Properties

Label 2340.2.bp.e.1477.1
Level $2340$
Weight $2$
Character 2340.1477
Analytic conductor $18.685$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2340,2,Mod(1477,2340)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2340, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2340.1477"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2340 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2340.bp (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.6849940730\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{5})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 3x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 260)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1477.1
Root \(0.618034i\) of defining polynomial
Character \(\chi\) \(=\) 2340.1477
Dual form 2340.2.bp.e.1513.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.23607 q^{5} +(0.381966 - 0.381966i) q^{11} +(-3.00000 + 2.00000i) q^{13} +(2.23607 - 2.23607i) q^{17} +(0.854102 - 0.854102i) q^{19} +(5.61803 + 5.61803i) q^{23} +5.00000 q^{25} +0.763932i q^{29} +(-0.854102 - 0.854102i) q^{31} -3.70820 q^{37} +(-8.23607 - 8.23607i) q^{41} +(-2.85410 - 2.85410i) q^{43} -8.94427 q^{47} -7.00000 q^{49} +(7.47214 - 7.47214i) q^{53} +(-0.854102 + 0.854102i) q^{55} +(-5.61803 - 5.61803i) q^{59} -7.70820 q^{61} +(6.70820 - 4.47214i) q^{65} -13.7082i q^{67} +(-0.381966 - 0.381966i) q^{71} +1.70820i q^{73} +9.70820i q^{79} +1.52786 q^{83} +(-5.00000 + 5.00000i) q^{85} +(2.23607 + 2.23607i) q^{89} +(-1.90983 + 1.90983i) q^{95} -11.4164i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 6 q^{11} - 12 q^{13} - 10 q^{19} + 18 q^{23} + 20 q^{25} + 10 q^{31} + 12 q^{37} - 24 q^{41} + 2 q^{43} - 28 q^{49} + 12 q^{53} + 10 q^{55} - 18 q^{59} - 4 q^{61} - 6 q^{71} + 24 q^{83} - 20 q^{85}+ \cdots - 30 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2340\mathbb{Z}\right)^\times\).

\(n\) \(937\) \(1081\) \(1171\) \(2081\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −2.23607 −1.00000
\(6\) 0 0
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.381966 0.381966i 0.115167 0.115167i −0.647175 0.762342i \(-0.724050\pi\)
0.762342 + 0.647175i \(0.224050\pi\)
\(12\) 0 0
\(13\) −3.00000 + 2.00000i −0.832050 + 0.554700i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.23607 2.23607i 0.542326 0.542326i −0.381884 0.924210i \(-0.624725\pi\)
0.924210 + 0.381884i \(0.124725\pi\)
\(18\) 0 0
\(19\) 0.854102 0.854102i 0.195944 0.195944i −0.602314 0.798259i \(-0.705755\pi\)
0.798259 + 0.602314i \(0.205755\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 5.61803 + 5.61803i 1.17144 + 1.17144i 0.981866 + 0.189575i \(0.0607109\pi\)
0.189575 + 0.981866i \(0.439289\pi\)
\(24\) 0 0
\(25\) 5.00000 1.00000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0.763932i 0.141859i 0.997481 + 0.0709293i \(0.0225965\pi\)
−0.997481 + 0.0709293i \(0.977404\pi\)
\(30\) 0 0
\(31\) −0.854102 0.854102i −0.153401 0.153401i 0.626234 0.779635i \(-0.284595\pi\)
−0.779635 + 0.626234i \(0.784595\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −3.70820 −0.609625 −0.304812 0.952412i \(-0.598594\pi\)
−0.304812 + 0.952412i \(0.598594\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −8.23607 8.23607i −1.28626 1.28626i −0.937043 0.349215i \(-0.886448\pi\)
−0.349215 0.937043i \(-0.613552\pi\)
\(42\) 0 0
\(43\) −2.85410 2.85410i −0.435246 0.435246i 0.455162 0.890409i \(-0.349581\pi\)
−0.890409 + 0.455162i \(0.849581\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −8.94427 −1.30466 −0.652328 0.757937i \(-0.726208\pi\)
−0.652328 + 0.757937i \(0.726208\pi\)
\(48\) 0 0
\(49\) −7.00000 −1.00000
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 7.47214 7.47214i 1.02638 1.02638i 0.0267342 0.999643i \(-0.491489\pi\)
0.999643 0.0267342i \(-0.00851078\pi\)
\(54\) 0 0
\(55\) −0.854102 + 0.854102i −0.115167 + 0.115167i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −5.61803 5.61803i −0.731406 0.731406i 0.239492 0.970898i \(-0.423019\pi\)
−0.970898 + 0.239492i \(0.923019\pi\)
\(60\) 0 0
\(61\) −7.70820 −0.986934 −0.493467 0.869764i \(-0.664271\pi\)
−0.493467 + 0.869764i \(0.664271\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 6.70820 4.47214i 0.832050 0.554700i
\(66\) 0 0
\(67\) 13.7082i 1.67472i −0.546649 0.837362i \(-0.684097\pi\)
0.546649 0.837362i \(-0.315903\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −0.381966 0.381966i −0.0453310 0.0453310i 0.684078 0.729409i \(-0.260205\pi\)
−0.729409 + 0.684078i \(0.760205\pi\)
\(72\) 0 0
\(73\) 1.70820i 0.199930i 0.994991 + 0.0999651i \(0.0318731\pi\)
−0.994991 + 0.0999651i \(0.968127\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 9.70820i 1.09226i 0.837701 + 0.546129i \(0.183899\pi\)
−0.837701 + 0.546129i \(0.816101\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 1.52786 0.167705 0.0838524 0.996478i \(-0.473278\pi\)
0.0838524 + 0.996478i \(0.473278\pi\)
\(84\) 0 0
\(85\) −5.00000 + 5.00000i −0.542326 + 0.542326i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 2.23607 + 2.23607i 0.237023 + 0.237023i 0.815616 0.578593i \(-0.196398\pi\)
−0.578593 + 0.815616i \(0.696398\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −1.90983 + 1.90983i −0.195944 + 0.195944i
\(96\) 0 0
\(97\) 11.4164i 1.15916i −0.814915 0.579580i \(-0.803217\pi\)
0.814915 0.579580i \(-0.196783\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 10.4721i 1.04202i −0.853552 0.521008i \(-0.825556\pi\)
0.853552 0.521008i \(-0.174444\pi\)
\(102\) 0 0
\(103\) −2.85410 2.85410i −0.281223 0.281223i 0.552374 0.833597i \(-0.313722\pi\)
−0.833597 + 0.552374i \(0.813722\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0.381966 + 0.381966i 0.0369260 + 0.0369260i 0.725329 0.688403i \(-0.241688\pi\)
−0.688403 + 0.725329i \(0.741688\pi\)
\(108\) 0 0
\(109\) 8.70820 8.70820i 0.834095 0.834095i −0.153979 0.988074i \(-0.549209\pi\)
0.988074 + 0.153979i \(0.0492089\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −5.94427 + 5.94427i −0.559190 + 0.559190i −0.929077 0.369887i \(-0.879396\pi\)
0.369887 + 0.929077i \(0.379396\pi\)
\(114\) 0 0
\(115\) −12.5623 12.5623i −1.17144 1.17144i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 10.7082i 0.973473i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −11.1803 −1.00000
\(126\) 0 0
\(127\) 6.85410 6.85410i 0.608203 0.608203i −0.334273 0.942476i \(-0.608491\pi\)
0.942476 + 0.334273i \(0.108491\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −19.4164 −1.69642 −0.848210 0.529661i \(-0.822319\pi\)
−0.848210 + 0.529661i \(0.822319\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −7.52786 −0.643149 −0.321574 0.946884i \(-0.604212\pi\)
−0.321574 + 0.946884i \(0.604212\pi\)
\(138\) 0 0
\(139\) 17.1246i 1.45249i −0.687436 0.726245i \(-0.741264\pi\)
0.687436 0.726245i \(-0.258736\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −0.381966 + 1.90983i −0.0319416 + 0.159708i
\(144\) 0 0
\(145\) 1.70820i 0.141859i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −11.9443 + 11.9443i −0.978513 + 0.978513i −0.999774 0.0212611i \(-0.993232\pi\)
0.0212611 + 0.999774i \(0.493232\pi\)
\(150\) 0 0
\(151\) −6.85410 + 6.85410i −0.557779 + 0.557779i −0.928675 0.370896i \(-0.879051\pi\)
0.370896 + 0.928675i \(0.379051\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 1.90983 + 1.90983i 0.153401 + 0.153401i
\(156\) 0 0
\(157\) −5.00000 5.00000i −0.399043 0.399043i 0.478852 0.877896i \(-0.341053\pi\)
−0.877896 + 0.478852i \(0.841053\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 17.7082i 1.38701i −0.720450 0.693507i \(-0.756065\pi\)
0.720450 0.693507i \(-0.243935\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 22.4721 1.73895 0.869473 0.493980i \(-0.164459\pi\)
0.869473 + 0.493980i \(0.164459\pi\)
\(168\) 0 0
\(169\) 5.00000 12.0000i 0.384615 0.923077i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 5.18034 + 5.18034i 0.393854 + 0.393854i 0.876059 0.482205i \(-0.160164\pi\)
−0.482205 + 0.876059i \(0.660164\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −12.0000 −0.896922 −0.448461 0.893802i \(-0.648028\pi\)
−0.448461 + 0.893802i \(0.648028\pi\)
\(180\) 0 0
\(181\) 21.7082i 1.61356i −0.590853 0.806779i \(-0.701209\pi\)
0.590853 0.806779i \(-0.298791\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 8.29180 0.609625
\(186\) 0 0
\(187\) 1.70820i 0.124916i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 19.4164 1.40492 0.702461 0.711722i \(-0.252085\pi\)
0.702461 + 0.711722i \(0.252085\pi\)
\(192\) 0 0
\(193\) 23.4164i 1.68555i 0.538266 + 0.842775i \(0.319080\pi\)
−0.538266 + 0.842775i \(0.680920\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 12.0000i 0.854965i −0.904024 0.427482i \(-0.859401\pi\)
0.904024 0.427482i \(-0.140599\pi\)
\(198\) 0 0
\(199\) −15.4164 −1.09284 −0.546420 0.837511i \(-0.684010\pi\)
−0.546420 + 0.837511i \(0.684010\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 18.4164 + 18.4164i 1.28626 + 1.28626i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0.652476i 0.0451327i
\(210\) 0 0
\(211\) −23.4164 −1.61205 −0.806026 0.591880i \(-0.798386\pi\)
−0.806026 + 0.591880i \(0.798386\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 6.38197 + 6.38197i 0.435246 + 0.435246i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −2.23607 + 11.1803i −0.150414 + 0.752071i
\(222\) 0 0
\(223\) −19.4164 −1.30022 −0.650109 0.759841i \(-0.725277\pi\)
−0.650109 + 0.759841i \(0.725277\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 21.7082i 1.44082i −0.693546 0.720412i \(-0.743953\pi\)
0.693546 0.720412i \(-0.256047\pi\)
\(228\) 0 0
\(229\) 18.4164 + 18.4164i 1.21699 + 1.21699i 0.968681 + 0.248310i \(0.0798751\pi\)
0.248310 + 0.968681i \(0.420125\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1.47214 + 1.47214i 0.0964428 + 0.0964428i 0.753682 0.657239i \(-0.228276\pi\)
−0.657239 + 0.753682i \(0.728276\pi\)
\(234\) 0 0
\(235\) 20.0000 1.30466
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −6.38197 + 6.38197i −0.412815 + 0.412815i −0.882718 0.469903i \(-0.844289\pi\)
0.469903 + 0.882718i \(0.344289\pi\)
\(240\) 0 0
\(241\) 10.7082 10.7082i 0.689776 0.689776i −0.272406 0.962182i \(-0.587819\pi\)
0.962182 + 0.272406i \(0.0878195\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 15.6525 1.00000
\(246\) 0 0
\(247\) −0.854102 + 4.27051i −0.0543452 + 0.271726i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 3.81966i 0.241095i 0.992708 + 0.120547i \(0.0384650\pi\)
−0.992708 + 0.120547i \(0.961535\pi\)
\(252\) 0 0
\(253\) 4.29180 0.269823
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −5.18034 + 5.18034i −0.323141 + 0.323141i −0.849971 0.526830i \(-0.823380\pi\)
0.526830 + 0.849971i \(0.323380\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 7.03444 7.03444i 0.433762 0.433762i −0.456144 0.889906i \(-0.650770\pi\)
0.889906 + 0.456144i \(0.150770\pi\)
\(264\) 0 0
\(265\) −16.7082 + 16.7082i −1.02638 + 1.02638i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 22.4721i 1.37015i 0.728472 + 0.685075i \(0.240231\pi\)
−0.728472 + 0.685075i \(0.759769\pi\)
\(270\) 0 0
\(271\) 12.5623 12.5623i 0.763106 0.763106i −0.213777 0.976883i \(-0.568577\pi\)
0.976883 + 0.213777i \(0.0685765\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.90983 1.90983i 0.115167 0.115167i
\(276\) 0 0
\(277\) −10.7082 + 10.7082i −0.643394 + 0.643394i −0.951388 0.307995i \(-0.900342\pi\)
0.307995 + 0.951388i \(0.400342\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 2.23607 2.23607i 0.133393 0.133393i −0.637258 0.770651i \(-0.719931\pi\)
0.770651 + 0.637258i \(0.219931\pi\)
\(282\) 0 0
\(283\) 9.14590 + 9.14590i 0.543667 + 0.543667i 0.924602 0.380935i \(-0.124398\pi\)
−0.380935 + 0.924602i \(0.624398\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 7.00000i 0.411765i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 14.2918i 0.834936i 0.908692 + 0.417468i \(0.137082\pi\)
−0.908692 + 0.417468i \(0.862918\pi\)
\(294\) 0 0
\(295\) 12.5623 + 12.5623i 0.731406 + 0.731406i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −28.0902 5.61803i −1.62450 0.324899i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 17.2361 0.986934
\(306\) 0 0
\(307\) −12.0000 −0.684876 −0.342438 0.939540i \(-0.611253\pi\)
−0.342438 + 0.939540i \(0.611253\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 20.1803i 1.14432i −0.820141 0.572161i \(-0.806105\pi\)
0.820141 0.572161i \(-0.193895\pi\)
\(312\) 0 0
\(313\) −1.29180 + 1.29180i −0.0730166 + 0.0730166i −0.742672 0.669655i \(-0.766442\pi\)
0.669655 + 0.742672i \(0.266442\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 9.70820i 0.545267i −0.962118 0.272634i \(-0.912105\pi\)
0.962118 0.272634i \(-0.0878947\pi\)
\(318\) 0 0
\(319\) 0.291796 + 0.291796i 0.0163374 + 0.0163374i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 3.81966i 0.212532i
\(324\) 0 0
\(325\) −15.0000 + 10.0000i −0.832050 + 0.554700i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −9.14590 9.14590i −0.502704 0.502704i 0.409573 0.912277i \(-0.365678\pi\)
−0.912277 + 0.409573i \(0.865678\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 30.6525i 1.67472i
\(336\) 0 0
\(337\) 12.4164 12.4164i 0.676365 0.676365i −0.282811 0.959176i \(-0.591267\pi\)
0.959176 + 0.282811i \(0.0912669\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −0.652476 −0.0353335
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 4.09017 + 4.09017i 0.219572 + 0.219572i 0.808318 0.588746i \(-0.200378\pi\)
−0.588746 + 0.808318i \(0.700378\pi\)
\(348\) 0 0
\(349\) −3.29180 3.29180i −0.176206 0.176206i 0.613494 0.789700i \(-0.289764\pi\)
−0.789700 + 0.613494i \(0.789764\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 17.2361 0.917383 0.458692 0.888595i \(-0.348318\pi\)
0.458692 + 0.888595i \(0.348318\pi\)
\(354\) 0 0
\(355\) 0.854102 + 0.854102i 0.0453310 + 0.0453310i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −1.90983 1.90983i −0.100797 0.100797i 0.654910 0.755707i \(-0.272707\pi\)
−0.755707 + 0.654910i \(0.772707\pi\)
\(360\) 0 0
\(361\) 17.5410i 0.923212i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 3.81966i 0.199930i
\(366\) 0 0
\(367\) 5.14590 + 5.14590i 0.268614 + 0.268614i 0.828541 0.559928i \(-0.189171\pi\)
−0.559928 + 0.828541i \(0.689171\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 26.4164 26.4164i 1.36779 1.36779i 0.504207 0.863583i \(-0.331785\pi\)
0.863583 0.504207i \(-0.168215\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −1.52786 2.29180i −0.0786890 0.118034i
\(378\) 0 0
\(379\) −2.85410 + 2.85410i −0.146605 + 0.146605i −0.776600 0.629994i \(-0.783057\pi\)
0.629994 + 0.776600i \(0.283057\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −17.8885 −0.914062 −0.457031 0.889451i \(-0.651087\pi\)
−0.457031 + 0.889451i \(0.651087\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 1.41641 0.0718147 0.0359074 0.999355i \(-0.488568\pi\)
0.0359074 + 0.999355i \(0.488568\pi\)
\(390\) 0 0
\(391\) 25.1246 1.27061
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 21.7082i 1.09226i
\(396\) 0 0
\(397\) 35.1246 1.76285 0.881427 0.472321i \(-0.156584\pi\)
0.881427 + 0.472321i \(0.156584\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 2.23607 2.23607i 0.111664 0.111664i −0.649067 0.760731i \(-0.724841\pi\)
0.760731 + 0.649067i \(0.224841\pi\)
\(402\) 0 0
\(403\) 4.27051 + 0.854102i 0.212729 + 0.0425458i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −1.41641 + 1.41641i −0.0702087 + 0.0702087i
\(408\) 0 0
\(409\) −16.7082 + 16.7082i −0.826168 + 0.826168i −0.986984 0.160817i \(-0.948587\pi\)
0.160817 + 0.986984i \(0.448587\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −3.41641 −0.167705
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 27.5967i 1.34819i 0.738645 + 0.674095i \(0.235466\pi\)
−0.738645 + 0.674095i \(0.764534\pi\)
\(420\) 0 0
\(421\) 16.7082 + 16.7082i 0.814308 + 0.814308i 0.985277 0.170968i \(-0.0546896\pi\)
−0.170968 + 0.985277i \(0.554690\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 11.1803 11.1803i 0.542326 0.542326i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −28.0902 28.0902i −1.35306 1.35306i −0.882222 0.470834i \(-0.843953\pi\)
−0.470834 0.882222i \(-0.656047\pi\)
\(432\) 0 0
\(433\) 17.0000 + 17.0000i 0.816968 + 0.816968i 0.985668 0.168700i \(-0.0539568\pi\)
−0.168700 + 0.985668i \(0.553957\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 9.59675 0.459075
\(438\) 0 0
\(439\) −20.0000 −0.954548 −0.477274 0.878755i \(-0.658375\pi\)
−0.477274 + 0.878755i \(0.658375\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 15.3262 15.3262i 0.728172 0.728172i −0.242084 0.970255i \(-0.577831\pi\)
0.970255 + 0.242084i \(0.0778309\pi\)
\(444\) 0 0
\(445\) −5.00000 5.00000i −0.237023 0.237023i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −19.4721 19.4721i −0.918947 0.918947i 0.0780060 0.996953i \(-0.475145\pi\)
−0.996953 + 0.0780060i \(0.975145\pi\)
\(450\) 0 0
\(451\) −6.29180 −0.296269
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 3.41641i 0.159813i 0.996802 + 0.0799064i \(0.0254621\pi\)
−0.996802 + 0.0799064i \(0.974538\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 5.18034 + 5.18034i 0.241272 + 0.241272i 0.817376 0.576104i \(-0.195428\pi\)
−0.576104 + 0.817376i \(0.695428\pi\)
\(462\) 0 0
\(463\) 17.7082i 0.822970i −0.911417 0.411485i \(-0.865010\pi\)
0.911417 0.411485i \(-0.134990\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −13.0344 + 13.0344i −0.603162 + 0.603162i −0.941150 0.337988i \(-0.890254\pi\)
0.337988 + 0.941150i \(0.390254\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −2.18034 −0.100252
\(474\) 0 0
\(475\) 4.27051 4.27051i 0.195944 0.195944i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −16.7426 16.7426i −0.764991 0.764991i 0.212229 0.977220i \(-0.431928\pi\)
−0.977220 + 0.212229i \(0.931928\pi\)
\(480\) 0 0
\(481\) 11.1246 7.41641i 0.507239 0.338159i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 25.5279i 1.15916i
\(486\) 0 0
\(487\) 25.1246i 1.13850i 0.822163 + 0.569252i \(0.192767\pi\)
−0.822163 + 0.569252i \(0.807233\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 6.65248i 0.300222i 0.988669 + 0.150111i \(0.0479631\pi\)
−0.988669 + 0.150111i \(0.952037\pi\)
\(492\) 0 0
\(493\) 1.70820 + 1.70820i 0.0769336 + 0.0769336i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −25.9787 + 25.9787i −1.16297 + 1.16297i −0.179144 + 0.983823i \(0.557333\pi\)
−0.983823 + 0.179144i \(0.942667\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 27.3262 27.3262i 1.21842 1.21842i 0.250230 0.968186i \(-0.419494\pi\)
0.968186 0.250230i \(-0.0805064\pi\)
\(504\) 0 0
\(505\) 23.4164i 1.04202i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −14.2361 + 14.2361i −0.631003 + 0.631003i −0.948320 0.317317i \(-0.897218\pi\)
0.317317 + 0.948320i \(0.397218\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 6.38197 + 6.38197i 0.281223 + 0.281223i
\(516\) 0 0
\(517\) −3.41641 + 3.41641i −0.150253 + 0.150253i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −0.875388 −0.0383515 −0.0191757 0.999816i \(-0.506104\pi\)
−0.0191757 + 0.999816i \(0.506104\pi\)
\(522\) 0 0
\(523\) −8.27051 + 8.27051i −0.361644 + 0.361644i −0.864418 0.502774i \(-0.832313\pi\)
0.502774 + 0.864418i \(0.332313\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −3.81966 −0.166387
\(528\) 0 0
\(529\) 40.1246i 1.74455i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 41.1803 + 8.23607i 1.78372 + 0.356744i
\(534\) 0 0
\(535\) −0.854102 0.854102i −0.0369260 0.0369260i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −2.67376 + 2.67376i −0.115167 + 0.115167i
\(540\) 0 0
\(541\) −12.4164 + 12.4164i −0.533823 + 0.533823i −0.921708 0.387885i \(-0.873206\pi\)
0.387885 + 0.921708i \(0.373206\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −19.4721 + 19.4721i −0.834095 + 0.834095i
\(546\) 0 0
\(547\) 12.5623 + 12.5623i 0.537125 + 0.537125i 0.922684 0.385558i \(-0.125991\pi\)
−0.385558 + 0.922684i \(0.625991\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0.652476 + 0.652476i 0.0277964 + 0.0277964i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 30.7639 1.30351 0.651755 0.758430i \(-0.274033\pi\)
0.651755 + 0.758430i \(0.274033\pi\)
\(558\) 0 0
\(559\) 14.2705 + 2.85410i 0.603578 + 0.120716i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −10.0902 10.0902i −0.425250 0.425250i 0.461757 0.887007i \(-0.347219\pi\)
−0.887007 + 0.461757i \(0.847219\pi\)
\(564\) 0 0
\(565\) 13.2918 13.2918i 0.559190 0.559190i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 23.1246 0.969434 0.484717 0.874671i \(-0.338923\pi\)
0.484717 + 0.874671i \(0.338923\pi\)
\(570\) 0 0
\(571\) 21.7082i 0.908460i −0.890884 0.454230i \(-0.849914\pi\)
0.890884 0.454230i \(-0.150086\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 28.0902 + 28.0902i 1.17144 + 1.17144i
\(576\) 0 0
\(577\) 13.1246i 0.546385i 0.961959 + 0.273192i \(0.0880796\pi\)
−0.961959 + 0.273192i \(0.911920\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 5.70820i 0.236410i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 17.1246i 0.706808i −0.935471 0.353404i \(-0.885024\pi\)
0.935471 0.353404i \(-0.114976\pi\)
\(588\) 0 0
\(589\) −1.45898 −0.0601162
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 43.4164i 1.78290i 0.453121 + 0.891449i \(0.350311\pi\)
−0.453121 + 0.891449i \(0.649689\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 35.0132i 1.43060i 0.698818 + 0.715299i \(0.253710\pi\)
−0.698818 + 0.715299i \(0.746290\pi\)
\(600\) 0 0
\(601\) 14.0000 0.571072 0.285536 0.958368i \(-0.407828\pi\)
0.285536 + 0.958368i \(0.407828\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 23.9443i 0.973473i
\(606\) 0 0
\(607\) 4.27051 + 4.27051i 0.173335 + 0.173335i 0.788443 0.615108i \(-0.210888\pi\)
−0.615108 + 0.788443i \(0.710888\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 26.8328 17.8885i 1.08554 0.723693i
\(612\) 0 0
\(613\) −13.4164 −0.541884 −0.270942 0.962596i \(-0.587335\pi\)
−0.270942 + 0.962596i \(0.587335\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 31.4164i 1.26478i −0.774651 0.632388i \(-0.782075\pi\)
0.774651 0.632388i \(-0.217925\pi\)
\(618\) 0 0
\(619\) −16.2705 16.2705i −0.653967 0.653967i 0.299979 0.953946i \(-0.403020\pi\)
−0.953946 + 0.299979i \(0.903020\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 25.0000 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −8.29180 + 8.29180i −0.330616 + 0.330616i
\(630\) 0 0
\(631\) 4.27051 4.27051i 0.170006 0.170006i −0.616976 0.786982i \(-0.711642\pi\)
0.786982 + 0.616976i \(0.211642\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −15.3262 + 15.3262i −0.608203 + 0.608203i
\(636\) 0 0
\(637\) 21.0000 14.0000i 0.832050 0.554700i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 15.0557i 0.594666i −0.954774 0.297333i \(-0.903903\pi\)
0.954774 0.297333i \(-0.0960971\pi\)
\(642\) 0 0
\(643\) 16.5836 0.653993 0.326997 0.945026i \(-0.393963\pi\)
0.326997 + 0.945026i \(0.393963\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 10.0902 10.0902i 0.396686 0.396686i −0.480377 0.877062i \(-0.659500\pi\)
0.877062 + 0.480377i \(0.159500\pi\)
\(648\) 0 0
\(649\) −4.29180 −0.168468
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −29.0689 + 29.0689i −1.13755 + 1.13755i −0.148666 + 0.988887i \(0.547498\pi\)
−0.988887 + 0.148666i \(0.952502\pi\)
\(654\) 0 0
\(655\) 43.4164 1.69642
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 26.0689i 1.01550i −0.861505 0.507750i \(-0.830477\pi\)
0.861505 0.507750i \(-0.169523\pi\)
\(660\) 0 0
\(661\) −2.70820 + 2.70820i −0.105337 + 0.105337i −0.757811 0.652474i \(-0.773731\pi\)
0.652474 + 0.757811i \(0.273731\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −4.29180 + 4.29180i −0.166179 + 0.166179i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −2.94427 + 2.94427i −0.113662 + 0.113662i
\(672\) 0 0
\(673\) 10.1246 + 10.1246i 0.390275 + 0.390275i 0.874786 0.484510i \(-0.161002\pi\)
−0.484510 + 0.874786i \(0.661002\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 17.9443 + 17.9443i 0.689654 + 0.689654i 0.962155 0.272501i \(-0.0878508\pi\)
−0.272501 + 0.962155i \(0.587851\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 5.12461i 0.196088i −0.995182 0.0980439i \(-0.968741\pi\)
0.995182 0.0980439i \(-0.0312586\pi\)
\(684\) 0 0
\(685\) 16.8328 0.643149
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −7.47214 + 37.3607i −0.284666 + 1.42333i
\(690\) 0 0
\(691\) −11.9787 11.9787i −0.455692 0.455692i 0.441547 0.897238i \(-0.354430\pi\)
−0.897238 + 0.441547i \(0.854430\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 38.2918i 1.45249i
\(696\) 0 0
\(697\) −36.8328 −1.39514
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 16.3607i 0.617934i 0.951073 + 0.308967i \(0.0999833\pi\)
−0.951073 + 0.308967i \(0.900017\pi\)
\(702\) 0 0
\(703\) −3.16718 + 3.16718i −0.119453 + 0.119453i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −8.41641 8.41641i −0.316085 0.316085i 0.531176 0.847261i \(-0.321750\pi\)
−0.847261 + 0.531176i \(0.821750\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 9.59675i 0.359401i
\(714\) 0 0
\(715\) 0.854102 4.27051i 0.0319416 0.159708i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 4.58359 0.170939 0.0854696 0.996341i \(-0.472761\pi\)
0.0854696 + 0.996341i \(0.472761\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 3.81966i 0.141859i
\(726\) 0 0
\(727\) 15.1459 15.1459i 0.561730 0.561730i −0.368068 0.929799i \(-0.619981\pi\)
0.929799 + 0.368068i \(0.119981\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −12.7639 −0.472091
\(732\) 0 0
\(733\) −30.0000 −1.10808 −0.554038 0.832492i \(-0.686914\pi\)
−0.554038 + 0.832492i \(0.686914\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −5.23607 5.23607i −0.192873 0.192873i
\(738\) 0 0
\(739\) −12.5623 12.5623i −0.462112 0.462112i 0.437235 0.899347i \(-0.355958\pi\)
−0.899347 + 0.437235i \(0.855958\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −25.3050 −0.928349 −0.464174 0.885744i \(-0.653649\pi\)
−0.464174 + 0.885744i \(0.653649\pi\)
\(744\) 0 0
\(745\) 26.7082 26.7082i 0.978513 0.978513i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 29.1246i 1.06277i 0.847130 + 0.531386i \(0.178329\pi\)
−0.847130 + 0.531386i \(0.821671\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 15.3262 15.3262i 0.557779 0.557779i
\(756\) 0 0
\(757\) −26.7082 26.7082i −0.970726 0.970726i 0.0288574 0.999584i \(-0.490813\pi\)
−0.999584 + 0.0288574i \(0.990813\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 16.5279 16.5279i 0.599135 0.599135i −0.340948 0.940082i \(-0.610748\pi\)
0.940082 + 0.340948i \(0.110748\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 28.0902 + 5.61803i 1.01428 + 0.202855i
\(768\) 0 0
\(769\) 5.00000 5.00000i 0.180305 0.180305i −0.611184 0.791489i \(-0.709306\pi\)
0.791489 + 0.611184i \(0.209306\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0.652476 0.0234679 0.0117340 0.999931i \(-0.496265\pi\)
0.0117340 + 0.999931i \(0.496265\pi\)
\(774\) 0 0
\(775\) −4.27051 4.27051i −0.153401 0.153401i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −14.0689 −0.504070
\(780\) 0 0
\(781\) −0.291796 −0.0104413
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 11.1803 + 11.1803i 0.399043 + 0.399043i
\(786\) 0 0
\(787\) 43.4164 1.54763 0.773814 0.633413i \(-0.218347\pi\)
0.773814 + 0.633413i \(0.218347\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 23.1246 15.4164i 0.821179 0.547453i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −8.88854 + 8.88854i −0.314848 + 0.314848i −0.846784 0.531936i \(-0.821465\pi\)
0.531936 + 0.846784i \(0.321465\pi\)
\(798\) 0 0
\(799\) −20.0000 + 20.0000i −0.707549 + 0.707549i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0.652476 + 0.652476i 0.0230254 + 0.0230254i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 3.81966i 0.134292i −0.997743 0.0671460i \(-0.978611\pi\)
0.997743 0.0671460i \(-0.0213893\pi\)
\(810\) 0 0
\(811\) −16.5623 16.5623i −0.581581 0.581581i 0.353756 0.935338i \(-0.384904\pi\)
−0.935338 + 0.353756i \(0.884904\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 39.5967i 1.38701i
\(816\) 0 0
\(817\) −4.87539 −0.170568
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −7.36068 7.36068i −0.256889 0.256889i 0.566898 0.823788i \(-0.308143\pi\)
−0.823788 + 0.566898i \(0.808143\pi\)
\(822\) 0 0
\(823\) 23.9787 + 23.9787i 0.835845 + 0.835845i 0.988309 0.152464i \(-0.0487207\pi\)
−0.152464 + 0.988309i \(0.548721\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −13.5279 −0.470410 −0.235205 0.971946i \(-0.575576\pi\)
−0.235205 + 0.971946i \(0.575576\pi\)
\(828\) 0 0
\(829\) 0.291796 0.0101345 0.00506725 0.999987i \(-0.498387\pi\)
0.00506725 + 0.999987i \(0.498387\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −15.6525 + 15.6525i −0.542326 + 0.542326i
\(834\) 0 0
\(835\) −50.2492 −1.73895
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 1.79837 + 1.79837i 0.0620868 + 0.0620868i 0.737468 0.675382i \(-0.236021\pi\)
−0.675382 + 0.737468i \(0.736021\pi\)
\(840\) 0 0
\(841\) 28.4164 0.979876
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −11.1803 + 26.8328i −0.384615 + 0.923077i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −20.8328 20.8328i −0.714140 0.714140i
\(852\) 0 0
\(853\) 45.1246i 1.54504i 0.634992 + 0.772519i \(0.281003\pi\)
−0.634992 + 0.772519i \(0.718997\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 21.6525 21.6525i 0.739634 0.739634i −0.232873 0.972507i \(-0.574813\pi\)
0.972507 + 0.232873i \(0.0748126\pi\)
\(858\) 0 0
\(859\) 38.2918i 1.30650i −0.757143 0.653250i \(-0.773405\pi\)
0.757143 0.653250i \(-0.226595\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 25.5279 0.868979 0.434489 0.900677i \(-0.356929\pi\)
0.434489 + 0.900677i \(0.356929\pi\)
\(864\) 0 0
\(865\) −11.5836 11.5836i −0.393854 0.393854i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 3.70820 + 3.70820i 0.125792 + 0.125792i
\(870\) 0 0
\(871\) 27.4164 + 41.1246i 0.928970 + 1.39345i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 6.83282i 0.230728i −0.993323 0.115364i \(-0.963197\pi\)
0.993323 0.115364i \(-0.0368034\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 38.0689i 1.28257i 0.767301 + 0.641287i \(0.221599\pi\)
−0.767301 + 0.641287i \(0.778401\pi\)
\(882\) 0 0
\(883\) 21.1459 + 21.1459i 0.711616 + 0.711616i 0.966873 0.255257i \(-0.0821601\pi\)
−0.255257 + 0.966873i \(0.582160\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −23.6180 23.6180i −0.793016 0.793016i 0.188967 0.981983i \(-0.439486\pi\)
−0.981983 + 0.188967i \(0.939486\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −7.63932 + 7.63932i −0.255640 + 0.255640i
\(894\) 0 0
\(895\) 26.8328 0.896922
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0.652476 0.652476i 0.0217613 0.0217613i
\(900\) 0 0
\(901\) 33.4164i 1.11326i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 48.5410i 1.61356i
\(906\) 0 0
\(907\) −28.2705 + 28.2705i −0.938707 + 0.938707i −0.998227 0.0595202i \(-0.981043\pi\)
0.0595202 + 0.998227i \(0.481043\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 2.83282 0.0938554 0.0469277 0.998898i \(-0.485057\pi\)
0.0469277 + 0.998898i \(0.485057\pi\)
\(912\) 0 0
\(913\) 0.583592 0.583592i 0.0193141 0.0193141i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 5.12461i 0.169045i 0.996422 + 0.0845227i \(0.0269365\pi\)
−0.996422 + 0.0845227i \(0.973063\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 1.90983 + 0.381966i 0.0628628 + 0.0125726i
\(924\) 0 0
\(925\) −18.5410 −0.609625
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 32.8885 32.8885i 1.07904 1.07904i 0.0824423 0.996596i \(-0.473728\pi\)
0.996596 0.0824423i \(-0.0262720\pi\)
\(930\) 0 0
\(931\) −5.97871 + 5.97871i −0.195944 + 0.195944i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 3.81966i 0.124916i
\(936\) 0 0
\(937\) 5.58359 + 5.58359i 0.182408 + 0.182408i 0.792404 0.609996i \(-0.208829\pi\)
−0.609996 + 0.792404i \(0.708829\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −31.3607 31.3607i −1.02233 1.02233i −0.999745 0.0225840i \(-0.992811\pi\)
−0.0225840 0.999745i \(-0.507189\pi\)
\(942\) 0 0
\(943\) 92.5410i 3.01355i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −20.9443 −0.680597 −0.340299 0.940317i \(-0.610528\pi\)
−0.340299 + 0.940317i \(0.610528\pi\)
\(948\) 0 0
\(949\) −3.41641 5.12461i −0.110901 0.166352i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −32.2361 32.2361i −1.04423 1.04423i −0.998976 0.0452531i \(-0.985591\pi\)
−0.0452531 0.998976i \(-0.514409\pi\)
\(954\) 0 0
\(955\) −43.4164 −1.40492
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 29.5410i 0.952936i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 52.3607i 1.68555i
\(966\) 0 0
\(967\) 33.1246i 1.06522i −0.846362 0.532608i \(-0.821212\pi\)
0.846362 0.532608i \(-0.178788\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 9.70820i 0.310593i 0.987868 + 0.155296i \(0.0496333\pi\)
−0.987868 + 0.155296i \(0.950367\pi\)
\(978\) 0 0
\(979\) 1.70820 0.0545944
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 45.7082i 1.45787i −0.684585 0.728933i \(-0.740017\pi\)
0.684585 0.728933i \(-0.259983\pi\)
\(984\) 0 0
\(985\) 26.8328i 0.854965i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 32.0689i 1.01973i
\(990\) 0 0
\(991\) −47.4164 −1.50623 −0.753116 0.657888i \(-0.771450\pi\)
−0.753116 + 0.657888i \(0.771450\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 34.4721 1.09284
\(996\) 0 0
\(997\) −29.0000 29.0000i −0.918439 0.918439i 0.0784767 0.996916i \(-0.474994\pi\)
−0.996916 + 0.0784767i \(0.974994\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2340.2.bp.e.1477.1 4
3.2 odd 2 260.2.r.b.177.2 yes 4
5.3 odd 4 2340.2.u.f.73.1 4
12.11 even 2 1040.2.cd.j.177.1 4
13.5 odd 4 2340.2.u.f.577.2 4
15.2 even 4 1300.2.m.b.593.1 4
15.8 even 4 260.2.m.b.73.2 yes 4
15.14 odd 2 1300.2.r.b.957.1 4
39.5 even 4 260.2.m.b.57.2 4
60.23 odd 4 1040.2.bg.j.593.1 4
65.18 even 4 inner 2340.2.bp.e.1513.1 4
156.83 odd 4 1040.2.bg.j.577.1 4
195.44 even 4 1300.2.m.b.57.1 4
195.83 odd 4 260.2.r.b.213.2 yes 4
195.122 odd 4 1300.2.r.b.993.1 4
780.83 even 4 1040.2.cd.j.993.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
260.2.m.b.57.2 4 39.5 even 4
260.2.m.b.73.2 yes 4 15.8 even 4
260.2.r.b.177.2 yes 4 3.2 odd 2
260.2.r.b.213.2 yes 4 195.83 odd 4
1040.2.bg.j.577.1 4 156.83 odd 4
1040.2.bg.j.593.1 4 60.23 odd 4
1040.2.cd.j.177.1 4 12.11 even 2
1040.2.cd.j.993.1 4 780.83 even 4
1300.2.m.b.57.1 4 195.44 even 4
1300.2.m.b.593.1 4 15.2 even 4
1300.2.r.b.957.1 4 15.14 odd 2
1300.2.r.b.993.1 4 195.122 odd 4
2340.2.u.f.73.1 4 5.3 odd 4
2340.2.u.f.577.2 4 13.5 odd 4
2340.2.bp.e.1477.1 4 1.1 even 1 trivial
2340.2.bp.e.1513.1 4 65.18 even 4 inner