.476 + 612.238i −0.369358 + 0.639747i
\(958\) 0 0
\(959\) −1261.71 895.759i −1.31565 0.934056i
\(960\) 0 0
\(961\) −29.0449 + 50.3072i −0.0302236 + 0.0523488i
\(962\) 0 0
\(963\) 93.6827 54.0878i 0.0972822 0.0561659i
\(964\) 0 0
\(965\) 188.438 0.195273
\(966\) 0 0
\(967\) 54.5021i 0.0563620i −0.999603 0.0281810i \(-0.991029\pi\)
0.999603 0.0281810i \(-0.00897148\pi\)
\(968\) 0 0
\(969\) −18.1377 31.4154i −0.0187179 0.0324204i
\(970\) 0 0
\(971\) −1112.98 642.578i −1.14622 0.661769i −0.198255 0.980150i \(-0.563527\pi\)
−0.947963 + 0.318381i \(0.896861\pi\)
\(972\) 0 0
\(973\) −399.198 870.842i −0.410275 0.895007i
\(974\) 0 0
\(975\) 465.743 + 268.897i 0.477685 + 0.275791i
\(976\) 0 0
\(977\) −776.204 1344.43i −0.794477 1.37607i −0.923171 0.384390i \(-0.874412\pi\)
0.128693 0.991684i \(-0.458922\pi\)
\(978\) 0 0
\(979\) 1435.64i 1.46643i
\(980\) 0 0
\(981\) −554.100 −0.564832
\(982\) 0 0
\(983\) −59.1187 + 34.1322i −0.0601411 + 0.0347225i −0.529769 0.848142i \(-0.677721\pi\)
0.469628 + 0.882864i \(0.344388\pi\)
\(984\) 0 0
\(985\) 222.684 385.700i 0.226075 0.391574i
\(986\) 0 0
\(987\) 234.298 107.403i 0.237384 0.108818i
\(988\) 0 0
\(989\) 31.8960 55.2455i 0.0322508 0.0558600i
\(990\) 0 0
\(991\) 688.196 397.330i 0.694446 0.400939i −0.110829 0.993839i \(-0.535351\pi\)
0.805275 + 0.592901i \(0.202017\pi\)
\(992\) 0 0
\(993\) 121.386 0.122241
\(994\) 0 0
\(995\) 202.332i 0.203349i
\(996\) 0 0
\(997\) 513.493 + 889.397i 0.515039 + 0.892073i 0.999848 + 0.0174530i \(0.00555575\pi\)
−0.484809 + 0.874620i \(0.661111\pi\)
\(998\) 0 0
\(999\) −176.611 101.966i −0.176787 0.102068i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 336.3.be.d.79.2 6
3.2 odd 2 1008.3.cd.h.415.2 6
4.3 odd 2 336.3.be.f.79.2 yes 6
7.2 even 3 2352.3.m.n.1471.2 6
7.4 even 3 336.3.be.f.319.2 yes 6
7.5 odd 6 2352.3.m.o.1471.5 6
12.11 even 2 1008.3.cd.i.415.2 6
21.11 odd 6 1008.3.cd.i.991.2 6
28.11 odd 6 inner 336.3.be.d.319.2 yes 6
28.19 even 6 2352.3.m.o.1471.2 6
28.23 odd 6 2352.3.m.n.1471.5 6
84.11 even 6 1008.3.cd.h.991.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
336.3.be.d.79.2 6 1.1 even 1 trivial
336.3.be.d.319.2 yes 6 28.11 odd 6 inner
336.3.be.f.79.2 yes 6 4.3 odd 2
336.3.be.f.319.2 yes 6 7.4 even 3
1008.3.cd.h.415.2 6 3.2 odd 2
1008.3.cd.h.991.2 6 84.11 even 6
1008.3.cd.i.415.2 6 12.11 even 2
1008.3.cd.i.991.2 6 21.11 odd 6
2352.3.m.n.1471.2 6 7.2 even 3
2352.3.m.n.1471.5 6 28.23 odd 6
2352.3.m.o.1471.2 6 28.19 even 6
2352.3.m.o.1471.5 6 7.5 odd 6