Properties

Label 2340.2.c.e
Level $2340$
Weight $2$
Character orbit 2340.c
Analytic conductor $18.685$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2340,2,Mod(181,2340)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2340, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2340.181"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2340 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2340.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,0,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.6849940730\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.2732361984.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 13x^{6} + 36x^{4} + 13x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{5} q^{5} - \beta_{6} q^{7} + ( - \beta_{5} - \beta_1) q^{11} + (\beta_{6} - \beta_{4} + 1) q^{13} + \beta_{2} q^{17} + (\beta_{7} - \beta_{6}) q^{19} + ( - 2 \beta_{3} - \beta_{2}) q^{23} - q^{25}+ \cdots + (\beta_{7} - 2 \beta_{6}) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{13} - 8 q^{25} - 32 q^{43} + 20 q^{49} - 12 q^{55} - 4 q^{61} - 4 q^{79} + 36 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} + 13x^{6} + 36x^{4} + 13x^{2} + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{7} + 14\nu^{5} + 50\nu^{3} + 63\nu ) / 8 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{6} - 12\nu^{4} - 24\nu^{2} + 5 ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -3\nu^{6} - 38\nu^{4} - 98\nu^{2} - 21 ) / 4 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{6} + 13\nu^{4} + 35\nu^{2} + 7 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -7\nu^{7} - 90\nu^{5} - 238\nu^{3} - 49\nu ) / 8 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( \nu^{7} + 13\nu^{5} + 36\nu^{3} + 12\nu \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( 4\nu^{7} + 51\nu^{5} + 132\nu^{3} + 25\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{6} - \beta_{5} + \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{4} - 2\beta_{3} + \beta_{2} - 6 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( \beta_{7} + 9\beta_{6} + 14\beta_{5} - 6\beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 13\beta_{4} + 22\beta_{3} - 7\beta_{2} + 42 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( -14\beta_{7} - 77\beta_{6} - 145\beta_{5} + 49\beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -66\beta_{4} - 108\beta_{3} + 28\beta_{2} - 175 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 146\beta_{7} + 691\beta_{6} + 1393\beta_{5} - 433\beta_1 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2340\mathbb{Z}\right)^\times\).

\(n\) \(937\) \(1081\) \(1171\) \(2081\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
181.1
3.04374i
0.548230i
1.82405i
0.328543i
0.328543i
1.82405i
0.548230i
3.04374i
0 0 0 1.00000i 0 2.71519i 0 0 0
181.2 0 0 0 1.00000i 0 1.27582i 0 0 0
181.3 0 0 0 1.00000i 0 1.27582i 0 0 0
181.4 0 0 0 1.00000i 0 2.71519i 0 0 0
181.5 0 0 0 1.00000i 0 2.71519i 0 0 0
181.6 0 0 0 1.00000i 0 1.27582i 0 0 0
181.7 0 0 0 1.00000i 0 1.27582i 0 0 0
181.8 0 0 0 1.00000i 0 2.71519i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 181.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
13.b even 2 1 inner
39.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2340.2.c.e 8
3.b odd 2 1 inner 2340.2.c.e 8
13.b even 2 1 inner 2340.2.c.e 8
39.d odd 2 1 inner 2340.2.c.e 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2340.2.c.e 8 1.a even 1 1 trivial
2340.2.c.e 8 3.b odd 2 1 inner
2340.2.c.e 8 13.b even 2 1 inner
2340.2.c.e 8 39.d odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{4} + 9T_{7}^{2} + 12 \) acting on \(S_{2}^{\mathrm{new}}(2340, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( (T^{2} + 1)^{4} \) Copy content Toggle raw display
$7$ \( (T^{4} + 9 T^{2} + 12)^{2} \) Copy content Toggle raw display
$11$ \( (T^{4} + 21 T^{2} + 36)^{2} \) Copy content Toggle raw display
$13$ \( (T^{4} - 2 T^{3} + \cdots + 169)^{2} \) Copy content Toggle raw display
$17$ \( (T^{4} - 45 T^{2} + 432)^{2} \) Copy content Toggle raw display
$19$ \( (T^{4} + 48 T^{2} + 48)^{2} \) Copy content Toggle raw display
$23$ \( (T^{4} - 69 T^{2} + 192)^{2} \) Copy content Toggle raw display
$29$ \( (T^{4} - 36 T^{2} + 192)^{2} \) Copy content Toggle raw display
$31$ \( (T^{4} + 48 T^{2} + 48)^{2} \) Copy content Toggle raw display
$37$ \( (T^{4} + 45 T^{2} + 432)^{2} \) Copy content Toggle raw display
$41$ \( (T^{4} + 21 T^{2} + 36)^{2} \) Copy content Toggle raw display
$43$ \( (T + 4)^{8} \) Copy content Toggle raw display
$47$ \( (T^{4} + 84 T^{2} + 576)^{2} \) Copy content Toggle raw display
$53$ \( (T^{4} - 93 T^{2} + 768)^{2} \) Copy content Toggle raw display
$59$ \( (T^{4} + 84 T^{2} + 576)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + T - 74)^{4} \) Copy content Toggle raw display
$67$ \( (T^{4} + 60 T^{2} + 768)^{2} \) Copy content Toggle raw display
$71$ \( (T^{4} + 189 T^{2} + 2916)^{2} \) Copy content Toggle raw display
$73$ \( (T^{4} + 180 T^{2} + 6912)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} + T - 8)^{4} \) Copy content Toggle raw display
$83$ \( (T^{2} + 132)^{4} \) Copy content Toggle raw display
$89$ \( (T^{4} + 21 T^{2} + 36)^{2} \) Copy content Toggle raw display
$97$ \( (T^{4} + 69 T^{2} + 192)^{2} \) Copy content Toggle raw display
show more
show less