L(s) = 1 | − 2.23i·5-s + (0.381 − 0.381i)11-s + (−2 − 3i)13-s + (−2.23 − 2.23i)17-s + (−0.854 + 0.854i)19-s + (−5.61 + 5.61i)23-s − 5.00·25-s − 0.763i·29-s + (−0.854 − 0.854i)31-s + 3.70i·37-s + (−8.23 − 8.23i)41-s + (2.85 − 2.85i)43-s + 8.94i·47-s + 7·49-s + (7.47 + 7.47i)53-s + ⋯ |
L(s) = 1 | − 0.999i·5-s + (0.115 − 0.115i)11-s + (−0.554 − 0.832i)13-s + (−0.542 − 0.542i)17-s + (−0.195 + 0.195i)19-s + (−1.17 + 1.17i)23-s − 1.00·25-s − 0.141i·29-s + (−0.153 − 0.153i)31-s + 0.609i·37-s + (−1.28 − 1.28i)41-s + (0.435 − 0.435i)43-s + 1.30i·47-s + 49-s + (1.02 + 1.02i)53-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.966 - 0.256i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.966 - 0.256i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.3508478336\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3508478336\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + 2.23iT \) |
| 13 | \( 1 + (2 + 3i)T \) |
good | 7 | \( 1 - 7T^{2} \) |
| 11 | \( 1 + (-0.381 + 0.381i)T - 11iT^{2} \) |
| 17 | \( 1 + (2.23 + 2.23i)T + 17iT^{2} \) |
| 19 | \( 1 + (0.854 - 0.854i)T - 19iT^{2} \) |
| 23 | \( 1 + (5.61 - 5.61i)T - 23iT^{2} \) |
| 29 | \( 1 + 0.763iT - 29T^{2} \) |
| 31 | \( 1 + (0.854 + 0.854i)T + 31iT^{2} \) |
| 37 | \( 1 - 3.70iT - 37T^{2} \) |
| 41 | \( 1 + (8.23 + 8.23i)T + 41iT^{2} \) |
| 43 | \( 1 + (-2.85 + 2.85i)T - 43iT^{2} \) |
| 47 | \( 1 - 8.94iT - 47T^{2} \) |
| 53 | \( 1 + (-7.47 - 7.47i)T + 53iT^{2} \) |
| 59 | \( 1 + (-5.61 - 5.61i)T + 59iT^{2} \) |
| 61 | \( 1 + 7.70T + 61T^{2} \) |
| 67 | \( 1 + 13.7T + 67T^{2} \) |
| 71 | \( 1 + (0.381 + 0.381i)T + 71iT^{2} \) |
| 73 | \( 1 + 1.70T + 73T^{2} \) |
| 79 | \( 1 + 9.70iT - 79T^{2} \) |
| 83 | \( 1 - 1.52iT - 83T^{2} \) |
| 89 | \( 1 + (2.23 + 2.23i)T + 89iT^{2} \) |
| 97 | \( 1 + 11.4T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.669327387741087078574355921037, −7.78209862949692757261896013658, −7.25457220802436929328948381605, −5.98169894055157387845223966084, −5.47375002908628416892917123245, −4.56765499510918407027500004163, −3.78882815439641341704882468638, −2.59250243922632381979724608549, −1.45339196178212638740061704999, −0.11299901228356364525843913683,
1.88887270930267824671142839082, 2.61604541478301970350091897361, 3.79888700317608936464551670137, 4.45448114811542446905835524265, 5.58885791040352931087254633187, 6.59245871559636288944436375498, 6.83665747394534455887053279043, 7.85589192067355018568562349744, 8.602477566993892089824547954606, 9.457760218397812451678791671071