Defining parameters
Level: | \( N \) | \(=\) | \( 2340 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2340.c (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 13 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(1008\) | ||
Trace bound: | \(13\) | ||
Distinguishing \(T_p\): | \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(2340, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 528 | 22 | 506 |
Cusp forms | 480 | 22 | 458 |
Eisenstein series | 48 | 0 | 48 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(2340, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
2340.2.c.a | $2$ | $18.685$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+i q^{5}+5 i q^{7}+3 i q^{11}+(3 i-2)q^{13}+\cdots\) |
2340.2.c.b | $2$ | $18.685$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+i q^{5}-2 i q^{11}+(-2 i+3)q^{13}+\cdots\) |
2340.2.c.c | $4$ | $18.685$ | \(\Q(i, \sqrt{17})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{2}q^{5}+\beta _{1}q^{7}+(-\beta _{1}+2\beta _{2})q^{11}+\cdots\) |
2340.2.c.d | $6$ | $18.685$ | 6.0.9144576.1 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{2}q^{5}+(-\beta _{1}-\beta _{5})q^{7}+(-2\beta _{2}+\cdots)q^{11}+\cdots\) |
2340.2.c.e | $8$ | $18.685$ | 8.0.2732361984.1 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{5}q^{5}-\beta _{6}q^{7}+(-\beta _{1}-\beta _{5})q^{11}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(2340, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(2340, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(26, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(39, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(65, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(78, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(117, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(130, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(156, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(195, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(234, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(260, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(390, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(468, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(585, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(780, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1170, [\chi])\)\(^{\oplus 2}\)