Properties

Label 2340.2.u.f.73.1
Level $2340$
Weight $2$
Character 2340.73
Analytic conductor $18.685$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2340,2,Mod(73,2340)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2340, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 3, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2340.73"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2340 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2340.u (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,0,0,6,0,-8,0,0,0,0,0,10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.6849940730\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{5})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 3x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 260)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 73.1
Root \(-0.618034i\) of defining polynomial
Character \(\chi\) \(=\) 2340.73
Dual form 2340.2.u.f.577.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.23607i q^{5} +(0.381966 - 0.381966i) q^{11} +(-2.00000 - 3.00000i) q^{13} +(-2.23607 - 2.23607i) q^{17} +(-0.854102 + 0.854102i) q^{19} +(-5.61803 + 5.61803i) q^{23} -5.00000 q^{25} -0.763932i q^{29} +(-0.854102 - 0.854102i) q^{31} +3.70820i q^{37} +(-8.23607 - 8.23607i) q^{41} +(2.85410 - 2.85410i) q^{43} +8.94427i q^{47} +7.00000 q^{49} +(7.47214 + 7.47214i) q^{53} +(-0.854102 - 0.854102i) q^{55} +(5.61803 + 5.61803i) q^{59} -7.70820 q^{61} +(-6.70820 + 4.47214i) q^{65} -13.7082 q^{67} +(-0.381966 - 0.381966i) q^{71} -1.70820 q^{73} -9.70820i q^{79} +1.52786i q^{83} +(-5.00000 + 5.00000i) q^{85} +(-2.23607 - 2.23607i) q^{89} +(1.90983 + 1.90983i) q^{95} -11.4164 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 6 q^{11} - 8 q^{13} + 10 q^{19} - 18 q^{23} - 20 q^{25} + 10 q^{31} - 24 q^{41} - 2 q^{43} + 28 q^{49} + 12 q^{53} + 10 q^{55} + 18 q^{59} - 4 q^{61} - 28 q^{67} - 6 q^{71} + 20 q^{73} - 20 q^{85}+ \cdots + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2340\mathbb{Z}\right)^\times\).

\(n\) \(937\) \(1081\) \(1171\) \(2081\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.23607i 1.00000i
\(6\) 0 0
\(7\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.381966 0.381966i 0.115167 0.115167i −0.647175 0.762342i \(-0.724050\pi\)
0.762342 + 0.647175i \(0.224050\pi\)
\(12\) 0 0
\(13\) −2.00000 3.00000i −0.554700 0.832050i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −2.23607 2.23607i −0.542326 0.542326i 0.381884 0.924210i \(-0.375275\pi\)
−0.924210 + 0.381884i \(0.875275\pi\)
\(18\) 0 0
\(19\) −0.854102 + 0.854102i −0.195944 + 0.195944i −0.798259 0.602314i \(-0.794245\pi\)
0.602314 + 0.798259i \(0.294245\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −5.61803 + 5.61803i −1.17144 + 1.17144i −0.189575 + 0.981866i \(0.560711\pi\)
−0.981866 + 0.189575i \(0.939289\pi\)
\(24\) 0 0
\(25\) −5.00000 −1.00000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0.763932i 0.141859i −0.997481 0.0709293i \(-0.977404\pi\)
0.997481 0.0709293i \(-0.0225965\pi\)
\(30\) 0 0
\(31\) −0.854102 0.854102i −0.153401 0.153401i 0.626234 0.779635i \(-0.284595\pi\)
−0.779635 + 0.626234i \(0.784595\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 3.70820i 0.609625i 0.952412 + 0.304812i \(0.0985938\pi\)
−0.952412 + 0.304812i \(0.901406\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −8.23607 8.23607i −1.28626 1.28626i −0.937043 0.349215i \(-0.886448\pi\)
−0.349215 0.937043i \(-0.613552\pi\)
\(42\) 0 0
\(43\) 2.85410 2.85410i 0.435246 0.435246i −0.455162 0.890409i \(-0.650419\pi\)
0.890409 + 0.455162i \(0.150419\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 8.94427i 1.30466i 0.757937 + 0.652328i \(0.226208\pi\)
−0.757937 + 0.652328i \(0.773792\pi\)
\(48\) 0 0
\(49\) 7.00000 1.00000
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 7.47214 + 7.47214i 1.02638 + 1.02638i 0.999643 + 0.0267342i \(0.00851078\pi\)
0.0267342 + 0.999643i \(0.491489\pi\)
\(54\) 0 0
\(55\) −0.854102 0.854102i −0.115167 0.115167i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 5.61803 + 5.61803i 0.731406 + 0.731406i 0.970898 0.239492i \(-0.0769810\pi\)
−0.239492 + 0.970898i \(0.576981\pi\)
\(60\) 0 0
\(61\) −7.70820 −0.986934 −0.493467 0.869764i \(-0.664271\pi\)
−0.493467 + 0.869764i \(0.664271\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −6.70820 + 4.47214i −0.832050 + 0.554700i
\(66\) 0 0
\(67\) −13.7082 −1.67472 −0.837362 0.546649i \(-0.815903\pi\)
−0.837362 + 0.546649i \(0.815903\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −0.381966 0.381966i −0.0453310 0.0453310i 0.684078 0.729409i \(-0.260205\pi\)
−0.729409 + 0.684078i \(0.760205\pi\)
\(72\) 0 0
\(73\) −1.70820 −0.199930 −0.0999651 0.994991i \(-0.531873\pi\)
−0.0999651 + 0.994991i \(0.531873\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 9.70820i 1.09226i −0.837701 0.546129i \(-0.816101\pi\)
0.837701 0.546129i \(-0.183899\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 1.52786i 0.167705i 0.996478 + 0.0838524i \(0.0267224\pi\)
−0.996478 + 0.0838524i \(0.973278\pi\)
\(84\) 0 0
\(85\) −5.00000 + 5.00000i −0.542326 + 0.542326i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −2.23607 2.23607i −0.237023 0.237023i 0.578593 0.815616i \(-0.303602\pi\)
−0.815616 + 0.578593i \(0.803602\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 1.90983 + 1.90983i 0.195944 + 0.195944i
\(96\) 0 0
\(97\) −11.4164 −1.15916 −0.579580 0.814915i \(-0.696783\pi\)
−0.579580 + 0.814915i \(0.696783\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 10.4721i 1.04202i −0.853552 0.521008i \(-0.825556\pi\)
0.853552 0.521008i \(-0.174444\pi\)
\(102\) 0 0
\(103\) 2.85410 2.85410i 0.281223 0.281223i −0.552374 0.833597i \(-0.686278\pi\)
0.833597 + 0.552374i \(0.186278\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0.381966 0.381966i 0.0369260 0.0369260i −0.688403 0.725329i \(-0.741688\pi\)
0.725329 + 0.688403i \(0.241688\pi\)
\(108\) 0 0
\(109\) −8.70820 + 8.70820i −0.834095 + 0.834095i −0.988074 0.153979i \(-0.950791\pi\)
0.153979 + 0.988074i \(0.450791\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −5.94427 5.94427i −0.559190 0.559190i 0.369887 0.929077i \(-0.379396\pi\)
−0.929077 + 0.369887i \(0.879396\pi\)
\(114\) 0 0
\(115\) 12.5623 + 12.5623i 1.17144 + 1.17144i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 10.7082i 0.973473i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 11.1803i 1.00000i
\(126\) 0 0
\(127\) −6.85410 6.85410i −0.608203 0.608203i 0.334273 0.942476i \(-0.391509\pi\)
−0.942476 + 0.334273i \(0.891509\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −19.4164 −1.69642 −0.848210 0.529661i \(-0.822319\pi\)
−0.848210 + 0.529661i \(0.822319\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 7.52786i 0.643149i 0.946884 + 0.321574i \(0.104212\pi\)
−0.946884 + 0.321574i \(0.895788\pi\)
\(138\) 0 0
\(139\) 17.1246i 1.45249i 0.687436 + 0.726245i \(0.258736\pi\)
−0.687436 + 0.726245i \(0.741264\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −1.90983 0.381966i −0.159708 0.0319416i
\(144\) 0 0
\(145\) −1.70820 −0.141859
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 11.9443 11.9443i 0.978513 0.978513i −0.0212611 0.999774i \(-0.506768\pi\)
0.999774 + 0.0212611i \(0.00676812\pi\)
\(150\) 0 0
\(151\) −6.85410 + 6.85410i −0.557779 + 0.557779i −0.928675 0.370896i \(-0.879051\pi\)
0.370896 + 0.928675i \(0.379051\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −1.90983 + 1.90983i −0.153401 + 0.153401i
\(156\) 0 0
\(157\) −5.00000 + 5.00000i −0.399043 + 0.399043i −0.877896 0.478852i \(-0.841053\pi\)
0.478852 + 0.877896i \(0.341053\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 17.7082 1.38701 0.693507 0.720450i \(-0.256065\pi\)
0.693507 + 0.720450i \(0.256065\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 22.4721i 1.73895i −0.493980 0.869473i \(-0.664459\pi\)
0.493980 0.869473i \(-0.335541\pi\)
\(168\) 0 0
\(169\) −5.00000 + 12.0000i −0.384615 + 0.923077i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −5.18034 + 5.18034i −0.393854 + 0.393854i −0.876059 0.482205i \(-0.839836\pi\)
0.482205 + 0.876059i \(0.339836\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 12.0000 0.896922 0.448461 0.893802i \(-0.351972\pi\)
0.448461 + 0.893802i \(0.351972\pi\)
\(180\) 0 0
\(181\) 21.7082i 1.61356i −0.590853 0.806779i \(-0.701209\pi\)
0.590853 0.806779i \(-0.298791\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 8.29180 0.609625
\(186\) 0 0
\(187\) −1.70820 −0.124916
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 19.4164 1.40492 0.702461 0.711722i \(-0.252085\pi\)
0.702461 + 0.711722i \(0.252085\pi\)
\(192\) 0 0
\(193\) −23.4164 −1.68555 −0.842775 0.538266i \(-0.819080\pi\)
−0.842775 + 0.538266i \(0.819080\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −12.0000 −0.854965 −0.427482 0.904024i \(-0.640599\pi\)
−0.427482 + 0.904024i \(0.640599\pi\)
\(198\) 0 0
\(199\) 15.4164 1.09284 0.546420 0.837511i \(-0.315990\pi\)
0.546420 + 0.837511i \(0.315990\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −18.4164 + 18.4164i −1.28626 + 1.28626i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0.652476i 0.0451327i
\(210\) 0 0
\(211\) −23.4164 −1.61205 −0.806026 0.591880i \(-0.798386\pi\)
−0.806026 + 0.591880i \(0.798386\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −6.38197 6.38197i −0.435246 0.435246i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −2.23607 + 11.1803i −0.150414 + 0.752071i
\(222\) 0 0
\(223\) 19.4164i 1.30022i −0.759841 0.650109i \(-0.774723\pi\)
0.759841 0.650109i \(-0.225277\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −21.7082 −1.44082 −0.720412 0.693546i \(-0.756047\pi\)
−0.720412 + 0.693546i \(0.756047\pi\)
\(228\) 0 0
\(229\) −18.4164 18.4164i −1.21699 1.21699i −0.968681 0.248310i \(-0.920125\pi\)
−0.248310 0.968681i \(-0.579875\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −1.47214 + 1.47214i −0.0964428 + 0.0964428i −0.753682 0.657239i \(-0.771724\pi\)
0.657239 + 0.753682i \(0.271724\pi\)
\(234\) 0 0
\(235\) 20.0000 1.30466
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 6.38197 6.38197i 0.412815 0.412815i −0.469903 0.882718i \(-0.655711\pi\)
0.882718 + 0.469903i \(0.155711\pi\)
\(240\) 0 0
\(241\) 10.7082 10.7082i 0.689776 0.689776i −0.272406 0.962182i \(-0.587819\pi\)
0.962182 + 0.272406i \(0.0878195\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 15.6525i 1.00000i
\(246\) 0 0
\(247\) 4.27051 + 0.854102i 0.271726 + 0.0543452i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 3.81966i 0.241095i 0.992708 + 0.120547i \(0.0384650\pi\)
−0.992708 + 0.120547i \(0.961535\pi\)
\(252\) 0 0
\(253\) 4.29180i 0.269823i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 5.18034 + 5.18034i 0.323141 + 0.323141i 0.849971 0.526830i \(-0.176620\pi\)
−0.526830 + 0.849971i \(0.676620\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 7.03444 + 7.03444i 0.433762 + 0.433762i 0.889906 0.456144i \(-0.150770\pi\)
−0.456144 + 0.889906i \(0.650770\pi\)
\(264\) 0 0
\(265\) 16.7082 16.7082i 1.02638 1.02638i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 22.4721i 1.37015i −0.728472 0.685075i \(-0.759769\pi\)
0.728472 0.685075i \(-0.240231\pi\)
\(270\) 0 0
\(271\) 12.5623 12.5623i 0.763106 0.763106i −0.213777 0.976883i \(-0.568577\pi\)
0.976883 + 0.213777i \(0.0685765\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1.90983 + 1.90983i −0.115167 + 0.115167i
\(276\) 0 0
\(277\) 10.7082 + 10.7082i 0.643394 + 0.643394i 0.951388 0.307995i \(-0.0996578\pi\)
−0.307995 + 0.951388i \(0.599658\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 2.23607 2.23607i 0.133393 0.133393i −0.637258 0.770651i \(-0.719931\pi\)
0.770651 + 0.637258i \(0.219931\pi\)
\(282\) 0 0
\(283\) −9.14590 + 9.14590i −0.543667 + 0.543667i −0.924602 0.380935i \(-0.875602\pi\)
0.380935 + 0.924602i \(0.375602\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 7.00000i 0.411765i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −14.2918 −0.834936 −0.417468 0.908692i \(-0.637082\pi\)
−0.417468 + 0.908692i \(0.637082\pi\)
\(294\) 0 0
\(295\) 12.5623 12.5623i 0.731406 0.731406i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 28.0902 + 5.61803i 1.62450 + 0.324899i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 17.2361i 0.986934i
\(306\) 0 0
\(307\) 12.0000i 0.684876i 0.939540 + 0.342438i \(0.111253\pi\)
−0.939540 + 0.342438i \(0.888747\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 20.1803i 1.14432i −0.820141 0.572161i \(-0.806105\pi\)
0.820141 0.572161i \(-0.193895\pi\)
\(312\) 0 0
\(313\) −1.29180 1.29180i −0.0730166 0.0730166i 0.669655 0.742672i \(-0.266442\pi\)
−0.742672 + 0.669655i \(0.766442\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −9.70820 −0.545267 −0.272634 0.962118i \(-0.587895\pi\)
−0.272634 + 0.962118i \(0.587895\pi\)
\(318\) 0 0
\(319\) −0.291796 0.291796i −0.0163374 0.0163374i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 3.81966 0.212532
\(324\) 0 0
\(325\) 10.0000 + 15.0000i 0.554700 + 0.832050i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −9.14590 9.14590i −0.502704 0.502704i 0.409573 0.912277i \(-0.365678\pi\)
−0.912277 + 0.409573i \(0.865678\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 30.6525i 1.67472i
\(336\) 0 0
\(337\) −12.4164 12.4164i −0.676365 0.676365i 0.282811 0.959176i \(-0.408733\pi\)
−0.959176 + 0.282811i \(0.908733\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −0.652476 −0.0353335
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 4.09017 4.09017i 0.219572 0.219572i −0.588746 0.808318i \(-0.700378\pi\)
0.808318 + 0.588746i \(0.200378\pi\)
\(348\) 0 0
\(349\) 3.29180 + 3.29180i 0.176206 + 0.176206i 0.789700 0.613494i \(-0.210236\pi\)
−0.613494 + 0.789700i \(0.710236\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 17.2361i 0.917383i 0.888595 + 0.458692i \(0.151682\pi\)
−0.888595 + 0.458692i \(0.848318\pi\)
\(354\) 0 0
\(355\) −0.854102 + 0.854102i −0.0453310 + 0.0453310i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 1.90983 + 1.90983i 0.100797 + 0.100797i 0.755707 0.654910i \(-0.227293\pi\)
−0.654910 + 0.755707i \(0.727293\pi\)
\(360\) 0 0
\(361\) 17.5410i 0.923212i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 3.81966i 0.199930i
\(366\) 0 0
\(367\) 5.14590 5.14590i 0.268614 0.268614i −0.559928 0.828541i \(-0.689171\pi\)
0.828541 + 0.559928i \(0.189171\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 26.4164 + 26.4164i 1.36779 + 1.36779i 0.863583 + 0.504207i \(0.168215\pi\)
0.504207 + 0.863583i \(0.331785\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −2.29180 + 1.52786i −0.118034 + 0.0786890i
\(378\) 0 0
\(379\) 2.85410 2.85410i 0.146605 0.146605i −0.629994 0.776600i \(-0.716943\pi\)
0.776600 + 0.629994i \(0.216943\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 17.8885i 0.914062i −0.889451 0.457031i \(-0.848913\pi\)
0.889451 0.457031i \(-0.151087\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −1.41641 −0.0718147 −0.0359074 0.999355i \(-0.511432\pi\)
−0.0359074 + 0.999355i \(0.511432\pi\)
\(390\) 0 0
\(391\) 25.1246 1.27061
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −21.7082 −1.09226
\(396\) 0 0
\(397\) 35.1246i 1.76285i −0.472321 0.881427i \(-0.656584\pi\)
0.472321 0.881427i \(-0.343416\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 2.23607 2.23607i 0.111664 0.111664i −0.649067 0.760731i \(-0.724841\pi\)
0.760731 + 0.649067i \(0.224841\pi\)
\(402\) 0 0
\(403\) −0.854102 + 4.27051i −0.0425458 + 0.212729i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1.41641 + 1.41641i 0.0702087 + 0.0702087i
\(408\) 0 0
\(409\) 16.7082 16.7082i 0.826168 0.826168i −0.160817 0.986984i \(-0.551413\pi\)
0.986984 + 0.160817i \(0.0514128\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 3.41641 0.167705
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 27.5967i 1.34819i −0.738645 0.674095i \(-0.764534\pi\)
0.738645 0.674095i \(-0.235466\pi\)
\(420\) 0 0
\(421\) 16.7082 + 16.7082i 0.814308 + 0.814308i 0.985277 0.170968i \(-0.0546896\pi\)
−0.170968 + 0.985277i \(0.554690\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 11.1803 + 11.1803i 0.542326 + 0.542326i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −28.0902 28.0902i −1.35306 1.35306i −0.882222 0.470834i \(-0.843953\pi\)
−0.470834 0.882222i \(-0.656047\pi\)
\(432\) 0 0
\(433\) −17.0000 + 17.0000i −0.816968 + 0.816968i −0.985668 0.168700i \(-0.946043\pi\)
0.168700 + 0.985668i \(0.446043\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 9.59675i 0.459075i
\(438\) 0 0
\(439\) 20.0000 0.954548 0.477274 0.878755i \(-0.341625\pi\)
0.477274 + 0.878755i \(0.341625\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 15.3262 + 15.3262i 0.728172 + 0.728172i 0.970255 0.242084i \(-0.0778309\pi\)
−0.242084 + 0.970255i \(0.577831\pi\)
\(444\) 0 0
\(445\) −5.00000 + 5.00000i −0.237023 + 0.237023i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 19.4721 + 19.4721i 0.918947 + 0.918947i 0.996953 0.0780060i \(-0.0248553\pi\)
−0.0780060 + 0.996953i \(0.524855\pi\)
\(450\) 0 0
\(451\) −6.29180 −0.296269
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 3.41641 0.159813 0.0799064 0.996802i \(-0.474538\pi\)
0.0799064 + 0.996802i \(0.474538\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 5.18034 + 5.18034i 0.241272 + 0.241272i 0.817376 0.576104i \(-0.195428\pi\)
−0.576104 + 0.817376i \(0.695428\pi\)
\(462\) 0 0
\(463\) 17.7082 0.822970 0.411485 0.911417i \(-0.365010\pi\)
0.411485 + 0.911417i \(0.365010\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 13.0344 + 13.0344i 0.603162 + 0.603162i 0.941150 0.337988i \(-0.109746\pi\)
−0.337988 + 0.941150i \(0.609746\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 2.18034i 0.100252i
\(474\) 0 0
\(475\) 4.27051 4.27051i 0.195944 0.195944i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 16.7426 + 16.7426i 0.764991 + 0.764991i 0.977220 0.212229i \(-0.0680723\pi\)
−0.212229 + 0.977220i \(0.568072\pi\)
\(480\) 0 0
\(481\) 11.1246 7.41641i 0.507239 0.338159i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 25.5279i 1.15916i
\(486\) 0 0
\(487\) 25.1246 1.13850 0.569252 0.822163i \(-0.307233\pi\)
0.569252 + 0.822163i \(0.307233\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 6.65248i 0.300222i 0.988669 + 0.150111i \(0.0479631\pi\)
−0.988669 + 0.150111i \(0.952037\pi\)
\(492\) 0 0
\(493\) −1.70820 + 1.70820i −0.0769336 + 0.0769336i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 25.9787 25.9787i 1.16297 1.16297i 0.179144 0.983823i \(-0.442667\pi\)
0.983823 0.179144i \(-0.0573328\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 27.3262 + 27.3262i 1.21842 + 1.21842i 0.968186 + 0.250230i \(0.0805064\pi\)
0.250230 + 0.968186i \(0.419494\pi\)
\(504\) 0 0
\(505\) −23.4164 −1.04202
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 14.2361 14.2361i 0.631003 0.631003i −0.317317 0.948320i \(-0.602782\pi\)
0.948320 + 0.317317i \(0.102782\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −6.38197 6.38197i −0.281223 0.281223i
\(516\) 0 0
\(517\) 3.41641 + 3.41641i 0.150253 + 0.150253i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −0.875388 −0.0383515 −0.0191757 0.999816i \(-0.506104\pi\)
−0.0191757 + 0.999816i \(0.506104\pi\)
\(522\) 0 0
\(523\) −8.27051 8.27051i −0.361644 0.361644i 0.502774 0.864418i \(-0.332313\pi\)
−0.864418 + 0.502774i \(0.832313\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 3.81966i 0.166387i
\(528\) 0 0
\(529\) 40.1246i 1.74455i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −8.23607 + 41.1803i −0.356744 + 1.78372i
\(534\) 0 0
\(535\) −0.854102 0.854102i −0.0369260 0.0369260i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 2.67376 2.67376i 0.115167 0.115167i
\(540\) 0 0
\(541\) −12.4164 + 12.4164i −0.533823 + 0.533823i −0.921708 0.387885i \(-0.873206\pi\)
0.387885 + 0.921708i \(0.373206\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 19.4721 + 19.4721i 0.834095 + 0.834095i
\(546\) 0 0
\(547\) 12.5623 12.5623i 0.537125 0.537125i −0.385558 0.922684i \(-0.625991\pi\)
0.922684 + 0.385558i \(0.125991\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0.652476 + 0.652476i 0.0277964 + 0.0277964i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 30.7639i 1.30351i −0.758430 0.651755i \(-0.774033\pi\)
0.758430 0.651755i \(-0.225967\pi\)
\(558\) 0 0
\(559\) −14.2705 2.85410i −0.603578 0.120716i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 10.0902 10.0902i 0.425250 0.425250i −0.461757 0.887007i \(-0.652781\pi\)
0.887007 + 0.461757i \(0.152781\pi\)
\(564\) 0 0
\(565\) −13.2918 + 13.2918i −0.559190 + 0.559190i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −23.1246 −0.969434 −0.484717 0.874671i \(-0.661077\pi\)
−0.484717 + 0.874671i \(0.661077\pi\)
\(570\) 0 0
\(571\) 21.7082i 0.908460i −0.890884 0.454230i \(-0.849914\pi\)
0.890884 0.454230i \(-0.150086\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 28.0902 28.0902i 1.17144 1.17144i
\(576\) 0 0
\(577\) 13.1246 0.546385 0.273192 0.961959i \(-0.411920\pi\)
0.273192 + 0.961959i \(0.411920\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 5.70820 0.236410
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −17.1246 −0.706808 −0.353404 0.935471i \(-0.614976\pi\)
−0.353404 + 0.935471i \(0.614976\pi\)
\(588\) 0 0
\(589\) 1.45898 0.0601162
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −43.4164 −1.78290 −0.891449 0.453121i \(-0.850311\pi\)
−0.891449 + 0.453121i \(0.850311\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 35.0132i 1.43060i −0.698818 0.715299i \(-0.746290\pi\)
0.698818 0.715299i \(-0.253710\pi\)
\(600\) 0 0
\(601\) 14.0000 0.571072 0.285536 0.958368i \(-0.407828\pi\)
0.285536 + 0.958368i \(0.407828\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 23.9443 0.973473
\(606\) 0 0
\(607\) 4.27051 4.27051i 0.173335 0.173335i −0.615108 0.788443i \(-0.710888\pi\)
0.788443 + 0.615108i \(0.210888\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 26.8328 17.8885i 1.08554 0.723693i
\(612\) 0 0
\(613\) 13.4164i 0.541884i −0.962596 0.270942i \(-0.912665\pi\)
0.962596 0.270942i \(-0.0873351\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −31.4164 −1.26478 −0.632388 0.774651i \(-0.717925\pi\)
−0.632388 + 0.774651i \(0.717925\pi\)
\(618\) 0 0
\(619\) 16.2705 + 16.2705i 0.653967 + 0.653967i 0.953946 0.299979i \(-0.0969796\pi\)
−0.299979 + 0.953946i \(0.596980\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 25.0000 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 8.29180 8.29180i 0.330616 0.330616i
\(630\) 0 0
\(631\) 4.27051 4.27051i 0.170006 0.170006i −0.616976 0.786982i \(-0.711642\pi\)
0.786982 + 0.616976i \(0.211642\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −15.3262 + 15.3262i −0.608203 + 0.608203i
\(636\) 0 0
\(637\) −14.0000 21.0000i −0.554700 0.832050i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 15.0557i 0.594666i −0.954774 0.297333i \(-0.903903\pi\)
0.954774 0.297333i \(-0.0960971\pi\)
\(642\) 0 0
\(643\) 16.5836i 0.653993i 0.945026 + 0.326997i \(0.106037\pi\)
−0.945026 + 0.326997i \(0.893963\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −10.0902 10.0902i −0.396686 0.396686i 0.480377 0.877062i \(-0.340500\pi\)
−0.877062 + 0.480377i \(0.840500\pi\)
\(648\) 0 0
\(649\) 4.29180 0.168468
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −29.0689 29.0689i −1.13755 1.13755i −0.988887 0.148666i \(-0.952502\pi\)
−0.148666 0.988887i \(-0.547498\pi\)
\(654\) 0 0
\(655\) 43.4164i 1.69642i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 26.0689i 1.01550i 0.861505 + 0.507750i \(0.169523\pi\)
−0.861505 + 0.507750i \(0.830477\pi\)
\(660\) 0 0
\(661\) −2.70820 + 2.70820i −0.105337 + 0.105337i −0.757811 0.652474i \(-0.773731\pi\)
0.652474 + 0.757811i \(0.273731\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 4.29180 + 4.29180i 0.166179 + 0.166179i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −2.94427 + 2.94427i −0.113662 + 0.113662i
\(672\) 0 0
\(673\) −10.1246 + 10.1246i −0.390275 + 0.390275i −0.874786 0.484510i \(-0.838998\pi\)
0.484510 + 0.874786i \(0.338998\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 17.9443 17.9443i 0.689654 0.689654i −0.272501 0.962155i \(-0.587851\pi\)
0.962155 + 0.272501i \(0.0878508\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 5.12461 0.196088 0.0980439 0.995182i \(-0.468741\pi\)
0.0980439 + 0.995182i \(0.468741\pi\)
\(684\) 0 0
\(685\) 16.8328 0.643149
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 7.47214 37.3607i 0.284666 1.42333i
\(690\) 0 0
\(691\) −11.9787 11.9787i −0.455692 0.455692i 0.441547 0.897238i \(-0.354430\pi\)
−0.897238 + 0.441547i \(0.854430\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 38.2918 1.45249
\(696\) 0 0
\(697\) 36.8328i 1.39514i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 16.3607i 0.617934i 0.951073 + 0.308967i \(0.0999833\pi\)
−0.951073 + 0.308967i \(0.900017\pi\)
\(702\) 0 0
\(703\) −3.16718 3.16718i −0.119453 0.119453i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 8.41641 + 8.41641i 0.316085 + 0.316085i 0.847261 0.531176i \(-0.178250\pi\)
−0.531176 + 0.847261i \(0.678250\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 9.59675 0.359401
\(714\) 0 0
\(715\) −0.854102 + 4.27051i −0.0319416 + 0.159708i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −4.58359 −0.170939 −0.0854696 0.996341i \(-0.527239\pi\)
−0.0854696 + 0.996341i \(0.527239\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 3.81966i 0.141859i
\(726\) 0 0
\(727\) −15.1459 15.1459i −0.561730 0.561730i 0.368068 0.929799i \(-0.380019\pi\)
−0.929799 + 0.368068i \(0.880019\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −12.7639 −0.472091
\(732\) 0 0
\(733\) 30.0000i 1.10808i −0.832492 0.554038i \(-0.813086\pi\)
0.832492 0.554038i \(-0.186914\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −5.23607 + 5.23607i −0.192873 + 0.192873i
\(738\) 0 0
\(739\) 12.5623 + 12.5623i 0.462112 + 0.462112i 0.899347 0.437235i \(-0.144042\pi\)
−0.437235 + 0.899347i \(0.644042\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 25.3050i 0.928349i −0.885744 0.464174i \(-0.846351\pi\)
0.885744 0.464174i \(-0.153649\pi\)
\(744\) 0 0
\(745\) −26.7082 26.7082i −0.978513 0.978513i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 29.1246i 1.06277i 0.847130 + 0.531386i \(0.178329\pi\)
−0.847130 + 0.531386i \(0.821671\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 15.3262 + 15.3262i 0.557779 + 0.557779i
\(756\) 0 0
\(757\) −26.7082 + 26.7082i −0.970726 + 0.970726i −0.999584 0.0288574i \(-0.990813\pi\)
0.0288574 + 0.999584i \(0.490813\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 16.5279 16.5279i 0.599135 0.599135i −0.340948 0.940082i \(-0.610748\pi\)
0.940082 + 0.340948i \(0.110748\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 5.61803 28.0902i 0.202855 1.01428i
\(768\) 0 0
\(769\) −5.00000 + 5.00000i −0.180305 + 0.180305i −0.791489 0.611184i \(-0.790694\pi\)
0.611184 + 0.791489i \(0.290694\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0.652476i 0.0234679i 0.999931 + 0.0117340i \(0.00373512\pi\)
−0.999931 + 0.0117340i \(0.996265\pi\)
\(774\) 0 0
\(775\) 4.27051 + 4.27051i 0.153401 + 0.153401i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 14.0689 0.504070
\(780\) 0 0
\(781\) −0.291796 −0.0104413
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 11.1803 + 11.1803i 0.399043 + 0.399043i
\(786\) 0 0
\(787\) 43.4164i 1.54763i −0.633413 0.773814i \(-0.718347\pi\)
0.633413 0.773814i \(-0.281653\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 15.4164 + 23.1246i 0.547453 + 0.821179i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 8.88854 + 8.88854i 0.314848 + 0.314848i 0.846784 0.531936i \(-0.178535\pi\)
−0.531936 + 0.846784i \(0.678535\pi\)
\(798\) 0 0
\(799\) 20.0000 20.0000i 0.707549 0.707549i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −0.652476 + 0.652476i −0.0230254 + 0.0230254i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 3.81966i 0.134292i 0.997743 + 0.0671460i \(0.0213893\pi\)
−0.997743 + 0.0671460i \(0.978611\pi\)
\(810\) 0 0
\(811\) −16.5623 16.5623i −0.581581 0.581581i 0.353756 0.935338i \(-0.384904\pi\)
−0.935338 + 0.353756i \(0.884904\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 39.5967i 1.38701i
\(816\) 0 0
\(817\) 4.87539i 0.170568i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −7.36068 7.36068i −0.256889 0.256889i 0.566898 0.823788i \(-0.308143\pi\)
−0.823788 + 0.566898i \(0.808143\pi\)
\(822\) 0 0
\(823\) −23.9787 + 23.9787i −0.835845 + 0.835845i −0.988309 0.152464i \(-0.951279\pi\)
0.152464 + 0.988309i \(0.451279\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 13.5279i 0.470410i 0.971946 + 0.235205i \(0.0755761\pi\)
−0.971946 + 0.235205i \(0.924424\pi\)
\(828\) 0 0
\(829\) −0.291796 −0.0101345 −0.00506725 0.999987i \(-0.501613\pi\)
−0.00506725 + 0.999987i \(0.501613\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −15.6525 15.6525i −0.542326 0.542326i
\(834\) 0 0
\(835\) −50.2492 −1.73895
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −1.79837 1.79837i −0.0620868 0.0620868i 0.675382 0.737468i \(-0.263979\pi\)
−0.737468 + 0.675382i \(0.763979\pi\)
\(840\) 0 0
\(841\) 28.4164 0.979876
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 26.8328 + 11.1803i 0.923077 + 0.384615i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −20.8328 20.8328i −0.714140 0.714140i
\(852\) 0 0
\(853\) −45.1246 −1.54504 −0.772519 0.634992i \(-0.781003\pi\)
−0.772519 + 0.634992i \(0.781003\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −21.6525 21.6525i −0.739634 0.739634i 0.232873 0.972507i \(-0.425187\pi\)
−0.972507 + 0.232873i \(0.925187\pi\)
\(858\) 0 0
\(859\) 38.2918i 1.30650i 0.757143 + 0.653250i \(0.226595\pi\)
−0.757143 + 0.653250i \(0.773405\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 25.5279i 0.868979i 0.900677 + 0.434489i \(0.143071\pi\)
−0.900677 + 0.434489i \(0.856929\pi\)
\(864\) 0 0
\(865\) 11.5836 + 11.5836i 0.393854 + 0.393854i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −3.70820 3.70820i −0.125792 0.125792i
\(870\) 0 0
\(871\) 27.4164 + 41.1246i 0.928970 + 1.39345i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −6.83282 −0.230728 −0.115364 0.993323i \(-0.536803\pi\)
−0.115364 + 0.993323i \(0.536803\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 38.0689i 1.28257i 0.767301 + 0.641287i \(0.221599\pi\)
−0.767301 + 0.641287i \(0.778401\pi\)
\(882\) 0 0
\(883\) −21.1459 + 21.1459i −0.711616 + 0.711616i −0.966873 0.255257i \(-0.917840\pi\)
0.255257 + 0.966873i \(0.417840\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −23.6180 + 23.6180i −0.793016 + 0.793016i −0.981983 0.188967i \(-0.939486\pi\)
0.188967 + 0.981983i \(0.439486\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −7.63932 7.63932i −0.255640 0.255640i
\(894\) 0 0
\(895\) 26.8328i 0.896922i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −0.652476 + 0.652476i −0.0217613 + 0.0217613i
\(900\) 0 0
\(901\) 33.4164i 1.11326i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −48.5410 −1.61356
\(906\) 0 0
\(907\) 28.2705 + 28.2705i 0.938707 + 0.938707i 0.998227 0.0595202i \(-0.0189571\pi\)
−0.0595202 + 0.998227i \(0.518957\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 2.83282 0.0938554 0.0469277 0.998898i \(-0.485057\pi\)
0.0469277 + 0.998898i \(0.485057\pi\)
\(912\) 0 0
\(913\) 0.583592 + 0.583592i 0.0193141 + 0.0193141i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 5.12461i 0.169045i −0.996422 0.0845227i \(-0.973063\pi\)
0.996422 0.0845227i \(-0.0269365\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −0.381966 + 1.90983i −0.0125726 + 0.0628628i
\(924\) 0 0
\(925\) 18.5410i 0.609625i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −32.8885 + 32.8885i −1.07904 + 1.07904i −0.0824423 + 0.996596i \(0.526272\pi\)
−0.996596 + 0.0824423i \(0.973728\pi\)
\(930\) 0 0
\(931\) −5.97871 + 5.97871i −0.195944 + 0.195944i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 3.81966i 0.124916i
\(936\) 0 0
\(937\) 5.58359 5.58359i 0.182408 0.182408i −0.609996 0.792404i \(-0.708829\pi\)
0.792404 + 0.609996i \(0.208829\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −31.3607 31.3607i −1.02233 1.02233i −0.999745 0.0225840i \(-0.992811\pi\)
−0.0225840 0.999745i \(-0.507189\pi\)
\(942\) 0 0
\(943\) 92.5410 3.01355
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 20.9443i 0.680597i 0.940317 + 0.340299i \(0.110528\pi\)
−0.940317 + 0.340299i \(0.889472\pi\)
\(948\) 0 0
\(949\) 3.41641 + 5.12461i 0.110901 + 0.166352i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 32.2361 32.2361i 1.04423 1.04423i 0.0452531 0.998976i \(-0.485591\pi\)
0.998976 0.0452531i \(-0.0144094\pi\)
\(954\) 0 0
\(955\) 43.4164i 1.40492i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 29.5410i 0.952936i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 52.3607i 1.68555i
\(966\) 0 0
\(967\) −33.1246 −1.06522 −0.532608 0.846362i \(-0.678788\pi\)
−0.532608 + 0.846362i \(0.678788\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 9.70820 0.310593 0.155296 0.987868i \(-0.450367\pi\)
0.155296 + 0.987868i \(0.450367\pi\)
\(978\) 0 0
\(979\) −1.70820 −0.0545944
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 45.7082 1.45787 0.728933 0.684585i \(-0.240017\pi\)
0.728933 + 0.684585i \(0.240017\pi\)
\(984\) 0 0
\(985\) 26.8328i 0.854965i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 32.0689i 1.01973i
\(990\) 0 0
\(991\) −47.4164 −1.50623 −0.753116 0.657888i \(-0.771450\pi\)
−0.753116 + 0.657888i \(0.771450\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 34.4721i 1.09284i
\(996\) 0 0
\(997\) −29.0000 + 29.0000i −0.918439 + 0.918439i −0.996916 0.0784767i \(-0.974994\pi\)
0.0784767 + 0.996916i \(0.474994\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2340.2.u.f.73.1 4
3.2 odd 2 260.2.m.b.73.2 yes 4
5.2 odd 4 2340.2.bp.e.1477.1 4
12.11 even 2 1040.2.bg.j.593.1 4
13.5 odd 4 2340.2.bp.e.1513.1 4
15.2 even 4 260.2.r.b.177.2 yes 4
15.8 even 4 1300.2.r.b.957.1 4
15.14 odd 2 1300.2.m.b.593.1 4
39.5 even 4 260.2.r.b.213.2 yes 4
60.47 odd 4 1040.2.cd.j.177.1 4
65.57 even 4 inner 2340.2.u.f.577.2 4
156.83 odd 4 1040.2.cd.j.993.1 4
195.44 even 4 1300.2.r.b.993.1 4
195.83 odd 4 1300.2.m.b.57.1 4
195.122 odd 4 260.2.m.b.57.2 4
780.707 even 4 1040.2.bg.j.577.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
260.2.m.b.57.2 4 195.122 odd 4
260.2.m.b.73.2 yes 4 3.2 odd 2
260.2.r.b.177.2 yes 4 15.2 even 4
260.2.r.b.213.2 yes 4 39.5 even 4
1040.2.bg.j.577.1 4 780.707 even 4
1040.2.bg.j.593.1 4 12.11 even 2
1040.2.cd.j.177.1 4 60.47 odd 4
1040.2.cd.j.993.1 4 156.83 odd 4
1300.2.m.b.57.1 4 195.83 odd 4
1300.2.m.b.593.1 4 15.14 odd 2
1300.2.r.b.957.1 4 15.8 even 4
1300.2.r.b.993.1 4 195.44 even 4
2340.2.u.f.73.1 4 1.1 even 1 trivial
2340.2.u.f.577.2 4 65.57 even 4 inner
2340.2.bp.e.1477.1 4 5.2 odd 4
2340.2.bp.e.1513.1 4 13.5 odd 4