Defining parameters
| Level: | \( N \) | \(=\) | \( 2352 = 2^{4} \cdot 3 \cdot 7^{2} \) | 
| Weight: | \( k \) | \(=\) | \( 3 \) | 
| Character orbit: | \([\chi]\) | \(=\) | 2352.m (of order \(2\) and degree \(1\)) | 
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 4 \) | 
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 18 \) | ||
| Sturm bound: | \(1344\) | ||
| Trace bound: | \(41\) | ||
| Distinguishing \(T_p\): | \(5\) | 
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(2352, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 944 | 82 | 862 | 
| Cusp forms | 848 | 82 | 766 | 
| Eisenstein series | 96 | 0 | 96 | 
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(2352, [\chi])\) into newform subspaces
Decomposition of \(S_{3}^{\mathrm{old}}(2352, [\chi])\) into lower level spaces
  \( S_{3}^{\mathrm{old}}(2352, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(12, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(16, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(28, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(48, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(84, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(112, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(196, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(336, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(588, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(784, [\chi])\)\(^{\oplus 2}\)