Properties

Label 260.2.m.b.73.2
Level $260$
Weight $2$
Character 260.73
Analytic conductor $2.076$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [260,2,Mod(57,260)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(260, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("260.57"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 260 = 2^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 260.m (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.07611045255\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{5})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 3x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 73.2
Root \(1.61803i\) of defining polynomial
Character \(\chi\) \(=\) 260.73
Dual form 260.2.m.b.57.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.61803 + 1.61803i) q^{3} +2.23607i q^{5} +2.23607i q^{9} +(-0.381966 + 0.381966i) q^{11} +(-2.00000 - 3.00000i) q^{13} +(-3.61803 + 3.61803i) q^{15} +(2.23607 + 2.23607i) q^{17} +(-0.854102 + 0.854102i) q^{19} +(5.61803 - 5.61803i) q^{23} -5.00000 q^{25} +(1.23607 - 1.23607i) q^{27} +0.763932i q^{29} +(-0.854102 - 0.854102i) q^{31} -1.23607 q^{33} +3.70820i q^{37} +(1.61803 - 8.09017i) q^{39} +(8.23607 + 8.23607i) q^{41} +(2.85410 - 2.85410i) q^{43} -5.00000 q^{45} -8.94427i q^{47} +7.00000 q^{49} +7.23607i q^{51} +(-7.47214 - 7.47214i) q^{53} +(-0.854102 - 0.854102i) q^{55} -2.76393 q^{57} +(-5.61803 - 5.61803i) q^{59} -7.70820 q^{61} +(6.70820 - 4.47214i) q^{65} -13.7082 q^{67} +18.1803 q^{69} +(0.381966 + 0.381966i) q^{71} -1.70820 q^{73} +(-8.09017 - 8.09017i) q^{75} -9.70820i q^{79} +10.7082 q^{81} -1.52786i q^{83} +(-5.00000 + 5.00000i) q^{85} +(-1.23607 + 1.23607i) q^{87} +(2.23607 + 2.23607i) q^{89} -2.76393i q^{93} +(-1.90983 - 1.90983i) q^{95} -11.4164 q^{97} +(-0.854102 - 0.854102i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{3} - 6 q^{11} - 8 q^{13} - 10 q^{15} + 10 q^{19} + 18 q^{23} - 20 q^{25} - 4 q^{27} + 10 q^{31} + 4 q^{33} + 2 q^{39} + 24 q^{41} - 2 q^{43} - 20 q^{45} + 28 q^{49} - 12 q^{53} + 10 q^{55} - 20 q^{57}+ \cdots + 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/260\mathbb{Z}\right)^\times\).

\(n\) \(41\) \(131\) \(157\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.61803 + 1.61803i 0.934172 + 0.934172i 0.997963 0.0637909i \(-0.0203191\pi\)
−0.0637909 + 0.997963i \(0.520319\pi\)
\(4\) 0 0
\(5\) 2.23607i 1.00000i
\(6\) 0 0
\(7\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(8\) 0 0
\(9\) 2.23607i 0.745356i
\(10\) 0 0
\(11\) −0.381966 + 0.381966i −0.115167 + 0.115167i −0.762342 0.647175i \(-0.775950\pi\)
0.647175 + 0.762342i \(0.275950\pi\)
\(12\) 0 0
\(13\) −2.00000 3.00000i −0.554700 0.832050i
\(14\) 0 0
\(15\) −3.61803 + 3.61803i −0.934172 + 0.934172i
\(16\) 0 0
\(17\) 2.23607 + 2.23607i 0.542326 + 0.542326i 0.924210 0.381884i \(-0.124725\pi\)
−0.381884 + 0.924210i \(0.624725\pi\)
\(18\) 0 0
\(19\) −0.854102 + 0.854102i −0.195944 + 0.195944i −0.798259 0.602314i \(-0.794245\pi\)
0.602314 + 0.798259i \(0.294245\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 5.61803 5.61803i 1.17144 1.17144i 0.189575 0.981866i \(-0.439289\pi\)
0.981866 0.189575i \(-0.0607109\pi\)
\(24\) 0 0
\(25\) −5.00000 −1.00000
\(26\) 0 0
\(27\) 1.23607 1.23607i 0.237881 0.237881i
\(28\) 0 0
\(29\) 0.763932i 0.141859i 0.997481 + 0.0709293i \(0.0225965\pi\)
−0.997481 + 0.0709293i \(0.977404\pi\)
\(30\) 0 0
\(31\) −0.854102 0.854102i −0.153401 0.153401i 0.626234 0.779635i \(-0.284595\pi\)
−0.779635 + 0.626234i \(0.784595\pi\)
\(32\) 0 0
\(33\) −1.23607 −0.215172
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 3.70820i 0.609625i 0.952412 + 0.304812i \(0.0985938\pi\)
−0.952412 + 0.304812i \(0.901406\pi\)
\(38\) 0 0
\(39\) 1.61803 8.09017i 0.259093 1.29546i
\(40\) 0 0
\(41\) 8.23607 + 8.23607i 1.28626 + 1.28626i 0.937043 + 0.349215i \(0.113552\pi\)
0.349215 + 0.937043i \(0.386448\pi\)
\(42\) 0 0
\(43\) 2.85410 2.85410i 0.435246 0.435246i −0.455162 0.890409i \(-0.650419\pi\)
0.890409 + 0.455162i \(0.150419\pi\)
\(44\) 0 0
\(45\) −5.00000 −0.745356
\(46\) 0 0
\(47\) 8.94427i 1.30466i −0.757937 0.652328i \(-0.773792\pi\)
0.757937 0.652328i \(-0.226208\pi\)
\(48\) 0 0
\(49\) 7.00000 1.00000
\(50\) 0 0
\(51\) 7.23607i 1.01325i
\(52\) 0 0
\(53\) −7.47214 7.47214i −1.02638 1.02638i −0.999643 0.0267342i \(-0.991489\pi\)
−0.0267342 0.999643i \(-0.508511\pi\)
\(54\) 0 0
\(55\) −0.854102 0.854102i −0.115167 0.115167i
\(56\) 0 0
\(57\) −2.76393 −0.366092
\(58\) 0 0
\(59\) −5.61803 5.61803i −0.731406 0.731406i 0.239492 0.970898i \(-0.423019\pi\)
−0.970898 + 0.239492i \(0.923019\pi\)
\(60\) 0 0
\(61\) −7.70820 −0.986934 −0.493467 0.869764i \(-0.664271\pi\)
−0.493467 + 0.869764i \(0.664271\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 6.70820 4.47214i 0.832050 0.554700i
\(66\) 0 0
\(67\) −13.7082 −1.67472 −0.837362 0.546649i \(-0.815903\pi\)
−0.837362 + 0.546649i \(0.815903\pi\)
\(68\) 0 0
\(69\) 18.1803 2.18866
\(70\) 0 0
\(71\) 0.381966 + 0.381966i 0.0453310 + 0.0453310i 0.729409 0.684078i \(-0.239795\pi\)
−0.684078 + 0.729409i \(0.739795\pi\)
\(72\) 0 0
\(73\) −1.70820 −0.199930 −0.0999651 0.994991i \(-0.531873\pi\)
−0.0999651 + 0.994991i \(0.531873\pi\)
\(74\) 0 0
\(75\) −8.09017 8.09017i −0.934172 0.934172i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 9.70820i 1.09226i −0.837701 0.546129i \(-0.816101\pi\)
0.837701 0.546129i \(-0.183899\pi\)
\(80\) 0 0
\(81\) 10.7082 1.18980
\(82\) 0 0
\(83\) 1.52786i 0.167705i −0.996478 0.0838524i \(-0.973278\pi\)
0.996478 0.0838524i \(-0.0267224\pi\)
\(84\) 0 0
\(85\) −5.00000 + 5.00000i −0.542326 + 0.542326i
\(86\) 0 0
\(87\) −1.23607 + 1.23607i −0.132520 + 0.132520i
\(88\) 0 0
\(89\) 2.23607 + 2.23607i 0.237023 + 0.237023i 0.815616 0.578593i \(-0.196398\pi\)
−0.578593 + 0.815616i \(0.696398\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 2.76393i 0.286606i
\(94\) 0 0
\(95\) −1.90983 1.90983i −0.195944 0.195944i
\(96\) 0 0
\(97\) −11.4164 −1.15916 −0.579580 0.814915i \(-0.696783\pi\)
−0.579580 + 0.814915i \(0.696783\pi\)
\(98\) 0 0
\(99\) −0.854102 0.854102i −0.0858405 0.0858405i
\(100\) 0 0
\(101\) 10.4721i 1.04202i 0.853552 + 0.521008i \(0.174444\pi\)
−0.853552 + 0.521008i \(0.825556\pi\)
\(102\) 0 0
\(103\) 2.85410 2.85410i 0.281223 0.281223i −0.552374 0.833597i \(-0.686278\pi\)
0.833597 + 0.552374i \(0.186278\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −0.381966 + 0.381966i −0.0369260 + 0.0369260i −0.725329 0.688403i \(-0.758312\pi\)
0.688403 + 0.725329i \(0.258312\pi\)
\(108\) 0 0
\(109\) −8.70820 + 8.70820i −0.834095 + 0.834095i −0.988074 0.153979i \(-0.950791\pi\)
0.153979 + 0.988074i \(0.450791\pi\)
\(110\) 0 0
\(111\) −6.00000 + 6.00000i −0.569495 + 0.569495i
\(112\) 0 0
\(113\) 5.94427 + 5.94427i 0.559190 + 0.559190i 0.929077 0.369887i \(-0.120604\pi\)
−0.369887 + 0.929077i \(0.620604\pi\)
\(114\) 0 0
\(115\) 12.5623 + 12.5623i 1.17144 + 1.17144i
\(116\) 0 0
\(117\) 6.70820 4.47214i 0.620174 0.413449i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 10.7082i 0.973473i
\(122\) 0 0
\(123\) 26.6525i 2.40317i
\(124\) 0 0
\(125\) 11.1803i 1.00000i
\(126\) 0 0
\(127\) −6.85410 6.85410i −0.608203 0.608203i 0.334273 0.942476i \(-0.391509\pi\)
−0.942476 + 0.334273i \(0.891509\pi\)
\(128\) 0 0
\(129\) 9.23607 0.813190
\(130\) 0 0
\(131\) 19.4164 1.69642 0.848210 0.529661i \(-0.177681\pi\)
0.848210 + 0.529661i \(0.177681\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 2.76393 + 2.76393i 0.237881 + 0.237881i
\(136\) 0 0
\(137\) 7.52786i 0.643149i −0.946884 0.321574i \(-0.895788\pi\)
0.946884 0.321574i \(-0.104212\pi\)
\(138\) 0 0
\(139\) 17.1246i 1.45249i 0.687436 + 0.726245i \(0.258736\pi\)
−0.687436 + 0.726245i \(0.741264\pi\)
\(140\) 0 0
\(141\) 14.4721 14.4721i 1.21877 1.21877i
\(142\) 0 0
\(143\) 1.90983 + 0.381966i 0.159708 + 0.0319416i
\(144\) 0 0
\(145\) −1.70820 −0.141859
\(146\) 0 0
\(147\) 11.3262 + 11.3262i 0.934172 + 0.934172i
\(148\) 0 0
\(149\) −11.9443 + 11.9443i −0.978513 + 0.978513i −0.999774 0.0212611i \(-0.993232\pi\)
0.0212611 + 0.999774i \(0.493232\pi\)
\(150\) 0 0
\(151\) −6.85410 + 6.85410i −0.557779 + 0.557779i −0.928675 0.370896i \(-0.879051\pi\)
0.370896 + 0.928675i \(0.379051\pi\)
\(152\) 0 0
\(153\) −5.00000 + 5.00000i −0.404226 + 0.404226i
\(154\) 0 0
\(155\) 1.90983 1.90983i 0.153401 0.153401i
\(156\) 0 0
\(157\) −5.00000 + 5.00000i −0.399043 + 0.399043i −0.877896 0.478852i \(-0.841053\pi\)
0.478852 + 0.877896i \(0.341053\pi\)
\(158\) 0 0
\(159\) 24.1803i 1.91763i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 17.7082 1.38701 0.693507 0.720450i \(-0.256065\pi\)
0.693507 + 0.720450i \(0.256065\pi\)
\(164\) 0 0
\(165\) 2.76393i 0.215172i
\(166\) 0 0
\(167\) 22.4721i 1.73895i 0.493980 + 0.869473i \(0.335541\pi\)
−0.493980 + 0.869473i \(0.664459\pi\)
\(168\) 0 0
\(169\) −5.00000 + 12.0000i −0.384615 + 0.923077i
\(170\) 0 0
\(171\) −1.90983 1.90983i −0.146048 0.146048i
\(172\) 0 0
\(173\) 5.18034 5.18034i 0.393854 0.393854i −0.482205 0.876059i \(-0.660164\pi\)
0.876059 + 0.482205i \(0.160164\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 18.1803i 1.36652i
\(178\) 0 0
\(179\) −12.0000 −0.896922 −0.448461 0.893802i \(-0.648028\pi\)
−0.448461 + 0.893802i \(0.648028\pi\)
\(180\) 0 0
\(181\) 21.7082i 1.61356i −0.590853 0.806779i \(-0.701209\pi\)
0.590853 0.806779i \(-0.298791\pi\)
\(182\) 0 0
\(183\) −12.4721 12.4721i −0.921967 0.921967i
\(184\) 0 0
\(185\) −8.29180 −0.609625
\(186\) 0 0
\(187\) −1.70820 −0.124916
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −19.4164 −1.40492 −0.702461 0.711722i \(-0.747915\pi\)
−0.702461 + 0.711722i \(0.747915\pi\)
\(192\) 0 0
\(193\) −23.4164 −1.68555 −0.842775 0.538266i \(-0.819080\pi\)
−0.842775 + 0.538266i \(0.819080\pi\)
\(194\) 0 0
\(195\) 18.0902 + 3.61803i 1.29546 + 0.259093i
\(196\) 0 0
\(197\) 12.0000 0.854965 0.427482 0.904024i \(-0.359401\pi\)
0.427482 + 0.904024i \(0.359401\pi\)
\(198\) 0 0
\(199\) 15.4164 1.09284 0.546420 0.837511i \(-0.315990\pi\)
0.546420 + 0.837511i \(0.315990\pi\)
\(200\) 0 0
\(201\) −22.1803 22.1803i −1.56448 1.56448i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −18.4164 + 18.4164i −1.28626 + 1.28626i
\(206\) 0 0
\(207\) 12.5623 + 12.5623i 0.873141 + 0.873141i
\(208\) 0 0
\(209\) 0.652476i 0.0451327i
\(210\) 0 0
\(211\) −23.4164 −1.61205 −0.806026 0.591880i \(-0.798386\pi\)
−0.806026 + 0.591880i \(0.798386\pi\)
\(212\) 0 0
\(213\) 1.23607i 0.0846940i
\(214\) 0 0
\(215\) 6.38197 + 6.38197i 0.435246 + 0.435246i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −2.76393 2.76393i −0.186769 0.186769i
\(220\) 0 0
\(221\) 2.23607 11.1803i 0.150414 0.752071i
\(222\) 0 0
\(223\) 19.4164i 1.30022i −0.759841 0.650109i \(-0.774723\pi\)
0.759841 0.650109i \(-0.225277\pi\)
\(224\) 0 0
\(225\) 11.1803i 0.745356i
\(226\) 0 0
\(227\) 21.7082 1.44082 0.720412 0.693546i \(-0.243953\pi\)
0.720412 + 0.693546i \(0.243953\pi\)
\(228\) 0 0
\(229\) −18.4164 18.4164i −1.21699 1.21699i −0.968681 0.248310i \(-0.920125\pi\)
−0.248310 0.968681i \(-0.579875\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1.47214 1.47214i 0.0964428 0.0964428i −0.657239 0.753682i \(-0.728276\pi\)
0.753682 + 0.657239i \(0.228276\pi\)
\(234\) 0 0
\(235\) 20.0000 1.30466
\(236\) 0 0
\(237\) 15.7082 15.7082i 1.02036 1.02036i
\(238\) 0 0
\(239\) −6.38197 + 6.38197i −0.412815 + 0.412815i −0.882718 0.469903i \(-0.844289\pi\)
0.469903 + 0.882718i \(0.344289\pi\)
\(240\) 0 0
\(241\) 10.7082 10.7082i 0.689776 0.689776i −0.272406 0.962182i \(-0.587819\pi\)
0.962182 + 0.272406i \(0.0878195\pi\)
\(242\) 0 0
\(243\) 13.6180 + 13.6180i 0.873597 + 0.873597i
\(244\) 0 0
\(245\) 15.6525i 1.00000i
\(246\) 0 0
\(247\) 4.27051 + 0.854102i 0.271726 + 0.0543452i
\(248\) 0 0
\(249\) 2.47214 2.47214i 0.156665 0.156665i
\(250\) 0 0
\(251\) 3.81966i 0.241095i −0.992708 0.120547i \(-0.961535\pi\)
0.992708 0.120547i \(-0.0384650\pi\)
\(252\) 0 0
\(253\) 4.29180i 0.269823i
\(254\) 0 0
\(255\) −16.1803 −1.01325
\(256\) 0 0
\(257\) −5.18034 5.18034i −0.323141 0.323141i 0.526830 0.849971i \(-0.323380\pi\)
−0.849971 + 0.526830i \(0.823380\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −1.70820 −0.105735
\(262\) 0 0
\(263\) −7.03444 7.03444i −0.433762 0.433762i 0.456144 0.889906i \(-0.349230\pi\)
−0.889906 + 0.456144i \(0.849230\pi\)
\(264\) 0 0
\(265\) 16.7082 16.7082i 1.02638 1.02638i
\(266\) 0 0
\(267\) 7.23607i 0.442840i
\(268\) 0 0
\(269\) 22.4721i 1.37015i 0.728472 + 0.685075i \(0.240231\pi\)
−0.728472 + 0.685075i \(0.759769\pi\)
\(270\) 0 0
\(271\) 12.5623 12.5623i 0.763106 0.763106i −0.213777 0.976883i \(-0.568577\pi\)
0.976883 + 0.213777i \(0.0685765\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.90983 1.90983i 0.115167 0.115167i
\(276\) 0 0
\(277\) 10.7082 + 10.7082i 0.643394 + 0.643394i 0.951388 0.307995i \(-0.0996578\pi\)
−0.307995 + 0.951388i \(0.599658\pi\)
\(278\) 0 0
\(279\) 1.90983 1.90983i 0.114339 0.114339i
\(280\) 0 0
\(281\) −2.23607 + 2.23607i −0.133393 + 0.133393i −0.770651 0.637258i \(-0.780069\pi\)
0.637258 + 0.770651i \(0.280069\pi\)
\(282\) 0 0
\(283\) −9.14590 + 9.14590i −0.543667 + 0.543667i −0.924602 0.380935i \(-0.875602\pi\)
0.380935 + 0.924602i \(0.375602\pi\)
\(284\) 0 0
\(285\) 6.18034i 0.366092i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 7.00000i 0.411765i
\(290\) 0 0
\(291\) −18.4721 18.4721i −1.08286 1.08286i
\(292\) 0 0
\(293\) 14.2918 0.834936 0.417468 0.908692i \(-0.362918\pi\)
0.417468 + 0.908692i \(0.362918\pi\)
\(294\) 0 0
\(295\) 12.5623 12.5623i 0.731406 0.731406i
\(296\) 0 0
\(297\) 0.944272i 0.0547922i
\(298\) 0 0
\(299\) −28.0902 5.61803i −1.62450 0.324899i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −16.9443 + 16.9443i −0.973423 + 0.973423i
\(304\) 0 0
\(305\) 17.2361i 0.986934i
\(306\) 0 0
\(307\) 12.0000i 0.684876i 0.939540 + 0.342438i \(0.111253\pi\)
−0.939540 + 0.342438i \(0.888747\pi\)
\(308\) 0 0
\(309\) 9.23607 0.525422
\(310\) 0 0
\(311\) 20.1803i 1.14432i 0.820141 + 0.572161i \(0.193895\pi\)
−0.820141 + 0.572161i \(0.806105\pi\)
\(312\) 0 0
\(313\) −1.29180 1.29180i −0.0730166 0.0730166i 0.669655 0.742672i \(-0.266442\pi\)
−0.742672 + 0.669655i \(0.766442\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 9.70820 0.545267 0.272634 0.962118i \(-0.412105\pi\)
0.272634 + 0.962118i \(0.412105\pi\)
\(318\) 0 0
\(319\) −0.291796 0.291796i −0.0163374 0.0163374i
\(320\) 0 0
\(321\) −1.23607 −0.0689906
\(322\) 0 0
\(323\) −3.81966 −0.212532
\(324\) 0 0
\(325\) 10.0000 + 15.0000i 0.554700 + 0.832050i
\(326\) 0 0
\(327\) −28.1803 −1.55838
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −9.14590 9.14590i −0.502704 0.502704i 0.409573 0.912277i \(-0.365678\pi\)
−0.912277 + 0.409573i \(0.865678\pi\)
\(332\) 0 0
\(333\) −8.29180 −0.454388
\(334\) 0 0
\(335\) 30.6525i 1.67472i
\(336\) 0 0
\(337\) −12.4164 12.4164i −0.676365 0.676365i 0.282811 0.959176i \(-0.408733\pi\)
−0.959176 + 0.282811i \(0.908733\pi\)
\(338\) 0 0
\(339\) 19.2361i 1.04476i
\(340\) 0 0
\(341\) 0.652476 0.0353335
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 40.6525i 2.18866i
\(346\) 0 0
\(347\) −4.09017 + 4.09017i −0.219572 + 0.219572i −0.808318 0.588746i \(-0.799622\pi\)
0.588746 + 0.808318i \(0.299622\pi\)
\(348\) 0 0
\(349\) 3.29180 + 3.29180i 0.176206 + 0.176206i 0.789700 0.613494i \(-0.210236\pi\)
−0.613494 + 0.789700i \(0.710236\pi\)
\(350\) 0 0
\(351\) −6.18034 1.23607i −0.329882 0.0659764i
\(352\) 0 0
\(353\) 17.2361i 0.917383i −0.888595 0.458692i \(-0.848318\pi\)
0.888595 0.458692i \(-0.151682\pi\)
\(354\) 0 0
\(355\) −0.854102 + 0.854102i −0.0453310 + 0.0453310i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −1.90983 1.90983i −0.100797 0.100797i 0.654910 0.755707i \(-0.272707\pi\)
−0.755707 + 0.654910i \(0.772707\pi\)
\(360\) 0 0
\(361\) 17.5410i 0.923212i
\(362\) 0 0
\(363\) −17.3262 + 17.3262i −0.909392 + 0.909392i
\(364\) 0 0
\(365\) 3.81966i 0.199930i
\(366\) 0 0
\(367\) 5.14590 5.14590i 0.268614 0.268614i −0.559928 0.828541i \(-0.689171\pi\)
0.828541 + 0.559928i \(0.189171\pi\)
\(368\) 0 0
\(369\) −18.4164 + 18.4164i −0.958720 + 0.958720i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 26.4164 + 26.4164i 1.36779 + 1.36779i 0.863583 + 0.504207i \(0.168215\pi\)
0.504207 + 0.863583i \(0.331785\pi\)
\(374\) 0 0
\(375\) 18.0902 18.0902i 0.934172 0.934172i
\(376\) 0 0
\(377\) 2.29180 1.52786i 0.118034 0.0786890i
\(378\) 0 0
\(379\) 2.85410 2.85410i 0.146605 0.146605i −0.629994 0.776600i \(-0.716943\pi\)
0.776600 + 0.629994i \(0.216943\pi\)
\(380\) 0 0
\(381\) 22.1803i 1.13633i
\(382\) 0 0
\(383\) 17.8885i 0.914062i 0.889451 + 0.457031i \(0.151087\pi\)
−0.889451 + 0.457031i \(0.848913\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 6.38197 + 6.38197i 0.324414 + 0.324414i
\(388\) 0 0
\(389\) 1.41641 0.0718147 0.0359074 0.999355i \(-0.488568\pi\)
0.0359074 + 0.999355i \(0.488568\pi\)
\(390\) 0 0
\(391\) 25.1246 1.27061
\(392\) 0 0
\(393\) 31.4164 + 31.4164i 1.58475 + 1.58475i
\(394\) 0 0
\(395\) 21.7082 1.09226
\(396\) 0 0
\(397\) 35.1246i 1.76285i −0.472321 0.881427i \(-0.656584\pi\)
0.472321 0.881427i \(-0.343416\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −2.23607 + 2.23607i −0.111664 + 0.111664i −0.760731 0.649067i \(-0.775159\pi\)
0.649067 + 0.760731i \(0.275159\pi\)
\(402\) 0 0
\(403\) −0.854102 + 4.27051i −0.0425458 + 0.212729i
\(404\) 0 0
\(405\) 23.9443i 1.18980i
\(406\) 0 0
\(407\) −1.41641 1.41641i −0.0702087 0.0702087i
\(408\) 0 0
\(409\) 16.7082 16.7082i 0.826168 0.826168i −0.160817 0.986984i \(-0.551413\pi\)
0.986984 + 0.160817i \(0.0514128\pi\)
\(410\) 0 0
\(411\) 12.1803 12.1803i 0.600812 0.600812i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 3.41641 0.167705
\(416\) 0 0
\(417\) −27.7082 + 27.7082i −1.35688 + 1.35688i
\(418\) 0 0
\(419\) 27.5967i 1.34819i 0.738645 + 0.674095i \(0.235466\pi\)
−0.738645 + 0.674095i \(0.764534\pi\)
\(420\) 0 0
\(421\) 16.7082 + 16.7082i 0.814308 + 0.814308i 0.985277 0.170968i \(-0.0546896\pi\)
−0.170968 + 0.985277i \(0.554690\pi\)
\(422\) 0 0
\(423\) 20.0000 0.972433
\(424\) 0 0
\(425\) −11.1803 11.1803i −0.542326 0.542326i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 2.47214 + 3.70820i 0.119356 + 0.179034i
\(430\) 0 0
\(431\) 28.0902 + 28.0902i 1.35306 + 1.35306i 0.882222 + 0.470834i \(0.156047\pi\)
0.470834 + 0.882222i \(0.343953\pi\)
\(432\) 0 0
\(433\) −17.0000 + 17.0000i −0.816968 + 0.816968i −0.985668 0.168700i \(-0.946043\pi\)
0.168700 + 0.985668i \(0.446043\pi\)
\(434\) 0 0
\(435\) −2.76393 2.76393i −0.132520 0.132520i
\(436\) 0 0
\(437\) 9.59675i 0.459075i
\(438\) 0 0
\(439\) 20.0000 0.954548 0.477274 0.878755i \(-0.341625\pi\)
0.477274 + 0.878755i \(0.341625\pi\)
\(440\) 0 0
\(441\) 15.6525i 0.745356i
\(442\) 0 0
\(443\) −15.3262 15.3262i −0.728172 0.728172i 0.242084 0.970255i \(-0.422169\pi\)
−0.970255 + 0.242084i \(0.922169\pi\)
\(444\) 0 0
\(445\) −5.00000 + 5.00000i −0.237023 + 0.237023i
\(446\) 0 0
\(447\) −38.6525 −1.82820
\(448\) 0 0
\(449\) −19.4721 19.4721i −0.918947 0.918947i 0.0780060 0.996953i \(-0.475145\pi\)
−0.996953 + 0.0780060i \(0.975145\pi\)
\(450\) 0 0
\(451\) −6.29180 −0.296269
\(452\) 0 0
\(453\) −22.1803 −1.04212
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 3.41641 0.159813 0.0799064 0.996802i \(-0.474538\pi\)
0.0799064 + 0.996802i \(0.474538\pi\)
\(458\) 0 0
\(459\) 5.52786 0.258019
\(460\) 0 0
\(461\) −5.18034 5.18034i −0.241272 0.241272i 0.576104 0.817376i \(-0.304572\pi\)
−0.817376 + 0.576104i \(0.804572\pi\)
\(462\) 0 0
\(463\) 17.7082 0.822970 0.411485 0.911417i \(-0.365010\pi\)
0.411485 + 0.911417i \(0.365010\pi\)
\(464\) 0 0
\(465\) 6.18034 0.286606
\(466\) 0 0
\(467\) −13.0344 13.0344i −0.603162 0.603162i 0.337988 0.941150i \(-0.390254\pi\)
−0.941150 + 0.337988i \(0.890254\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −16.1803 −0.745551
\(472\) 0 0
\(473\) 2.18034i 0.100252i
\(474\) 0 0
\(475\) 4.27051 4.27051i 0.195944 0.195944i
\(476\) 0 0
\(477\) 16.7082 16.7082i 0.765016 0.765016i
\(478\) 0 0
\(479\) −16.7426 16.7426i −0.764991 0.764991i 0.212229 0.977220i \(-0.431928\pi\)
−0.977220 + 0.212229i \(0.931928\pi\)
\(480\) 0 0
\(481\) 11.1246 7.41641i 0.507239 0.338159i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 25.5279i 1.15916i
\(486\) 0 0
\(487\) 25.1246 1.13850 0.569252 0.822163i \(-0.307233\pi\)
0.569252 + 0.822163i \(0.307233\pi\)
\(488\) 0 0
\(489\) 28.6525 + 28.6525i 1.29571 + 1.29571i
\(490\) 0 0
\(491\) 6.65248i 0.300222i −0.988669 0.150111i \(-0.952037\pi\)
0.988669 0.150111i \(-0.0479631\pi\)
\(492\) 0 0
\(493\) −1.70820 + 1.70820i −0.0769336 + 0.0769336i
\(494\) 0 0
\(495\) 1.90983 1.90983i 0.0858405 0.0858405i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 25.9787 25.9787i 1.16297 1.16297i 0.179144 0.983823i \(-0.442667\pi\)
0.983823 0.179144i \(-0.0573328\pi\)
\(500\) 0 0
\(501\) −36.3607 + 36.3607i −1.62448 + 1.62448i
\(502\) 0 0
\(503\) −27.3262 27.3262i −1.21842 1.21842i −0.968186 0.250230i \(-0.919494\pi\)
−0.250230 0.968186i \(-0.580506\pi\)
\(504\) 0 0
\(505\) −23.4164 −1.04202
\(506\) 0 0
\(507\) −27.5066 + 11.3262i −1.22161 + 0.503016i
\(508\) 0 0
\(509\) −14.2361 + 14.2361i −0.631003 + 0.631003i −0.948320 0.317317i \(-0.897218\pi\)
0.317317 + 0.948320i \(0.397218\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 2.11146i 0.0932231i
\(514\) 0 0
\(515\) 6.38197 + 6.38197i 0.281223 + 0.281223i
\(516\) 0 0
\(517\) 3.41641 + 3.41641i 0.150253 + 0.150253i
\(518\) 0 0
\(519\) 16.7639 0.735855
\(520\) 0 0
\(521\) 0.875388 0.0383515 0.0191757 0.999816i \(-0.493896\pi\)
0.0191757 + 0.999816i \(0.493896\pi\)
\(522\) 0 0
\(523\) −8.27051 8.27051i −0.361644 0.361644i 0.502774 0.864418i \(-0.332313\pi\)
−0.864418 + 0.502774i \(0.832313\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 3.81966i 0.166387i
\(528\) 0 0
\(529\) 40.1246i 1.74455i
\(530\) 0 0
\(531\) 12.5623 12.5623i 0.545158 0.545158i
\(532\) 0 0
\(533\) 8.23607 41.1803i 0.356744 1.78372i
\(534\) 0 0
\(535\) −0.854102 0.854102i −0.0369260 0.0369260i
\(536\) 0 0
\(537\) −19.4164 19.4164i −0.837880 0.837880i
\(538\) 0 0
\(539\) −2.67376 + 2.67376i −0.115167 + 0.115167i
\(540\) 0 0
\(541\) −12.4164 + 12.4164i −0.533823 + 0.533823i −0.921708 0.387885i \(-0.873206\pi\)
0.387885 + 0.921708i \(0.373206\pi\)
\(542\) 0 0
\(543\) 35.1246 35.1246i 1.50734 1.50734i
\(544\) 0 0
\(545\) −19.4721 19.4721i −0.834095 0.834095i
\(546\) 0 0
\(547\) 12.5623 12.5623i 0.537125 0.537125i −0.385558 0.922684i \(-0.625991\pi\)
0.922684 + 0.385558i \(0.125991\pi\)
\(548\) 0 0
\(549\) 17.2361i 0.735617i
\(550\) 0 0
\(551\) −0.652476 0.652476i −0.0277964 0.0277964i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −13.4164 13.4164i −0.569495 0.569495i
\(556\) 0 0
\(557\) 30.7639i 1.30351i 0.758430 + 0.651755i \(0.225967\pi\)
−0.758430 + 0.651755i \(0.774033\pi\)
\(558\) 0 0
\(559\) −14.2705 2.85410i −0.603578 0.120716i
\(560\) 0 0
\(561\) −2.76393 2.76393i −0.116693 0.116693i
\(562\) 0 0
\(563\) −10.0902 + 10.0902i −0.425250 + 0.425250i −0.887007 0.461757i \(-0.847219\pi\)
0.461757 + 0.887007i \(0.347219\pi\)
\(564\) 0 0
\(565\) −13.2918 + 13.2918i −0.559190 + 0.559190i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 23.1246 0.969434 0.484717 0.874671i \(-0.338923\pi\)
0.484717 + 0.874671i \(0.338923\pi\)
\(570\) 0 0
\(571\) 21.7082i 0.908460i −0.890884 0.454230i \(-0.849914\pi\)
0.890884 0.454230i \(-0.150086\pi\)
\(572\) 0 0
\(573\) −31.4164 31.4164i −1.31244 1.31244i
\(574\) 0 0
\(575\) −28.0902 + 28.0902i −1.17144 + 1.17144i
\(576\) 0 0
\(577\) 13.1246 0.546385 0.273192 0.961959i \(-0.411920\pi\)
0.273192 + 0.961959i \(0.411920\pi\)
\(578\) 0 0
\(579\) −37.8885 37.8885i −1.57459 1.57459i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 5.70820 0.236410
\(584\) 0 0
\(585\) 10.0000 + 15.0000i 0.413449 + 0.620174i
\(586\) 0 0
\(587\) 17.1246 0.706808 0.353404 0.935471i \(-0.385024\pi\)
0.353404 + 0.935471i \(0.385024\pi\)
\(588\) 0 0
\(589\) 1.45898 0.0601162
\(590\) 0 0
\(591\) 19.4164 + 19.4164i 0.798684 + 0.798684i
\(592\) 0 0
\(593\) 43.4164 1.78290 0.891449 0.453121i \(-0.149689\pi\)
0.891449 + 0.453121i \(0.149689\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 24.9443 + 24.9443i 1.02090 + 1.02090i
\(598\) 0 0
\(599\) 35.0132i 1.43060i 0.698818 + 0.715299i \(0.253710\pi\)
−0.698818 + 0.715299i \(0.746290\pi\)
\(600\) 0 0
\(601\) 14.0000 0.571072 0.285536 0.958368i \(-0.407828\pi\)
0.285536 + 0.958368i \(0.407828\pi\)
\(602\) 0 0
\(603\) 30.6525i 1.24827i
\(604\) 0 0
\(605\) −23.9443 −0.973473
\(606\) 0 0
\(607\) 4.27051 4.27051i 0.173335 0.173335i −0.615108 0.788443i \(-0.710888\pi\)
0.788443 + 0.615108i \(0.210888\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −26.8328 + 17.8885i −1.08554 + 0.723693i
\(612\) 0 0
\(613\) 13.4164i 0.541884i −0.962596 0.270942i \(-0.912665\pi\)
0.962596 0.270942i \(-0.0873351\pi\)
\(614\) 0 0
\(615\) −59.5967 −2.40317
\(616\) 0 0
\(617\) 31.4164 1.26478 0.632388 0.774651i \(-0.282075\pi\)
0.632388 + 0.774651i \(0.282075\pi\)
\(618\) 0 0
\(619\) 16.2705 + 16.2705i 0.653967 + 0.653967i 0.953946 0.299979i \(-0.0969796\pi\)
−0.299979 + 0.953946i \(0.596980\pi\)
\(620\) 0 0
\(621\) 13.8885i 0.557328i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 25.0000 1.00000
\(626\) 0 0
\(627\) 1.05573 1.05573i 0.0421617 0.0421617i
\(628\) 0 0
\(629\) −8.29180 + 8.29180i −0.330616 + 0.330616i
\(630\) 0 0
\(631\) 4.27051 4.27051i 0.170006 0.170006i −0.616976 0.786982i \(-0.711642\pi\)
0.786982 + 0.616976i \(0.211642\pi\)
\(632\) 0 0
\(633\) −37.8885 37.8885i −1.50593 1.50593i
\(634\) 0 0
\(635\) 15.3262 15.3262i 0.608203 0.608203i
\(636\) 0 0
\(637\) −14.0000 21.0000i −0.554700 0.832050i
\(638\) 0 0
\(639\) −0.854102 + 0.854102i −0.0337878 + 0.0337878i
\(640\) 0 0
\(641\) 15.0557i 0.594666i 0.954774 + 0.297333i \(0.0960971\pi\)
−0.954774 + 0.297333i \(0.903903\pi\)
\(642\) 0 0
\(643\) 16.5836i 0.653993i 0.945026 + 0.326997i \(0.106037\pi\)
−0.945026 + 0.326997i \(0.893963\pi\)
\(644\) 0 0
\(645\) 20.6525i 0.813190i
\(646\) 0 0
\(647\) 10.0902 + 10.0902i 0.396686 + 0.396686i 0.877062 0.480377i \(-0.159500\pi\)
−0.480377 + 0.877062i \(0.659500\pi\)
\(648\) 0 0
\(649\) 4.29180 0.168468
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 29.0689 + 29.0689i 1.13755 + 1.13755i 0.988887 + 0.148666i \(0.0474979\pi\)
0.148666 + 0.988887i \(0.452502\pi\)
\(654\) 0 0
\(655\) 43.4164i 1.69642i
\(656\) 0 0
\(657\) 3.81966i 0.149019i
\(658\) 0 0
\(659\) 26.0689i 1.01550i −0.861505 0.507750i \(-0.830477\pi\)
0.861505 0.507750i \(-0.169523\pi\)
\(660\) 0 0
\(661\) −2.70820 + 2.70820i −0.105337 + 0.105337i −0.757811 0.652474i \(-0.773731\pi\)
0.652474 + 0.757811i \(0.273731\pi\)
\(662\) 0 0
\(663\) 21.7082 14.4721i 0.843077 0.562051i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 4.29180 + 4.29180i 0.166179 + 0.166179i
\(668\) 0 0
\(669\) 31.4164 31.4164i 1.21463 1.21463i
\(670\) 0 0
\(671\) 2.94427 2.94427i 0.113662 0.113662i
\(672\) 0 0
\(673\) −10.1246 + 10.1246i −0.390275 + 0.390275i −0.874786 0.484510i \(-0.838998\pi\)
0.484510 + 0.874786i \(0.338998\pi\)
\(674\) 0 0
\(675\) −6.18034 + 6.18034i −0.237881 + 0.237881i
\(676\) 0 0
\(677\) −17.9443 + 17.9443i −0.689654 + 0.689654i −0.962155 0.272501i \(-0.912149\pi\)
0.272501 + 0.962155i \(0.412149\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 35.1246 + 35.1246i 1.34598 + 1.34598i
\(682\) 0 0
\(683\) −5.12461 −0.196088 −0.0980439 0.995182i \(-0.531259\pi\)
−0.0980439 + 0.995182i \(0.531259\pi\)
\(684\) 0 0
\(685\) 16.8328 0.643149
\(686\) 0 0
\(687\) 59.5967i 2.27376i
\(688\) 0 0
\(689\) −7.47214 + 37.3607i −0.284666 + 1.42333i
\(690\) 0 0
\(691\) −11.9787 11.9787i −0.455692 0.455692i 0.441547 0.897238i \(-0.354430\pi\)
−0.897238 + 0.441547i \(0.854430\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −38.2918 −1.45249
\(696\) 0 0
\(697\) 36.8328i 1.39514i
\(698\) 0 0
\(699\) 4.76393 0.180188
\(700\) 0 0
\(701\) 16.3607i 0.617934i −0.951073 0.308967i \(-0.900017\pi\)
0.951073 0.308967i \(-0.0999833\pi\)
\(702\) 0 0
\(703\) −3.16718 3.16718i −0.119453 0.119453i
\(704\) 0 0
\(705\) 32.3607 + 32.3607i 1.21877 + 1.21877i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 8.41641 + 8.41641i 0.316085 + 0.316085i 0.847261 0.531176i \(-0.178250\pi\)
−0.531176 + 0.847261i \(0.678250\pi\)
\(710\) 0 0
\(711\) 21.7082 0.814121
\(712\) 0 0
\(713\) −9.59675 −0.359401
\(714\) 0 0
\(715\) −0.854102 + 4.27051i −0.0319416 + 0.159708i
\(716\) 0 0
\(717\) −20.6525 −0.771281
\(718\) 0 0
\(719\) 4.58359 0.170939 0.0854696 0.996341i \(-0.472761\pi\)
0.0854696 + 0.996341i \(0.472761\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 34.6525 1.28874
\(724\) 0 0
\(725\) 3.81966i 0.141859i
\(726\) 0 0
\(727\) −15.1459 15.1459i −0.561730 0.561730i 0.368068 0.929799i \(-0.380019\pi\)
−0.929799 + 0.368068i \(0.880019\pi\)
\(728\) 0 0
\(729\) 11.9443i 0.442380i
\(730\) 0 0
\(731\) 12.7639 0.472091
\(732\) 0 0
\(733\) 30.0000i 1.10808i −0.832492 0.554038i \(-0.813086\pi\)
0.832492 0.554038i \(-0.186914\pi\)
\(734\) 0 0
\(735\) −25.3262 + 25.3262i −0.934172 + 0.934172i
\(736\) 0 0
\(737\) 5.23607 5.23607i 0.192873 0.192873i
\(738\) 0 0
\(739\) 12.5623 + 12.5623i 0.462112 + 0.462112i 0.899347 0.437235i \(-0.144042\pi\)
−0.437235 + 0.899347i \(0.644042\pi\)
\(740\) 0 0
\(741\) 5.52786 + 8.29180i 0.203071 + 0.304607i
\(742\) 0 0
\(743\) 25.3050i 0.928349i 0.885744 + 0.464174i \(0.153649\pi\)
−0.885744 + 0.464174i \(0.846351\pi\)
\(744\) 0 0
\(745\) −26.7082 26.7082i −0.978513 0.978513i
\(746\) 0 0
\(747\) 3.41641 0.125000
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 29.1246i 1.06277i 0.847130 + 0.531386i \(0.178329\pi\)
−0.847130 + 0.531386i \(0.821671\pi\)
\(752\) 0 0
\(753\) 6.18034 6.18034i 0.225224 0.225224i
\(754\) 0 0
\(755\) −15.3262 15.3262i −0.557779 0.557779i
\(756\) 0 0
\(757\) −26.7082 + 26.7082i −0.970726 + 0.970726i −0.999584 0.0288574i \(-0.990813\pi\)
0.0288574 + 0.999584i \(0.490813\pi\)
\(758\) 0 0
\(759\) −6.94427 + 6.94427i −0.252061 + 0.252061i
\(760\) 0 0
\(761\) −16.5279 + 16.5279i −0.599135 + 0.599135i −0.940082 0.340948i \(-0.889252\pi\)
0.340948 + 0.940082i \(0.389252\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −11.1803 11.1803i −0.404226 0.404226i
\(766\) 0 0
\(767\) −5.61803 + 28.0902i −0.202855 + 1.01428i
\(768\) 0 0
\(769\) −5.00000 + 5.00000i −0.180305 + 0.180305i −0.791489 0.611184i \(-0.790694\pi\)
0.611184 + 0.791489i \(0.290694\pi\)
\(770\) 0 0
\(771\) 16.7639i 0.603738i
\(772\) 0 0
\(773\) 0.652476i 0.0234679i −0.999931 0.0117340i \(-0.996265\pi\)
0.999931 0.0117340i \(-0.00373512\pi\)
\(774\) 0 0
\(775\) 4.27051 + 4.27051i 0.153401 + 0.153401i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −14.0689 −0.504070
\(780\) 0 0
\(781\) −0.291796 −0.0104413
\(782\) 0 0
\(783\) 0.944272 + 0.944272i 0.0337455 + 0.0337455i
\(784\) 0 0
\(785\) −11.1803 11.1803i −0.399043 0.399043i
\(786\) 0 0
\(787\) 43.4164i 1.54763i −0.633413 0.773814i \(-0.718347\pi\)
0.633413 0.773814i \(-0.281653\pi\)
\(788\) 0 0
\(789\) 22.7639i 0.810417i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 15.4164 + 23.1246i 0.547453 + 0.821179i
\(794\) 0 0
\(795\) 54.0689 1.91763
\(796\) 0 0
\(797\) −8.88854 8.88854i −0.314848 0.314848i 0.531936 0.846784i \(-0.321465\pi\)
−0.846784 + 0.531936i \(0.821465\pi\)
\(798\) 0 0
\(799\) 20.0000 20.0000i 0.707549 0.707549i
\(800\) 0 0
\(801\) −5.00000 + 5.00000i −0.176666 + 0.176666i
\(802\) 0 0
\(803\) 0.652476 0.652476i 0.0230254 0.0230254i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −36.3607 + 36.3607i −1.27996 + 1.27996i
\(808\) 0 0
\(809\) 3.81966i 0.134292i −0.997743 0.0671460i \(-0.978611\pi\)
0.997743 0.0671460i \(-0.0213893\pi\)
\(810\) 0 0
\(811\) −16.5623 16.5623i −0.581581 0.581581i 0.353756 0.935338i \(-0.384904\pi\)
−0.935338 + 0.353756i \(0.884904\pi\)
\(812\) 0 0
\(813\) 40.6525 1.42574
\(814\) 0 0
\(815\) 39.5967i 1.38701i
\(816\) 0 0
\(817\) 4.87539i 0.170568i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 7.36068 + 7.36068i 0.256889 + 0.256889i 0.823788 0.566898i \(-0.191857\pi\)
−0.566898 + 0.823788i \(0.691857\pi\)
\(822\) 0 0
\(823\) −23.9787 + 23.9787i −0.835845 + 0.835845i −0.988309 0.152464i \(-0.951279\pi\)
0.152464 + 0.988309i \(0.451279\pi\)
\(824\) 0 0
\(825\) 6.18034 0.215172
\(826\) 0 0
\(827\) 13.5279i 0.470410i −0.971946 0.235205i \(-0.924424\pi\)
0.971946 0.235205i \(-0.0755761\pi\)
\(828\) 0 0
\(829\) −0.291796 −0.0101345 −0.00506725 0.999987i \(-0.501613\pi\)
−0.00506725 + 0.999987i \(0.501613\pi\)
\(830\) 0 0
\(831\) 34.6525i 1.20208i
\(832\) 0 0
\(833\) 15.6525 + 15.6525i 0.542326 + 0.542326i
\(834\) 0 0
\(835\) −50.2492 −1.73895
\(836\) 0 0
\(837\) −2.11146 −0.0729826
\(838\) 0 0
\(839\) 1.79837 + 1.79837i 0.0620868 + 0.0620868i 0.737468 0.675382i \(-0.236021\pi\)
−0.675382 + 0.737468i \(0.736021\pi\)
\(840\) 0 0
\(841\) 28.4164 0.979876
\(842\) 0 0
\(843\) −7.23607 −0.249223
\(844\) 0 0
\(845\) −26.8328 11.1803i −0.923077 0.384615i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −29.5967 −1.01576
\(850\) 0 0
\(851\) 20.8328 + 20.8328i 0.714140 + 0.714140i
\(852\) 0 0
\(853\) −45.1246 −1.54504 −0.772519 0.634992i \(-0.781003\pi\)
−0.772519 + 0.634992i \(0.781003\pi\)
\(854\) 0 0
\(855\) 4.27051 4.27051i 0.146048 0.146048i
\(856\) 0 0
\(857\) 21.6525 + 21.6525i 0.739634 + 0.739634i 0.972507 0.232873i \(-0.0748126\pi\)
−0.232873 + 0.972507i \(0.574813\pi\)
\(858\) 0 0
\(859\) 38.2918i 1.30650i 0.757143 + 0.653250i \(0.226595\pi\)
−0.757143 + 0.653250i \(0.773405\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 25.5279i 0.868979i −0.900677 0.434489i \(-0.856929\pi\)
0.900677 0.434489i \(-0.143071\pi\)
\(864\) 0 0
\(865\) 11.5836 + 11.5836i 0.393854 + 0.393854i
\(866\) 0 0
\(867\) 11.3262 11.3262i 0.384659 0.384659i
\(868\) 0 0
\(869\) 3.70820 + 3.70820i 0.125792 + 0.125792i
\(870\) 0 0
\(871\) 27.4164 + 41.1246i 0.928970 + 1.39345i
\(872\) 0 0
\(873\) 25.5279i 0.863987i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −6.83282 −0.230728 −0.115364 0.993323i \(-0.536803\pi\)
−0.115364 + 0.993323i \(0.536803\pi\)
\(878\) 0 0
\(879\) 23.1246 + 23.1246i 0.779974 + 0.779974i
\(880\) 0 0
\(881\) 38.0689i 1.28257i −0.767301 0.641287i \(-0.778401\pi\)
0.767301 0.641287i \(-0.221599\pi\)
\(882\) 0 0
\(883\) −21.1459 + 21.1459i −0.711616 + 0.711616i −0.966873 0.255257i \(-0.917840\pi\)
0.255257 + 0.966873i \(0.417840\pi\)
\(884\) 0 0
\(885\) 40.6525 1.36652
\(886\) 0 0
\(887\) 23.6180 23.6180i 0.793016 0.793016i −0.188967 0.981983i \(-0.560514\pi\)
0.981983 + 0.188967i \(0.0605140\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −4.09017 + 4.09017i −0.137026 + 0.137026i
\(892\) 0 0
\(893\) 7.63932 + 7.63932i 0.255640 + 0.255640i
\(894\) 0 0
\(895\) 26.8328i 0.896922i
\(896\) 0 0
\(897\) −36.3607 54.5410i −1.21405 1.82107i
\(898\) 0 0
\(899\) 0.652476 0.652476i 0.0217613 0.0217613i
\(900\) 0 0
\(901\) 33.4164i 1.11326i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 48.5410 1.61356
\(906\) 0 0
\(907\) 28.2705 + 28.2705i 0.938707 + 0.938707i 0.998227 0.0595202i \(-0.0189571\pi\)
−0.0595202 + 0.998227i \(0.518957\pi\)
\(908\) 0 0
\(909\) −23.4164 −0.776673
\(910\) 0 0
\(911\) −2.83282 −0.0938554 −0.0469277 0.998898i \(-0.514943\pi\)
−0.0469277 + 0.998898i \(0.514943\pi\)
\(912\) 0 0
\(913\) 0.583592 + 0.583592i 0.0193141 + 0.0193141i
\(914\) 0 0
\(915\) 27.8885 27.8885i 0.921967 0.921967i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 5.12461i 0.169045i −0.996422 0.0845227i \(-0.973063\pi\)
0.996422 0.0845227i \(-0.0269365\pi\)
\(920\) 0 0
\(921\) −19.4164 + 19.4164i −0.639792 + 0.639792i
\(922\) 0 0
\(923\) 0.381966 1.90983i 0.0125726 0.0628628i
\(924\) 0 0
\(925\) 18.5410i 0.609625i
\(926\) 0 0
\(927\) 6.38197 + 6.38197i 0.209611 + 0.209611i
\(928\) 0 0
\(929\) 32.8885 32.8885i 1.07904 1.07904i 0.0824423 0.996596i \(-0.473728\pi\)
0.996596 0.0824423i \(-0.0262720\pi\)
\(930\) 0 0
\(931\) −5.97871 + 5.97871i −0.195944 + 0.195944i
\(932\) 0 0
\(933\) −32.6525 + 32.6525i −1.06899 + 1.06899i
\(934\) 0 0
\(935\) 3.81966i 0.124916i
\(936\) 0 0
\(937\) 5.58359 5.58359i 0.182408 0.182408i −0.609996 0.792404i \(-0.708829\pi\)
0.792404 + 0.609996i \(0.208829\pi\)
\(938\) 0 0
\(939\) 4.18034i 0.136420i
\(940\) 0 0
\(941\) 31.3607 + 31.3607i 1.02233 + 1.02233i 0.999745 + 0.0225840i \(0.00718932\pi\)
0.0225840 + 0.999745i \(0.492811\pi\)
\(942\) 0 0
\(943\) 92.5410 3.01355
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 20.9443i 0.680597i −0.940317 0.340299i \(-0.889472\pi\)
0.940317 0.340299i \(-0.110528\pi\)
\(948\) 0 0
\(949\) 3.41641 + 5.12461i 0.110901 + 0.166352i
\(950\) 0 0
\(951\) 15.7082 + 15.7082i 0.509373 + 0.509373i
\(952\) 0 0
\(953\) −32.2361 + 32.2361i −1.04423 + 1.04423i −0.0452531 + 0.998976i \(0.514409\pi\)
−0.998976 + 0.0452531i \(0.985591\pi\)
\(954\) 0 0
\(955\) 43.4164i 1.40492i
\(956\) 0 0
\(957\) 0.944272i 0.0305240i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 29.5410i 0.952936i
\(962\) 0 0
\(963\) −0.854102 0.854102i −0.0275231 0.0275231i
\(964\) 0 0
\(965\) 52.3607i 1.68555i
\(966\) 0 0
\(967\) −33.1246 −1.06522 −0.532608 0.846362i \(-0.678788\pi\)
−0.532608 + 0.846362i \(0.678788\pi\)
\(968\) 0 0
\(969\) −6.18034 6.18034i −0.198541 0.198541i
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −8.09017 + 40.4508i −0.259093 + 1.29546i
\(976\) 0 0
\(977\) −9.70820 −0.310593 −0.155296 0.987868i \(-0.549633\pi\)
−0.155296 + 0.987868i \(0.549633\pi\)
\(978\) 0 0
\(979\) −1.70820 −0.0545944
\(980\) 0 0
\(981\) −19.4721 19.4721i −0.621697 0.621697i
\(982\) 0 0
\(983\) −45.7082 −1.45787 −0.728933 0.684585i \(-0.759983\pi\)
−0.728933 + 0.684585i \(0.759983\pi\)
\(984\) 0 0
\(985\) 26.8328i 0.854965i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 32.0689i 1.01973i
\(990\) 0 0
\(991\) −47.4164 −1.50623 −0.753116 0.657888i \(-0.771450\pi\)
−0.753116 + 0.657888i \(0.771450\pi\)
\(992\) 0 0
\(993\) 29.5967i 0.939224i
\(994\) 0 0
\(995\) 34.4721i 1.09284i
\(996\) 0 0
\(997\) −29.0000 + 29.0000i −0.918439 + 0.918439i −0.996916 0.0784767i \(-0.974994\pi\)
0.0784767 + 0.996916i \(0.474994\pi\)
\(998\) 0 0
\(999\) 4.58359 + 4.58359i 0.145018 + 0.145018i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 260.2.m.b.73.2 yes 4
3.2 odd 2 2340.2.u.f.73.1 4
4.3 odd 2 1040.2.bg.j.593.1 4
5.2 odd 4 260.2.r.b.177.2 yes 4
5.3 odd 4 1300.2.r.b.957.1 4
5.4 even 2 1300.2.m.b.593.1 4
13.5 odd 4 260.2.r.b.213.2 yes 4
15.2 even 4 2340.2.bp.e.1477.1 4
20.7 even 4 1040.2.cd.j.177.1 4
39.5 even 4 2340.2.bp.e.1513.1 4
52.31 even 4 1040.2.cd.j.993.1 4
65.18 even 4 1300.2.m.b.57.1 4
65.44 odd 4 1300.2.r.b.993.1 4
65.57 even 4 inner 260.2.m.b.57.2 4
195.122 odd 4 2340.2.u.f.577.2 4
260.187 odd 4 1040.2.bg.j.577.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
260.2.m.b.57.2 4 65.57 even 4 inner
260.2.m.b.73.2 yes 4 1.1 even 1 trivial
260.2.r.b.177.2 yes 4 5.2 odd 4
260.2.r.b.213.2 yes 4 13.5 odd 4
1040.2.bg.j.577.1 4 260.187 odd 4
1040.2.bg.j.593.1 4 4.3 odd 2
1040.2.cd.j.177.1 4 20.7 even 4
1040.2.cd.j.993.1 4 52.31 even 4
1300.2.m.b.57.1 4 65.18 even 4
1300.2.m.b.593.1 4 5.4 even 2
1300.2.r.b.957.1 4 5.3 odd 4
1300.2.r.b.993.1 4 65.44 odd 4
2340.2.u.f.73.1 4 3.2 odd 2
2340.2.u.f.577.2 4 195.122 odd 4
2340.2.bp.e.1477.1 4 15.2 even 4
2340.2.bp.e.1513.1 4 39.5 even 4