Properties

Label 2340.2.c.e.181.5
Level $2340$
Weight $2$
Character 2340.181
Analytic conductor $18.685$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2340,2,Mod(181,2340)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2340, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2340.181"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2340 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2340.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,0,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.6849940730\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.2732361984.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 13x^{6} + 36x^{4} + 13x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 181.5
Root \(0.328543i\) of defining polynomial
Character \(\chi\) \(=\) 2340.181
Dual form 2340.2.c.e.181.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{5} -2.71519i q^{7} -1.37228i q^{11} +(-2.37228 + 2.71519i) q^{13} +3.72601 q^{17} +1.01082i q^{19} +1.70438 q^{23} -1.00000 q^{25} +5.43039 q^{29} -1.01082i q^{31} +2.71519 q^{35} -3.72601i q^{37} -1.37228i q^{41} -4.00000 q^{43} -8.74456i q^{47} -0.372281 q^{49} +9.15640 q^{53} +1.37228 q^{55} -8.74456i q^{59} +8.11684 q^{61} +(-2.71519 - 2.37228i) q^{65} -6.44121i q^{67} -4.11684i q^{71} +7.45202i q^{73} -3.72601 q^{77} -3.37228 q^{79} -11.4891i q^{83} +3.72601i q^{85} -1.37228i q^{89} +(7.37228 + 6.44121i) q^{91} -1.01082 q^{95} -1.70438i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{13} - 8 q^{25} - 32 q^{43} + 20 q^{49} - 12 q^{55} - 4 q^{61} - 4 q^{79} + 36 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2340\mathbb{Z}\right)^\times\).

\(n\) \(937\) \(1081\) \(1171\) \(2081\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.00000i 0.447214i
\(6\) 0 0
\(7\) 2.71519i 1.02625i −0.858315 0.513124i \(-0.828488\pi\)
0.858315 0.513124i \(-0.171512\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.37228i 0.413758i −0.978366 0.206879i \(-0.933669\pi\)
0.978366 0.206879i \(-0.0663307\pi\)
\(12\) 0 0
\(13\) −2.37228 + 2.71519i −0.657952 + 0.753059i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.72601 0.903690 0.451845 0.892096i \(-0.350766\pi\)
0.451845 + 0.892096i \(0.350766\pi\)
\(18\) 0 0
\(19\) 1.01082i 0.231897i 0.993255 + 0.115949i \(0.0369908\pi\)
−0.993255 + 0.115949i \(0.963009\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.70438 0.355387 0.177694 0.984086i \(-0.443136\pi\)
0.177694 + 0.984086i \(0.443136\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 5.43039 1.00840 0.504199 0.863588i \(-0.331788\pi\)
0.504199 + 0.863588i \(0.331788\pi\)
\(30\) 0 0
\(31\) 1.01082i 0.181548i −0.995872 0.0907740i \(-0.971066\pi\)
0.995872 0.0907740i \(-0.0289341\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 2.71519 0.458952
\(36\) 0 0
\(37\) 3.72601i 0.612552i −0.951943 0.306276i \(-0.900917\pi\)
0.951943 0.306276i \(-0.0990831\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 1.37228i 0.214314i −0.994242 0.107157i \(-0.965825\pi\)
0.994242 0.107157i \(-0.0341748\pi\)
\(42\) 0 0
\(43\) −4.00000 −0.609994 −0.304997 0.952353i \(-0.598656\pi\)
−0.304997 + 0.952353i \(0.598656\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 8.74456i 1.27553i −0.770233 0.637763i \(-0.779860\pi\)
0.770233 0.637763i \(-0.220140\pi\)
\(48\) 0 0
\(49\) −0.372281 −0.0531830
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 9.15640 1.25773 0.628864 0.777515i \(-0.283520\pi\)
0.628864 + 0.777515i \(0.283520\pi\)
\(54\) 0 0
\(55\) 1.37228 0.185038
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 8.74456i 1.13845i −0.822183 0.569223i \(-0.807244\pi\)
0.822183 0.569223i \(-0.192756\pi\)
\(60\) 0 0
\(61\) 8.11684 1.03926 0.519628 0.854393i \(-0.326071\pi\)
0.519628 + 0.854393i \(0.326071\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −2.71519 2.37228i −0.336778 0.294245i
\(66\) 0 0
\(67\) 6.44121i 0.786918i −0.919342 0.393459i \(-0.871278\pi\)
0.919342 0.393459i \(-0.128722\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 4.11684i 0.488579i −0.969702 0.244290i \(-0.921445\pi\)
0.969702 0.244290i \(-0.0785548\pi\)
\(72\) 0 0
\(73\) 7.45202i 0.872193i 0.899900 + 0.436097i \(0.143639\pi\)
−0.899900 + 0.436097i \(0.856361\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −3.72601 −0.424618
\(78\) 0 0
\(79\) −3.37228 −0.379411 −0.189706 0.981841i \(-0.560753\pi\)
−0.189706 + 0.981841i \(0.560753\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 11.4891i 1.26110i −0.776151 0.630548i \(-0.782830\pi\)
0.776151 0.630548i \(-0.217170\pi\)
\(84\) 0 0
\(85\) 3.72601i 0.404143i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1.37228i 0.145462i −0.997352 0.0727308i \(-0.976829\pi\)
0.997352 0.0727308i \(-0.0231714\pi\)
\(90\) 0 0
\(91\) 7.37228 + 6.44121i 0.772825 + 0.675222i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −1.01082 −0.103708
\(96\) 0 0
\(97\) 1.70438i 0.173053i −0.996250 0.0865267i \(-0.972423\pi\)
0.996250 0.0865267i \(-0.0275768\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 3.40876 0.339184 0.169592 0.985514i \(-0.445755\pi\)
0.169592 + 0.985514i \(0.445755\pi\)
\(102\) 0 0
\(103\) −6.74456 −0.664562 −0.332281 0.943181i \(-0.607818\pi\)
−0.332281 + 0.943181i \(0.607818\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 17.9955 1.73970 0.869848 0.493321i \(-0.164217\pi\)
0.869848 + 0.493321i \(0.164217\pi\)
\(108\) 0 0
\(109\) 2.02163i 0.193637i −0.995302 0.0968186i \(-0.969133\pi\)
0.995302 0.0968186i \(-0.0308667\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −5.43039 −0.510848 −0.255424 0.966829i \(-0.582215\pi\)
−0.255424 + 0.966829i \(0.582215\pi\)
\(114\) 0 0
\(115\) 1.70438i 0.158934i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 10.1168i 0.927410i
\(120\) 0 0
\(121\) 9.11684 0.828804
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) −1.48913 −0.132139 −0.0660693 0.997815i \(-0.521046\pi\)
−0.0660693 + 0.997815i \(0.521046\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 18.3128 1.60000 0.799998 0.600002i \(-0.204834\pi\)
0.799998 + 0.600002i \(0.204834\pi\)
\(132\) 0 0
\(133\) 2.74456 0.237984
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 8.74456i 0.747098i −0.927610 0.373549i \(-0.878141\pi\)
0.927610 0.373549i \(-0.121859\pi\)
\(138\) 0 0
\(139\) 3.37228 0.286033 0.143017 0.989720i \(-0.454320\pi\)
0.143017 + 0.989720i \(0.454320\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 3.72601 + 3.25544i 0.311585 + 0.272233i
\(144\) 0 0
\(145\) 5.43039i 0.450969i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 13.3723i 1.09550i 0.836642 + 0.547750i \(0.184515\pi\)
−0.836642 + 0.547750i \(0.815485\pi\)
\(150\) 0 0
\(151\) 9.84996i 0.801579i 0.916170 + 0.400789i \(0.131264\pi\)
−0.916170 + 0.400789i \(0.868736\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 1.01082 0.0811907
\(156\) 0 0
\(157\) −15.4891 −1.23617 −0.618083 0.786113i \(-0.712091\pi\)
−0.618083 + 0.786113i \(0.712091\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 4.62772i 0.364715i
\(162\) 0 0
\(163\) 2.71519i 0.212670i −0.994330 0.106335i \(-0.966088\pi\)
0.994330 0.106335i \(-0.0339117\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 6.00000i 0.464294i 0.972681 + 0.232147i \(0.0745750\pi\)
−0.972681 + 0.232147i \(0.925425\pi\)
\(168\) 0 0
\(169\) −1.74456 12.8824i −0.134197 0.990955i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 7.45202 0.566567 0.283283 0.959036i \(-0.408576\pi\)
0.283283 + 0.959036i \(0.408576\pi\)
\(174\) 0 0
\(175\) 2.71519i 0.205249i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 25.7648 1.92575 0.962877 0.269942i \(-0.0870045\pi\)
0.962877 + 0.269942i \(0.0870045\pi\)
\(180\) 0 0
\(181\) 2.86141 0.212687 0.106343 0.994329i \(-0.466086\pi\)
0.106343 + 0.994329i \(0.466086\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 3.72601 0.273942
\(186\) 0 0
\(187\) 5.11313i 0.373909i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 5.43039 0.392929 0.196465 0.980511i \(-0.437054\pi\)
0.196465 + 0.980511i \(0.437054\pi\)
\(192\) 0 0
\(193\) 1.70438i 0.122684i −0.998117 0.0613419i \(-0.980462\pi\)
0.998117 0.0613419i \(-0.0195380\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 6.00000i 0.427482i 0.976890 + 0.213741i \(0.0685649\pi\)
−0.976890 + 0.213741i \(0.931435\pi\)
\(198\) 0 0
\(199\) −8.00000 −0.567105 −0.283552 0.958957i \(-0.591513\pi\)
−0.283552 + 0.958957i \(0.591513\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 14.7446i 1.03487i
\(204\) 0 0
\(205\) 1.37228 0.0958443
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 1.38712 0.0959494
\(210\) 0 0
\(211\) 9.48913 0.653258 0.326629 0.945153i \(-0.394087\pi\)
0.326629 + 0.945153i \(0.394087\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 4.00000i 0.272798i
\(216\) 0 0
\(217\) −2.74456 −0.186313
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −8.83915 + 10.1168i −0.594585 + 0.680533i
\(222\) 0 0
\(223\) 17.3020i 1.15863i −0.815105 0.579313i \(-0.803321\pi\)
0.815105 0.579313i \(-0.196679\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0.510875i 0.0339079i 0.999856 + 0.0169540i \(0.00539688\pi\)
−0.999856 + 0.0169540i \(0.994603\pi\)
\(228\) 0 0
\(229\) 19.6999i 1.30181i −0.759160 0.650904i \(-0.774390\pi\)
0.759160 0.650904i \(-0.225610\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −16.6084 −1.08805 −0.544027 0.839068i \(-0.683101\pi\)
−0.544027 + 0.839068i \(0.683101\pi\)
\(234\) 0 0
\(235\) 8.74456 0.570432
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 1.37228i 0.0887655i 0.999015 + 0.0443827i \(0.0141321\pi\)
−0.999015 + 0.0443827i \(0.985868\pi\)
\(240\) 0 0
\(241\) 14.2695i 0.919182i 0.888131 + 0.459591i \(0.152004\pi\)
−0.888131 + 0.459591i \(0.847996\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0.372281i 0.0237842i
\(246\) 0 0
\(247\) −2.74456 2.39794i −0.174632 0.152577i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 1.38712 0.0875545 0.0437773 0.999041i \(-0.486061\pi\)
0.0437773 + 0.999041i \(0.486061\pi\)
\(252\) 0 0
\(253\) 2.33889i 0.147045i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −14.2695 −0.890109 −0.445055 0.895503i \(-0.646816\pi\)
−0.445055 + 0.895503i \(0.646816\pi\)
\(258\) 0 0
\(259\) −10.1168 −0.628630
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 8.83915 0.545045 0.272523 0.962149i \(-0.412142\pi\)
0.272523 + 0.962149i \(0.412142\pi\)
\(264\) 0 0
\(265\) 9.15640i 0.562473i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −27.1519 −1.65548 −0.827742 0.561109i \(-0.810375\pi\)
−0.827742 + 0.561109i \(0.810375\pi\)
\(270\) 0 0
\(271\) 19.3236i 1.17383i 0.809650 + 0.586913i \(0.199657\pi\)
−0.809650 + 0.586913i \(0.800343\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.37228i 0.0827517i
\(276\) 0 0
\(277\) −18.2337 −1.09556 −0.547778 0.836624i \(-0.684526\pi\)
−0.547778 + 0.836624i \(0.684526\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 18.0000i 1.07379i −0.843649 0.536895i \(-0.819597\pi\)
0.843649 0.536895i \(-0.180403\pi\)
\(282\) 0 0
\(283\) 1.25544 0.0746280 0.0373140 0.999304i \(-0.488120\pi\)
0.0373140 + 0.999304i \(0.488120\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −3.72601 −0.219939
\(288\) 0 0
\(289\) −3.11684 −0.183344
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 2.23369i 0.130493i 0.997869 + 0.0652467i \(0.0207834\pi\)
−0.997869 + 0.0652467i \(0.979217\pi\)
\(294\) 0 0
\(295\) 8.74456 0.509128
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −4.04326 + 4.62772i −0.233828 + 0.267628i
\(300\) 0 0
\(301\) 10.8608i 0.626005i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 8.11684i 0.464769i
\(306\) 0 0
\(307\) 19.6409i 1.12096i −0.828167 0.560482i \(-0.810616\pi\)
0.828167 0.560482i \(-0.189384\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −19.6999 −1.11708 −0.558540 0.829478i \(-0.688638\pi\)
−0.558540 + 0.829478i \(0.688638\pi\)
\(312\) 0 0
\(313\) 10.0000 0.565233 0.282617 0.959233i \(-0.408798\pi\)
0.282617 + 0.959233i \(0.408798\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 3.25544i 0.182844i −0.995812 0.0914218i \(-0.970859\pi\)
0.995812 0.0914218i \(-0.0291411\pi\)
\(318\) 0 0
\(319\) 7.45202i 0.417233i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 3.76631i 0.209563i
\(324\) 0 0
\(325\) 2.37228 2.71519i 0.131590 0.150612i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −23.7432 −1.30900
\(330\) 0 0
\(331\) 28.1628i 1.54797i 0.633207 + 0.773983i \(0.281738\pi\)
−0.633207 + 0.773983i \(0.718262\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 6.44121 0.351921
\(336\) 0 0
\(337\) −22.2337 −1.21115 −0.605573 0.795790i \(-0.707056\pi\)
−0.605573 + 0.795790i \(0.707056\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −1.38712 −0.0751170
\(342\) 0 0
\(343\) 17.9955i 0.971668i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 9.15640 0.491541 0.245771 0.969328i \(-0.420959\pi\)
0.245771 + 0.969328i \(0.420959\pi\)
\(348\) 0 0
\(349\) 1.38712i 0.0742511i −0.999311 0.0371255i \(-0.988180\pi\)
0.999311 0.0371255i \(-0.0118201\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 14.2337i 0.757583i 0.925482 + 0.378791i \(0.123660\pi\)
−0.925482 + 0.378791i \(0.876340\pi\)
\(354\) 0 0
\(355\) 4.11684 0.218499
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 15.2554i 0.805151i −0.915387 0.402576i \(-0.868115\pi\)
0.915387 0.402576i \(-0.131885\pi\)
\(360\) 0 0
\(361\) 17.9783 0.946224
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −7.45202 −0.390057
\(366\) 0 0
\(367\) −12.2337 −0.638593 −0.319297 0.947655i \(-0.603447\pi\)
−0.319297 + 0.947655i \(0.603447\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 24.8614i 1.29074i
\(372\) 0 0
\(373\) 22.0000 1.13912 0.569558 0.821951i \(-0.307114\pi\)
0.569558 + 0.821951i \(0.307114\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −12.8824 + 14.7446i −0.663478 + 0.759384i
\(378\) 0 0
\(379\) 37.6364i 1.93325i 0.256190 + 0.966626i \(0.417533\pi\)
−0.256190 + 0.966626i \(0.582467\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 31.7228i 1.62096i 0.585766 + 0.810480i \(0.300794\pi\)
−0.585766 + 0.810480i \(0.699206\pi\)
\(384\) 0 0
\(385\) 3.72601i 0.189895i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 16.9257 0.858166 0.429083 0.903265i \(-0.358837\pi\)
0.429083 + 0.903265i \(0.358837\pi\)
\(390\) 0 0
\(391\) 6.35053 0.321160
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 3.37228i 0.169678i
\(396\) 0 0
\(397\) 10.5435i 0.529164i −0.964363 0.264582i \(-0.914766\pi\)
0.964363 0.264582i \(-0.0852340\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 34.4674i 1.72122i 0.509266 + 0.860609i \(0.329917\pi\)
−0.509266 + 0.860609i \(0.670083\pi\)
\(402\) 0 0
\(403\) 2.74456 + 2.39794i 0.136716 + 0.119450i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −5.11313 −0.253449
\(408\) 0 0
\(409\) 29.1736i 1.44254i −0.692654 0.721270i \(-0.743559\pi\)
0.692654 0.721270i \(-0.256441\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −23.7432 −1.16833
\(414\) 0 0
\(415\) 11.4891 0.563979
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −3.40876 −0.166529 −0.0832643 0.996527i \(-0.526535\pi\)
−0.0832643 + 0.996527i \(0.526535\pi\)
\(420\) 0 0
\(421\) 31.1952i 1.52036i 0.649712 + 0.760181i \(0.274890\pi\)
−0.649712 + 0.760181i \(0.725110\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −3.72601 −0.180738
\(426\) 0 0
\(427\) 22.0388i 1.06653i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 3.25544i 0.156809i 0.996922 + 0.0784044i \(0.0249826\pi\)
−0.996922 + 0.0784044i \(0.975017\pi\)
\(432\) 0 0
\(433\) −14.0000 −0.672797 −0.336399 0.941720i \(-0.609209\pi\)
−0.336399 + 0.941720i \(0.609209\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 1.72281i 0.0824133i
\(438\) 0 0
\(439\) 0.627719 0.0299594 0.0149797 0.999888i \(-0.495232\pi\)
0.0149797 + 0.999888i \(0.495232\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 11.1780 0.531084 0.265542 0.964099i \(-0.414449\pi\)
0.265542 + 0.964099i \(0.414449\pi\)
\(444\) 0 0
\(445\) 1.37228 0.0650524
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 5.13859i 0.242505i −0.992622 0.121253i \(-0.961309\pi\)
0.992622 0.121253i \(-0.0386911\pi\)
\(450\) 0 0
\(451\) −1.88316 −0.0886744
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −6.44121 + 7.37228i −0.301968 + 0.345618i
\(456\) 0 0
\(457\) 12.5652i 0.587773i −0.955840 0.293887i \(-0.905051\pi\)
0.955840 0.293887i \(-0.0949488\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 34.6277i 1.61277i 0.591388 + 0.806387i \(0.298580\pi\)
−0.591388 + 0.806387i \(0.701420\pi\)
\(462\) 0 0
\(463\) 8.14558i 0.378557i 0.981923 + 0.189279i \(0.0606150\pi\)
−0.981923 + 0.189279i \(0.939385\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −9.15640 −0.423708 −0.211854 0.977301i \(-0.567950\pi\)
−0.211854 + 0.977301i \(0.567950\pi\)
\(468\) 0 0
\(469\) −17.4891 −0.807573
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 5.48913i 0.252390i
\(474\) 0 0
\(475\) 1.01082i 0.0463794i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 30.8614i 1.41009i 0.709161 + 0.705047i \(0.249074\pi\)
−0.709161 + 0.705047i \(0.750926\pi\)
\(480\) 0 0
\(481\) 10.1168 + 8.83915i 0.461288 + 0.403030i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 1.70438 0.0773918
\(486\) 0 0
\(487\) 26.4584i 1.19894i −0.800396 0.599472i \(-0.795377\pi\)
0.800396 0.599472i \(-0.204623\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −9.47365 −0.427540 −0.213770 0.976884i \(-0.568574\pi\)
−0.213770 + 0.976884i \(0.568574\pi\)
\(492\) 0 0
\(493\) 20.2337 0.911279
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −11.1780 −0.501403
\(498\) 0 0
\(499\) 24.1195i 1.07974i 0.841749 + 0.539868i \(0.181526\pi\)
−0.841749 + 0.539868i \(0.818474\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 2.02163 0.0901401 0.0450701 0.998984i \(-0.485649\pi\)
0.0450701 + 0.998984i \(0.485649\pi\)
\(504\) 0 0
\(505\) 3.40876i 0.151688i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 36.3505i 1.61121i 0.592454 + 0.805604i \(0.298159\pi\)
−0.592454 + 0.805604i \(0.701841\pi\)
\(510\) 0 0
\(511\) 20.2337 0.895086
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 6.74456i 0.297201i
\(516\) 0 0
\(517\) −12.0000 −0.527759
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −34.6040 −1.51603 −0.758014 0.652239i \(-0.773830\pi\)
−0.758014 + 0.652239i \(0.773830\pi\)
\(522\) 0 0
\(523\) −29.7228 −1.29969 −0.649844 0.760068i \(-0.725166\pi\)
−0.649844 + 0.760068i \(0.725166\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 3.76631i 0.164063i
\(528\) 0 0
\(529\) −20.0951 −0.873700
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 3.72601 + 3.25544i 0.161391 + 0.141009i
\(534\) 0 0
\(535\) 17.9955i 0.778015i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0.510875i 0.0220049i
\(540\) 0 0
\(541\) 38.0127i 1.63429i 0.576429 + 0.817147i \(0.304446\pi\)
−0.576429 + 0.817147i \(0.695554\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 2.02163 0.0865972
\(546\) 0 0
\(547\) −4.00000 −0.171028 −0.0855138 0.996337i \(-0.527253\pi\)
−0.0855138 + 0.996337i \(0.527253\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 5.48913i 0.233845i
\(552\) 0 0
\(553\) 9.15640i 0.389370i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 16.9783i 0.719392i 0.933070 + 0.359696i \(0.117120\pi\)
−0.933070 + 0.359696i \(0.882880\pi\)
\(558\) 0 0
\(559\) 9.48913 10.8608i 0.401347 0.459362i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −17.9955 −0.758422 −0.379211 0.925310i \(-0.623805\pi\)
−0.379211 + 0.925310i \(0.623805\pi\)
\(564\) 0 0
\(565\) 5.43039i 0.228458i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −6.81751 −0.285805 −0.142903 0.989737i \(-0.545644\pi\)
−0.142903 + 0.989737i \(0.545644\pi\)
\(570\) 0 0
\(571\) −0.627719 −0.0262692 −0.0131346 0.999914i \(-0.504181\pi\)
−0.0131346 + 0.999914i \(0.504181\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −1.70438 −0.0710775
\(576\) 0 0
\(577\) 23.4259i 0.975234i −0.873058 0.487617i \(-0.837866\pi\)
0.873058 0.487617i \(-0.162134\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −31.1952 −1.29420
\(582\) 0 0
\(583\) 12.5652i 0.520396i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 26.2337i 1.08278i −0.840772 0.541390i \(-0.817898\pi\)
0.840772 0.541390i \(-0.182102\pi\)
\(588\) 0 0
\(589\) 1.02175 0.0421005
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 15.2554i 0.626466i −0.949676 0.313233i \(-0.898588\pi\)
0.949676 0.313233i \(-0.101412\pi\)
\(594\) 0 0
\(595\) 10.1168 0.414750
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −29.1736 −1.19200 −0.596000 0.802984i \(-0.703244\pi\)
−0.596000 + 0.802984i \(0.703244\pi\)
\(600\) 0 0
\(601\) 40.3505 1.64593 0.822966 0.568090i \(-0.192318\pi\)
0.822966 + 0.568090i \(0.192318\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 9.11684i 0.370652i
\(606\) 0 0
\(607\) −32.4674 −1.31781 −0.658905 0.752226i \(-0.728980\pi\)
−0.658905 + 0.752226i \(0.728980\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 23.7432 + 20.7446i 0.960547 + 0.839235i
\(612\) 0 0
\(613\) 21.4043i 0.864512i −0.901751 0.432256i \(-0.857718\pi\)
0.901751 0.432256i \(-0.142282\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 47.4891i 1.91184i 0.293627 + 0.955920i \(0.405138\pi\)
−0.293627 + 0.955920i \(0.594862\pi\)
\(618\) 0 0
\(619\) 26.1411i 1.05070i −0.850886 0.525350i \(-0.823934\pi\)
0.850886 0.525350i \(-0.176066\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −3.72601 −0.149279
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 13.8832i 0.553558i
\(630\) 0 0
\(631\) 6.44121i 0.256420i 0.991747 + 0.128210i \(0.0409232\pi\)
−0.991747 + 0.128210i \(0.959077\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 1.48913i 0.0590941i
\(636\) 0 0
\(637\) 0.883156 1.01082i 0.0349919 0.0400500i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 27.7865 1.09750 0.548749 0.835987i \(-0.315104\pi\)
0.548749 + 0.835987i \(0.315104\pi\)
\(642\) 0 0
\(643\) 21.6625i 0.854286i 0.904184 + 0.427143i \(0.140480\pi\)
−0.904184 + 0.427143i \(0.859520\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −3.72601 −0.146485 −0.0732423 0.997314i \(-0.523335\pi\)
−0.0732423 + 0.997314i \(0.523335\pi\)
\(648\) 0 0
\(649\) −12.0000 −0.471041
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −48.8735 −1.91257 −0.956284 0.292440i \(-0.905533\pi\)
−0.956284 + 0.292440i \(0.905533\pi\)
\(654\) 0 0
\(655\) 18.3128i 0.715540i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 30.5607 1.19048 0.595238 0.803549i \(-0.297058\pi\)
0.595238 + 0.803549i \(0.297058\pi\)
\(660\) 0 0
\(661\) 1.38712i 0.0539529i 0.999636 + 0.0269764i \(0.00858791\pi\)
−0.999636 + 0.0269764i \(0.991412\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 2.74456i 0.106430i
\(666\) 0 0
\(667\) 9.25544 0.358372
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 11.1386i 0.430001i
\(672\) 0 0
\(673\) −1.76631 −0.0680863 −0.0340432 0.999420i \(-0.510838\pi\)
−0.0340432 + 0.999420i \(0.510838\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 13.1997 0.507304 0.253652 0.967295i \(-0.418368\pi\)
0.253652 + 0.967295i \(0.418368\pi\)
\(678\) 0 0
\(679\) −4.62772 −0.177596
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 47.4891i 1.81712i −0.417753 0.908560i \(-0.637182\pi\)
0.417753 0.908560i \(-0.362818\pi\)
\(684\) 0 0
\(685\) 8.74456 0.334113
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −21.7216 + 24.8614i −0.827525 + 0.947144i
\(690\) 0 0
\(691\) 4.41957i 0.168128i −0.996460 0.0840642i \(-0.973210\pi\)
0.996460 0.0840642i \(-0.0267901\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 3.37228i 0.127918i
\(696\) 0 0
\(697\) 5.11313i 0.193674i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 4.79588 0.181138 0.0905690 0.995890i \(-0.471131\pi\)
0.0905690 + 0.995890i \(0.471131\pi\)
\(702\) 0 0
\(703\) 3.76631 0.142049
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 9.25544i 0.348087i
\(708\) 0 0
\(709\) 34.6040i 1.29958i −0.760114 0.649790i \(-0.774857\pi\)
0.760114 0.649790i \(-0.225143\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 1.72281i 0.0645199i
\(714\) 0 0
\(715\) −3.25544 + 3.72601i −0.121746 + 0.139345i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 5.43039 0.202519 0.101260 0.994860i \(-0.467713\pi\)
0.101260 + 0.994860i \(0.467713\pi\)
\(720\) 0 0
\(721\) 18.3128i 0.682004i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −5.43039 −0.201680
\(726\) 0 0
\(727\) −16.2337 −0.602074 −0.301037 0.953612i \(-0.597333\pi\)
−0.301037 + 0.953612i \(0.597333\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −14.9040 −0.551246
\(732\) 0 0
\(733\) 26.0821i 0.963363i −0.876346 0.481682i \(-0.840026\pi\)
0.876346 0.481682i \(-0.159974\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −8.83915 −0.325594
\(738\) 0 0
\(739\) 20.7107i 0.761857i 0.924605 + 0.380928i \(0.124396\pi\)
−0.924605 + 0.380928i \(0.875604\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 4.97825i 0.182634i 0.995822 + 0.0913172i \(0.0291077\pi\)
−0.995822 + 0.0913172i \(0.970892\pi\)
\(744\) 0 0
\(745\) −13.3723 −0.489922
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 48.8614i 1.78536i
\(750\) 0 0
\(751\) 35.6060 1.29928 0.649640 0.760242i \(-0.274920\pi\)
0.649640 + 0.760242i \(0.274920\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −9.84996 −0.358477
\(756\) 0 0
\(757\) −0.978251 −0.0355551 −0.0177776 0.999842i \(-0.505659\pi\)
−0.0177776 + 0.999842i \(0.505659\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 12.5109i 0.453519i −0.973951 0.226759i \(-0.927187\pi\)
0.973951 0.226759i \(-0.0728131\pi\)
\(762\) 0 0
\(763\) −5.48913 −0.198720
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 23.7432 + 20.7446i 0.857317 + 0.749043i
\(768\) 0 0
\(769\) 0.634508i 0.0228810i −0.999935 0.0114405i \(-0.996358\pi\)
0.999935 0.0114405i \(-0.00364170\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 52.9783i 1.90550i 0.303763 + 0.952748i \(0.401757\pi\)
−0.303763 + 0.952748i \(0.598243\pi\)
\(774\) 0 0
\(775\) 1.01082i 0.0363096i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 1.38712 0.0496989
\(780\) 0 0
\(781\) −5.64947 −0.202154
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 15.4891i 0.552831i
\(786\) 0 0
\(787\) 2.39794i 0.0854773i −0.999086 0.0427387i \(-0.986392\pi\)
0.999086 0.0427387i \(-0.0136083\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 14.7446i 0.524256i
\(792\) 0 0
\(793\) −19.2554 + 22.0388i −0.683781 + 0.782621i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −29.4908 −1.04462 −0.522309 0.852756i \(-0.674929\pi\)
−0.522309 + 0.852756i \(0.674929\pi\)
\(798\) 0 0
\(799\) 32.5823i 1.15268i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 10.2263 0.360877
\(804\) 0 0
\(805\) 4.62772 0.163106
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 1.38712 0.0487687 0.0243843 0.999703i \(-0.492237\pi\)
0.0243843 + 0.999703i \(0.492237\pi\)
\(810\) 0 0
\(811\) 36.2493i 1.27288i −0.771324 0.636442i \(-0.780405\pi\)
0.771324 0.636442i \(-0.219595\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 2.71519 0.0951091
\(816\) 0 0
\(817\) 4.04326i 0.141456i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 12.3505i 0.431037i −0.976500 0.215518i \(-0.930856\pi\)
0.976500 0.215518i \(-0.0691441\pi\)
\(822\) 0 0
\(823\) −36.2337 −1.26303 −0.631513 0.775365i \(-0.717566\pi\)
−0.631513 + 0.775365i \(0.717566\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 43.7228i 1.52039i −0.649694 0.760196i \(-0.725103\pi\)
0.649694 0.760196i \(-0.274897\pi\)
\(828\) 0 0
\(829\) −19.4891 −0.676885 −0.338443 0.940987i \(-0.609900\pi\)
−0.338443 + 0.940987i \(0.609900\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −1.38712 −0.0480610
\(834\) 0 0
\(835\) −6.00000 −0.207639
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 13.3723i 0.461662i −0.972994 0.230831i \(-0.925855\pi\)
0.972994 0.230831i \(-0.0741445\pi\)
\(840\) 0 0
\(841\) 0.489125 0.0168664
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 12.8824 1.74456i 0.443168 0.0600148i
\(846\) 0 0
\(847\) 24.7540i 0.850558i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 6.35053i 0.217693i
\(852\) 0 0
\(853\) 43.1259i 1.47660i 0.674472 + 0.738301i \(0.264371\pi\)
−0.674472 + 0.738301i \(0.735629\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 41.7387 1.42577 0.712884 0.701282i \(-0.247389\pi\)
0.712884 + 0.701282i \(0.247389\pi\)
\(858\) 0 0
\(859\) 34.3505 1.17203 0.586013 0.810302i \(-0.300697\pi\)
0.586013 + 0.810302i \(0.300697\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0.510875i 0.0173904i 0.999962 + 0.00869519i \(0.00276780\pi\)
−0.999962 + 0.00869519i \(0.997232\pi\)
\(864\) 0 0
\(865\) 7.45202i 0.253376i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 4.62772i 0.156985i
\(870\) 0 0
\(871\) 17.4891 + 15.2804i 0.592596 + 0.517755i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −2.71519 −0.0917903
\(876\) 0 0
\(877\) 20.3344i 0.686645i 0.939218 + 0.343322i \(0.111552\pi\)
−0.939218 + 0.343322i \(0.888448\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −6.81751 −0.229688 −0.114844 0.993384i \(-0.536637\pi\)
−0.114844 + 0.993384i \(0.536637\pi\)
\(882\) 0 0
\(883\) −4.23369 −0.142475 −0.0712375 0.997459i \(-0.522695\pi\)
−0.0712375 + 0.997459i \(0.522695\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −37.6955 −1.26569 −0.632845 0.774279i \(-0.718113\pi\)
−0.632845 + 0.774279i \(0.718113\pi\)
\(888\) 0 0
\(889\) 4.04326i 0.135607i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 8.83915 0.295791
\(894\) 0 0
\(895\) 25.7648i 0.861223i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 5.48913i 0.183073i
\(900\) 0 0
\(901\) 34.1168 1.13660
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 2.86141i 0.0951164i
\(906\) 0 0
\(907\) −13.4891 −0.447899 −0.223950 0.974601i \(-0.571895\pi\)
−0.223950 + 0.974601i \(0.571895\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 9.47365 0.313876 0.156938 0.987608i \(-0.449838\pi\)
0.156938 + 0.987608i \(0.449838\pi\)
\(912\) 0 0
\(913\) −15.7663 −0.521789
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 49.7228i 1.64199i
\(918\) 0 0
\(919\) 7.60597 0.250898 0.125449 0.992100i \(-0.459963\pi\)
0.125449 + 0.992100i \(0.459963\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 11.1780 + 9.76631i 0.367929 + 0.321462i
\(924\) 0 0
\(925\) 3.72601i 0.122510i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 31.8832i 1.04605i 0.852317 + 0.523026i \(0.175197\pi\)
−0.852317 + 0.523026i \(0.824803\pi\)
\(930\) 0 0
\(931\) 0.376308i 0.0123330i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 5.11313 0.167217
\(936\) 0 0
\(937\) −10.2337 −0.334320 −0.167160 0.985930i \(-0.553460\pi\)
−0.167160 + 0.985930i \(0.553460\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0.350532i 0.0114270i 0.999984 + 0.00571351i \(0.00181868\pi\)
−0.999984 + 0.00571351i \(0.998181\pi\)
\(942\) 0 0
\(943\) 2.33889i 0.0761646i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 36.5109i 1.18644i 0.805039 + 0.593222i \(0.202144\pi\)
−0.805039 + 0.593222i \(0.797856\pi\)
\(948\) 0 0
\(949\) −20.2337 17.6783i −0.656813 0.573862i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 45.1475 1.46247 0.731235 0.682125i \(-0.238944\pi\)
0.731235 + 0.682125i \(0.238944\pi\)
\(954\) 0 0
\(955\) 5.43039i 0.175723i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −23.7432 −0.766708
\(960\) 0 0
\(961\) 29.9783 0.967040
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 1.70438 0.0548659
\(966\) 0 0
\(967\) 4.41957i 0.142124i 0.997472 + 0.0710619i \(0.0226388\pi\)
−0.997472 + 0.0710619i \(0.977361\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 46.0993 1.47940 0.739698 0.672939i \(-0.234968\pi\)
0.739698 + 0.672939i \(0.234968\pi\)
\(972\) 0 0
\(973\) 9.15640i 0.293541i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 30.0000i 0.959785i 0.877327 + 0.479893i \(0.159324\pi\)
−0.877327 + 0.479893i \(0.840676\pi\)
\(978\) 0 0
\(979\) −1.88316 −0.0601859
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 39.2554i 1.25205i −0.779801 0.626027i \(-0.784680\pi\)
0.779801 0.626027i \(-0.215320\pi\)
\(984\) 0 0
\(985\) −6.00000 −0.191176
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −6.81751 −0.216784
\(990\) 0 0
\(991\) 9.88316 0.313949 0.156974 0.987603i \(-0.449826\pi\)
0.156974 + 0.987603i \(0.449826\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 8.00000i 0.253617i
\(996\) 0 0
\(997\) −4.51087 −0.142861 −0.0714304 0.997446i \(-0.522756\pi\)
−0.0714304 + 0.997446i \(0.522756\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2340.2.c.e.181.5 yes 8
3.2 odd 2 inner 2340.2.c.e.181.1 8
13.12 even 2 inner 2340.2.c.e.181.4 yes 8
39.38 odd 2 inner 2340.2.c.e.181.8 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2340.2.c.e.181.1 8 3.2 odd 2 inner
2340.2.c.e.181.4 yes 8 13.12 even 2 inner
2340.2.c.e.181.5 yes 8 1.1 even 1 trivial
2340.2.c.e.181.8 yes 8 39.38 odd 2 inner