Properties

Label 2340.2.c
Level $2340$
Weight $2$
Character orbit 2340.c
Rep. character $\chi_{2340}(181,\cdot)$
Character field $\Q$
Dimension $22$
Newform subspaces $5$
Sturm bound $1008$
Trace bound $13$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2340 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2340.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 13 \)
Character field: \(\Q\)
Newform subspaces: \( 5 \)
Sturm bound: \(1008\)
Trace bound: \(13\)
Distinguishing \(T_p\): \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2340, [\chi])\).

Total New Old
Modular forms 528 22 506
Cusp forms 480 22 458
Eisenstein series 48 0 48

Trace form

\( 22 q + 16 q^{17} - 12 q^{23} - 22 q^{25} + 4 q^{29} - 8 q^{35} - 36 q^{43} + 2 q^{49} - 4 q^{53} - 12 q^{55} - 20 q^{61} - 2 q^{65} + 28 q^{77} + 16 q^{79} + 4 q^{91} + 16 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2340, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
2340.2.c.a 2340.c 13.b $2$ $18.685$ \(\Q(\sqrt{-1}) \) None 780.2.c.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{5}+5 i q^{7}+3 i q^{11}+(3 i-2)q^{13}+\cdots\)
2340.2.c.b 2340.c 13.b $2$ $18.685$ \(\Q(\sqrt{-1}) \) None 780.2.c.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{5}-2 i q^{11}+(-2 i+3)q^{13}+\cdots\)
2340.2.c.c 2340.c 13.b $4$ $18.685$ \(\Q(i, \sqrt{17})\) None 780.2.c.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{2}q^{5}+\beta _{1}q^{7}+(-\beta _{1}+2\beta _{2})q^{11}+\cdots\)
2340.2.c.d 2340.c 13.b $6$ $18.685$ 6.0.9144576.1 None 260.2.f.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{2}q^{5}+(-\beta _{1}-\beta _{5})q^{7}+(-2\beta _{2}+\cdots)q^{11}+\cdots\)
2340.2.c.e 2340.c 13.b $8$ $18.685$ 8.0.2732361984.1 None 2340.2.c.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{5}q^{5}-\beta _{6}q^{7}+(-\beta _{1}-\beta _{5})q^{11}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(2340, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2340, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(26, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(39, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(65, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(78, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(117, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(130, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(156, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(195, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(234, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(260, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(390, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(468, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(585, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(780, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1170, [\chi])\)\(^{\oplus 2}\)