Properties

Label 2-2340-13.12-c1-0-12
Degree $2$
Conductor $2340$
Sign $0.753 + 0.657i$
Analytic cond. $18.6849$
Root an. cond. $4.32261$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + i·5-s − 2.71i·7-s − 1.37i·11-s + (−2.37 + 2.71i)13-s + 3.72·17-s + 1.01i·19-s + 1.70·23-s − 25-s + 5.43·29-s − 1.01i·31-s + 2.71·35-s − 3.72i·37-s − 1.37i·41-s − 4·43-s − 8.74i·47-s + ⋯
L(s)  = 1  + 0.447i·5-s − 1.02i·7-s − 0.413i·11-s + (−0.657 + 0.753i)13-s + 0.903·17-s + 0.231i·19-s + 0.355·23-s − 0.200·25-s + 1.00·29-s − 0.181i·31-s + 0.458·35-s − 0.612i·37-s − 0.214i·41-s − 0.609·43-s − 1.27i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.753 + 0.657i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.753 + 0.657i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2340\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 13\)
Sign: $0.753 + 0.657i$
Analytic conductor: \(18.6849\)
Root analytic conductor: \(4.32261\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2340} (181, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2340,\ (\ :1/2),\ 0.753 + 0.657i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.668409481\)
\(L(\frac12)\) \(\approx\) \(1.668409481\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - iT \)
13 \( 1 + (2.37 - 2.71i)T \)
good7 \( 1 + 2.71iT - 7T^{2} \)
11 \( 1 + 1.37iT - 11T^{2} \)
17 \( 1 - 3.72T + 17T^{2} \)
19 \( 1 - 1.01iT - 19T^{2} \)
23 \( 1 - 1.70T + 23T^{2} \)
29 \( 1 - 5.43T + 29T^{2} \)
31 \( 1 + 1.01iT - 31T^{2} \)
37 \( 1 + 3.72iT - 37T^{2} \)
41 \( 1 + 1.37iT - 41T^{2} \)
43 \( 1 + 4T + 43T^{2} \)
47 \( 1 + 8.74iT - 47T^{2} \)
53 \( 1 - 9.15T + 53T^{2} \)
59 \( 1 + 8.74iT - 59T^{2} \)
61 \( 1 - 8.11T + 61T^{2} \)
67 \( 1 + 6.44iT - 67T^{2} \)
71 \( 1 + 4.11iT - 71T^{2} \)
73 \( 1 - 7.45iT - 73T^{2} \)
79 \( 1 + 3.37T + 79T^{2} \)
83 \( 1 + 11.4iT - 83T^{2} \)
89 \( 1 + 1.37iT - 89T^{2} \)
97 \( 1 + 1.70iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.870992934085329184089235378113, −8.057677415712589478445618791412, −7.22362046016420802920212001361, −6.80316120169490826136936484560, −5.80206372806869532984961977230, −4.87465874621663746031700548293, −3.95687673747854928920085004479, −3.21684435202438720353012534680, −2.03521641045187954345658986660, −0.68563135126300476563900286382, 1.05601067177133197665713024846, 2.39666905727654047020594597739, 3.13347438714931250870554881824, 4.41759463295447627730458600311, 5.21888356041998209606187057461, 5.75234723262347787038328654350, 6.77672873756867793105165430365, 7.64312244717814802722044497571, 8.376346684738839929669736922378, 8.997993624938923751208765755283

Graph of the $Z$-function along the critical line